
EasyCrypt - Hashed ElGamal semantic security proof exercise

Vitor Pereira

FMiTF Bootcamp - May 29 - June 2, 2023

1 Introduction
The purpose of this document is to describe a verification exercise that consists on performing the security
proof of the ElGamal encryption scheme in its hashed version. We will first give an overview of how such
proofs are done in EasyCrypt using the non-hashed ElGamal cryptosystem as an example.

We will closely follow the proof provided at [1], where the game hopping proof technique is also explained.
The student is encouraged to closely follow [1] while reading this document in order to match the building
blocks described here with the proof described in [1].

2 Modeling public key encryption Schemes in EasyCrypt
A public key encryption scheme is a 3-tuple of algorithms:

• KenGen() : pk * sk - a probabilistic algorithm that generates both the public and secret keys (pk and
sk, respectively).

• Encrypt(pk, pt) : ct - a probabilistic algorithm that takes as input the public key pk and the plaintext
pt and outputs a ciphertext ct.

• Decrypt(sk, ct) : pt - a deterministic algorithm that takes as input the secret key sk and the ciphertext
ct and outputs a plaintext pt.

In EasyCrypt, the modeling of public key encryption schemes can be captured by a module type, as follows

type pk_t.
type sk_t.
type pt_t.
type ct_t.

module type Scheme = {
proc key_gen() : pk_t * sk_t
proc encrypt(pk : pk_t, m : pt_t) : ct_t
proc decrypt(sk : sk_t, ct : ct_t) : pt_t

}.

3 Modeling security definitions in EasyCrypt
Cryptographic semantic security, also dubbed as indistinguishability against chosen-plaintext attacks or sim-
ply IND-CPA, is a security definition that is captured by the following security experience (or game):

1. First, an adversary (an entity trying to break the IND-CPA security), chooses two messages, say m0

and m1.

2. Next, the challenger selects a random bit b and encrypts message m0 if b = false or encrypts m1 if
b = 1.

3. The adversary is then given the encryption of either m0 or m1

1

4. Finally, the adversary must output a decision bit b′: it needs to determine if the ciphertext it got from
the challenger corresponds to an encryption of m0 or m1.

If the scheme is IND-CPA secure, then the adversary is said to have no advantage against the scheme
and its best option is to guess which message originated the ciphertext it received. Formally, a scheme is
IND-CPA secure if the probability that the adversary outputs b′ = b is 1

2 .
In EasyCrypt, the IND-CPA security game can be defined as a module as follows

module type INDCPA_Adv = {
proc gen_query(pk : pk_t) : pt_t * pt_t
proc guess(ct : ct_t) : bool

}.

module INDCPA (S : Scheme) (A : INDCPA_Adv) = {
proc main() : bool = {
var pk, sk, m0, m1, b, b’, ct;

(pk, sk) <@ S.key_gen();
(m0, m1) <@ A.gen_query(pk);
b <$ {0,1};
ct <@ S.encrypt(pk, if b then m1 else m0);
b’ <@ A.guess(ct);

return (b = b’);
}

}.

4 EasyCrypt ElGamal specification
We first provide a brief description of the ElGamal cryptosystem. Let G be a group of prime order q, and
let g ∈ G be a generator. The key generation algorithm computes (pk, sk) as follows

x
$←− Zq; pk ← gx; sk ← x

To encrypt a message m ∈ G, the encryption algorithm proceeds as follows

y
$←− Zq;β ← gy; δ ← pky; ζ ← δ ·m; ct← (δ, ζ)

Finally, decryption of a ciphertext is simply done by

m < −ζ/βsk

The ElGamal encryption scheme can be defined in EasyCrypt as a module of type Scheme in accordance to
the following code.
module ElGamal : Scheme = {
proc key_gen() : pk_t * sk_t = {
var pk, sk;

sk <$ FDistr.dt;
pk <- g ^ sk;

return (pk, sk);
}

proc encrypt(pk : pk_t, m : pt_t) : ct_t = {
var y, bet, delt, zet;

y <$ FDistr.dt;
bet <- g ^ y;
delt <- pk ^ y;
zet <- delt * m;

return (bet, zet);
}

proc decrypt(sk : sk_t, ct : ct_t) : pt_t = {
var m, bet, zet;

(bet, zet) <- ct;

2

m <- zet / (bet ^ sk);

return (m);
}

}.

where FDistr.dt is a uniform probability distribution over elements of the finite field Zq.
Finite field and cyclic group arithmetic libraries are provided in the EasyCrypt scripts that accompany

this document.

5 ElGamal semantic security proof
ElGamal encryption is semantically secure under the Decisional Diffie-Hellman (DDH) assumption. This
is the assumption that it is hard to distinguish triples of the form (gx, gy, gx∗y) from triples of the form
(gx, gy, gz), where x, y, and z are random elements of Zq.

