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1 Introduction

Simplics is a recent successor of the Integrated Solver and Canonizer (ICS) [2]. How-
ever, unlike ICS, Simplics is specialized for a narrower set of problems. It is a tool
for deciding the validity of boolean combinations of linear-arithmetic constraints over
the reals. The main intended application of Simplics is bounded model checking of
infinite transition systems, including several forms of timed transition systems. Ex-
amples of applications include distributed real-time fault-tolerant systems and clock-
synchronization protocols.

2 Architecture and Implementation

Simplics is written entirely in Ocaml (version 3.08.1), with the exception of C-code
for interfacing Ocaml with the GNU Multiprecision Arithmetic Library (GMP version
4.1.3).1

Simplex Solver

The core of Simplics is a solver for real linear arithmetic that relies on the simplex
algorithm. This solver supports incremental addition of linear constraints (equalities,
strict and non-strict inequalities, and disequalities). The solver maintains an internal
state which is a tableau-based representation of the set of constraints asserted so far. It
can detect and propagate implied equalities (e.g.,x ≤ z, y ≤ z, x+ y = 2z → x = y).
The solver also produces non-redundant explanations when an asserted constraint is
not satisfiable or valid in the current state.

To generate such explanations, the solver keeps track of linear dependencies be-
tween the asserted constraints using “zero-slack variables” (in addition to the standard
simplex stack variables). The method and algorithms employed are described in detail
in [3]. These extra zero-slack variables also enable memory-efficient backtracking.

1This part of Simplics is derived from the Ocaml-GMP interface originally written by David Monniaux
and revised for ICS by Jean-Christophe Filliâtre and Harald Rueß.
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SAT Solver

The previous linear-arithmetic solver is combined with a relatively classic SAT solver,
also implemented in Ocaml. This SAT solver works using a clausal representation of
the input problem and uses well-known techniques introduced by Chaff and similar
SAT solvers: two watched literals, non-chronological backtracking based on learned
clauses, and UIP computation. The integration with the simplex solver is also fairly
traditional: Explanations generated by the simplex solver when a conflict is detected
are translated to clauses and used for backtracking. The general approach follows [1].
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