
LOGIC AND FORMAL METHODS

Program Verification:
Next Steps For Usability
Usable Verification 2010
Peter H. Schmitt and Mattias Ulbrich | November 16, 2010

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

www.kit.edu

http://www.kit.edu


Overview

Who we are
Deductive Java source code
verification
Dynamic logic, symbolic execution
JML
Combine interaction and automation

What we did
1 Our view of the field
2 next steps for more usable verification systems

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 2/9



Program verification

extended debugging

full functional verification

increase confidence
Target

SBMC
Abs. Int.
SLAM

RAC
test case gen.

ESC/Java
HAVOC

KeY
VCC

L4.verified

no annotations

little annot. +
fully automatic

annotations +
mostly automatic

extensive annot. +
hardly automatic

Effort

decrease effort =⇒
increase usability

enhance analyses

make things less difficult

push the limits

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 3/9



Program verification

extended debugging

full functional verification

increase confidence
Target

SBMC
Abs. Int.
SLAM

RAC
test case gen.

ESC/Java
HAVOC

KeY
VCC

L4.verified

no annotations

little annot. +
fully automatic

annotations +
mostly automatic

extensive annot. +
hardly automatic

Effort

decrease effort =⇒
increase usability

enhance analyses

make things less difficult

push the limits

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 3/9



Program verification

extended debugging

full functional verification

increase confidence
Target

SBMC
Abs. Int.
SLAM

RAC
test case gen.

ESC/Java
HAVOC

KeY
VCC

L4.verified

no annotations

little annot. +
fully automatic

annotations +
mostly automatic

extensive annot. +
hardly automatic

Effort

decrease effort =⇒
increase usability

enhance analyses

make things less difficult

push the limits

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 3/9



Program verification

extended debugging

full functional verification

increase confidence
Target

SBMC
Abs. Int.
SLAM

RAC
test case gen.

ESC/Java
HAVOC

KeY
VCC

L4.verified

no annotations

little annot. +
fully automatic

annotations +
mostly automatic

extensive annot. +
hardly automatic

Effort

decrease effort =⇒
increase usability

enhance analyses

make things less difficult

push the limits

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 3/9



Program verification

extended debugging

full functional verification

increase confidence
Target

SBMC
Abs. Int.
SLAM

RAC
test case gen.

ESC/Java
HAVOC

KeY
VCC

L4.verified

no annotations

little annot. +
fully automatic

annotations +
mostly automatic

extensive annot. +
hardly automatic

Effort

decrease effort =⇒
increase usability

enhance analyses

make things less difficult

push the limits

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 3/9



Program verification

extended debugging

full functional verification

increase confidence
Target

SBMC
Abs. Int.
SLAM

RAC
test case gen.

ESC/Java
HAVOC

KeY
VCC

L4.verified

no annotations

little annot. +
fully automatic

annotations +
mostly automatic

extensive annot. +
hardly automatic

Effort

decrease effort =⇒
increase usability

enhance analyses

make things less difficult

push the limits

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 3/9



Program verification

extended debugging

full functional verification

increase confidence
Target

SBMC
Abs. Int.
SLAM

RAC
test case gen.

ESC/Java
HAVOC

KeY
VCC

L4.verified

no annotations

little annot. +
fully automatic

annotations +
mostly automatic

extensive annot. +
hardly automatic

Effort

decrease effort =⇒
increase usability

enhance analyses

make things less difficult

push the limits

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 3/9



Program verification

extended debugging

full functional verification

increase confidence
Target

SBMC
Abs. Int.
SLAM

RAC
test case gen.

ESC/Java
HAVOC

KeY
VCC

L4.verified

no annotations

little annot. +
fully automatic

annotations +
mostly automatic

extensive annot. +
hardly automatic

Effort

decrease effort =⇒
increase usability

enhance analyses

make things less difficult

push the limits

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 3/9



Next Steps (1)

Mature Specification Languages

1 Compare with programming languages: C
20yrs
 Java:

types, semantics, portability, . . .

2 Integrative spec language for light and heavy weight
specification, common platform
(RAC, deduction, testing, documentation, ...)

3 good data abstraction concept (framing problem)
4 abstract data types
5 candidates: JML, ACSL, CodeContracts, ...

(however: Many tools, many syntaxes, many semantics)

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 4/9



Next Steps (2)

Specified and Verified Libraries

1 needed for wide-spread use of verification
2 a large task
3 open research questions
4 full functional and/or special purpose?
5 which libraries?
6 should be a community effort

(see JML specathlon)

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 5/9



Next Steps (3)

Domain Specific Specifications

1 → model driven software development
2 conciser, shorter, easier to understand
3 broader audience
4 code and specification generation
5 examples: security flow properties, algorithmic properties

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 6/9



Next Steps (4)

MODEL
specification/
verification

PROGRAM
spec/verification

Bridge the Gap between Model
and Program Verification

1 established modelling
methodologies like B, Z, ASM, ...

2

Have a concept of refinement
3 integrate into software design

process
4 code generation /

specification generation

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 7/9



Next Steps (4)

MODEL
specification/
verification

PROGRAM
spec/verification

Bridge the Gap between Model
and Program Verification

1 established modelling
methodologies like B, Z, ASM, ...

2

Have a concept of refinement
3 integrate into software design

process
4 code generation /

specification generation

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 7/9



Next Steps (4)

MODEL
specification/
verification

PROGRAM
spec/verification

Bridge the Gap between Model
and Program Verification

1 established modelling
methodologies like B, Z, ASM, ...

2

Have a concept of refinement
3 integrate into software design

process
4 code generation /

specification generation

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 7/9



Next Steps (4)

MODEL
specification/
verification

PROGRAM
spec/verification

Bridge the Gap between Model
and Program Verification

1 established modelling
methodologies like B, Z, ASM, ...

2 Have a concept of refinement
3 integrate into software design

process
4 code generation /

specification generation

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 7/9



Next steps (5)

Integrate Automation and Interaction

There will always be interaction
if the problem is sufficiently difficult

like loop invariants, quantifier instantiations, lemmata.

1 reduce interactions
(inference, powerful decision procedures)

2 help verifying person find these auxiliary information
3 provide good feedback to where and what failed,

and how to proceed.

How to proceed
“Help me by providing an
upper bound for int-variable x .”
“Help me by providing
evidence that x > 5 is part of
the loop invariant in line...”
“Adjust your post condition
because x > 5 does not hold
for input y = 10.”

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 8/9



Next steps (5)

Integrate Automation and Interaction

There will always be interaction
if the problem is sufficiently difficult

like loop invariants, quantifier instantiations, lemmata.

1 reduce interactions
(inference, powerful decision procedures)

2 help verifying person find these auxiliary information
3 provide good feedback to where and what failed,

and how to proceed .

How to proceed
“Help me by providing an
upper bound for int-variable x .”
“Help me by providing
evidence that x > 5 is part of
the loop invariant in line...”
“Adjust your post condition
because x > 5 does not hold
for input y = 10.”

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 8/9



5 Next Steps for Usability

1 Mature Specification Languages

2 Specified and Verified Libraries

3 Domain Specific Specifications

4 Bridge the Gap between Model and Program Verification

5 Integrate Automation and Interaction

Thank you

Peter H. Schmitt and Mattias Ulbrich – Program Verification-Next Steps November 16, 2010 9/9