5.1 DDH assumption in EasyCrypt
The DDH assumption is formulated in EasyCrypt as follows

module type Adversary = {
proc guess(gx gy gz : group) : bool

}.

module DDH0 (A : Adversary) = {
proc main() : bool = {
var b, x, y;

x <$ FDistr.dt;
y <$ FDistr.dt;
b <@ A.guess(g ^ x, g ^ y, g ^ (x * y));
return b;

}
}.

module DDH1 (A : Adversary) = {
proc main() : bool = {
var b, x, y, z;

x <$ FDistr.dt;
y <$ FDistr.dt;
z <$ FDistr.dt;
b <@ A.guess(g ^ x, g ^ y, g ^ z);
return b;

}
}.

where the advantage against the DDH is formulated as

|Pr[DDH0(A).main : b = 1]− Pr[DDH1(A).main : b = 1]|

5.2 DDH reduction proof
Cryptographic reduction proof are done following a contradiction approach. For example, to reduce the
security of the ElGamal encryption scheme to the DDH assumption, one needs to prove that any procedure
that can be used to break the security of the scheme can also be used to break the DDH assumption.
However, DDH is considered a hard mathematical problem and, therefore, no algorithm can be used to solve
it in computational time, meaning that we arrived at a contradiction. Consequently, there is no adversary is
able to successfully break the security of ElGamal, since that would mean that the DDH assumption would
not be hard problem, as it is assumed.

To perform the reduction proof in EasyCrypt, one needs to write a DDH adversary that uses the IND-CPA
adversary as a sub-routine. That adversary is written bellow.

module D (A : INDCPA_Adv) = {
proc guess(gx gy gz : group) : bool = {
var m0, m1, b, b’;

3

(m0, m1) <@ A.gen_query(gx);
b <$ {0,1};
b’ <@ A.guess(gy, gz * (if b then m1 else m0));

return (b = b’);
}

}.

The D adversary first queries A (the IND-CPA adversary) to generate two messages and then uses A guess

procedure (the procedure used by A to break ElGamal’s security) to procedure its own decision bit.
Next, we define a new game that is equivalent to the original IND-CPA experience, except that the value

ζ is calculated as ζ ← gz, with random z ∈ Zq, instead of ζ ← δ ·m.

module Game1 = {
proc main() : bool = {
var pk, sk, m0, m1, b, b’, ct, y, bet, delt, z, zet;

(pk, sk) <@ ElGamal.key_gen();
(m0, m1) <@ A.gen_query(pk);
b <$ {0,1};

y <$ FDistr.dt;
bet <- g ^ y;
delt <- pk ^ y;
z <$ FDistr.dt;
zet <- g ^ z;
ct <- (bet, zet);

b’ <@ A.guess(ct);

return (b = b’);
}

}.

Now, we are able to prove that the D adversary interpolates both the IND-CPA game (which is typically
called Game0) and Game1. That is done by proving the following two equivalence lemmas

lemma game0_ddh0_equiv : equiv [DDH0(D(A)).main ~ Game0(A).main : ={glob A} ==> ={res}].

lemma game1_ddh1_equiv : equiv [DDH1(D(A)).main ~ Game1.main : ={glob A} ==> ={res}].

and, since both games are equivalent, they output the same bit with equivalent probability

lemma game0_ddh0_pr &m : Pr [DDH0(D(A)).main() @ &m : res] = Pr [Game0(A).main() @ &m : res].

lemma game1_ddh1_pr &m : Pr [DDH1(D(A)).main() @ &m : res] = Pr [Game1.main() @ &m : res].

The complete proof of these lemmas can be found in the accompanying EasyCrypt files.
Note that the output of Game1 (b = b’) is independent of the bit b, since no message is actually encrypted.

Therefore, one can prove that the probability of the event b = b’ is precisely 1
2 .

lemma game1_pr &m : Pr [Game1.main() @ &m : res] = 1%r / 2%r.

Finally, we can establish the concrete security bounds of the ElGamal encryption scheme by proving the
following lemma

lemma security &m :
Pr [INDCPA(ElGamal, A).main() @ &m : res] =
1%r/2%r + (Pr[DDH0(D(A)).main() @ &m : res] - Pr[DDH1(D(A)).main() @ &m : res]).

where Pr[DDH0(D(A)).main()@ &m : res] - Pr[DDH1(D(A)).main()@ &m : res] represents the (negligible) advantage against
the DDH assumption.

6 Exercise: semantic security proof of hashed ElGamal
Your goal is to take advantage of the description of the semantic security proof of ElGamal described above
and detailed in the EasyCrypt files that are attached to this document, and perform the semantic security of
the ElGamal encryption scheme in its hashed version.

4

Briefly, the security of hashed ElGamal can be reduced to the DDH assumption and to the entropy
smoothing assumption of the underlying hash function. The first reduction step is the same of the non-
hashed ElGamal version. You will need to do the second reduction proof, i.e., the reduction to the entropy
smoothing hash function assumption. You will not need to formalize this assumption, as it is part of the
EasyCrypt set of files available to you. Similarly to the DDH reduction proof, you will need to write an
entropy smoothing adversary based on an IND-CPA adversary and write a new game hop that interpolates
with the this new assumption.

The complete security proof of the hashed ElGamal cryptosystem can also be found at [1].

References
[1] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint

Archive, Paper 2004/332, 2004. https://eprint.iacr.org/2004/332.

5

https://eprint.iacr.org/2004/332

	Introduction
	Modeling public key encryption Schemes in EasyCrypt
	Modeling security definitions in EasyCrypt
	EasyCrypt ElGamal specification
	ElGamal semantic security proof
	DDH assumption in EasyCrypt
	DDH reduction proof

	Exercise: semantic security proof of hashed ElGamal

