
EasyCrypt - a (brief) tutorial

Vitor Pereira

FMiTF Bootcamp - May 29 - June 2, 2023

1 Introduction
This document serves as support to the EasyCrypt- Hashed ElGamal semantic security proof exercise, con-
taining a brief EasyCrypt tutorial, describing the most used proof tactics and also providing an explanation
of the EasyCrypt specification language.

The student is encouraged to follow the default EasyCrypt manual available at https://github.com/
EasyCrypt/easycrypt-doc for a more complete description on the tool.

2 Fuctional types, operators and data structures
EasyCrypt’s expression language is a higher-order strongly typed functional language. Following a syntax
close to that of ML languages such as OCaml of F⋆, EasyCrypt allows a user to define its own data types and
operators as mathematical functions.

2.1 Types
EasyCrypt natively supports the following basic types:

• unit - the (empty) void type

• bool - the boolean type

• int - the set of integers

• real - the set of real

New types can be defined according to the following syntax, where we specify a new type that captures
tuples of integers and booleans.

type int_bool_tuple = int * bool.

Types can also be left under specified, i.e., without an actual realization of the type. For example, in the
following EasyCrypt code, a new type t is defined, without provide a concrete value to it.

type t.

When a type is left under specified, it is common practice to call it an abstract type.

2.2 Operators
Operators in EasyCrypt are defined using the op keyword, followed by the operator name, arguments, return
type and, finally, the operator body. The fst and snd operators - that extract the first and second elements
of the int_bool_type type, respectively - can be specified as follows.

op fst (x : int_bool_tuple) : int = let (a, b) = x in a.
op snd (x : int_bool_tuple) : bool = let (a, b) = x in b.

1

https://github.com/EasyCrypt/easycrypt-doc
https://github.com/EasyCrypt/easycrypt-doc

Operators can also be defined for EasyCrypt native types. For example, the script

op double (x : int) : int = x * 2.

specifies a function that doubles the value of a given integer.
The operators described above can be combined with the goal of defining a function that, taking as input

a tuple of integers and booleans (the int_bool_tuple type), returns a new element of the int_bool_tuple type,
where the integer value has been doubled.

op double_int (x : int_bool_tuple) : int_bool_tuple =
let k = fst x in
let b = snd b in
let dk = double k in
(dk, b).

Finally, operators can also be left abstract. For example, suppose one wants to formalize a finite field
library in EasyCrypt. First, one would need to specify an (abstract) type to capture elements of the finite
field and then define a series of abstract operators that would specify arithmetic operations.

op q : int. (* The order of field is a prime q *)

type t. (* Type of elements of the field *)

op fzero : t. (* Zero element *)
op fone : t. (* One element *)
op (*) : t -> t -> t. (* Multiplication modulo q *)
op (+) : t -> t -> t. (* Addition modulo q *)
op [-] : t -> t. (* Additive inverse modulo q *)

In the above EasyCrypt script also introduces the syntax to specify infix and prefix operators: operators
defined between parentheses - like op (*) and op (+) - are infix operators whereas operators defined between
brackets - like [-] - are prefix operators.

2.3 Data structures
EasyCrypt also supports inductive data structures, commonly found in many functional languages. Natively,
it supports inductive lists that may be the empty list [], or a value x::xs constructed inductively by prepending
x to the list xs.

type ’a list = [
| "[]"
| (::) of ’a & ’a list

].

Pattern-matching over an inductive data type is performed using the with syntax, as follows.

op size (l : ’a list) : int =
with l = [] => 0
with l = x :: xs => 1 + size xs.

Another example of an inductive data type that is widely used is that of binary trees, comprised of nodes
and leafs. A node carries a data item and has a left and right subtree. A leaf is empty. In EasyCrypt, one
can write the binary tree data type as follows.

type ’a tree =
| Leaf
| Node of ’a & ’a tree & ’a tree.

