
A
A
A

A

A

A Pamela Zave

Princeton University

Princeton, New Jersey

Tim Nelson

Brown University

Providence, Rhode Island

NO MORE GARBAGE IN:

VALIDATING FORMAL MODELS

25 May 2023

A
A
A

A

A

A

WISDOM THAT NEVER GROWS OLD . . .

computer
program

GARBAGE in GARBAGE out

computer
program

GARBAGE in GARBAGE out

THE VERSION WE ARE INTERESTED IN:

formal model verified assertions

verification tool

A
A
A

A

A

A

VALIDATION OF A FORMAL MODEL . . .
IS THE ONLY WAY TO ENSURE THAT . . .
THE INPUT TO A VERIFICATION TOOL IS NOT GARBAGE

What is validation?

What is a valid
formal model? What is a formal model?

A
A
A

A

A

A

DESCRIBES A STATE-TRANSITION
SYSTEM (“operational” style)

there is a state space, state transitions

semantics is a set of possible traces,
i.e., sequences of states

GIVES PROPERTIES OF THE TRACE SET
(“declarative” style)

in predicate logic and temporal logic

facts and assertions (true of all traces),
predicates (true of some traces)

MODELING LANGUAGES

e.g., Alloy, TLA+, Event-B,
Dafny, Promela plus temporal
logic (for Spin model checker)

support both operational and
declarative styles

WHAT IS A FORMAL MODEL? TECHNOLOGY VERSION

A
A
A

A

A

A

DESCRIBES A STATE-TRANSITION
SYSTEM (“operational” style)

there is a state space, state transitions

semantics is a set of possible traces,
i.e., sequences of states

GIVES PROPERTIES OF THE TRACE SET
(“declarative” style)

in predicate logic and temporal logic

facts and assertions (true of all traces),
predicates (true of some traces)

MODELING LANGUAGES

e.g., Alloy, TLA+, Event-B,
Dafny, Promela plus temporal
logic (for Spin model checker)

support both operational and
declarative styles

WHAT IS A FORMAL MODEL?

EXAMPLE

inList: list elem

outList: list elem

order: elem -> elem

OPERATIONAL STYLE:

a sorting algorithm

DECLARATIVE STYLE:

outList has the same
length as inList

outList has the same
elements as inList

outList is ordered
according to order

A
A
A

A

A

A

WHAT IS A FORMAL MODEL?

HAS A VERIFICATION TOOLDESCRIBES A STATE-TRANSITION
SYSTEM (“operational” style)

there is a state space, state transitions

semantics is a set of possible traces,
i.e., sequences of states

GIVES PROPERTIES OF THE TRACE SET
(“declarative” style)

in predicate logic and temporal logic

facts and assertions (true of all traces),
predicates (true of some traces)

MODELING LANGUAGES

e.g., Alloy, TLA+, Event-B,
Dafny, Promela plus temporal
logic (for Spin model checker)

support both operational and
declarative styles

trace
set

traces
satisfying
property

P

if P is a
predicate,
the tool can
give you
an instance
or witness. . .

if P is an
assertion,

the tool can
confirm that P
is verified . . .

. . . or
tell you
that the two
are inconsistent

. . . or if not,
some tools

can give you
a counter-

example

A
A
A

A

A

A

VALIDATION OF A FORMAL MODEL . . .
IS THE ONLY WAY TO ENSURE THAT . . .
THE INPUT TO A VERIFICATION TOOL IS NOT GARBAGE

INITIAL DEFINITIONS

A valid formal model is an
accurate, precise, and
comprehensible formal
description of real or
hypothetically real phenomena.

Validation is the process of
checking that a formal model is
valid.

Because the phenomena being
modeled are informal, validation
is inherently informal, although it
can be assisted by formal
analysis and verification.

A
A
A

A

A

A

VALIDATION OF A FORMAL MODEL . . .
IS THE ONLY WAY TO ENSURE THAT . . .
THE INPUT TO A VERIFICATION TOOL IS NOT GARBAGE

INITIAL DEFINITIONS

A valid formal model is an
accurate, precise, and
comprehensible formal
description of real or
hypothetically real phenomena.

Validation is the process of
checking that a formal model is
valid.

