
A
A
A

A

A

A

Pamela Zave

Princeton University

Princeton, New Jersey

Tim Nelson

Brown University

Providence, Rhode Island

NO MORE GARBAGE IN:

VALIDATING FORMAL MODELS

HOW TO AVOID MISTAKES

EVEN THE EXPERTS MAKE!

25 May 2023

A
A
A

A

A

A

A LITTLE HISTORY . . .

DOMAIN SYSTEM

Domain Knowledge D:
how the domain
behaves (by itself)

Requirements R:
how the domain
should behave (with
the system in place)

inter-
face

Specification S:
how the system

behaves (as observed
at its interface)

(D and S) implies RD, S are consistent;

The Primary Proof Obligations for Validation:

This is the Jackson-Zave model
(for Michael Jackson and me).

It is considered to be
the foundation of
requirements engineering.

developed in mid-1990s

BUT . . .

. . . requirements
engineering is
part of software
engineering, . . .

. . . which is now
regarded as
quite separate
from “formal
methods and
verification,” . . .

. . . so it seems
to have been
forgotten.

A
A
A

A

A

A

THE CONTENT OF A GOOD FORMAL MODEL

DOMAIN SYSTEM

Domain Knowledge D:
how the domain
behaves (by itself)

Requirements R:
how the domain
should behave (with
the system in place)

inter-
face

Specification S:
how the system

behaves (as observed
at its interface)

Implementation M:
how the system

behaves

D, S consistent; (D and S) implies R

THE PRIMARY PROOF OBLIGATIONS

M implies S

verification, where S consists of assertions
validation, where S consists of facts

note that the
phenomena of the

interface are shared
between the domain

and the system! this means that S
is actually a subset

of R, and may be
all of it if there is no

R apart from S,
validation is

weaker

A
A
A

A

A

A

PROGRAMMING PACKET-PROCESSING HARDWARE

Tofino
or other

P4-enabled
chip

Lucid program
compiles to P4

P4 program
compiles to hardware

packet arrival
triggers processing

packet gets timestamp
from a 48-bit ns clock

zero or more packets
may be emitted

in response

P4 is hard to use!

Lucid is much better, but still
very tricky, and we cannot risk
buggy programs deep in a
network.

So we use Dafny for
specification and validation,
then successively transform
the Dafny program to look and
behave like Lucid . . .

. . . while re-proving each
successive version.

Verification of the implementa-
tion is compiler verification.

A
A
A

A

A

A

MEASURING WAIT TIME
class PacketProcessing
{ // Parameters
 const Min : nat
 // State Variables
 var lastTime : nat
 var waiting : bool
 var waitBegan : nat

 method turnWaitingOn (time: nat)
 requires ! waiting
 requires stateInvariant (time)
 ensures stateInvariant (time)
 { waiting := true;
 waitBegan := time;
 lastTime := time; }

 method turnWaitingOff (time: nat)
 requires waiting
 requires stateInvariant (time)
 ensures stateInvariant (time)
 { waiting := false;
 lastTime := time; }

 predicate enoughWait (time: nat)
 requires waiting
 { time - waitBegan >= Min }

}

This is a partial specification in
Dafny—just enough for our topic.

timestamp of packet
being processed

timestamp of last
packet processed

precondition of
packet arrival
requires that
time > lastTime,
because time
must be moving
forward

[Is this bit of
code also
specification?]

called by other methods when
they need to know

minimum waiting time

A
A
A

A

A

A

COMPLICATION: TIMESTAMPS ARE BIT VECTORS
class PacketProcessing
{ // Parameters
 const T : nat := 256
 const Min : bits
 // State Variables
 var lastTime : nat
 var waiting : bool
 var waitBegan : nat
 var implWaitBegan : bits

 predicate stateInvariant (time: bits, natTime: nat)
 { (implWaitBegan == waitBegan % T)
 && (waiting ==>
 (enoughWait (natTime)
 <==> implEnoughWait (time))) }

 method turnWaitingOn (time: bits, natTime: nat)
 requires ! waiting
 requires stateInvariant (time, natTime)
 ensures stateInvariant (time, natTime)
 { waiting := true;
 waitBegan := natTime;
 implWaitBegan := time;
 lastTime := natTime; }

 predicate enoughWait (natTime: nat)
 requires waiting
 { natTime - waitBegan >= Min as nat }

}

predicate implEnoughWait (time: bits)
requires waiting
{ (time - implWaitBegan) % T >= Min }

an 8-bit vector, values 0-255

for every packet,
time == natTime % T

abstract
specification

more concrete
specification

verified as invariant, so
the more concrete specification
implements the abstract specification!