The depth of a tree is given by the total number of edges from the root node to the target node. In
EasyCrypt, the depth of a tree can be calculated as showed next, where we assume the existence of the
function max that returns the maximum of two integers.

op depth (t : ’a tree) : int =
with t = Leaf => 0
with t = Node x l r => 1 + max (depth l) (depth r).

2

3 Ambient logic
EasyCrypt’s is EasyCrypt’s foundational proof engine. It allows users to write axioms or prove lemmas about
existing or newly defined types and operators. These can be either universally or existentially quantified.

Before providing examples of EasyCrypt axioms and lemmas, we first revise some useful proof tactics.

3.1 Commonly used EasyCrypt tactics
move => ϕ1 . . . ϕn Moves assumptions from the conclusion into the context.

Example: applying move => x y H to

--
forall (x y : int), x = y => y = x

is transformed into

x: int
y: int
H: x = y
--
y = x

move : ϕ1 . . . ϕn Moves assumptions from the context into the conclusion.
Example: applying move : x y H to

x: int
y: int
H: x = y
--
y = x

is transformed into

--
forall (x y : int), x = y => y = x

split Break a goal whose conclusion is intrinsically conjunctive into goals whose conclusions are its conjunc-
tion.

Example: applying split to

P: bool
Q: bool
Hp: P
Hq: Q
--
P /\ Q

is transformed into the following subgoals

P: bool
Q: bool
Hp: P
Hq: Q
--
P

and

P: bool
Q: bool
Hp: P
Hq: Q
--
Q

3

right Reduce a goal whose conclusion is a disjunction to one whose conclusion is its right member.
Example: applying split to

P: bool
Q: bool
Hp: P
Hq: Q
--
P \/ Q

is transformed into

P: bool
Q: bool
Hp: P
Hq: Q
--
Q

left Reduce a goal whose conclusion is a disjunction to one whose conclusion is its left member.
Example: applying split to

P: bool
Q: bool
Hp: P
Hq: Q
--
P \/ Q

is transformed into

P: bool
Q: bool
Hp: P
Hq: Q
--
P

congr Replace a goal whose conclusion has the form fp1 . . . pn = fq1 . . . qn, where f is an assumption identifier
or operator, with subgoals having conclusions p1 = q1, . . . , pn = qn.

Example: applying congr to

x: int
y: int
a: int
b: int
--
f x y = f a b

is transformed into the following subgoals

x: int
y: int
a: int
b: int
--
x = a

and

x: int
y: int
a: int
b: int
--
y = b

4

trivial Try to solve the goal by using a mixture of low-level tactics.
Example: applying trivial to

--
forall (x y : int), x = y => y - 1 = x - 1

solves the goal.

progress Break the goal into multiple simpler ones by repeatedly applying move =>, split and subst.
Example: applying progress to

--
forall (x : ’a) (l : ’a list), x \in l => 1 <= size l

is transformed into

x: ’a
l: ’a list
H: x \in l
--
1 <= size l

have : ϕ Logical cut. Generate two subgoals: one whose conclusion is the cut formula ϕ, and one with
conclusion ϕ => ψ, where ψ is the current goal’s conclusion.

Example: applying have : x / (x => false) to

x: bool
notnot_x: (x => false) => false
--
x

is transformed into the following subgoals

x: bool
notnot_x: (x => false) => false
--
x \/ (x => false)

and

x: bool
notnot_x: (x => false) => false
--
x \/ (x => false) => x

apply ϕ Tries to match the conclusion of the proof term ϕ with the goal’s conclusion.
Example: applying apply H to

x: int
H: P x
--
P x

solves the goal.

rewrite ϕ1 . . . ϕn Rewrite the rewrite-pattern ϕ1 . . . ϕn from left to right.
Example: applying rewrite eq_xy to

x: int
y: int
eq_xy: x = y
z: int
eq_yz: y = z
--
x = z

is transformed into

5

x: int
y: int
eq_xy: x = y
z: int
eq_yz: y = z
--
y = z

subst ϕ Search for the first equation of the form x = t or t = x in the context and replace all the occurrences
of x by t everywhere in the context and the conclusion before clearing it.