Because the phenomena being
modeled are informal, validation
is inherently informal, although it
can be assisted by formal
analysis and verification.

ACCURACY VS. PRECISION

“The accuracy of a measurement is its
closeness to that quantity’s true value. The
precision of a measurement, related to
reproducibility and repeatability, is the degree
to which repeated measurements under
unchanged conditions show the same results.”

measurement:
 describe a real phenomenon in terms
 of the formal model

repeated measurement:
 ask different people to describe the same
 phenomenon, using the same abstractions

precision:
 there is always a right answer, and a
 clear explanation of why a wrong
 answer is wrong

A
A
A

A

A

A

accurate?

precise?

compre-
hensible?

(does it
mean what

we think
it means?)

FORMAL MODELS: A MINIMAL
DEFINITION OF VALIDITY models, abstractions

the real world

mental
abstractions

formal
model
and its
tools

A
A
A

A

A

A

from The Formalization of Baking:

sig LayerCake extends Cake {

 layers: int

} { layers > 1 }

-- A layer of a layer cake is a distinct
-- horizontal stratum within the cake.

A
A
A

A

A

A

sig LayerCake extends Cake {

 layers: int

} { layers > 1 }

-- A layer of a layer cake is a distinct
-- horizontal stratum within the cake.

-- A layer of a layer cake is a distinct
-- horizontal stratum of cake within
-- the entire pastry.

DESIGNATIONS

this is a designation—an informal
description that relates a formal term to
the real world

It is also a bad one! Which is why
this formal model is so imprecise.

better

Good designations are the first
step toward a valid formal model.

“One can’t proceed from the informal to the formal by formal means.” —Alan Perlis

A
A
A

A

A

A

accurate?

precise?

compre-
hensible?

(does it
mean what

we think
it means?)

FORMAL MODELS: A MINIMAL
DEFINITION OF VALIDITY models, abstractions

the real world

mental
abstractions,
designations

formal
model
and its
tools

A
A
A

A

A

A

WHAT IS A FORMAL MODEL? CONTENT VERSION

implementation

there is, or eventually will be,
an iMplementation M

WHAT DO YOU CARE ABOUT?

building a computer system!

might also call it a program
(software system), chip (hardware
system), distributed system, etc.

WHY MAKE A FORMAL MODEL OF IT?

to verify that the implementation
is correct

to test the implementation
thoroughly

to make a contract with a customer
for a system to be developed

to do these things, you will need a
Specification S

describes how the
implementation behaves, but
should be simpler and more

comprehensible than
the implementation

A
A
A

A

A

A

WHAT MAKES A SPECIFICATION SIMPLER?

implementationinter-
face

It might be confined to what
BEHAVIOR is OBSERVABLE at the
system’s INTERFACE.

each phenomenon in the interface
is either . . .

domain-controlled (e.g., a
sensor)

system-controlled (e.g., an
actuator)

A
A
A

A

A

A

WHAT MAKES A SPECIFICATION SIMPLER?

Or it might be DECLARATIVE, with the
intention of deriving the implementation
from it by REFINEMENT.

implementationinter-
face

It might be confined to what
BEHAVIOR is OBSERVABLE at the
system’s INTERFACE.

each phenomenon in the interface
is either . . .

domain-controlled (e.g., a
sensor)

system-controlled (e.g., an
actuator)

properties are easier to think about
than whole systems—a property
focuses on one narrow aspect of the
system, ignores everything else

“outList has the same elements as inList”

A
A
A

A

A

A

WHAT MAKES A SPECIFICATION SIMPLER?

Or it might be DECLARATIVE, with the
intention of deriving the implementation
from it by REFINEMENT.

implementationinter-
face

It might be confined to what
BEHAVIOR is OBSERVABLE at the
system’s INTERFACE.

each phenomenon in the interface
is either . . .

domain-controlled (e.g., a
sensor)

system-controlled (e.g., an
actuator)

It has always been difficult to

find a good-quality,

VALID specification,

and it still is.

properties are easier to think about
than whole systems—a property
focuses on one narrow aspect of the
system, ignores everything else

Or it might be INCOMPLETE in some
WELL-DEFINED way.

“outList has the same elements as inList”

15-313 Software Engineering2 from a lecture by
Michael Hilton

WHY SHOULD YOU CARE ABOUT VALIDATION?

