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Three fundamental issues in theorem proving

I The ability of instantiating universally quantified variables

I The ability of removing redundant data

I The ability of avoiding generating intermediate inferences
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Three answers

I The ability of instantiating universally quantified variables:
resolution with unification (1963)

I The ability of removing redundant data: subsumption (1963)

I The ability of avoiding generating intermediate inferences:
hyperresolution (1965)

Invented by J. Alan Robinson (1930–2016)
at the Argonne National Laboratory

Maria Paola Bonacina Resolution, Unification, and Subsumption:



J. Alan Robinson before Argonne

I BS, University of Cambridge, classics

I MS, University of Oregon, philosophy (adviser: Arthur Papp)

I PhD, University of Princeton, philosophy (adviser: Hilary
Putnam) thesis on David Hume

I Job at DuPont, postdoc at U. Pittsburgh

I Alternated summer jobs at the Argonne National Laboratory
and Stanford University in 1961-1966, working for Bill Miller,
later Provost at Stanford (1971-79) and President and CEO
of SRI International (1979-90)
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J. Alan Robinson at Argonne

I Initial task: an implementation of the Davis-Putnam (DP)
procedure (1960)

I Invented first-order resolution uniting propositional resolution
(from the DP procedure) and unification (1962-1964)

I “A machine-oriented logic based on the resolution principle”:
I Unification, resolution, factoring, subsumption
I Written in 1963: binary resolution and factoring
I Published on JACM in 1965: resolution with factoring inside
I In this talk: binary resolution and factoring

I “Automatic deduction with hyper-resolution” (1965)

I With Larry Wos et al. turned Argonne into the cradle of ATP
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Larry Wos (1930–2020)

I BS, University of Chicago, mathematics

I MS, University of Chicago, mathematics

I PhD, University of Illinois at Urbana-Champaign, mathematics

I MCS Division, Argonne National Laboratory since 1957

I Leader of the theorem-proving research group

I Founder of CADE, JAR, AAR

I First Herbrand Award in 1992
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Other three fundamental issues in theorem proving

I The ability of distinguishing assumptions and conjecture

I The ability of replacing equals by equals

I The ability of generating equations from equations
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Three answers

I The ability of distinguishing assumptions and conjecture:
the set of support strategy

I The ability of replacing equals by equals: demodulation

I The ability of generating equations from equations:
paramodulation

Initiated by Larry Wos (with colleagues at Argonne)
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J. Alan Robinson after Argonne

I Professor at Syracuse U.

I Founding Editor of the Journal of Logic Programming

I Milestone Award in Automatic Theorem Proving of the
American Mathematical Society in 1985

I Herbrand Award in 1996

I Editor of the Handbook of Automated Reasoning (2001)
(with Andrei Voronkov)
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The theorem-proving problem

I A set H of formulas viewed as assumptions or hypotheses

I A formula ϕ viewed as conjecture

I Theorem-proving problem: H |=? ϕ

I Equivalently: is H ∪ {¬ϕ} unsatisfiable?

I Refutation: H ∪ {¬ϕ} `?⊥
I If success, then ϕ is a theorem of H, or H ⊃ ϕ is a theorem

I Clausal form: H ∪ {¬ϕ}; S set of clauses

I Form of the problem: S `? 2 (the empty clause)
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At the foundations of computer science

I Hilbert: Entscheidungsproblem (first-order validity)
I Completeness of first-order logic:

I Gödel: H ` ϕ iff H |= ϕ (1930)
I Henkin: H ∪ {¬ϕ} unsatisfiable iff H ∪ {¬ϕ} inconsistent

(1947)

I Turing: Turing machine, first undecidable problem (halting),
reduction of the Entscheidungsproblem to halting (1936)

I Herbrand: semidecidability of first-order validity (1930)

[Martin Davis. The Universal Computer–The Road from Leibniz to Turing]
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Unification: work with substitutions

I A substitution is a function from variables to terms that is not
identity on a finite set of variables

I σ = {x1 ← t1, . . . , xn ← tn}
I σ = {x ← a, y ← f (w), z ← w}
I Application: h(x , y , z)σ = h(a, f (w),w)
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One-sided unification: Matching

