Unleashing the verification
genie In the cloud

Nikolaj Bjgrner & Leonardo de Moura

Microsoft Research
NSF Usable Verification Workshop Nov 15-16 2010

NFAR1SE

DFS-R: "hands on” usability

CAVIEVzliclaror arnole rr)

C:\>.\frsmodel -bug -b2 6

Count=57000
Child with Id: £ 6 does not exist in DB
Invariant violated db i1s consistent with fs

Machine 1 Machine 2
1 create q
2 create g\b
3 create g
4 flush journal
5 sync from m 1
6 sync from m 2

DFS-R: "hands on” usability

Model Actual system
Simulation Stress Test

~1012 scenarios ~10° scenarios

Synchronization
Core
+ rest of DFS-R

Mock File System NTFS
Mock Database ESE/NT o &
Mock Network RPC __ &

State space exploration on production code:
200 machines x 2 weeks = % trillion scenarios

Session Focus

Improved automation:

e Usable automatic answers

= Efficiency and expressivity in Z3

Delivering and combining inference capabilities:

e SMT-LIB2@ http://rise4fun.com/z3, LINQ, Quotations, Boogie
... and other ways of lowering the barrier of entry for using Z3

© Z3 user-based theory solvers

http://rise4fun.com/z3
http://rise4fun.com/z3

Some Microsoft Engines using Z3

- SDV: The Static Driver Verifier

- PREfix: The Static Analysis Engine for C/C++.

- Pex: Program EXploration for .NET.

- SAGE: Scalable Automated Guided Execution Pox

- Spec#: C# + contracts @

- VCC: Verifying C Compiler for the Viridian Hyper-Visor
- HAVOC: Heap-Aware Verification of C-code.
- SpecExplorer: Model-based testing of protocol specs.

- Yogi: Dynamic symbolic execution + abstraction. . "O’

- FORMULA: Model-based Design

- F7: Refinement types for security protocols

- Rex: Regular Expressions and formal languages

- VS3: Abstract interpretation and Synthesis

- VERVE: Verified operating system N

= | Descrpton Waming| 5...| Souce Locaton nF

T asserton mght not hold: Dereferecned cbject s nomndl 30500 C... testO01.c(28;
allocated(8x->a) L

- FINE: Proof carrying certified code P EEZmESmie T BUES

RISE tool chain

Ask Agl! What does this dot graph look Like? Ask Agl!

) Pex [Poimt J [SymDiff }

Cuzz ‘ CHESS I ‘ Moles RaceKit] Rex Q§ Bek Chalice ‘ Havoc Vce CodeContractsVerifier
e . ‘-____ - me By N s -
CAP ER | SLAM | DGML | Boogie ConcurrentRevisions | CodeContracts

o'

73 Agl

This tool requires a browser with Scalable Vector Graphics (SVG) support.
explore projects live permalink developer about
B 2818 Microsoft Corporation - Research in Software Engineering (RiSE) - Terms of Us= - Privacy

Microsaft:

Research R1SE

Usable Automatic Answers

[b - [b]l]

m Can you discover the secret regex? Ask Rex!

You Missed! Your regex gave different matches thz
string your regex secret regex result
@ "]T match no match Your match is diff
@ "BF 1" match no match Your match is diff
@ " ne match match Your match is diff
@ "oT" no match na match
@ "n" no match no match

O RO D)

Expressions

Logical
Encoding

Rex/Automata

Usable Automatic Answers

[b - [b]l]

m Can you discover the secret regex? Ask Rex!

You Missed! Your regex gave different matches thz
string your regex secret regex result
@ "]T match no match Your match is diff
@ "BF 1" match no match Your match is diff
@ " ne match match Your match is diff
@ "oT" no match na match
@ "n" no match no match

O RO 0

Expressions

Logical

Rex/Auotmata Encoding

Model
Labels

syuejodiaiu]

Juswubisse xe|n |
 ——
2100 jesun |
B

uawubisse ety |

O ——
Wij3 Juengy

=R

HlOWwIs |
I
J0o.d/1esun
|
|ISPOIN/3eS |

Analysis Engine

Logical Encoding

V)
R
)
2
s
<
=
)
qv)
-
@,
)
=
<
QD
O
qv)
92
)

Usable Automatic Answers

Sat/unsat answers alone have limited use

Model/Proof answers help for
= Models: Debugging during verification
° Proofs: can use solver as untrusted Oracle

Much more Is possible and needed

» Many existing applications wrap several calls
into solver, re-using partial information.

® Many potential applications use objective
functions.

