
Scaling FV Up

John O’Leary
Principal Engineer
Strategic CAD Labs

john.w.oleary@intel.com

23 February 2010

Focus questions

• What is the role of verification in designing
and building reliable systems?

• How can verification help in decomposing
problems and composing solutions? problems and composing solutions?

• What new ideas are needed to scale up the
technology and dial down our ambition for
verifying large systems?

• How do connect verification in the small and
in the large?

Why formal verification?

• In 1994, Intel took a $475M charge against revenues to
cover replacement costs and inventory writedown due to
the Pentium® FDIV hardware flaw

• In 2010 our products are more thoroughly validated, but
also
– Contain many more components– Contain many more components

– Have much more complex functionality, often orchestrated by
firmware

– Penetrate the market much more quickly

– Ship in much higher volumes

• Could a flaw result in recall of a main stream product?
What might it cost in dollars and reputation?

• We need to think about the unthinkable, lest we repeat it

3
Copyright © 2010 Intel Corporation. All

rights reserved.

Formal tools in Intel HW Design

• RTL-to-RTL and RTL-to-schematic equivalence verification

– Widely deployed across the industry

• Explicit-state model checking

– TLA+/TLC, Murphi employed for early, high level verification of cache

protocols, uarch algorithms

• Model checking (mostly SAT-based BMC)• Model checking (mostly SAT-based BMC)

– Broad-spectrum bug detection for RTL blocks, interfaces, etc

• Formal equivalence checking of microcode flows

• Symbolic simulation and theorem proving

– Prove functional correctness of execution cluster datapaths

Copyright © 2010 Intel Corporation. All

rights reserved.

Exec cluster verification methodology

High level

spec

Circuit API
Functional

Ref model

Thousands of micro-operations

Deduction

(h.o.l. theorem proving)

Functionality

Environment

Implementation

Exec Cluster RTL

Circuit API

API presents a uniform

interface to all reference

models and supports

portability between

design projects

Ref model

See Roope Kaivola, et al. Replacing testing with formal verification

in Intel Core™ i7 processor execution engine validation. CAV 2009.

Equivalence check

(automated, via

symbolic simulation)

Copyright © 2010 Intel Corporation. All

rights reserved.

Are we solving the right problem?

Copyright © 2010 Intel Corporation. All

rights reserved.

SW, FW and System Integration

CPU

• SW/FW growth due to perceived
advantages
– Flexibility & survivability

– Complex new platform features
• Intel® vPro™ Technology is a good example

• Increased integration accelerates growth
– Single core � multi-core

– Power management

Northbridge

Southbridge

– Power management

– Integrated memory controller + PCI
Express

– Graphics in package

• SW, firmware and system integration are
on critical path for product development
and launch

• Perceived quality of Intel hardware
products is now a direct function of the
quality of supporting SW & firmware

GFX

7
Copyright © 2010 Intel Corporation. All

rights reserved.

Scale FV to HW/FW/SW systems

• We can learn some
lessons from hardware
validation best practices
– Specify formally

– Verify equivalence

High level

spec

– Verify equivalence

– Model environments

– Re-use specs and proofs

– Make deductive reasoning
practical

– Fix the programming
languages

8
Copyright © 2010 Intel Corporation. All

rights reserved.

Exec Cluster RTL

Circuit API
Functional

Ref model

Specify formally

• Clear, unambiguous specifications are obviously valuable
– Even if the specification is prone to change

– Even if there is no fully-formal link to implementation

• Design intent is expressed by English text and some more-formal artifacts:
– Tables

– Diagrams (bubble diagrams, block diagrams, message sequence charts)

– Pseudo-code– Pseudo-code

• Research questions:
– Can we endow readable documentation with a formal semantics?

– Can we promote specifications that:
• Offer more abstraction than C and System Verilog programs

• Are easier to understand and reason about than C and System Verilog programs

• Deliver value during development/maintenance

– Can we practically check
• self-consistency of specifications

• Firmware/software/hardware implementations against specifications?

9
Copyright © 2010 Intel Corporation. All

rights reserved.