I Given terms or atoms s and t

I f (x , g(y)) and f (g(b), g(a))

I Find matching substitution: σ s.t. sσ = t
σ = {x ← g(b), y ← a}

I sσ = t: t is instance of s
s is more general than t
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Unification and most general unifier

I Given terms or atoms s and t

I f (g(z), g(y)) and f (x , g(a))

I Find substitution σ s.t. sσ = tσ:
σ = {x ← g(z), y ← a}

I Most general unifier (mgu):
σ is an mgu
σ′ = {x ← g(b), y ← a, z ← b} is not
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Resolution: canceling out literals of opposite sign

Propositional resolution:

P ∨ Q ¬P ∨ R

Q ∨ R

One of the inference rule of the Davis-Putnam procedure
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Resolution for first-order logic (FOL): add unification

Binary resolution:

L1 ∨ C , L2 ∨ D

(C ∨ D)σ
L1σ = ¬L2σ

I L1 and L2 have opposite sign

I σ is the most general unifier (mgu): least commitment

I The premises are called parents

I The generated and added clause is called resolvent
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Example of binary resolution

P(g(z), g(y)) ∨ ¬R(z , y) ¬P(x , g(a)) ∨ Q(x , g(x))

¬R(z , a) ∨ Q(g(z), g(g(z)))

where σ = {x ← g(z), y ← a} is the mgu

σ′ = {x ← g(b), y ← a, z ← b} is not an mgu
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Resolution for first-order logic

Binary resolution:

S ∪ {L1 ∨ C , L2 ∨ D}
S ∪ {L1 ∨ C , L2 ∨ D, (C ∨ D)σ} L1σ = ¬L2σ

I Resolution is an expansion inference rule because the resolvent
is added to the set of clauses

I Expansion inference rules use unification

I If a parent is a unit clause (one literal): unit resolution
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Why is factoring needed?

I For the refutational completeness of resolution

I Consider P(x) ∨ P(y) and ¬P(z) ∨ ¬P(w)

I Binary resolution cannot generate the empty clause!

I Contradiction at the ground level: P(t) and ¬P(t)
x and y are instantiated with the same term t
z and w are instantiated with the same term t

I Need an inference rule that merges unifiable literals in
first-order clauses

Maria Paola Bonacina Resolution, Unification, and Subsumption:



How factoring solves the problem

P(x) ∨ P(y)

P(x)

with mgu σ = {y ← x}

¬P(z) ∨ ¬P(w)

¬P(z)

with mgu ρ = {w ← z}

Clauses P(t) and ¬P(t) that yield the contradiction at the ground
level are instances of factors P(x) and ¬P(z)
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Factoring

S ∪ {L1 ∨ . . . ∨ Lk ∨ C}
S ∪ {L1 ∨ . . . ∨ Lk ∨ C , (L1 ∨ C )σ} L1σ = L2σ = . . . Lkσ

I The substitution σ is the mgu

I The generated and added clause is called factor

I Factoring is an expansion inference rule
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Two major research problems

I Robinson’s invention of resolution opened six decades of
research in theorem proving

I Two major research problems:
I How to generate fewer resolvents?
I How to delete redundant resolvents?

I Two instances of the more general problems:
I How to prevent the generation of redundant clauses
I How to delete redundant clauses

that are two sides of the same problem of redundancy
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How to tame the growth of inferences

I Hyperresolution [Robinson 1965]

I Set of support strategy [Wos et al. 1965]

I Semantic resolution [Slagle 1967]

I Ordered resolution
[Hsiang-Rusinowitch 1991] [Bachmair-Ganzinger 1994]

I Ordered resolution integrated with
paramodulation/superposition
[Hsiang-Rusinowitch 1991] [Bachmair-Ganzinger 1994]

I And with demodulation
[Bachmair-Ganzinger 1994]
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Motivation for the set of support strategy

I Resolution is too prolific

I Too many irrelevant inferences (do not appear in any proof)

I H ∪ {¬ϕ}; S : distinction between H and ¬ϕ forgotten

I Larry Wos was interested in problems from mathematics

I In math problems H |=? ϕ the set H is known to be consistent
(e.g., presentation of a theory)