Efficiency and Expressivity

Z3 uses DPLL(T) as basic architecture.
e Based on efficient DPLL for SAT solvers
e Extensible by theory solvers

DPLL(T) alone is not enough:
© DPLL(I') — add super-position

© DPLL(T) can be exponentially worse than unrestricted
resolution.
e DPLL(L) - solving diamonds

e CDTR: Conflict Directed Theory Resolution
Claim
DPLL(T) + CDTR + Restart =, Unrestricted T-Resolution

}\ﬁﬂ\'ﬂtrﬂﬂ.’rt | B d|X ,ﬁ- LIND to Z3 - The... * éﬁﬁ'l un frumhiu'_

EHREI TSRS

CellBd))
(and (»= Cell32 1) (<= Cell82 9))
(and (»= Cell33 1) (<= CellZ3 9))
(and (»= Cellf4 1) (<= CellZ4 9))
(and (= (+ CellB87 CellB88) 3) (distinct CellB7 CellB8))
(and (»= Cell37 1) (<= CellZ7 9))
(and (»= Cell33 1) (<= CellZ3 9))

Again the red parts reflect what the user expressed, while the remainder i1s all generated
by the domain-specific Kakuro implementation.

Conclusion

Creating a simple LINQ to Z3 implementation isn't too hard and involves just a little bit
of plumbing in the bathroom of reflection and some use of expression tree visitor
patterns. In future posts, we'll have a look at domain-specific theorem solving
techniques based on declarative expression tree rewrnters. Enjoy!

Del.cio.us | Digg It | Technorati | Blinklist | Furl | reddit | DotNetKicks
Filed under: LINQ, Crazy Sundays, 23, Microsoft Research

Comments

re: LINQ to Z3 — Theorem Solving on Steroids — Part 1
Monday, September 28, 2009 12:53 AM by al
YES ive been waiting so long for this :0 z3 is like lighning in a bottle but the bottle cap is

screwed on way tight :) | tried making a ling-to-z2 wrapper but my expression tree skills
where far to weak

A LINQ/F# Quotations primer

open Microsoft.Z3 Create
open Microsoft.Z3.Quotation Quoted

do Solver.prove <@ LoC EXpI’eSSIOﬂ
(fun t11 t12 t21 t22 t31 t32 ->
not

(111 >=0I) && (t12 >=t11 + 2|) && (112 + 11 <= 8I) &&
(t21 >=0l) && (122 >=121 + 3I) && (132 + 11 <= 8I) &&
(t31 >=0I) && (132 >=131 + 2|) && (132 + 31 <= 8l) &&
(t11 >=1t21 + 31 || t21 >=t11 + 2]) &&

(t11 >=t31 + 2| || t31 >=t11 + 2I) &&

(t21 >=t31 + 21 || t31 >= 121 + 3I) &&

(t12 >=t22 + 11 || t22 >= 112 + 1]) &&

(t12 >=132 + 31 || t32 >=t12 + 1]) &&

(t22 >=132 + 31 || t32 >= 122 + 1)

e http ffrlse }' (=} RiSE4fun - from Micros...

| Previous MNext |@GF

-

Y °
Delivering théz
—~— et

=
(Dafny ll Esn | Fine [l Pex [rex |l spect [vec [73 [RaRRTIETRES

tool to load the next sample.

; This example illustrates basic arithmetic -
and
; uninterpreted functions
(declare-funs ((x Int) (v Int) (z Int}))
(assert (>= (* Z ®) (+ v z)))
. . (declare-funs ((f Int Int) (g Int Int Int)})
% NO |nSta”at|On (assert (< (f x) (g x x)))
(assert (> (f v) (g =z =)))
check-zat
(get-info model)

< Support for SMT-LIB2 push

(assert (= =% v))
1 check-=at

notation che

quit

m

@ Only usable for m Is this formula satisfiable? Ask Z3!
bare bones logic et 1.

. ' success
encoding
' success
Esuccess
' success
Esat
Vi ("model™ "x -> 0
vy —» —38
V2 -»> 0
£ o>
0 -» -1
-38 -»> 1
else —-> 1

)
QL
S
O
D
_C
=
S
D
N
=)

syuejodiaiu]

Juswubisse xe|n |
5102 1ESUN.
EETEON
sallljen

L e N
UFOO‘_n_\U\MmCD

Analysis Engine

v
w
v
v
) e

|I9POIN/3ES

Logical Encoding

User Theories

Analysis Engine

o
S e
n O
Qo Q
O A
> 2
(@)

Custom Theory: Strings, Queues, Floating points, BAPA, Separation
Logic, HOL, MSOL, Orders, Lattices, Local Theories

Conclusions

Usability addressed by:

e Lower barrier of entry for first use: http://rise4fun.com/z3

e Enable basic input formats: SMT-LIB2, C, .NET, F# Quotations,
LINQ....

e Improved efficiency/scale for theory & quantifier reasoning
e Extensible by user solvers

Usability challenges:
e You too should use Z3

@ Writing a user theory solver is not for the faint of heart
- “What assumptions of the solver should | and can | make”?
- “I would like to predict the search behavior”

http://rise4fun.com/z3

Summer school on useful tools for verification

|| /2 Shared Documents | [} SAT/SMT Su.. | /2 Rex @ RiSE4fun - ...| = Theorem Proving...