Verify equivalence

• Two common sources of code change:
– Change code to optimize speed/space/energy while

preserving functionality

– Add new functionality while preserving the old

• Formal Equivalence Verification (FEV) extremely • Formal Equivalence Verification (FEV) extremely
useful in hardware design
– FEV tells you more than regression testing

– FEV is usually faster than regression testing

– FEV is accessible to designers with little formal
methods expertise

• FEV for software would be valuable

10
Copyright © 2010 Intel Corporation. All

rights reserved.

Model environments

• Modular validation methods require detailed and accurate
environment models
– For hardware blocks, this means modeling neighboring blocks
– For software routines, this means modeling the caller, subroutines,

library functions, etc
– For firmware the environment might be both software and hardware

• The effort of writing environment models limits the uptake of • The effort of writing environment models limits the uptake of
modular validation methods

• Research needed:
– Design by contract (MSR’s Spec# project illustrates an approach)
– Automatic abstraction of environment models from interfaces and

code
– Synthesis of environment models from simulation traces
– Environment modeling at the hardware/firmware interface (esp

timing)

11
Copyright © 2010 Intel Corporation. All

rights reserved.

Re-use of specs and proofs

• Products come in related families and generations
– Families: server, desktop, mobile and ultramobile parts

– Generations: Intel® Core™2 Duo Processor, Intel® Core™ i5 Processor

• Robust reusable proofs
– Allow the cost of verification to be amortized

– Certify common functionality across generations and families

• Many Intel datapath proofs are descended (with modification) from the • Many Intel datapath proofs are descended (with modification) from the
Intel Pentium® 4 processor generation
– “The cost of verifying is less important than the cost of re-verifying”

• An analogous scenario in software:
– Pick a key component of Linux version N

– Develop a specification and verify the component against it

– Do it again for version N+1

– Do it again for version N+2

– Port to the equivalent BSD component

• We need to better understand how to reuse proofs and verification
results (and validation collateral in general)

12
Copyright © 2010 Intel Corporation. All

rights reserved.

Make deductive reasoning practical

• Recent and impressive results:
– NICTA’s seL4: fully and formally verified version of the L4

microkernel (NICTA = National ICT Australia)

– MS Research: verification of Hyper-V hypervisor (in progress)

• Cost still incredibly high: seL4 is 7500 LoC, est 30 PY to
verifyverify

• Research is needed in
– Programming logics

– Satisfiability Modulo Theories (capacity, quantifier reasoning)

– Special purpose solver technology for, e.g., separation logic

– Combination of techniques
• Combining guided theorem proving + automatic model checking has

proven successful for hardware datapaths

– Proof and proof-script reuse

13
Copyright © 2010 Intel Corporation. All

rights reserved.

Fix the programming languages

• Firmware at Intel and elsewhere is written in microcode, assembler, C or
C++.
� Fine grained control over memory allocation and layout
� Easy to understand the effect of code changes on execution performance
� Weak or nonexistent type systems
� Error-prone APIs for memory management and concurrency (e.g.

malloc/free/threads in C)malloc/free/threads in C)

• Dominant language for RTL design is (System) Verilog
– “ASCII schematics”

• Research topics:
– Strong type systems suitable for hardware, firmware and low level software

– Safe (or safer) memory management and concurrency primitives

– Enabling more effective static analysis, formal reasoning and testing

– Preserving direct control over memory and execution in higher level languages

14
Copyright © 2010 Intel Corporation. All

rights reserved.

Summary

• We expect continued growth in the volume and variety of software and
firmware in all our CPU and SOC products

• Validation of software/firmware and integration with the hardware
components is already on or near the critical path for product
development and launch

• To scale formal methods to meet the challenge we can learn from what
has worked in hardware validation
– Specify formally

– Verify equivalence

– Model environments

– Re-use

– Make deductive reasoning practical

– Fix the programming languages

15
Copyright © 2010 Intel Corporation. All

rights reserved.

Industry trend

Source: ITRS 2009 17
Copyright © 2010 Intel Corporation. All

rights reserved.