I Then what is the point in expanding H?
It won’t give a contradiction!
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The set of support strategy

I H ; A: clausal form of H

I ¬ϕ; SOS : clausal form of ¬ϕ: goal clauses

I SOS is the input set of support

I If H is consistent, so is A: no point in expanding A

I A resolution step must have at least one parent from SOS

I All resolvents are added to SOS : only SOS grows
(the factors of clauses in A are added to A upfront)

I A goal-sensitive strategy
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The original given-clause algorithm for set of support

I Two lists sos and axioms initialized with SOS and A
I Loop until:

I Either proof found: input unsatisfiable
I Or sos empty: input satisfiable

I At every iteration: pick a given-clause C from sos

I Move C from sos to axioms

I Perform all expansion steps between C and clauses in axioms

I Add all newly generated clauses to sos

I No inference whose premises are both in A

(Bill McCune with Otter)
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The given-clause algorithm for expansion rules

I Two lists to-be-selected and already-selected

I Initialization for saturation:
all input clauses in to-be-selected

already-selected empty

(Bill McCune with Otter and then many others)
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Semantic resolution

A more general concept than set of support:
semantic resolution

I Assume a fixed Herbrand interpretation I
for semantic guidance

I Generate only resolvents that are false in I

[Slagle 1967]
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Semantic resolution as an inference rule

S ∪ {N, E1, . . . ,Ek}
S ∪ {N, E1, . . . ,Ek , R}

I 6|= R

I Nucleus: N = L1 ∨ . . . ∨ Lk ∨ C

I Satellites: E1 = M1 ∨ D1, . . . ,Ek = Mk ∨ Dk

I Simultaneous mgu σ such that Liσ = ¬Miσ for i = 1 . . . k

I Semantic resolvent R = (C ∨ D1 ∨ . . . ∨ Dk)σ

I Key requirement: I 6|= R

I Hyperinference that embeds multiple resolution steps
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Hyperresolution as instance of semantic resolution

I I contains all negative literals:
I Positive hyperresolution
I Resolve away all negative literals in the nucleus with positive

satellites to generate a positive hyperresolvent

I I contains all positive literals:
I Negative hyperresolution
I Resolve away all positive literals in the nucleus with negative

satellites to generate a negative hyperresolvent

[Robinson 1965]
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Resolution with SOS as instance of semantic resolution

I H ; A: clausal form of H

I ¬ϕ; SOS : clausal form of ¬ϕ: goal clauses
I Assume an interpretation I such that

I I |= A and
I I 6|= SOS

I It generates only resolvents that are false in I
I Not by hyperinferences, but by premise selection
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Subsumption as in Robinson’s paper (1963 version)

S ∪ {C , D}
S ∪ {C}

Cσ ⊆ D ∧ |C | ≤ |D|

I Idea: remove a clause implied by a more general one

I σ is a matching substitution

I Clauses as sets of literals

I |C |: number of literals in clause C

I P(x) ∨ P(y) does not subsume P(z)

I Prevents a clause from subsuming its factors
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Subsumption with clauses as multisets

S ∪ {C , D}
S ∪ {C}

Cσ ⊆ D

I Clauses as multisets of literals (ex.: {P(a),P(a),Q(b)})
I P(x) ∨ P(y) does not subsume P(z)

I Prevents a clause from subsuming its factors

I If C is a unit clause: unit subsumption

I Subsumption is a contraction inference rule

I Contraction inference rules use matching
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Subsumption with the subsumption ordering

S ∪ {C , D}
S ∪ {C}

C l D

I C l D if Cσ ⊆ D

I Clauses as multisets of literals

I However, the relations ⊆, ≤, and l are not well-founded!
[Kowalski 1970], [Loveland 1978]
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Example of bad behavior I

I (1) P(x , a)

I (2) P(f (x), y) ∨ ¬P(x , y)

I (3) ¬Q(y) ∨ ¬P(x , y)

I (4) Q(a)

SOS = {(1) P(x , a)}
1. Resolve (1) P(x , a) and (2) yielding (5) P(f (x), a)

2. Resolve (1) P(x , a) and (3) yielding (6) ¬Q(a)

SOS = {(5) P(f (x), a), (6) ¬Q(a)}
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Example of bad behavior II