1d: | book | Previous MNext |[z] Options - |

First International SAT/SMT Solver

II'- Massachusetis Summer School 2011

" Institute of
TeChnﬁlﬂ'gy Sunday, June 12- Friday, June 17, 2011

STATA CENTER, MIT, CAMBRIDGE, USA

Welcome!
Home
Boolean SAT/SMT constraint solvers have seen dramatic progress in the last decade, and are being used in a diverse set of
applications such as program analysis, testing, formal methods, program synthesis, hardware verification, electronic design
automation, computer security, AL, operations research (MAXSAT) and biclogy. Given the rather dramatic explosion in the usage

Summer School Registration

Transportation
Accommodation
Getting to MIT
Venue

Food

Other Logistics

Lecture Slides and Notes
Video
Schedule

Organizers
Contact Information

scenarios of SAT/SMT solvers, there is great demand for newer kinds of features and higher levels of performance required of
these sclvers. In order to respond effectively to these demands it is imperative that SAT/SMT developers connect and engage a
diverse set of power users directly, and understand their requirements. Similarly, power users need a way to talk to SAT/SMT
developers to better understand the sclver offerings and their features.

It is with this goal of connecting SAT/SMT developers and power users that we have decided to crganize the First International
SAT/SMT Summer School from Sunday June 12th to Friday June 17th, 2011 at the Stata Center, Massachusetts Institute of

Technology, Cambridge, MA, USA.

The summer school is being held the week before the SAT conference 2011, which is slated to be held from June 19th to June
23rd, 2011 at Ann Arbor, Michigan, USA.

Goals of the Summer School

® To be a marketplace of ideas for SAT/SMT solver developers and power users

® Connect new and current power users (graduate students. postdocs, faculty and industrial researchers) in an informal summer
Microsoft: school setting with SAT/SMT developers
Resea't h ® Enable new users who are 'sitting on the fence' to better understand SAT/SMT sclvers and how sclvers can be used to solve their

nrnhlems

Sponsored By

Usable Verification requires Automated Deduc:tlonI

= 4
W, | A A Wroctaw, Poland. e
il . % P 45 31 July - 5 August eqil. o
4. -G, 'rmw"'. X 23rd inte: stion cunference J‘ ‘--. :
S sl TN on automated dedt o Fl

Home Welcome to the CADE website!
call for Workshops and Posted on 28 October 2010 by admin
Tutorials) '
CADE — the 23rd International Conference on Automated Deduction
Call for Papers
Invited Speakers) . - XH N
PC + Organizers ""' ; i \.
About Poland w" v L J, ’ . 3:' .,
: R e

Travel Information : o S . i L

” ||” .

et k. A ""“"“# W A
y - datag. = W SR

= http://research.microsoft.com/en-us/events/tptpa20ll/default.aspx - (=4 Shared Documents Q. SAT/SMT Summ...

@ Rex @ RiSEdfun - ...

ke | Previous MNext HE] Opticns - |
Rac ®
Research p ixa
Videos Projects Publications Feople
Home Our Research Collaboration Careers ﬁ u Find us on Facebook
About Us MNews Media Resources Events Community Follow us on Twitter
fi! = Events = Theorem Proving Tools for Program Analysis

Theorem Proving Tools for Program
Analysis

The tutorial will expose POPL attendees to several theorem proving tools and to
help give them the ability to choose an appropriate tool for their specific

application. The tutorial is presented by authors of current top theorem proving
tools.

This tutorial will be co-located with POPL 2011, Austin, Texas.

Which theorem prover fits my needs?

This question can be difficult to answer with exposure to only one or two theorem
provers. Research and development into theorem proving technologies over the
last few decades have given rise to a number of highly complementary theorem
proving tools. This tutorial aims to provide answers to this question by assembling

authors of set of top theorem proving systems. The theorem proving systems
cover quite different areas:

s Computational logic

» Interactive theorem proving with integrated solvers
s SMT solving

o Wimbk e e e AT = OIDE e re e