Example: applying subst x to

x: bool
y: bool
z: bool
w: bool
eq_yx: y = x
eq_yz: y = z
eq_zw: z = w
--
x = w

is transformed into

x: bool
y: bool
z: bool
w: bool
eq_yz: y = z
eq_zw: z = w
--
y = w

case ϕ Assuming the goal’s conclusion is not a statement judgement, do an excluded-middle case analysis
on ϕ, substituting ϕ in the goal’s conclusion.

Example: applying case (x <= y) to

x: int
y: int
--
0 <= y - x

is transformed into the following subgoals

x: int
y: int
--
x <= y

and

x: int
y: int
--
x <= y => 0 <= y - x

elim ϕ Eliminates the top assumption of the goal’s conclusion, generating subgoals that are dependent upon
the kind of assumption eliminated.

Example: applying elim l to

l: ’a list
--
0 <= size l

is transformed into the following subgoals

--
0 <= size []

6

and

--
forall (x : ’a) (l : ’a list), 0 <= size l => 0 <= size (x :: l)

simplify Attempts to simplify the proof goal by solving trivial equalities or even by expanding operators
being used.

Example: applying simplify to

x: ’a
l: ’a list
H: 0 <= size l
--
0 <= size (x :: l)

is transformed into

x: ’a
l: ’a list
H: 0 <= size l
--
0 <= 1 + size l

assumption Search in the context for a hypothesis that is convertible to the goal’s conclusion, solving the goal
if one is found. Fail if none can be found.

Example: applying assumption to

x: bool
H: P x
--
P x

solves the goal.

reflexivity Solve goals with conclusions of the form x = x (up to computation).
Example: applying reflexivity to

x: bool
--
x = x

solves the goal.

done Apply trivial and fail if the goal is not closed.

smt Try to solve the goal using SMT solvers. The goal is sent along with the local hypotheses plus selected
axioms and lemmas.

Example: applying smt to

x: int
y: int
z: int
H: x = y
H0: y = z
--
x = z

solves the goal.

7

3.2 Axioms
EasyCrypt’s allows users to axiomatize properties regarding types and operators. For example, using the
(small) finite field library defined in Section 2.2, it is possible to formalize the expected properties of the
field operators, like the commutativity or associative properties, using axioms as follows.

axiom addC (x y : t): x + y = y + x. (* Commutative addition property *)
axiom addA (x y z : t) : x + (y + z) = (x + y) + z. (* Associative addition property *)

axiom mulC (x y : t) : x * y = y * x. (* Commutative addition property *)
axiom mulA (x y z : t): x * (y * z) = (x * y) * z. (* Associative multiplication property *)
axiom mulfDl (x y z : t): (x + y) * (x + z) = x * (y + z). (* Distributive multiplication property over the addition *)

3.3 Lemmas
Lemmas are properties that, unlike axioms, are not assumed to be true and that require the user to write a
complete proof for it. We provide two examples of EasyCrypt lemmas, together with their respective proof
script:

1. one that proves that adding a field element to another element that is different than zero will output
a different field element; and

2. one that proves that the size of any list is always greater than or equal to zero.

3.3.1 Adding a field element to another field element different than zero

To prove the desired property, one can write the following two lemmas. It is recommended to follow this
example using the EasyCrypt framework in order to get a clear picture of how the proof evolves.

lemma add_fzero_imp (x : t) (y : t) : x + y = x => y = fzero.
proof.
move => H.
have : y = x + (- x) by smt.
move => H0.
rewrite H0.
apply addfN.

qed.

lemma non_zero_add (x : t) (y : t) :
y <> fzero => x + y <> x.

proof.
move => H.
case (x + y = x).
move => H2.
have : y = fzero.
rewrite (add_fzero_imp x y).
assumption.

reflexivity.
trivial.

trivial.
qed.

