
Nikolaj Bjørner & Leonardo de Moura
Microsoft Research
NSF Usable Verification Workshop Nov 15-16 2010

FSE &

Slide #2
Microsoft Confidential. File last saved: 11/15/2010 9:23 PM

CAML validator example run

 C:\>.\frsmodel -bug -b2 6

…

Count=57000

Child with Id: f_6 does not exist in DB

Invariant violated db_is_consistent_with_fs

 Machine 1 Machine 2

--

1 create q

2 create q\b

3 create q

4 flush_journal

5 sync from m_1

6 sync from m_2

~1012 scenarios ~105 scenarios

Model

Simulation

Mock File System

Mock Database

Mock Network

Actual system

Stress Test

NTFS

ESE/NT

RPC

Synchronization

Core

+ rest of DFS-R

State space exploration on production code:

200 machines x 2 weeks = ½ trillion scenarios

Improved automation:

Usable automatic answers

Efficiency and expressivity in Z3

Delivering and combining inference capabilities:

SMT-LIB2@ http://rise4fun.com/z3, LINQ, Quotations, Boogie
… and other ways of lowering the barrier of entry for using Z3

Z3 user-based theory solvers

http://rise4fun.com/z3
http://rise4fun.com/z3

- SDV: The Static Driver Verifier

- PREfix: The Static Analysis Engine for C/C++.

- Pex: Program EXploration for .NET.

- SAGE: Scalable Automated Guided Execution

- Spec#: C# + contracts

- VCC: Verifying C Compiler for the Viridian Hyper-Visor

- HAVOC: Heap-Aware Verification of C-code.

- SpecExplorer: Model-based testing of protocol specs.

- Yogi: Dynamic symbolic execution + abstraction.

- FORMULA: Model-based Design

- F7: Refinement types for security protocols

- Rex: Regular Expressions and formal languages

- VS3: Abstract interpretation and Synthesis

- VERVE: Verified operating system

- FINE: Proof carrying certified code

Logical
Encoding

Rex/Automata

Regular
Expressions

Unsat

Sat/?

Logical
Encoding

Rex/Auotmata

Proof

Model

Labels

Regular
Expressions

Z3

Lo
g

ica
l E

n
co

d
in

g

Analysis Engine

Application

U
n

sa
t/

P
ro

o
f

S
a
t/

M
o

d
e
l

E
q

u
a
lit

ie
s

S
im

p
lif

y

Q
u

a
n

t
E
lim

Li
te

ra
l
a
ss

ig
n

m
e
n

t

U
n

sa
t.

 C
o

re

In
te

rp
o

la
n

ts

M
a
x

a
ss

ig
n

m
e
n

t

Sat/unsat answers alone have limited use

Model/Proof answers help for
Models: Debugging during verification

Proofs: can use solver as untrusted Oracle

Much more is possible and needed
Many existing applications wrap several calls
into solver, re-using partial information.

Many potential applications use objective
functions.

Z3 uses DPLL(T) as basic architecture.
Based on efficient DPLL for SAT solvers

Extensible by theory solvers

DPLL(T) alone is not enough:
DPLL() – add super-position

DPLL(T) can be exponentially worse than unrestricted
resolution.

DPLL(⊔) – solving diamonds

CDTR: Conflict Directed Theory Resolution
Claim
 DPLL(T) + CDTR + Restart ≡𝑝 Unrestricted T-Resolution

SMT@Microsoft

SMT@Microsoft

SMT@Microsoft

 open Microsoft.Z3

 open Microsoft.Z3.Quotations

 do Solver.prove <@ Logic.declare

 (fun t11 t12 t21 t22 t31 t32 ->

 not

 ((t11 >= 0I) && (t12 >= t11 + 2I) && (t12 + 1I <= 8I) &&

 (t21 >= 0I) && (t22 >= t21 + 3I) && (t32 + 1I <= 8I) &&

 (t31 >= 0I) && (t32 >= t31 + 2I) && (t32 + 3I <= 8I) &&

 (t11 >= t21 + 3I || t21 >= t11 + 2I) &&

 (t11 >= t31 + 2I || t31 >= t11 + 2I) &&

 (t21 >= t31 + 2I || t31 >= t21 + 3I) &&

 (t12 >= t22 + 1I || t22 >= t12 + 1I) &&

 (t12 >= t32 + 3I || t32 >= t12 + 1I) &&

 (t22 >= t32 + 3I || t32 >= t22 + 1I)

)

)

 @>

Create
Quoted

Expression

SMT@Microsoft

 No installation

 Support for SMT-LIB2

 notation

 Only usable for

bare bones logic

encoding

Z3

Lo
g

ica
l E

n
co

d
in

g

Analysis Engine

Application

U
n

sa
t/

P
ro

o
f

S
a
t/

M
o

d
e
l

E
q

u
a
lit

ie
s

S
im

p
lif

y

Q
u

a
n

t
E
lim

Li
te

ra
l
a
ss

ig
n

m
e
n

t

U
n

sa
t.

 C
o

re

In
te

rp
o

la
n

ts

M
a
x

a
ss

ig
n

m
e
n

t

Z3

Lo
g

ica
l

E
n

co
d

in
g

Analysis Engine

Application

U
n

sa
t/

P

ro
o

f

S
a
t/

M

o
d

e
l

Custom Theory: Strings, Queues, Floating points, BAPA, Separation
Logic, HOL, MSOL, Orders, Lattices, Local Theories

Usability addressed by:
Lower barrier of entry for first use: http://rise4fun.com/z3

Enable basic input formats: SMT-LIB2, C, .NET, F# Quotations,
LINQ….

Improved efficiency/scale for theory & quantifier reasoning

Extensible by user solvers

Usability challenges:
You too should use Z3

Writing a user theory solver is not for the faint of heart
- “What assumptions of the solver should I and can I make”?
- “I would like to predict the search behavior”

SMT@Microsoft

http://rise4fun.com/z3

Summer school on useful tools for verification

Usable Verification requires Automated Deduction!