A
A
A

A

A

A

WHY SHOULD YOU CARE ABOUT VALIDATION?

IT IS THE ONLY WAY TO ENSURE
THAT INPUT TO A VERIFICATION
TOOL IS NOT GARBAGE

IT WILL MAKE YOU POPULAR WITH:

the customer, project leader,
engineer, programmer, help desk

it might make you popular
with the sales executive,

but don’t count on it

teachers, students, readers of your
papers

A
A
A

A

A

A

A FORMAL MODEL COULD ALSO BE A DOMAIN MODEL

a DOMAIN MODEL . . .

attempts to formalize an
entire application domain

is long-lasting
and reusable

includes artifacts
of different kinds

specification languages
verifiers
visualizers
code generators
test generators without a domain model,

a domain-specific view
is not important or stable enough

to be worth implementing

supports a family of
computer systems

provides unambiguous
terminology and useful

abstractions for
the domain

provides a basis for
domain-specific tools:

A
A
A

A

A

A

THE CONTENT OF A DOMAIN MODEL IS MUCH BROADER
THAN A SPECIFICATION

DOMAIN SYSTEM

Domain Knowledge D:
how the domain
behaves (by itself)

Requirements R:
how the domain
should behave (with
the system in place)

inter-
face

Specification S:
how the system

behaves (as observed
at its interface)

Implementation M:
how the system

behaves

(D and S) implies R

 D, S are consistent

THE PRIMARY PROOF OBLIGATIONS

M implies S

verification, where S consists of assertions

validation, where S consists of facts

A
A
A

A

A

A

accurate?

precise?

general
or

extensible?

compre-
hensible?

(does it
mean what

we think
it means?)

useful?

offers a direct path to solving
a hard problem

shows how to separate concerns,
then compose them

exposes engineering trade-offs

DEFINITION OF A VALID
FORMAL DOMAIN MODEL models, abstractions

the real world

mental
abstractions,
designations

formal
model
and its
tools

A
A
A

A

A

A

WHY SHOULD YOU CARE ABOUT VALIDATION
OF DOMAIN MODELS?

DOMAIN SYSTEM
Domain Knowledge D:
how the domain
behaves (by itself)

Requirements R:
how the domain
should behave (with
the system in place)

inter-
face

Specification S:
how the system

behaves (as observed
at its interface)

Implementation M:
how the system

behaves

(D and S) implies RD, S are consistent

THE PRIMARY PROOF OBLIGATIONS
M implies S

BECAUSE THINKING ABOUT YOUR SPECIFICATION AS A DOMAIN MODEL,

even a little,

WILL HELP YOU MAKE IT VALID!

A
A
A

A

A

A

a network is a distributed system:

DOMAIN:
communi-

cation
hardware

SYSTEM:
network
software,
hardware

DOMAIN:
applications,

operating
system

all on the
same machine

in Domain Knowledge:

in Specification:

in Requirements:

in Domain Knowledge:

network members,
links

tables,
packet-processing
semantics

packet delivery,
packet blocking,
packet filters

expected traffic load

A DOMAIN MODEL:
COMPOSITIONAL NETWORK ARCHITECTURE

A
A
A

A

A

A

The Real Internet Architecture:
Past, Present, and Future Evolution

Pamela Zave & Jennifer Rexford
PRINCETON UNIVERSITY

other domain models for
networking cover:

distributed routing
algorithms

cryptographic
protocols

performance
optimization

this one provides a basis
for relating communication
services to network
architecture

A
A
A

A

A

A

NETWORK STATE
IN ALLOY

each trace is the initial state
of a network

there are no state transitions,
so each trace is one state
long

one sig NetworkState {

-- Network components.

 members: set Name,

 disj infras, users: set members,

 links: set Link,

 . . .

}

this is domain knowledge

a member has a
unique name

trusted and
untrusted members

Link object contains a
sender and a receiver

there will be more state
components, for
requirements and
specifications

in one way, the domain model
is very simple: it is static

it is a domain model

many possible networks are
instances of it

each instance is a trace

A
A
A

A

A

A

NOW YOU HAVE A SPECIFICATION . . .
 . . . HOW DO YOU VALIDATE IT?