3.3.2 Size of any list is always greater than or equal to zero

To prove the desired property, one can write the following lemma. It is recommended to follow this example
using the EasyCrypt framework in order to get a clear picture of how the proof evolves.

lemma size_ge0 (l : ’a list) : 0 <= size l.
proof.
elim l.
simplify.
trivial.

move => x l Hind.
simplify.
smt.

qed.

8

4 Modules
So far, we have explored the functional core of EasyCrypt. Complementary to it, EasyCrypt also discloses an
imperative subset, captured by modules.

EasyCrypt features a module system that provides a structuring mechanism for describing imperative
constructions. Modules are composed of a memory (a set of global variables, here empty) and a set of
procedures. Procedures in the same module may share state; it is therefore not necessary to explicitly add
state to the module signature. In addition, modules can be parameterised by other modules (in which case,
we often call them functors) whose procedures they can query like oracles.

Modules are mainly used for representing cryptographic games - either concrete or abstract. It uses
a simple while language. For example, the IND-CPA security game can be is represented as the following
concrete module:

module INDCPA (S: Scheme) (A: Adversary) = {
proc main() : bool = {
var b, b’, m0, m1, k, m;

k <@ S.key_gen();
(m0, m1) <@ A.gen_query();
b <$ {0,1};
m <- if b then m1 else m0;
c <@ S.encrypt(k, m);
b’ <@ A.guess(c);

return b’;
}

}.

In this module, the secret key is first generated by accessing the key_gen procedure. Then, the adversary
selects two messages m0 and m1. The game proceeds by randomly sampling a bit that is used to determine
which message is going to be encrypted. Finally, the adversary, will try to determine if the ciphertext given
to it came from an encryption of m0 or m1.

Note that we make use of different assignment syntaxes:

• <- - assignment of an expression

• <@ - assignment of the output of a function call

• <$ - random assignment, i.e., a random value will be sampled from a probability distribution

The INDCPA module is parameterized by a module of type Scheme and another of type Adversary. The con-
stituents of a module and their types are reflected in their module type: a module M has module type I if all
procedures declared in I are also defined in M, with the same type and parameters. For instance, the Scheme

module type, intended to capture the type of symmetric encryption schemes, can be defined as follows

module type Scheme = {
module key_gen() : key
module encrypt(k : key, pt : plaintext) : ciphertext
module decrypt(k : key, ct : ciphertext) : plaintext

}

meaning that a module that follows this interface will be considered to have type Scheme.

5 Hoare logic
To deconstruct imperative programs, EasyCrypt incorporates a Hoare logic proof engine. In EasyCrypt, a
Hoare triple can be written according to the following syntax

lemma hoare_triple : hoare [p : pre ==> post]

where p is the procedure to be analyzed, pre is the precondition and post is the postcondition.

9

5.1 Commonly used Hoare logic tactics
proc Turn a goal whose conclusion is a Hoare logic judgement involving concrete procedure(s) into one whose
conclusion is a statement judgement by replacing the concrete procedure(s) by their body/ies.

Example: applying proc to

M : M
--
pre = true

Example(M).main

post = true

is transformed into

M : M
--
Context : {x, r, y, z : int}

pre = true

(1--) z <@ M.gen()
(2--) r <$ [0..100]
(3--) if (x < 100) {
(3.1) y <- x * 2
(3--) } else {
(3?1) y <- r + z
(3--) }

post = true

where r <$ [0..100] captures the integer random sampling in the [0; 100] range.

wp Applies the weakest precondition calculus strategy to the current program. wp will consume assignments,
as well as if conditionals whose body does not encompass any random sample or function calls.

Example: applying wp to

M : M
--
Context : {x, r, y, z : int}

pre = true

(1--) z <@ M.gen()
(2--) r <$ [0..100]
(3--) if (x < 100) {
(3.1) y <- x * 2
(3--) } else {
(3?1) y <- r + z
(3--) }

post = true

is transformed into

M : M
--
Context : {x, r, y, z : int}

pre = true

(1) z <@ M.gen()
(2) r <$ [0..100]

post = if x < 100 then true else true

rnd If the conclusion is a Hoare logic judgment whose program ends with a random assignments x <$ d, then
consume those random assignments, replacing the conclusion’s postcondition by the probabilistic weakest
precondition of the random assignments.

