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Abstract. How do living cells compute and control themselves, and
communicate with their environment? We describe the modeling and
analysis of dynamic and reactive biological systems involving both dis-
crete and continuous behaviors, to help begin to answer that question.
Continuous components arise as differential equations specifying how the
concentrations of various molecular species evolve over time. Discrete
components of models of biological systems arise from state transitions
(e.g., from healthy to abnormal states), abstractions and approximations,
nonlinear effects, and the presence of inherently discrete processes, often
observed in systems governed by one or a few molecules. Once a hybrid
model is obtained, analysis techniques such as those described in this
and previous HSCC workshops can be usefully applied to help uncover
structure in the dynamics of biological systems of interest.

1 Introduction

The completion of the Human Genome project, the initial elucidation of many
important biological pathways, and the deluge of biological data becoming avail-
able provide exciting opportunities for computer-assisted analysis of biological
systems, with huge potential future impact. Biology is now an information sci-
ence, with many different types of information: the one-dimensional structure
of DNA encoded genes, the three-dimensional structures of proteins, and the
unimaginably high dimensional dynamics of biological network interaction. It
is the latter network interaction topic that we address here. Many databases,
standard modeling languages, and tools are now becoming available for biolog-
ical information having to do with network effects. In particular, the Biological
Simulation Program for Intra-Cellular Evaluation (BioSPICE) is an open source
development movement that is creating computational models, tools, and infras-
tructure to help deal with modeling and analysis of complex biological systems.
Begun in 2002, BioSPICE seeks to explore, develop, and exploit both the role
computation may play in biology and the role biology may play in computa-
tion [15, 21, 8].

? Research supported in part by the National Science Foundation under grant CCR-
0311348, DARPA BioSpice contract DE-AC03-765F00098 to Lawrence Berkeley Lab-
oratory, and DARPA BioSpice contract F30602-01-C-0153 to SRI International.



However, despite the exponentially expanding oceans of biological data be-
coming available, to understand how cells compute and control themselves, we
must build accurate models that represent the aspects salient to the questions of
biologists. Even relatively simple prokaryotic cells, let alone more complex eu-
karyotic (e.g., human) cells, are so complex that we must aggressively abstract
the models to enable more complete, deep, and scalable analysis, and to present
results to biological domain experts.

The construction of mathematical models for biological processes is central to
the science of bioinformatics and computational biology, but the inherent com-
plexity of biological systems is daunting. Biological processes exhibit dynamics
that range over a very wide time scale and contain stochastic components and
sometimes discrete components as well. Sigmoidal nonlinearities are commonly
observed in biological data correlation, and a wide class of such functions is used
in the resulting models. Biological process operate at widely disparate time and
spatial scales, spanning 12 or more orders of magnitude (from single cell to en-
tire organism). A complete model of a biological process is complex and poses a
challenge for simulation and analysis.

Genetic regulatory networks that work inside a cell form one class of biologi-
cal system. Such networks are responsible for various kinds of cellular behaviors,
for instance, recording, computing, and reacting to changes in the environment.
Behavior is controlled through complex interaction between various protein con-
centrations that are regulated by transcription of various genes, and which, in
turn, positively or negatively influence transcription of other genes, thus resulting
in complex interwoven networks of control. At a much larger scale, metabolism
can be studied at the level of the whole human body. For example, glucose
metabolism can be modeled to determine the blood glucose concentration in
human tissues. In these cases, a phenomenological model is constructed using
tissue- and organ-level concentrations as basic state variables.

The old but recently burgeoning field of systems biology explores the quanti-
tative study of biological processes as whole systems instead of isolated parts [30,
22, 24, 17, 19]. Biological subsystems interact with one another to perform sophis-
ticated biological functions, and a systems-level view is necessary to understand
the complex dynamics that underlie physiology in normal and diseased states.
Systems biology research has focused on quantitative stochastic or differential
equation models of biological systems.

Mathematical models of biological processes are often constructed by gener-
ating equations describing the physical laws that govern the system dynamics.
The obtained model is tuned by determining free parameters and unknown rate
constants using experimental data. However, this is not always possible, as quan-
titative experimental data is plagued with high levels of noise, and precise rates
of reactions are for the most part unknown to science. Even when some rate con-
stants have been inferred using algorithms for determining minimal error curve
fits for available data points, the resulting model is just a “representative” that
best matches all the available data. The actual value of the parameter or rate
constant is possibly stochastic in a given range, so there is a danger of over-



fitting quantitative models to the data, resulting in inaccurate predictions that
are highly sensitive to small perturbations in input data. Moreover, the number
of different state variables can grow quite large. Too many variables represent-
ing different molecular species involved in various compartments can adversely
affect our ability to subsequently simulate and analyze the model. To further
complicate matters, assumptions about homogeneity and the presence of a large
number of molecules often break down at the cellular and cellular compartment
levels. This means that mathematical models based on such assumptions cannot
be expected to be accurate [2].