3. Resolve (5) P(f (x), a) and (2) yielding (7) P(f (f (x)), a)

4. Resolve (5) P(f (x), a) and (3) yielding (8) ¬Q(a)

SOS = {(6) ¬Q(a), (7) P(f (f (x)), a), (8) ¬Q(a)}
5. (8) subsumes (6)

6. Resolve (7) P(f (f (x)), a) and (2) yielding
(9) P(f (f (f (x))), a)

7. Resolve (7) P(f (f (x)), a) and (3) yielding (10) ¬Q(a)

SOS = {(8) ¬Q(a), (9) P(f (f (f (x))), a), (10) ¬Q(a)}
8. (10) subsumes (8)

9. Infinite loop: subsumption prevents ever resolving
¬Q(a) and Q(a)
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An operational solution

I Distinguish between forward subsumption and backward
subsumption

I Forward subsumption: apply existing clauses to try to
subsume every newly generated clause

I Backward subsumption: apply a newly generated clause to try
to subsume pre-existing clauses

I Apply forward subsumption before backward subsumption

[Kowalski 1970]
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Subsumption in the given clause algorithm I

I Forward subsumption: apply clauses in
already-selected

⋃
to-be-selected

to try to subsume every newly generated clause
prior to its addition to to-be-selected

I Backward subsumption: apply every newly generated clauses,
just added to to-be-selected, to try to subsume clauses in
already-selected

⋃
to-be-selected

[Bill McCune, Otter prover]
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Subsumption in the given clause algorithm II

I Ignore to-be-selected for the purpose of contraction

I Forward subsumption: apply clauses in already-selected to
try to subsume the newly selected given clause, prior to its
addition to already-selected

I Backward subsumption: apply the given clause just added to
already-selected to try to subsume other clauses in
already-selected

I Delete orphans (descendants of subsumed clauses in
already-selected)

[Denzinger-Kronenburg-Schulz, Discount prover], [Schulz, E prover]
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Subsumption

S ∪ {C , D}
S ∪ {C}

(C , n) l
2 (D,m)

I Every generated clause gets a natural number as its index

I C l D if Cσ ⊆ D

I < ordering on IN (the natural numbers)

I l
2: lexicographic combination of l and < applied to pairs

(C , n) where n is the index of C

I If Cσ ⊆ D and Dσ ⊆ C : the oldest is retained
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Towards ordered resolution: orderings

Reduction ordering:

I Well-founded

I Stable: t � u implies tσ � uσ for all substitutions σ
I Monotonic: t � u implies c[t] � c[u] for all contexts c

I KBO: Knuth-Bendix Orderings [Knuth-Bendix 1970]
I RPO: Recursive Path Orderings [Dershowitz 1982]
I LPO: Lexicographic (recursive) Path Orderings

[Kamin-Lévy 1980]

I In general these orderings are partial, not total!
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Complete simplification ordering

I Subterm property: c[t] � t

I Stable: t � u implies tσ � uσ for all substitutions σ

I Monotonic: t � u implies c[t] � c[u] for all contexts c

I These three properties imply well-founded
I Total on ground terms

I Knuth-Bendix orderings
I Recursive path orderings (not all)
I Lexicographic path orderings
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Multiset extension of an ordering

I Multisets, e.g., {P(a),P(a),Q(b)}, {5, 4, 4, 4, 3, 1, 1}
I From � to �mul :

I M �mul ∅ if M 6= ∅
I M ∪ {a} �mul N ∪ {a} if M �mul N
I M ∪ {a} �mul N ∪ {b} if a � b and M ∪ {a} �mul N

I {5} �mul {4, 4, 4, 3, 1, 1}
I If � is well-founded then �mul is well-founded

[Nachum Dershowitz & Zohar Manna 1979]
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From ordering terms to ordering literals

I Complete or completable reduction ordering
(all KBO’s, RPO’s, LPO’s)

I Read a positive literal L as L ' > and ¬L as L 6' >
where > is a new symbol such that t � > for all terms t