Example: applying rnd to

10

M : M
--
Context : {x, r, y, z : int}

pre = true

(1) z <@ M.gen()
(2) r <$ [0..100]

post = if x < 100 then true else true

is transformed into

M : M
--
Context : {x, r, y, z : int}

pre = true

(1) z <@ M.gen()

post =
forall (r0 : int),
(r0 \in [0..100])%Distr => if x < 100 then true else true

call (_ :)ϕ If the conclusion is a Hoare logic judgement whose program end with a function call of the
same abstract procedure, then use the specification argument to call generated from the invariant ϕ, and
automatically apply proc ϕ to its first subgoal, pruning the first two subgoals the application generates,
because their conclusions consist of ambient logic formulas that are true by construction.

Example: applying call _ : true to

M : M
--
Context : {x, r, y, z : int}

pre = true

(1) z <@ M.gen()

post =
forall (r0 : int),
(r0 \in [0..100])%Distr => if x < 100 then true else true

is transformed to

M : M
--
Context : {x, r, y, z : int}

pre = true

post =
forall (r0 : int),
(r0 \in [0..100])%Distr => if x < 100 then true else true

skip If the goal’s conclusion is a statement judgement whose program(s) are empty, reduce it to the goal
whose conclusion is the ambient logic formula ϕ => ψ, where ϕ is the original conclusion’s precondition,
and ψ is its postcondition.

Example: applying skip to

M : M
--
Context : {x, r, y, z : int}

pre = true

post =
forall (r0 : int),
(r0 \in [0..100])%Distr => if x < 100 then true else true

11

is transformed to

M : M
--
forall &hr,
true =>
forall (r0 : int),
(r0 \in [0..100])%Distr => if x{hr} < 100 then true else true

while ϕ If the goal’s conclusion is a Hoare logic judgement whose program ends with a while statements,
reduce the goal to two subgoals whose conclusions are Hoare logic judgments:

• One whose program is the body of the while statement, whose precondition is the conjunction of ϕ and
the while statements’ boolean expressions and whose postcondition is the conjunction of ϕ and the
assertion that the while statements’ boolean expressions (interpreted in the appropriate memories) are
equivalent. Essentially, one is required to prove that the invariant ϕ is preserved throughout the loop
execution

• One whose precondition is the original goal’s precondition, whose program is the results of removing
the while statement from the original program, and whose postcondition is the conjunction of:

– the conjunction of ϕ and the assertion that the while statement’s boolean expressions are equiv-
alent; and

– the assertion that, for all values of the variables modified by the while statement, if the while
statement’s boolean expressions don’t hold, but ϕ holds, then the original goal’s postcondition
holds.

Essentially, one is required to prove that the invariant holds at the beginning of the loop and at the
end of the loop.

Example: applying while (0 <= i <= 10 / y = x * i) to

_x: int
--
Context : {x, y, i : int}

pre = x = _x

(1--) i <- 0
(2--) y <- 0
(3--) while (i < 10) {
(3.1) y <- y + x
(3.2) i <- i + 1
(3--) }

post = y = _x * 10

is transformed into the following subgoals

_x: int
--
Context : {x, y, i : int}

pre = ((0 <= i && i <= 10) /\ y = x * i) /\ i < 10

(1) y <- y + x
(2) i <- i + 1

post = (0 <= i && i <= 10) /\ y = x * i

and

_x: int
--
Context : {x, y, i : int}

pre = x = _x

(1) i <- 0

12

(2) y <- 0

post =
((0 <= i && i <= 10) /\ y = x * i) /\
forall (i0 y0 : int),
! i0 < 10 => (0 <= i0 && i0 <= 10) /\ y0 = x * i0 => y0 = _x * 10

if If the goal’s conclusion is a Hoare logic judgement whose program begin with an if statement, reduces
the goal to two subgoals:

• One in which the if statement has been replaced by its then branch, and where the assertion of the
truth of the if statement’s boolean expression has been added to the conclusion’s precondition.

