Karlsruhe Institute of Technology

Program Verification:
Next Steps For Usability

Usable Verification 2010
Peter H. Schmitt and Mattias Ulbrich | November 16, 2010

LoGICc AND FORMAL METHODS

www.kit.edu

KIT — University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

http://www.kit.edu

I Overview

Who we are
a Deductive Java source code
verification
@ Dynamic logic, symbolic execution
= JML
m Combine interaction and automation
What we did

@ Our view of the field
@ next steps for more usable verification systems

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 2/9

I Program verification A\‘("‘

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 3/9

I Program verification AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

RAC
test case gen.
I KeY
SBMC ESC/Java VCC
Abs. Int. HAVOC

SLAM L4 verified
‘I' J' ‘l' Target
e e
de‘o\)gg\ o(\’\'\deﬂc \’\\(‘a?""“0
e G Ve
»a\e“d et \’&\)(\0\\0“3
KO\

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 3/9

Program verification AUT

Effort

extensive annot. +
hardly automatic

annotations +
mostly automatic

little annot. +
fully automatic

no annotations

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 3/9

Program verification

Effort

extensive annot. +
hardly automatic

annotations +
mostly automatic

little annot. +
fully automatic

no annotations

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 3/9

Program verification

Effort

extensive annot. +
hardly automatic

annotations +
mostly automatic

little annot. +
fully automatic

no annotations

decrease effort —
increase usability

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 3/9

Program verification

Effort

extensive annot. +
hardly automatic

annotations +
mostly automatic

little annot. +
fully automatic

no annotations

decrease effort —
increase usability

DA

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps

Tar
Na\o) .Ao(\c’e " a\‘,\o a get
\le(\’\\c
«3ed enhance analyses | | 2\
- ."\0\.\
\\} ﬂ\.\\\ A\9)
November 16, 2010 3/9

Program verification

Effort

extensive annot. +
hardly automatic

annotations +
mostly automatic

decrease effort —

increase usability

full

litt make things less difficult

no annotations

Na\o)

. Ao(\c’e

~3e9 enhance analyses

e

\\N g \)\\ h\S)

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps

\ o’{\O“

2

November 16, 2010 3/9

Program verification AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Effort

extensive annot. +
hardly automatic | gecrease effort —
increase usability

annotations +
mostly automatic oush the limits

litt make things less difficult

full
no annotations Target
¥a(o) . 1008 _\,\.\ca’\‘_\o
aed enhance analyses | . @V
e O
e wr W™

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 3/9

I Next Steps (1) AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Mature Specification Languages

@ Compare with programming languages: C 2% Java:

types, semantics, portability, ...

@ Integrative spec language for light and heavy weight
specification, common platform
(RAC, deduction, testing, documentation, ...)

@ good data abstraction concept (framing problem)
@ abstract data types
@® candidates: JML, ACSL, CodeContracts, ...

(however: Many tools, many syntaxes, many semantics)

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 4/9

I Next Steps (2) AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Specified and Verified Libraries

@ needed for wide-spread use of verification
@ alarge task

@ open research questions

@ full functional and/or special purpose?

@ which libraries?

@ should be a community effort
(see JML specathlon)

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 5/9

I Next Steps (3) AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Domain Specific Specifications

@ — model driven software development

@ conciser, shorter, easier to understand

@ broader audience

@ code and specification generation

@ examples: security flow properties, algorithmic properties

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 6/9

I Next Steps (4) AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Bridge the Gap between Model

MODEL and Program Verification
specification/

verification

PROGRAM
spec/verification

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 7/9

I Next Steps (4) AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Bridge the Gap between Model

MODEL and Program Verification
specification/

verification

X

PROGRAM
spec/verification

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 7/9

I Next Steps (4) AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Bridge the Gap between Model

MODEL and Program Verification
specification/

verification

@ established modelling
i methodologies like B, Z, ASM, ...

Have a concept of refinement
@ integrate into software design

process
PROGRAM @ code generation /
spec/verification specification generation

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 7/9

I Next Steps (4) AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Bridge the Gap between Model

MODEL and Program Verification
specification/

verification

@ established modelling

methodologies like B, Z, ASM, ...
@ Have a concept of refinement
@ integrate into software design
process

PROGRAM @ code generation /
spec/verification specification generation

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 7/9

I Next steps (5) T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Integrate Automation and Interaction

There will always be interaction
if the problem is sufficiently difficult

like loop invariants, quantifier instantiations, lemmata.

@ reduce interactions
(inference, powerful decision procedures)

@ help verifying person find these auxiliary information

@ provide good feedback to where and what failed,
and how to proceed.

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 8/9

I Next steps (5) AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Integrate Automation and Interaction

There will always be interaction
if the problem is sufficiently difficult
How to proceed
a “Help me by providing an
upper bound for int-variable x.”
a “Help me by providing
evidence that x > 5 is part of
the loop invariant in line..”

a “Adjust your post condition

because x > 5 does not hold
for input y = 10

like loop invariants, quantifie

@ reduce interactions
(inference, powerful dec

@ help verifying person fin

@ provide good feedback -
and how to proceed .

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 8/9

| 5 Next Steps for Usability IT

@ Mature Specification Languages

@ Specified and Verified Libraries

@ Domain Specific Specifications

@ Bridge the Gap between Model and Program Verification

@ Integrate Automation and Interaction

Thank you

Peter H. Schmitt and Mattias Ulbrich — Program Verification-Next Steps November 16, 2010 9/9

