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I Overview

Who we are
a Deductive Java source code
verification
@ Dynamic logic, symbolic execution
= JML
m Combine interaction and automation
What we did

@ Our view of the field
@ next steps for more usable verification systems
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Program verification AUT

Effort

extensive annot. +
hardly automatic

annotations +
mostly automatic

little annot. +
fully automatic

no annotations
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I Next Steps (1) AT
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Mature Specification Languages

@ Compare with programming languages: C 2% Java:

types, semantics, portability, ...

@ Integrative spec language for light and heavy weight
specification, common platform
(RAC, deduction, testing, documentation, ...)

@ good data abstraction concept (framing problem)
@ abstract data types
@® candidates: JML, ACSL, CodeContracts, ...

(however: Many tools, many syntaxes, many semantics)
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I Next Steps (2) AT
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Specified and Verified Libraries

@ needed for wide-spread use of verification
@ alarge task

@ open research questions

@ full functional and/or special purpose?

@ which libraries?

@ should be a community effort
(see JML specathlon)
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I Next Steps (3) AT
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Domain Specific Specifications

@ — model driven software development

@ conciser, shorter, easier to understand

@ broader audience

@ code and specification generation

@ examples: security flow properties, algorithmic properties
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I Next Steps (4) AT
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Bridge the Gap between Model

MODEL and Program Verification
specification/

verification

PROGRAM
spec/verification
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Bridge the Gap between Model

MODEL and Program Verification
specification/

verification

@ established modelling
i methodologies like B, Z, ASM, ...

Have a concept of refinement
@ integrate into software design

process
PROGRAM @ code generation /
spec/verification specification generation
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I Next steps (5) T
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Integrate Automation and Interaction

There will always be interaction
if the problem is sufficiently difficult

like loop invariants, quantifier instantiations, lemmata.

@ reduce interactions
(inference, powerful decision procedures)

@ help verifying person find these auxiliary information

@ provide good feedback to where and what failed,
and how to proceed.
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Integrate Automation and Interaction

There will always be interaction
if the problem is sufficiently difficult
How to proceed
a “Help me by providing an
upper bound for int-variable x.”
a “Help me by providing
evidence that x > 5 is part of
the loop invariant in line..”

a “Adjust your post condition

because x > 5 does not hold
for input y = 10

like loop invariants, quantifie

@ reduce interactions
(inference, powerful dec

@ help verifying person fin

@ provide good feedback -
and how to proceed .
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| 5 Next Steps for Usability IT

@ Mature Specification Languages

@ Specified and Verified Libraries

@ Domain Specific Specifications

@ Bridge the Gap between Model and Program Verification

@ Integrate Automation and Interaction

Thank you
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