A
A
A

A

A

A

SOMETHING IS BOTHERING ME—
COULD THAT HAVE BEEN JUST A LITTLE TOO EASY?

natTime
Min = 64

time

0

0 0 0

256 512
waitBegan =

= implWait
Began

(time - iWB) % 256 >= Min?

(192 - 128) % 256 >= 64?

64 >= 64?

true

elapsedTime = 64

(time - iWB) % 256 >= Min?

(64 - 128) % 256 >= 64?

192 >= 64?

true

elapsedTime = 192

(time - iWB) % 256 >= Min?

(160 - 128) % 256 >= 64?

32 >= 64?

FALSE

elapsedTime = 288

128

128

384

128

A
A
A

A

A

A

SOMETHING IS BOTHERING ME—
COULD THAT HAVE BEEN JUST A LITTLE TOO EASY?

natTime
Min = 64

time

0

0 0 0

256 512
waitBegan =

= implWait
Began

(time - iWB) % 256 >= Min?

(192 - 128) % 256 >= 64?

64 >= 64?

true

elapsedTime = 64

(time - iWB) % 256 >= Min?

(64 - 128) % 256 >= 64?

192 >= 64?

true

elapsedTime = 192

(time - iWB) % 256 >= Min?

(160 - 128) % 256 >= 64?

32 >= 64?

FALSE

elapsedTime = 288

128

128

384

128

Now I remember!
To measure time accurately, the

ELAPSED TIME MUST BE LESS THAN 256
(the timestamp rollover period)

Does it matter?

Why is program verified as correct?

A
A
A

A

A

A

TIMESTAMP ROLLOVER MATTERS—
BECAUSE A NANOSECOND IS VERY SHORT!

Packets have 48-bit nanosecond timestamps.

 These timestamps roll over in 78 hours or about 3.25 days.

In programming, we save timestamps in 32-bit words.

 If a clock tick is still a nanosecond, these timestamps roll over in 4.3 seconds!

We save the high-order 32 bits, which loses resolution but is OK for us.

 Bounding wait times by 3 days is acceptable, 4 seconds is not.

A
A
A

A

A

A

HOW CAN THIS INVARIANT BE VIOLATED?
class PacketProcessing
{ // Parameters
 const T : nat := 256
 const Min : bits
 // State Variables
 var lastTime : nat
 var waiting : bool
 var waitBegan : nat
 var implWaitBegan : bits

 predicate stateInvariant (time: bits, natTime: nat)
 { (implWaitBegan == waitBegan % T)
 && (waiting ==>
 (enoughWait (natTime)
 <==> implEnoughWait (time))) }

 method turnWaitingOn (time: bits, natTime: nat)
 requires ! waiting
 requires stateInvariant (time, natTime)
 ensures stateInvariant (time, natTime)
 { waiting := true;
 waitBegan := natTime;
 implWaitBegan := time;
 lastTime := natTime; }

 predicate enoughWait (natTime: nat)
 requires waiting
 { natTime - waitBegan >= Min as nat }

}

predicate implEnoughWait (time: bits)
requires waiting
{ (time - implWaitBegan) % T >= Min }

for every packet,
time == natTime % T

abstract
specification

more concrete
specification

how can this be verified correct,
when we know it is not?

A
A
A

A

A

A
 method clockTick (time: bits, natTime:nat)
 requires time == natTime % T
 requires natTime >= lastTime

 requires waiting => (natTime < waitBegan + T)

 requires waiting => ((natTime + 1) < waitBegan + T)

 requires stateInvariant (time, natTime)
 ensures stateInvariant (time, natTime)

 { var timePlus : bits := (time + 1) % T;
 var natTimePlus : int := natTime + 1;

 assert timePlus == natTimePlus % T;

 assert stateInvariant (timePlus, natTimePlus);
 }

THE INVARIANT IS VIOLATED BY THE PASSAGE OF TIME

When natTime reaches implWaitBegan + T, the invariant becomes false.
After that, it is true and false intermittently.

Verification yields garbage because
the model has insufficient domain knowledge.

domain knowledge

Packet-processing code is effectively instantaneous.