I Equality as the only predicate symbol

I Treat p ' q as the multiset {p, q} and
p 6' q as the multiset {p, p, q, q}

I Apply the multiset extension of the ordering on terms

[Leo Bachmair & Harald Ganzinger 1994]
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Maximal literals

I Clauses as multisets of literals

I Literal L is maximal in clause C if
¬(∃M ∈ C . M � L) or equivalently ∀M ∈ C . L 6≺ M
The other literals can only be smaller, equal, or uncomparable

I Literal L is strictly maximal in clause C if
¬(∃M ∈ C . M � L) or equivalently ∀M ∈ C . L 6� M
The other literals can only be smaller or uncomparable
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Ordered Resolution

S ∪ {L1 ∨ C , L2 ∨ D}
S ∪ {L1 ∨ C , L2 ∨ D, (C ∨ D)σ}

I L1σ = ¬L2σ (σ mgu)

I ∀M ∈ C . L1σ 6� Mσ (strictly maximal)

I ∀M ∈ D. L2σ 6� Mσ (strictly maximal)

[Jieh Hsiang & Michaël Rusinowitch 1991]
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Example

P(g(z), g(y)) ∨ ¬R(z , y), ¬P(x , g(a)) ∨ Q(x , g(x))

¬R(z , a) ∨ Q(g(z), g(g(z)))

I σ = {x ← g(z), y ← a}
I Check that P(g(z), g(a)) 6� ¬R(z , a)

I Check that P(g(z), g(a)) 6� Q(g(z), g(g(z)))

I Allowed with precedence P > R > Q > g

I Not allowed with precedence Q > R > P > g > a
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Ordered Factoring

S ∪ {L1 ∨ . . . ∨ Lk ∨ C}
S ∪ {L1 ∨ . . . ∨ Lk ∨ C , (L1 ∨ C )σ}

I L1σ = L2σ = . . . Lkσ (σ mgu)

I ∀M ∈ C . L1σ 6� Mσ (strictly maximal)

[Jieh Hsiang & Michaël Rusinowitch 1991]
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And equality?

The equality axioms in clausal form:

x ' x (Reflexivity)

x 6' y ∨ y ' x (Symmetry)

x 6' y ∨ y 6' z ∨ x ' z (Transitivity)
n∨

i=1

xi 6' yi ∨ f (x̄) ' f (ȳ) (Function Substitutivity)

n∨
i=1

xi 6' yi ∨ ¬P(x̄) ∨ P(ȳ) (Predicate Substitutivity)

Added to the input for resolution: not practical!
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The first paramodulation inference rule

S ∪ {l ' r ∨ C , M[t] ∨ D}
S ∪ {l ' r ∨ C , M[t] ∨ D, (C ∨M[r ] ∨ D)σ} lσ = tσ

I ' is symmetric and σ is the mgu of l and t

I C and D are disjunctions of literals

I l ' r ∨ C is the para-from clause

I l ' r is the para-from literal

I M[t] ∨ D is the para-into clause

I M[t] is the para-into literal

I (C ∨M[r ] ∨ D)σ is called paramodulant

[Larry Wos - George Robinson 1969]
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The challenge of the Wos–Robinson conjecture

I Wos–Robinson conjecture:
paramodulation is refutationally complete
without paramodulating into variables and
without functionally reflexive axioms
Functionally reflexive axioms: f (x̄) ' f (x̄) for all function symbols f
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Unfailing or ordered completion

I E |=? ∀x̄ .s ' t

I Negating ∀x̄ .s ' t yields ∃x̄ .s 6' t and hence ŝ 6' t̂ where ŝ is
s with all vars replaced by Skolem constants

I Refutationally: E ∪ {ŝ 6' t̂} `? 2

I Apply completion to E and reduce ŝ and t̂ whenever possible

I Refutation found if ŝ
∗→ u and t̂

∗→ u so that u 6' u
contradicts x ' x

I State of the derivation: (E ; ŝ 6' t̂)
E : set of equations

[Hsiang-Rusinowitch 1987] [Bachmair-Dershowitz-Plaisted 1989]
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Superposition of equations