YOU MAY HAVE:

some requirements assertions R

possibly some domain knowledge facts D

verify that (D and S) implies R,

IF SO, GREAT!

which often entails adding domain knowledge

BUT:

facts and assertions can be hard to think of,
you may not have many of them

even if the verification succeeds, there is
still no direct comparison of the model with
the real world

ultimate goals

A
A
A

A

A

A

PRESCRIPTION: PREDICATES

WHY PREDICATES?

they are easy to think of

they are easy to
generalize to bigger
sets of traces

they are great for
validation

a predicate is an optional
property—it need only be
true of one trace

the more predicates,
the better!

in our example, one network

groups of networks with
something in common

A
A
A

A

A

A

PRESCRIPTION: PREDICATES

WHY PREDICATES?

they are easy to think of

they are easy to
generalize to bigger
sets of traces

they are great for
validation

HOW DO YOU THINK OF PREDICATES?

CATEGORIES!

if you have a category, think of predicates in it

if you have a predicate, think of what category
it belongs in, then think of other predicates in
that category

THERE ARE DOMAIN-INDEPENDENT
CATEGORIES . . .

. . . AND DOMAIN-SPECIFIC CATEGORIES

extreme examples

important practical examples

categories from frameworks, e.g.,
domain knowledge, requirements, and
specifications

“inList is empty”

no need for a taxonomy—
overlaps do no harm

a predicate is an optional
property—it need only be
true of one trace

the more predicates,
the better!

A
A
A

A

A

A

fully connected ring

treehub and spoke

NETWORK STATE
IN ALLOY

the network components
are viewed as

nothing but a graph

TOPOLOGY PREDICATES (optional domain
 knowledge)sig NetworkState {

-- Network components.

 members: set Name,

 disj infras, users: set members,

 links: set Link,

 . . .

}

A DOMAIN-SPECIFIC
CATEGORY:

domain
knowledge

member has
unique name

trusted and
untrusted members

Link object contains a
sender and a receiver hub

root

A
A
A

A

A

A

NETWORK STATE
IN ALLOY

sig NetworkState {

-- Network components.
 members: set Name,
 disj infras, users: set members,
 links: set Link,

-- Network traffic.

 sendTable: members -> NetHdr,

 receiveTable: members -> NetHdr,

 . . .

}

ANOTHER DOMAIN-
SPECIFIC CATEGORY:

TRAFFIC PREDICATES (domain
 knowledge)

Users_fully_active [n: NetworkState]

Sending_is_authentic [n: NetworkState]

also domain
knowledge

NetHdr object
contains a source
and a destination

packets the
members
intend or are
expected to
send or receive,
respectively

there is communication between all
user-member pairs

a member only sends packets with
its own name in the source
field of the NetHdr

this is a security property—the
beginning of a “threat model”

this is a static summary
of dynamic behavior

A
A
A

A

A

A

NETWORK STATE
IN ALLOY

sig NetworkState {

-- Network components.
 members: set Name,
 disj infras, users: set members,
 links: set Link,

-- Network traffic.
 sendTable: members -> NetHdr,
 receiveTable: members -> NetHdr,

-- Network behavior.

 forwardTables:
 members -> lone ForwardTable,

 oneStep: NetHdr -> links -> links,

 reachable: NetHdr -> Name -> Name

}

(LinkIdent + Self) -> NetHdr ->

(LinkIdent + Receive + Drop)

specification
Every row of a ForwardTable has this
signature.

local identifier of an incoming link

local identifier of
an outgoing link

what the member
can do instead of
forwarding

WORKING TOWARD A
THIRD DOMAIN-SPECIFIC
CATEGORY

A
A
A

A

A

A

PACKET PROCESSING IN A NETWORK MEMBER

packet
(inLink,
netHdr)

packet
(netHdr)

packet
(inLink = Self,
netHdr)

from OS

to OS

packet
(netHdr,
outLink)

to link

from link

table entry =
Receive

drop

 no table
entry or
table entry =
Drop

table entry = outLink

forward
Table

A
A
A

A

A

A

NETWORK STATE
IN ALLOY

sig NetworkState {

 . . .