• One in which the if statement has been replaced by its else part, and where the assertion of the falsity
of the if statement’s boolean expression has been added to the conclusion’s precondition.

Example: applying if to

_x: int
--
Context : {x, y : int}

pre = x = _x /\ x < 100

(1--) if (x < 100) {
(1.1) y <- x
(1--) } else {
(1?1) y <- x * 2
(1--) }

post = y = _x

is transformed into the following subgoals

_x: int
--
Context : {x, y : int}

pre = (x = _x /\ x < 100) /\ x < 100

(1) y <- x

post = y = _x

and

_x: int
--
Context : {x, y : int}

pre = (x = _x /\ x < 100) /\ ! x < 100

(1) y <- x * 2

post = y = _x

rcondt n If the goal’s conclusion is an Hoare logic judgement whose n statement is an if statement, reduce
the goal to two subgoals:

• One whose concludion is an Hoare logic judgement whose precondition is the original goal’s precondi-
tion, whose program is the first n−1 statements of the original goal’s program, and whose postcondition
is the boolean expression of the if statement.

• One whose conclusion is an Hoare logic judgement that’s the same as that of the original goal except
that the if statement has been replaced by its then part.

Example: applying rcondt 1 to

13

_x: int
--
Context : {x, y : int}

pre = x = _x /\ x < 100

(1--) if (x < 100) {
(1.1) y <- x
(1--) } else {
(1?1) y <- x * 2
(1--) }

post = y = _x

is transformed into the following subgoals
_x: int
--
Context : {x, y : int}

pre = x = _x /\ x < 100

post = x < 100

and
_x: int
--
Context : {x, y : int}

pre = x = _x /\ x < 100

(1) y <- x

post = y = _x

rcondf n If the goal’s conclusion is an HL statement judgement whose n statement is an if statement, reduce
the goal to two subgoals:

• One whose concludion is an Hoare logic judgment whose precondition is the original goal’s precondition,
whose program is the first n− 1 statements of the original goal’s program, and whose postcondition is
the negation of the boolean expression of the if statement.

• One whose conclusion is an Hoare logic judgement that’s the same as that of the original goal except
that the if statement has been replaced by its else part.

Example: applying rcondf 1 to
_x: int
--
Context : {x, y : int}

pre = x = _x /\ x < 100

(1--) if (x < 100) {
(1.1) y <- x
(1--) } else {
(1?1) y <- x * 2
(1--) }

post = y = _x

is transformed into the following subgoals
_x: int
--
Context : {x, y : int}

pre = x = _x /\ x < 100

post = ! x < 100

14

and

_x: int
--
Context : {x, y : int}

pre = x = _x /\ x < 100

(1) y <- x * 2

post = y = _x

5.2 EasyCrypt Hoare logic example
Consider the following EasyCrypt module

module type M = {
proc gen() : int

}.

module Example (M : M) = {

proc main(x : int) : int = {
var r, y, z;

z <@ M.gen();
r <$ [0..100];
if (x < 100) { y <- x*2; }
else { y <- r + z; }

return y;
}

}.

where we define a module Example with a procedure main that either doubles its input or that assigns it to the
output of a procedure call added to a random value. In this example, we will prove that if the input value x

is less than 100 (precondition), then the output will be x*2 (postcondition).
The EasyCrypt Hoare triple lemma is written bellow.

lemma example (M <: M) (_x : int) : hoare [Example(M).main : _x = x /\ x < 100 ==> res = _x * 2].

