Scaling FV Up

John O’Leary

Principal Engineer
Strategic CAD Labs
john.w.oleary@intel.com

23 February 2010

Focus questions

What is the role of verification in desighing
and building reliable systems?

How can verification help in decomposing
problems and composing solutions?

What new ideas are needed to scale up the
technology and dial down our ambition for
verifying large systems?

How do connect verification in the small and
in the large?

Why formal verification?

In 1994, Intel took a S475M charge against revenues to
cover replacement costs and inventory writedown due to
the Pentium® FDIV hardware flaw

In 2010 our products are more thoroughly validated, but
also
— Contain many more components

— Have much more complex functionality, often orchestrated by
firmware

— Penetrate the market much more quickly
— Ship in much higher volumes

Could a flaw result in recall of a main stream product?
What might it cost in dollars and reputation?

We need to think about the unthinkable, lest we repeat it

Copyright © 2010 Intel Corporation. All
rights reserved.

Formal tools in Intel HW Design

RTL-to-RTL and RTL-to-schematic equivalence verification
— Widely deployed across the industry

Explicit-state model checking

— TLA+/TLC, Murphi employed for early, high level verification of cache
protocols, uarch algorithms

Model checking (mostly SAT-based BMC)

— Broad-spectrum bug detection for RTL blocks, interfaces, etc
Formal equivalence checking of microcode flows
Symbolic simulation and theorem proving

— Prove functional correctness of execution cluster datapaths

Copyright © 2010 Intel Corporation. All
rights reserved.

Exec cluster verification methodology

s Deduction
Implementation (h.o.l. theorem proving)

J JJJJ Thousands of micro-operations

Equivalence check
API| presents a uniform (automated, via
interface to all reference

symbolic simulation)
mOdelsf .and supports Exec Cluster RTL
portability between

design projects

See Roope Kaivola, et al. Replacing testing with formal verification
in Intel Core™ i7 processor execution engine validation. CAV 2009.

Copyright © 2010 Intel Corporation. All
rights reserved.

Are we solving the right problem?

Process Has Declined As A Portion Of Design Costs,
While Software Continues To Increase

%of R&D

Hardware

Process

‘08 11
Forecast

0

INVESTOR MEETING 2010 (ii'I,t;D

Copyright © 2010 Intel Corporation. All
rights reserved.

SW, FW and System Integration

CPU

upb GFX

Northbridge

[7

Southbridge

SW/FW growth due to perceived
advantages

— Flexibility & survivability
— Complex new platform features
* Intel® vPro™ Technology is a good example

Increased integration accelerates growth

— Single core 2 multi-core

— Power management

— Integrated memory controller + PCI

Express

— Graphics in package
SW, firmware and system integration are

on critical path for product development
and launch

Perceived quality of Intel hardware
products is now a direct function of the
quality of supporting SW & firmware

Copyright © 2010 Intel Corporation. All

rights reserved.

Scale FV to HW/FW/SW systems

 We can learn some
lessons from hardware
validation best practices

— Specify formally

— Model environments

t HJJJ — Verify equivalence

1 1 — Re-use specs and proofs
} — Make deductive reasoning

practical
Exec Cluster RTL . .
— Fix the programming

languages

Copyright © 2010 Intel Corporation. All
rights reserved.

Specify formally

e C(Clear, unambiguous specifications are obviously valuable
— Even if the specification is prone to change
— Even if there is no fully-formal link to implementation
* Designintent is expressed by English text and some more-formal artifacts:
— Tables
— Diagrams (bubble diagrams, block diagrams, message sequence charts)
— Pseudo-code
* Research questions:
— Can we endow readable documentation with a formal semantics?

— Can we promote specifications that:
* Offer more abstraction than C and System Verilog programs
* Are easier to understand and reason about than C and System Verilog programs
* Deliver value during development/maintenance
— Can we practically check
» self-consistency of specifications
* Firmware/software/hardware implementations against specifications?

Copyright © 2010 Intel Corporation. All
rights reserved.