Therefore nothing models the passage of time,
which occurs in the domain, not in the system.

new precondition, for all
methods (the one I forgot)

without this special
precondition, this method
does not preserve invariant

A
A
A

A

A

A

DOMAIN SYSTEM

Domain Knowledge D:
how the domain
behaves (by itself)

Requirements R:
how the domain
should behave (with
the system in place)

inter-
face

Specification S:
how the system

behaves (as observed
at its interface)

SOMETIMES IT IS TRICKY TO FIND THE DOMAIN . . .
. . . BUT THAT DOES NOT MAKE IT ANY LESS IMPORTANT!

For example,
when the
system is a
small addition
to an enormous
base of hardware,
software, and
human practices.

1

8

14

21

32

42

51

THE CHORD PROTOCOL MAINTAINS A PEER-TO-PEER
 NETWORK
identifier of a node (assumed
unique) is an m-bit hash
of its IP address

nodes are arranged in
a ring, each node
having a successor
pointer to the next
node (in integer order
with wraparound at 0)

the protocol preserves
the ring structure as
nodes join, leave silently,
or fail

redundant pointers
(extra successors)
support fault-tolerance

successor

successor2

m = 6

1

8

14

21

32

42

51

THE CHORD PROTOCOL MAINTAINS A PEER-TO-PEER
 NETWORK
identifier of a node (assumed
unique) is an m-bit hash
of its IP address

nodes are arranged in
a ring, each node
having a successor
pointer to the next
node (in integer order
with wraparound at 0)

the protocol preserves
the ring structure as
nodes join, leave silently,
or fail

redundant pointers
(extra successors)
support fault-tolerance

successor

successor2

m = 6 THE PROTOCOL IS
INTERESTING!

no central
administration
(almost)

communication
in the network is
fast because of
chords

protocol
operations are
simple and fast

protocol is
highly fault-
tolerant

no multi-node
atomic
operations

OPERATIONS OF THE PROTOCOL (SIMPLIFIED)

7
10

16

10
JOINS

10
STABILIZES

7
10

16

7
STABILIZES

7

10

16

Each member Stabilizes periodically.
This updates its successor list.

A member can Fail (or leave) silently.

A new member can Join at any time.

If a Stabilizing member contacts its
first successor and gets no answer,
then the successor is presumed dead
and the member promotes its
second (and other) successors.

WHY IS CHORD IMPORTANT?

the 2001 SIGCOMM paper introducing Chord
is one of the most-referenced

papers in computer science, . . .

. . . and won SIGCOMM’s 2011 Test of Time Award

APPLICATIONS

“Three features that distinguish Chord
from many other peer-to-peer lookup
protocols are . . .

. . . its simplicity,

. . . provable correctness,

. . . and provable performance.”

RESEARCH ON PROPERTIES AND
EXTENSIONS

allows millions of ad hoc peers to
cooperate

often used to build distributed
key-value stores (where the key
space is the same as the Chord
identifier space)

the best-known application is
BitTorrent

protection against malicious peers

key consistency (all nodes agree
on which node owns which key),
replicated data consistency

used as a building block in fault-
tolerant applications

THE CLAIMS

THE REALITY

even with simple bugs fixed and
optimistic assumptions about
atomicity, the original protocol is
not correct

of the seven properties claimed
invariant of the original version, not
one is actually an invariant

Correctness Property:

In any execution state, IF there are
no subsequent Join or Fail events, . . .

. . . THEN eventually . . .

. . . all pointers in the network will be
globally correct, and remain so.

not surprisingly, due to sloppy
informal specification and proof

I found these problems by
analyzing a small Alloy model

Chris Newcombe and others at
Amazon credit this work with
overcoming their bias against
formal methods, which they now
use to find bugs.

[CACM, April 2015]

7

19

16

13

263

29

55

41

6

appendages

ring

WHAT DO WE KNOW?

NODE OPERATIONS

nodes can Join or Fail (including
leave silently) at any time

this leads to appendages
outside the ring

each node will Stabilize
periodically, making repairs

PARAMETERS OF THE PROTOCOL

REQUIREMENT (Eventual Consistency)

In any execution state, IF there are no subsequent Join or Fail events, . . .

. . . THEN eventually . . .

. . . all pointers in the network will be globally correct, and remain so.

the length of successor lists L

the frequency of stabilization F

no
appendages

 WHAT DO WE NEED?

A PROOF THAT:

Getting this was very hard, because . . .

. . . there was no known invariant

. . . the true invariant (when found)
 looks nothing like the expected
 invariant properties

but this is not
today’s story!