The example lemma does two universal quantifications: i. one over every possible modules of type M (using
the <: notation); and ii. one over every possible integer _x While the former is done to correctly instantiate
the Example module, the latter is done to be able to refer to the value of x before the program is executed.
This allows us to store the value of x at the beginning of the evaluation and refer to it at the postcondition.
Note also that the postcondition uses a special value dubbed res. This is an EasyCrypt keyword used to refer
to the output of the program.

The following proof script is able to discharge the afore mentioned Hoare triple.

lemma example (M <: M) (_x : int) : hoare [Example(M).main : _x = x /\ x < 100 ==> res = _x * 2].
proof.
proc.
wp.
rnd.
call (_ : true).
skip.
move => &hr H result r H0.
have : x{hr} < 100 by smt().
have : x{hr} = _x by smt().
move => H1 H2.
rewrite H2.
simplify.
rewrite H1.
reflexivity.

qed.

Again, for a better understanding of the proof process, it is highly recommended to reproduce the proof
script in EasyCrypt.

15

6 Probabilistic Hoare logic
Probabilistic Hoare logic (pHL) allows one to write HL lemmas that are bounded by some probability.
Intuitively, it allows the proof of statements where, given some precondition, the postcondition only occurs
with a given probability P . A pHL triple can be written according to the following syntax

lemma phoare_triple : phoare [p : pre ==> post] < P

Dealing with probability distributions inside EasyCrypt is, perhaps, the most complicated aspect of Easy-
Crypt. EasyCrypt provides a series of libraries to deal with probabilistic reasoning that we will not cover
here. Instead, we will resort to the most relevant aspects of how probability distributions are formalized in
EasyCrypt.

6.1 EasyCrypt probability distributions
Probability distributions in EasyCrypt are defined using the special distr type. For example, a probability
distribution over the integers can be defined as

op int_distr : int distr.

The support of a distribution represents the elements that compose the domain of that distribution, i.e.,
those than can be sampled. For example, to restrict the domain of int_distr to the values between 0 and 100,
one can write

axiom int_distr_support : forall (x : int), 0 <= x <= 100 => x \in int_distr.
axiom int_distr_supportN : forall (x : int), !(0 <= x <= 100) => x \notin int_distr.

The weight of a distribution establishes the sum of the probabilities of all elements of the distribution
domains. Informally, we say that if the weight of a distribution is 1, then it is defined for all elements of the
domain. In EasyCrypt, this is captured by the is_lossless predicate.

axiom int_distr_lossless : is_lossless int_distr.

Finally, it is possible to specify the probability of sampling a value in a probability distribution. In order
to do so, EasyCrypt includes a special operator mu, that defines the probability of some event occurs in a
distribution. Therefore, to define the sampling probability of an element, one can follow the next EasyCrypt
script.

axiom int_distr_mu1 : forall (x : int), 0 <= x <= 100 => mu int_distr (fun k => k = x) = (1%r / 101%r).

6.2 EasyCrypt pHL example
Consider the following EasyCrypt module, that uses the previously formalized int_distr probability distribu-
tion.

module Example = {

proc main() : int = {
var x;

x <$ int_distr;

return (x * 2);
}

}.

where we define a module Example that samples a value from int_distr and then doubles it. In this example,
we will prove that the probability of this program outputting 100 is 1

101 , i.e., the probability of sampling 50.
The EasyCrypt pHL statement is written and proved bellow.

lemma example : phoare [Example.main : true ==> res = 10] <= (1%r / 101%r).
proof.
proc.
rnd.
skip.

16

progress.
have : mu int_distr (fun (x : int) => x * 2 = 10) =

mu int_distr (fun (x : int) => x = 5).
congr.
rewrite fun_ext /(==).
move => x.
smt.

move => H.
rewrite H int_distr_mu1.
trivial.
trivial.

qed.