Verify equivalence

 Two common sources of code change:

— Change code to optimize speed/space/energy while
preserving functionality

— Add new functionality while preserving the old
* Formal Equivalence Verification (FEV) extremely
useful in hardware design
— FEV tells you more than regression testing
— FEV is usually faster than regression testing

— FEV is accessible to designers with little formal
methods expertise

e FEV for software would be valuable

Copyright © 2010 Intel Corporation. All
rights reserved.

Model environments

Modular validation methods require detailed and accurate
environment models

— For hardware blocks, this means modeling neighboring blocks

— For software routines, this means modeling the caller, subroutines,
library functions, etc

— For firmware the environment might be both software and hardware

The effort of writing environment models limits the uptake of
modular validation methods

Research needed:

— Design by contract (MSR’s Spec# project illustrates an approach)

— Automatic abstraction of environment models from interfaces and
code

— Synthesis of environment models from simulation traces

— Environment modeling at the hardware/firmware interface (esp
timing)

Copyright © 2010 Intel Corporation. All
rights reserved.

Re-use of specs and proofs

Products come in related families and generations
— Families: server, desktop, mobile and ultramobile parts
— Generations: Intel® Core™2 Duo Processor, Intel® Core™ i5 Processor

Robust reusable proofs

— Allow the cost of verification to be amortized

— Certify common functionality across generations and families
Many Intel datapath proofs are descended (with modification) from the
Intel Pentium® 4 processor generation

— “The cost of verifying is less important than the cost of re-verifying”

An analogous scenario in software:
— Pick a key component of Linux version N
— Develop a specification and verify the component against it
— Do it again for version N+1
— Do it again for version N+2
— Port to the equivalent BSD component

We need to better understand how to reuse proofs and verification

results (and validation collateral in general)

Copyright © 2010 Intel Corporation. All
rights reserved.

Make deductive reasoning practical

* Recent and impressive results:

— NICTA’s sel4: fully and formally verified version of the L4
microkernel (NICTA = National ICT Australia)

— MS Research: verification of Hyper-V hypervisor (in progress)
e Cost still incredibly high: selL4 is 7500 LoC, est 30 PY to
verify
* Research is needed in
— Programming logics
— Satisfiability Modulo Theories (capacity, quantifier reasoning)
— Special purpose solver technology for, e.g., separation logic

— Combination of techniques

 Combining guided theorem proving + automatic model checking has
proven successful for hardware datapaths

— Proof and proof-script reuse

Copyright © 2010 Intel Corporation. All
rights reserved.

Fix the programming languages

Firmware at Intel and elsewhere is written in microcode, assembler, C or
C++.

v" Fine grained control over memory allocation and layout
v" Easy to understand the effect of code changes on execution performance
X Weak or nonexistent type systems

X Error-prone APIs for memory management and concurrency (e.g.
malloc/free/threads in C)

Dominant language for RTL design is (System) Verilog
— “ASCIl schematics”

Research topics:
— Strong type systems suitable for hardware, firmware and low level software
— Safe (or safer) memory management and concurrency primitives
— Enabling more effective static analysis, formal reasoning and testing
— Preserving direct control over memory and execution in higher level languages

Copyright © 2010 Intel Corporation. All
rights reserved.

Summary

 We expect continued growth in the volume and variety of software and
firmware in all our CPU and SOC products

* Validation of software/firmware and integration with the hardware
components is already on or near the critical path for product
development and launch

* To scale formal methods to meet the challenge we can learn from what
has worked in hardware validation

— Specify formally

— Verify equivalence

— Model environments

— Re-use

— Make deductive reasoning practical
— Fix the programming languages

Copyright © 2010 Intel Corporation. All
rights reserved.

Industry trend

log 2 | Additional SW required for HW

y 210 months
LoC SWiChip

Gates/Chip

Technology capabilities

Gates/Day 236 months

HW design productivity
Filling with IP and memary

HW design productivity

e e = wm wm == SW productivity

235 years
>
> 8 & 2 & 35 & g8 2 ¢ & &
L -
o o > ® =3 =3 S =] = o o o time
o - - -— -— (2] o™ ™~ ol ™ ™ ™

Figure DESN3 Hardware and Software Design Gaps versus Ti ime’

Copyright © 2010 Intel Corporation. All
SOUFCGI ITRS 2009 rights reserved.

17

