
First-Order Theorem Proving

Vampire Cookies

Laura Kovács and Andrei Voronkov
TU Wien and U. Manchester and EasyChair



From theory to practice

I Preprocessing and CNF transformation;
I Superposition system;
I Orderings;
I Selection functions;
I Fairness (saturation algorithms);
I Redundancy.



Vampire’s preprocessing (incomplete list)

1. (Optional) Select a relevant subset of formulas.

2. (Optional) Add theory axioms;

3. Rectify the formula.

4. If the formula contains any occurrence of > or ⊥, simplify the formula.

5. Remove if-then-else and let-in connectives.

6. Apply pure predicate elimination.

7. (Optional) Remove unused predicate definitions.

8. Convert the formula into equivalence negation normal form (ENNF).

9. Use a naming technique to replace some subformulas by their names.

10. Convert the formula into negation normal form (NNF).

11. Skolemize the formula.

12. (Optional) Replace equality axioms.

13. Determine a literal ordering to be used.

14. Transform the formula into its clausal normal form.

15. Remove tautologies.

16. Pure literal elimination.



How to Design a Good Saturation Algorithm?

A saturation algorithm must be fair: every possible generating
inference must eventually be selected.

Two main implementation principles:

apply simplifying inferences
eagerly;

apply generating inferences
lazily.

checking for simplifying
inferences should pay off;

so it must be cheap.



Given Clause Algorithm (no Simplification)

input: init : set of clauses;
var active, passive, queue: sets of clauses;
var current : clauses ;
active := ∅;
passive := init;
while passive 6= ∅ do

* current := select(passive); (* clause selection *)
move current from passive to active;

* queue:=infer(current , active); (* generating inferences *)
if � ∈ queue then return unsatisfiable;
passive := passive ∪ queue

od;
return satisfiable



Given Clause Algorithm (with Simplification)

In fact, there is more than one . . .



Otter Saturation Algorithm
input: init : set of clauses;
var active, passive, unprocessed : set of clauses;
var given, new : clause;
active := ∅;
unprocessed := init;
loop

while unprocessed 6= ∅
new:=pop(unprocessed);
if new = � then return unsatisfiable;

* if retained(new) then (* retention test *)
* simplify new by clauses in active ∪ passive ;(* forward simplification *)

if new = � then return unsatisfiable;
* if retained(new) then (* another retention test *)
* delete and simplify clauses in active and (* backward simplification *)

passive using new;
move the simplified clauses to unprocessed;
add new to passive

if passive = ∅ then return satisfiable or unknown
* given := select(passive); (* clause selection *)

move given from passive to active;
* unprocessed:=infer(given, active); (* generating inferences *)



Age-Weight Ratio

How to select nice clauses?

I Small clauses are nice.
I Selecting only small clauses can postpone the selection of an old

clause (e.g., input clause) for too long, in practice resulting in
incompleteness.

Solution:

I A fixed percentage of clauses is selected by weight, the rest are
selected by age.

I So we use an age-weight ratio a : w : of each a + w clauses
select a oldest and w smallest clauses.



Age-Weight Ratio

How to select nice clauses?

I Small clauses are nice.
I Selecting only small clauses can postpone the selection of an old

clause (e.g., input clause) for too long, in practice resulting in
incompleteness.

Solution:

I A fixed percentage of clauses is selected by weight, the rest are
selected by age.

I So we use an age-weight ratio a : w : of each a + w clauses
select a oldest and w smallest clauses.



Limited Resource Strategy

Limited Resource Strategy: try to approximate which clauses are
unreachable by the end of the time limit and remove them from the
search space.

Try:

vampire --age weight ratio 4:1
--forward subsumption resolution off
--time limit 20
GRP140-1.p



Limited Resource Strategy

Limited Resource Strategy: try to approximate which clauses are
unreachable by the end of the time limit and remove them from the
search space.

Try:

vampire --age weight ratio 4:1
--forward subsumption resolution off
--time limit 20
GRP140-1.p



CASC Mode

vampire --mode casc SET014-3.p