7 Probabilistic Relational Hoare logic
Probabilistic Relational Hoare logic (pRHL) allows one to write HL lemmas that compare the execution of
two programs. Intuitively, it allows the proof of statements where two programs are compared and where
users can write pre and postconditions that refer to variables on both programs. Concretely, variables on
the left program can be referred to using the 1 tag, whereas variables on the right program can be referred
to using the 2 tag. A pRHL triple can be written according to the following syntax.

lemma p_relational_hoare_logic : equiv [p1 ~ p2 : pre ==> post].

The same tactics that were analyzed in Section 5 can be applied to pRHL judgments but, instead of
consuming statements in a singe program, it will consume statements on both programs being analyzed.

7.1 Relational rnd tactic
The rnd tactic, when applied in a pRHL context, it follows a different behavior when comparing to HL.
Concretely

rnd | rnd f | rnd f g If the conclusion is a pRHL judgement whose programs end with random assignments
x1 <$ d1 and x2 <$ d2, and f and g are functions between the types of x1 and x2, then consume those
random assignments, replacing the conclusion’s postcondition by the probabilistic weakest precondition of
the random assignments wrt. f and g. The new postcondition checks that:

• f and g are an isomorphism between the distributions d1 and d2

• for all elements u in the support of d1, the result of substituting u and f u for x11 and x22 in the conclusion’s
original postcondition holds

Example: applying rnd (fun b => if b then 3 else 2)(fun m => m = 3) to

n: int
--
&1 (left) : M.h
&2 (right) : N.h

pre = y{2} = n

x <$ {0,1} (1) y <- y - 1
(2) x <$ [2..3]

post = x{1} <=> x{2} + y{2} = n + 2

is transformed into

n: int
--
&1 (left) : M.h
&2 (right) : N.h

pre = y{2} = n

x <$ {0,1} (1) y <- y - 1
(2) x <$ [2..3]

17

post =
(forall (xR : int),
xR \in [2..3] => xR = if xR = 3 then 3 else 2) &&

(forall (xR : int),
xR \in [2..3] => mu1 [2..3] xR = mu1 {0,1} (xR = 3)) &&

forall (xL : bool),
xL \in {0,1} =>
((if xL then 3 else 2) \in [2..3]) &&
xL = ((if xL then 3 else 2) = 3) &&
(xL <=> (if xL then 3 else 2) + y{2} = n + 2)

7.2 EasyCrypt pRHL example
Consider the following two EasyCrypt modules

module type M = {
proc gen() : int

}.

module Example1 (M : M) = {

proc main(x : int) : int = {
var r;

z <@ M.gen()
r <$ [0..100]
if (x < 100) {
y <- x * 2

} else {
y <- r + z

}

return y;
}

}.

module Example2 (M : M) = {

proc main(x : int) : int = {
var r;

z <@ M.gen()
r <$ [0..100]
if (x < 50) {
y <- x * 2

} else {
y <- r + z

}

return y;
}

}.

Using pRHL, it is possible to prove that, when the input of both programs is lower than 50, they will
produce the same output.

The EasyCrypt pRHL statement is written and proved bellow.

lemma example (M <: M) : equiv [Example1(M).main ~ Example2(M).main : (glob M){1} = (glob M){2} /\ x{1} = x{2} /\ x{1} < 50
==> res{1} = res{2}].

proof.
proc.
wp.
rnd.
call (_ : true).
skip.
progress.
smt().
smt().

qed.

18

	Introduction
	Fuctional types, operators and data structures
	Types
	Operators
	Data structures

	Ambient logic
	Commonly used EasyCrypt tactics
	Axioms
	Lemmas
	Adding a field element to another field element different than zero
	Size of any list is always greater than or equal to zero

	Modules
	Hoare logic
	Commonly used Hoare logic tactics
	EasyCrypt Hoare logic example

	Probabilistic Hoare logic
	EasyCrypt probability distributions
	EasyCrypt pHL example

	Probabilistic Relational Hoare logic
	Relational [mathescape,language=easycrypt,xleftmargin=0pt,xrightmargin=0pt,style=easycrypt-default,basicstyle=,morekeywords=]rnd tactic
	EasyCrypt pRHL example