-- Network behavior.

 forwardTables:
 members -> lone ForwardTable,

 oneStep: NetHdr -> links -> links,

 reachable: NetHdr -> Name -> Name

}

specification

h k1k0

(h -> k0 -> k1) in oneStep:

(h -> m0 -> m1) in reachable:

If a member m0 transmits a packet with
header h (on any outgoing link), then
that packet will be acquired by m1 (on
some incoming link).

transmitacquire

derived from
forwardTables
and topology

packets with
header h are

forwarded

transmittransmit acquiresend

h k1k0m0
m1

m2

h

. . . abstract: a static summary
 of dynamic behavior
. . . incomplete: failures
 are not modeled

specification is . . .

A
A
A

A

A

A

NETWORK STATE
IN ALLOY

sig NetworkState {

 . . .

-- Network behavior.

 forwardTables:
 members -> lone ForwardTable,

 oneStep: NetHdr -> links -> links,

 reachable: NetHdr -> Name -> Name

}

specification

ANOTHER DOMAIN-
SPECIFIC CATEGORY:

BEHAVIORAL PREDICATES
 (optional specifications)

No_routing_loops [n: NetworkState]

Deterministic_forwarding
 [n: NetworkState]

packets cannot go around and
around forever

for each member, incoming link,
and header, there is only one entry
in the forwarding table

A
A
A

A

A

A

ANOTHER DOMAIN-SPECIFIC CATEGORY:

POSSIBLE REQUIREMENTS

Fully_reachable [n: NetworkState]

Network_satisfies_communication_demands [n: NetworkState]

Only_authentic_traffic_delivered [n: NetworkState]

Delivery_is_blocked [n: NetworkState, disj bad, good: Name]

Delivery_is_filtered [n: NetworkState, disj filter, good: Name]

every member can reach every other member

for every matching pair in the send and receive tables,
the sender can reach the receiver with that header

i.e., only packets with the sender’s name as source

bad cannot reach good, with any header

all packets to good pass through filter

potential
security

requirements

A
A
A

A

A

A

VALIDATION WITH PREDICATES

Instantiate all the predicates
and look at the instances.

Why are these good rules?

Also instantiate many Boolean
combinations of them.

1

2

When you are looking at tool output
(instances), which is a lot of work, you
will know . . .
. . . what you are looking at,
. . . what you are looking for,
. . . and why it is significant.

none of this is true for
randomly-generated instances!

for optional P, Q:
 P and Q, !P and Q,
 P and !Q, !P and !Q

There will be many things to check with
your tool.

There will be many bugs and other
surprises, each of which you can
learn from.

Why would I instantiate a predicate
like ! No_routing_loops?

The possibility of loops is inherent in distributed routing
and forwarding. If the structure of forwarding tables
prohibits them, the structure is probably too restrictive
to perform many useful functions.

A
A
A

A

A

A

VALIDATION WITH PREDICATES, CONTINUED

Many of your predicates can be
combined to make assertions
about domain knowledge and
the specification. Think of these
and verify them, no matter how
trivial they might seem. These
are “sanity checks.”

Why are these good rules?

Sometimes a sanity check is
quite important and valuable,
because it gives new insight into
some aspect of a domain model.

3

4

A sanity check is more powerful for
validation than a predicate, because
it must hold for all instances.

Assertions are the hardest properties
to think of, and now you have some
new ones!

all n: NetworkState | Hub_and_spoke [n] => Spanning_tree [n]

all n: NetworkState |
 NetHdr.(n.reachable) in (n.members -> n.members)

could have defined reachable to include
external members, but I don’t think I did

although the definitions look very different

A
A
A

A

A

A

SUMMARY

provided you have a tool
that will generate instances of them!

you can generate many instances

instances are focused and
meaningful

predicates are a mental springboard
for thinking of sanity checks, which
can even become important
assertions

instances can be compared to the
real world that the model is
supposed to describe

with the help of categories, you can
think of many predicates

THINK OF YOUR MODEL AS A
DOMAIN MODEL—RELEVANT TO
A FAMILY OF SYSTEMS—NO
MATTER HOW SPECIFIC YOUR
GOALS REALLY ARE

PREDICATES ARE GREAT FOR
VALIDATION

in other words,
generalize whatever you can

think of the domain knowledge
and requirements

as well as the specification

