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1 Recommended reading before the lectures

Please read the Alloy tutorial at https://hackmd.io/@lfs/BJ2sm-Eno. You
should also install Alloy (https://alloytools.org) on your laptop.

2 Glossary (for reference)

2.1 Terms about formal models (based on Alloy)

formal model
A formal model is a description of a state-transition system in a formal

modeling language. Its semantics is a set of traces.

instance
An instance is a trace in the set of traces described by a formal model.

fact
A fact is a logical formula in a formal model. It is assumed to be true of all

instances of the model.

assertion
An assertion is a logical formula in a formal model. It is usually intended

to be true of all instances of the model, but this must be proved rather than
assumed.

predicate
A predicate is a logical formula in a formal model. It is usually intended to

be true of some instances of the model, but it must be instantiated to be sure.

2.2 Terms about computer systems

system
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A system is the computer system (hardware or software) that we are inter-
ested in. All terms below are relative to this system. Note also that “state-
transition system” in the definition of a formal model is just a standard term
of art; our formal models will include specifications of the kind of system being
defined here plus other parts relating to it.

domain
The domain is the environment of the system. It is the part of the world

that surrounds and interacts with the system in a meaningful way.

domain knowledge
Domain knowledge is part of a formal model of a system. It is the part of

the formal model that describes how the domain behaves all by itself, without
the influence of the system.

specification
The specification is part of a formal model of a system. It is the part of the

formal model that describes the behavior of the system, in a way that is simpler
and more comprehensible than the implementation of the system.

requirements
The requirements are part of a formal model of a system. They are the part

of the formal model that describes how the domain should behave, with the
system implemented and installed.

interface
When a system is implemented and installed in a domain, some phenomena

are shared, i.e., they are observable by both the domain and the system. These
shared phenomena are the interface between the system and the domain. Note
that each interface phenomenon is controlled (modified) by one entity, although
it is observable from both.

implementation
The is the implementation of the system we are interested in.

validation
Validation is the partially informal and partially formal process of ensuring

that a formal model of a system is accurate, precise, and comprehensible. Ide-
ally, validation includes proving that the domain knowledge and specification,
together, imply the requirements. In this proof, the specification is treated as a
fact.

verification
Today, verification is just a synonym for “proof”—any kind of proof, with

a strong connotation that the proof is completely or partially automated. In
its original use, however, it meant “program verification,” which is the formal
process of proving that a system’s implementation satisfies its specification. In
this proof, the specification is treated as an assertion.
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domain model
A domain model is a formal model of a family of systems, instead of just one.

Validation of a domain model should also show that it is general (or extensible)
and useful, as well as accurate, precise, and comprehensible.

3 Further reading

The order of these topics follows their order of introduction in the lectures.
About Alloy: The standard reference is the Alloy book [7]. In the earlier

versions of Alloy it was most convenient to stick to traces with one or two
states, while Alloy 6 supports full temporal logic. Many Alloy resources can be
found at https://alloytools.org.

About networks: Compositional network architecture is the topic of a forth-
coming book [22]. To manage your suspense until the book comes out, read
the brief introduction in [21]—remembering that the book will be so much bet-
ter! The formal model referred to in the lectures will appear on a Web site
accompanying the book [19].

About predicates: Predicates are also great for testing software [3, 11, 16].
All the predicates in these papers are specifications of the software.

About visualization: Our labs show how valuable visualization can be in
examining and understanding model instances. Here is some of the latest news
on visualization: [5, 12].

About the Jackson-Zave model: The fullest description, with examples of
many subtleties, is in the journal version [20]. Many people like the shorter ver-
sion with one running example [8]. And the shortest version of all was published
in a magazine [6].

About programming packet-processing hardware: P4 is a language that com-
piles to programmable hardware [2]. Lucid is a higher-level language that com-
piles to P4 [13]. Dafny is a modern programming language with built-in formal
modeling and user-friendly verification [4, 9, 10].

About Chord: The best-known papers on Chord are [14] and [15]. A summary
of what is known about the original Chord algorithm and its specification can
be found in [17]. A correct version of Chord is proposed and verified in [18];
this is a particularly interesting example of formal modeling because the true
invariant looks nothing like the obvious and necessary properties derived from
it. The flawed conclusions are in [1], which is otherwise a very good paper.
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