An alternative approach is to seek completely qualitative, rather than quan-
titative models of biological systems. Some examples of this approach include
the high-quality curation and analysis of qualitative metabolic pathway informa-
tion [18, 29], symbolic analysis including term rewriting and model checking of
curated pathway models [6, 32], and other logical modeling approaches [40, 28].
However, one need not focus on completely logical or symbolic mathematical
modeling of biological systems. We can use hybrid systems as an underlying for-
malism for modeling and analyzing biological systems. We refer to the qualitative
or hybrid qualitative-quantitative modeling and analysis of biological systems as
Symbolic Systems Biology.

2 Hybrid Models

Hybrid systems are mathematical models obtained by formally combining con-
tinuous dynamical systems with discrete transition systems.

Continuous component

In a hybrid system, the continuous dynamics of time-varying variables are given
using differential equations. In models from biology, the differential equations
specify how the concentrations of various molecular species evolve over time.
These differential equations are obtained using standard physical laws, such as
the law of mass action and the law of mass conservation.

For example, consider the case when a species X reacts (reversibly) with
another species Y to form a complex XY . Schematically, this is represented by

X + Y
k1




k
−1

XY

where k1 and k
−1 are the reaction rates for the forward and backward reactions

respectively. If x, y, and z denote the concentrations of X , Y , and XY respec-
tively, then using the law of mass action, which states that the rate of a reaction
is proportional to the products of the concentrations of the reactants, we get a
system of three differential equations:

ẋ = −k1xy + k
−1z

ẏ = −k1xy + k
−1z

ż = k1xy − k
−1z



If a species, say X , participates in more than one reaction, say

X + Yi

ki



k
−i

XYi, for j = 1, . . . , l,

then its rate equation is obtained by collecting terms from each reaction in which
it participates. Adding a source and a sink term, this becomes

ẋ =

l∑

j=1

k−1

j zj −

l∑

j=1

kjyjx + rsrc − rsink , (1)

where zj represents the concentration of the complex XYj , rsrc is the rate of
production of X , and rsink is the rate of utilization of X (independent of the
reactions that have been accounted for explicitly). For example, if X were a
protein, then the effect of the production of X by transcription would contribute
a source term and its decay by proteolysis would contribute a sink term.

VB
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Fig. 1. A physiologic compartment

In the example of modeling the blood glucose in human body [31], consider a
typical physiologic compartment shown in Figure 1. The mass balances for this
compartment can be written as

VB
˙CBo = QB(CBi − CBo) + PA(CI − CBo)− rRBC

VI ĊI = PA(CBo − CI )− rT

where VB is the capillary blood volume, VI is the interstitial fluid volume, QB

is the volumetric blood flow rate, PA is the permeability-area product, CBi is
the arterial blood solute concentration, CBo is the capillary (and venous) blood
solute concentration, CI is the interstitial fluid solute concentration, rRBC is the
rate of red blood cell uptake of solute, and rT is the tissue cellular removal of
solute through cell membrane. In the first equation above, the first term on the
right side is the effect of convection, the second term corresponds to diffusion,
and the last one is the metabolic sink.



Discrete component

Mathematical models developed by biologists are often continuous dynamical
systems, as exemplified by much of the work in systems biology. We argue that
it is useful to consider hybrid discrete-continuous models to enable more com-
plete, deep, and scalable analysis. Hybrid modeling and analysis can provide
great leverage in the realm of complex biological processes, and can also provide
abstractions useful in presenting results to human users. The discrete dynamics
can arise in many different ways and we discuss some of them below.

The purely continuous models of biological systems can be too large and
complex to be maximally useful for simulation and analysis. On the other hand,
a fully discrete approximation of the model can sometimes lose crucial and per-
tinent information. Hybrid systems provide a rigorous foundation for modeling
biological systems at desired levels of abstraction, approximation, and simplifi-
cation. For example, systems that exhibit multiscale dynamics can be simplified
by replacing certain slowly changing variables by their piecewise constant ap-
proximation. This is particularly useful when the property of interest is defined
on a small time scale. Additionally, sigmoidal nonlinearities are commonly ob-
served in biological data correlation, and the corresponding models often use
(continuous) sigmoidal functions. These can also be approximated by discrete
transitions between piecewise-linear regions. Figure 2 shows a generic plot of
data points and the corresponding sigmoidal curve (solid line) generated by tun-
ing parametric sigmoidal curves. The solid curve is chosen to best match the
available data, and the heavy dashed line is a piecewise-linear approximation
of the data points. The light dotted lines represent nondeterministic bounds on
behavior. In some instances, nondeterministic upper and lower bounds are more

useful than deterministic approximations, because they capture all the behaviors
of the system.