This operating assumption has always been used:

No failure leaves a member without a live successor.

this is simple and convenient,
but nothing justifies it

(D and S) implies R

A NEW SPECIFICATION
OF THE NODE OPERATIONS
THAT WORKS

A FORMAL MODEL OF
REALISTIC DOMAIN KNOWLEDGE
THAT MAKES THE PROOF POSSIBLE

A PROOF!

7

19

16

13

263

29

29
55

55

41

41

6

appendages

best successor
(first live

successor)

ring

dead

41 9292

extended successor list (ESL)
of 29 (with L = 2):

member
itself

. . . which means that the redundancy in the
data structure is being thrown away, . . .

ACHIEVING CORRECTNESS

. . . but the original protocol is sloppy about
successor lists, allows empty and duplicated
entries:

MANY CAREFUL CHANGES
ENSURE THAT:

every ESL has L + 1 distinct
entries, each having been a
member at one time (if not now)

so the extra successor is providing
a backup in case of failure . . .

. . . and the so-called operating assumption
says that 41 cannot fail!

Even if I had it, I wouldn’t know
how to use it in a proof.

Even if I knew how to use it in a
proof, I could not do a proof for
each use of Chord.

 TOWARD A REALISTIC DOMAIN MODEL

TRULY REALISTIC

For each use of Chord . . .

. . . there is a probability distribution
 for inter-Join gaps

. . . there is a probability distribution
 for inter-Fail gaps

. . . there is L (length of successor
 lists)

. . . there is F (frequency of
 stabilization at each node)

HOWEVER, . . .

I don’t know how to get such
information.

Even if I had it, I wouldn’t know
how to use it in a proof.

Even if I knew how to use it in a
proof, I could not do a proof for
each use of Chord.

 TOWARD A REALISTIC DOMAIN MODEL

TRULY REALISTIC

For each use of Chord . . .

. . . there is a probability distribution
 for inter-Join gaps

. . . there is a probability distribution
 for inter-Fail gaps

. . . there is L (length of successor
 lists)

. . . there is F (frequency of
 stabilization at each node)

HOWEVER, . . .

I don’t know how to get such
information.

A REASONABLE APPROACH

Use the specification guaranteeing
that every ESL has L + 1 distinct
entries.

good: the full potential for fault-
tolerant redundancy is being used

bad: requires that every network have
at least L + 1 nodes (which is 4-6
among thousands or millions)

Domain model: With very high proba-
bility (approximately always), failure
never leaves a member without a live
successor.

ASSUMPTION IS JUSTIFIED BECAUSE . . .

If the operating assumption is not
satisfied in real operation, the
administrator can increase L or
decrease F, which will solve the
problem.

real justification for
the assumption!

researchers claim: we have a
better result!

 HOW EVEN THE EXPERTS CAN GET IT WRONG
IN FORMAL METHODS

SUBSEQUENT RESEARCH

uses a specification with some of
my changes but not others

as a result, specification does not
maintain the property that each
ESL has L + 1 distinct entries

as a result, specification does not
require a minimum number of
nodes

 WHICH IS BETTER? A trace is determined by a sequence of Joins and
Fails in the domain, to which the system responds
according to its specification.

Correct ChordEven Newer Chord trace sets

traces in
which the
network
is very
small

traces in
which there

are many
failures
but the

network is
resilient
because

operations
are better

if we want to add
these traces to
Correct Chord, we can
add special initialization
to specification

according to Even
Newer Chord, these

traces cannot occur, but
there is no justification

A
A
A

A

A

A

SUMMARY OF THIS SHORT COURSE

many predicates, many instances,
and the instances are

focused and meaningful

instances can be compared to
the real world being described

predicates help you think of
better specifications

Even the experts make mistakes—
and when they do, it is almost always
due to faulty domain knowledge.

generalize whatever you can

think about the domain
knowledge and requirements
as well as the specification

Without validation, formal models
and the results of verifying them
can be garbage.

Think of your formal model as a
domain model—relevant to a family
of systems—no matter how specific
your goals really are.

Predicates are great for validation.

There will be pain.

You can learn from your own pain, or someone else’s pain.

domain knowledge does not have to
be large, just appropriate

A
A
A

A

A

A

OTHER TOPICS FOR INQUIRING MINDS

ChatGPT

How can tools support validation better?

How important are scopes in Alloy, and how do you choose them?