For example, gene transcription and translation lead to production of pro-
teins in cells. The rate of transcription of the corresponding gene determines the
source term in Equation 1 for concentration of that protein. This term is, in gen-
eral, a function of the concentrations of several other molecules that affect the
transcription of the relevant gene. This influence of concentrations of proteins
and sigma factors on transcription is conventionally modeled using nonlinear
continuous functions. This function is usually a steep sigmoidal curve, which is
described using higher-order polynomial expressions or hyperbolic trigonometric
functions [3, 23, 26]. Sigmoidal nonlinearities are also observed in many other
biological data. For instance, in the case of glucose metabolism in human body,
the normalized rate of peripheral glucose uptake (a sink term) is such a nonlinear
function of the normalized peripheral interstitial insulin concentration [31].

The use of sigmoidal functions in biological models can be replaced by piece-
wise constant or piecewise linear approximations as shown by the dashed line in
Figure 2, resulting in a hybrid model with a discrete mode change logic [10, 1].
A very steep sigmoidal curve can be approximated by a step function. In the
gene regulation example, this corresponds to assuming that a particular gene
can be in one of two states: “on” or “off”. A discrete transition describes how
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Fig. 2. A generic plot of data points and its various approximations.

the various regulators combine to choose one of these two states. In completely
qualitative modeling, one can represent such states with Boolean variables. More
refined, but still discrete, stepwise models can result from distinguishing more
than two states for genes–for example, “off’, “low”, “medium” and “high”. More
complicated discrete logic would then describe the process of choosing between
these four possible modes. More accurate approximations for sigmoidal curves
are obtained by piecewise linear approximations.

A second source of discrete behavior in models of biological systems is the
presence of an inherently discrete process. The physical laws that yield differen-
tial equation (continuous) models are applicable only under certain assumptions.
For example, the law of mass action holds only when there are large numbers
of molecules that are homogeneously mixed. But these assumptions may not be
true always. Inside a cell, there are dynamics that are governed by the action
of only a few molecules [25]. Ignoring the stochastic aspect temporarily, chem-
ical dynamics at small numbers are best modeled using discrete transitions, cf.
the Master equation [11, 7]. This again results in hybrid models of biological
processes.

Discrete mode changes can also result from the modeling of faulty modes.
In the case of glucose metabolism, the kidney does not excrete any glucose in
normal conditions, but it starts excreting glucose if the level of glucose rises very
high. This effect can be captured using a discrete transition.

Nondeterminism and analysis of safety properties

Uncertainties and stochastic behavior are common in biology. Rate constants
and several other parameters in models of biological systems are determined us-
ing algorithms for determining minimal error curve fits for available data points.
For example, the rate constants kj and k

−j in Equation 1 and the source and
sink terms in that equation are determined in this way. Parameter values thus



obtained are “representative” because they do not capture all observed behav-
iors. The actual value of the parameter is possibly stochastic in a given range.
In many cases, we are interested in knowing about all possible behaviors of the
system, rather than the behavior of the system assuming a representative value
for the parameters. For example, when studying the effect of insulin injections
on blood glucose concentrations, we wish to know all possible blood glucose
concentrations that a human body may exhibit. In such cases uncertainties can
be modeled using nondeterminism and the resulting model can be analyzed for
all possible behaviors. In Figure 2 the given data points lie between the two
piecewise-linear curves shown by dotted lines. The nondeterministic hybrid sys-
tem resulting from using the two dotted lines as the approximation captures all

the observed behaviors of the system (and possibly more).
Unknown rate constants can be modeled using unspecified symbolic con-

stants, called parameters, in a hybrid formalism. However, to generate non-
trivial models that exhibit interesting behaviors, these parameters need to be
constrained to take only certain values. Such constraints can be specified in the
model using inequalities over expressions containing these parameters. This gives
rise to a highly nondeterministic model, that is, the model can exhibit several
different behaviors—one corresponding to every exact numerical instantiation
for the parameters that is consistent with the constraints. Although this process
of nondeterministic modeling does not accurately capture the stochastic nature
of biological processes that arises due to random fluctuations on the small num-
bers of molecules involved [24], our analysis approach reintroduces some noise by
assuming that the unknown parameters are allowed to change randomly (while
still remaining consistent with the constraints) finitely many times. Of course,
information about exact probabilities remains missing from our nondeterministic
model, so results of analysis can sometimes be coarse.

Composition

Compositionality is an important feature required to model and analyze large
models of any system. Larger systems are described by putting together smaller
networks and component subsystems. Compositional modules are subsystems of
a larger system that exhibit identifiable interfaces, are modifiable independently,
and enable abstract modeling. Modularity is one of the crucial aspects of design-
ing (and describing) large systems, including computer software and hardware
systems. It permits clean and scalable description, and also helps appropriately
designed tools in performing simulation and analysis on the models.

It is increasingly apparent that biological systems exhibit certain kinds of
clean modularity [4, 5]. Biological examples of modular construction include
the universal genetic code, translation into amino acid sequences, protein do-
mains, operon structure, bilipid layer membranes, organelles, organs, communi-
ties of organisms, and the one of most interest presently, signaling and metabolic
pathways. Cells contain many different regulatory pathways, or networks of in-
teracting proteins or other molecules, in several physical compartments, which
interact with each other at certain well-defined points. That is, pathways have



been identified that have identifiable interfaces with other pathways, appear to
be modifiable independently, and enable abstract modeling. The complete be-
havior of some aspect of a cell can thus be described by putting together all
the various models for the individual pathways and sharing the information on
molecular species that are shared by two or more such subsystems.

3 HybridSAL

HybridSAL is a prototype system for hybrid system modeling and analysis [16].
Models of hybrid systems can be written in the HybridSAL language. These
models can then be analyzed for safety properties, that is, properties regarding
all possible behaviors of the system. The analysis is done using an abstraction
and model checking framework [35]. This tool has been used on examples from
a diverse range of application areas such as automobile transmissions, cruise
control algorithms, collision avoidance, and genetic and biochemical networks [9].

HybridSAL can be used to compositionally build parametric hybrid models
of biological processes. Some of the general principles described above for gen-
erating approximate hybrid models from continuous models built by biologists
have not been automated in HybridSAL. The user is responsible for building the
appropriate hybrid models of the biological system. In particular, simplifiers and
translators need to be added to the existing HybridSAL tool to make it easier to
use for biological applications. However, initial translators exist to map SBML
models into SAL through BioSPICE.

Analysis

A modeling formalism is only as useful as the analysis tools that support it. The
parametric hybrid modeling formalism enables the development of a variety of
analysis tools. Combining discrete and continuous modeling techniques results
in simpler and more composable models. Compositionality allows for the devel-
opment of scalable tools. Parametric modeling languages permit the use of tools
for model refinement. Presently, we have analysis techniques for (a) automati-
cally creating sound approximations of the model that are smaller and simpler,
thus amenable to more intensive (computationally complex) analysis [35], (b)
proving properties, such as stability, for the model [9], (c) generating poten-
tially interesting behaviors of the model, and (d) generating constraints on the
unknown parameters automatically so that the constrained model exhibits a
certain behavior [37]. In the future, we plan to also have tools for model refine-
ment, simplification, and simulation. We also will improve methods of presenting
abstract models and the results of hybrid analysis to biological domain experts.

The process of creating sound abstractions is based on combining qualita-
tive techniques [20] with predicate abstraction [12]. It is powered by powerful
symbolic reasoning engines [33]. The simplified model generated is a discrete
finite-state transition system. It is an abstraction, in a very precise and rigorous
sense, of the original model. The abstraction technique can be further optimized



for linear [34] and nonlinear systems [36]. The second step of exploration on this
finite-state system is carried out using model checking.

4 Examples

We discuss aspects of hybrid modeling and analysis as applied to two specific
biological examples.

Glucose metabolism in humans

We will use the human glucose-insulin system and the model of this system pro-
posed by Guyton et al. [13] and Sorensen [31] as an illustrative example. This
model has been used to design a model-based predictive control algorithm to
maintain normoglycemia, via a closed-loop insulin infusion pump, in the Type
I diabetic patient [27]. A formal correctness analysis of any such control algo-
rithm can be established by showing that blood glucose level remains between 70
and 100 mg/dl always. For “representative” parameter values, this can perhaps
be shown using simulations, but that analysis would never yield real guaran-
tees, since parameter values vary over ranges across different individuals. Thus,
higher assurance of bounds on behavior requires analysis over all behaviors of
the corresponding nondeterministic model. That is, we suggest that complete
exploration of all behaviors of an abstracted system provides valuable insight
beyond the partial exploration of some behaviors (e.g., forward simulation) of a
more concrete system model.

The final glucose metabolism model consists of 22 simultaneous nonlinear
ordinary differential equations [31]. It is obtained by dividing the human body
into six physiologic compartments: brain, heart and lungs, periphery, gut, liver,
and kidney. There is a state variable for the glucose and insulin concentration
in each of these six compartments. Wherever necessary, these compartments are
subdivided into interstitial fluid space and vascular blood space. This model is de-
composed into three components in HybridSAL, describing glucose metabolism,
insulin metabolism, and glucagon metabolism respectively. Additionally, all non-
linearities in the model arise from sigmoidal functions, which can be eliminated
in favor of piecewise linear approximations to yield a hybrid system with linear
continuous dynamics. Further simplifications are possible by noticing that the
change in glucagon concentrations is very minimal and slow compared to other
state variables. The insulin concentrations act as inputs to the glucose mod-
ule and consequently the insulin concentrations stabilize first, followed by the
glucose concentration stabilizing.

The insulin metabolism model has two sources of insulin: pancreatic insulin
release and insulin injections. If we set these inputs to zero (say, to model a
diabetic patient), then the insulin model stabilizes at 0 because there is no other
source of insulin in the model. If we assume that the inputs to the insulin module
change very slowly compared to the dynamics of insulin concentration, then we
can analyze the system assuming constant inputs. The resulting insulin model



is a linear system with one complex eigenvalue with negative real part, and all
other eigenvalues are real and negative. This indicates that the system is stable,
though it could exhibit some damped oscillation. Using the results to compute
approximate reachability sets of linear systems [34], we can easily compute over-
approximations of reach sets for this system. The reach sets enable computation
of a bound on the insulin concentrations. The glucose metabolism module re-
duces to a linear system if the insulin inputs are fixed to their lower or upper
bounds. The resulting linear system also has one complex and seven negative real
eigenvalues. Again using the techniques from [34], we can compute approximate
reach sets that bound the modeled behavior of glucose concentrations. Note that
because of the construction of the abstractions and approximations, the bounds
thus obtained are conservative and robust to small changes in parameter values.

B.Subtilis sporulation initiation

The bacteria Bacillus subtilis initiates spore formation when there is a nutrient
deficiency and the environment is not conducive to growth. The cellular commit-
ment to sporulate is regulated by the complex network of transcriptional control
of various genes and interactions between various proteins. Based on the data
provided to us [39, 38], we constructed a model of the sporulation initiation
network of B.Subtilis. The HybridSAL model consists of six components. The
phosphorelay chain is described in one of the important components. The effect
of promoters and inhibitors on gene regulation was captured via discrete transi-
tions. Unknown rate constants were modeled using parameters. The parameters
were constrained by inequalities. In some cases, the constraints were generated
using a tool for doing quantifier-elimination over the theory of reals, called QEP-
CAD [14]. As noted above, the constrained model is highly nondeterministic and
it captures a whole spectrum of behaviors.

The constrained parametric hybrid model of the sporulation initiation net-
work was analyzed using hybrid abstraction [35] and model checking for stability
properties. The stability properties of the resulting hybrid model were observed
to be highly sensitive to the discrete logic modeling gene regulation [36]. The
hybrid abstraction approach is partly based on qualitative methods. The anal-
ysis of the system using these techniques partially accounts for some stochastic
behaviors where the unknown parameters are allowed to fluctuate finitely many
times to values consistent with the constraints. This results in several unexpected
and interesting behaviors of the sporulation model.

5 Conclusion

The goal of Symbolic Systems Biology is the construction and experimental
validation of models and analyses that explain and predict the behavior of
biological systems. Symbolic Systems Biology is characterized by a synergis-
tic integration of theory, computation, and experiment. Only through such an
interdisciplinary approach can we achieve a scalable, rigorous, and systematic



understanding of complex biological processes. Hybrid discrete-continuous for-
malisms such as those presented at this workshop can be used to provide access
to computational analysis enabling accurate modeling of some of the dynamics
of biological systems. Together with increasing access to biological network in-
formation (through exponentially growing databases and BioSPICE and related
tool platforms) and qualitative modeling and analysis techniques, hybrid model-
ing and analysis of the computation and control of cells, tissues, and organisms
may enable Symbolic Systems Biology to begin to be useful to biologists.
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