E ∪ {l ' r , p[t] ' q}
E ∪ {l ' r , p[t] ' q, p[r ]σ ' qσ} t 6∈ X , lσ = tσ

I lσ 6� rσ

I p[t]σ 6� qσ

I l ' r and p[t] ' q superpose only if their instances by σ are either

orientable (lσ � rσ) or uncomparable

I Equivalently: only if lσ is strictly maximal in {lσ, rσ} and p[t]σ is

strictly maximal in {p[t]σ, qσ}

[Hsiang-Rusinowitch 1987] [Bachmair-Dershowitz-Plaisted 1989]
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Example

f (z , e) ' z f (l(x , y), y) ' x

l(x , e) ' x

I f (z , e)σ = f (l(x , y), y)σ

I σ = {z ← l(x , e), y ← e} most general unifier

I f (l(x , e), e) � l(x , e) (by the subterm property)

I f (l(x , e), e) � x (by the subterm property)

I Superposing two equations yields a peak:
l(x , e)← f (l(x , e), e)→ x
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A further challenge

How to obtain an inference system for FOL+= that

I Avoids paramodulating or superposing into variables

I Is restricted by the ordering

I Is refutationally complete also in the presence of contraction

I Reduces to completion for an input of the form E ∪ {ŝ 6' t̂}
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Toward ordered paramodulation / superposition

I Para-from clause: l ' r ∨ C
I Para-into clause:

I M[t] ∨ D
I p[t] ' q ∨ D
I p[t] 6' q ∨ D

I lσ = tσ (mgu σ)

I The subterm t is not a variable (t 6∈ X )
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Four ordering-based conditions

(i) Para-from literal strictly maximal: ∀Q ∈ C . (l ' r)σ 6� Qσ

(ii) Left-hand side of para-from literal strictly maximal: lσ 6� rσ

(iii.a) Para-into literal strictly maximal: ∀Q ∈ D. M[t]σ 6� Qσ
∀Q ∈ D. (p[t] ' q)σ 6� Qσ

(iii.b) Or maximal if it is a negated equation:
∀Q ∈ D. (p[t] 6' q)σ 6≺ Qσ

(iv) Left-hand side of positive equational para-into literal strictly
maximal: p[t]σ 6� qσ
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Ordered paramodulation

S ∪ {l ' r ∨ C , M[t] ∨ D}
S ∪ {l ' r ∨ C , M[t] ∨ D, (C ∨M[r ] ∨ D)σ} (i) (ii) (iii .a)

The refutational completeness of the Ordered Literal Inference
System with ordered resolution, ordered factoring, and ordered
paramodulation settled the Wos–Robinson conjecture

[Jieh Hsiang & Michaël Rusinowitch 1991]
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The superposition calculus SP

Affords all four ordering-based conditions:

S ∪ {l ' r ∨ C , p[t] ' q ∨ D}
S ∪ {l ' r ∨ C , p[t] ' q ∨ D, (C ∨ p[r ] ' q ∨ D)σ}

with (i), (ii), (iii.a), and (iv)

S ∪ {l ' r ∨ C , p[t] 6' q ∨ D}
S ∪ {l ' r ∨ C , p[t] 6' q ∨ D, (C ∨ p[r ] 6' q ∨ D)σ}

with (i), (ii), (iii.b), and (iv)

and solved also the problem of generalizing completion to FOL+=
[Leo Bachmair & Harald Ganzinger 1994]
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Replacing equals by equals: demodulation

The first demodulation inference rule:

S ∪ {l ' r , C [lσ]}
S ∪ {l ' r , C [rσ]}

‖C [lσ]‖ > ‖C [rσ]‖

I l ' r is called demodulant or demodulator

I σ is a matching substitution

I ‖C ‖ is the number of symbols in C

I Decreasing the number of symbols is well-founded
because the ordering on the natural numbers is well-founded

[Wos et al. 1967]
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Problems opened by Larry Wos’ demodulation

I What if the number of symbols does not change?
Ex.: x + y ' y + x

I What if we wanted to increase the number of symbols?
Ex.: x ∗ (y + z) ' x ∗ y + x ∗ z

I Does resolution remain refutationally complete if we add
demodulation?
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Demodulation in ordered completion

Simplification:

(E ∪ {l ' r}; ŝ[lσ] 6' t̂)

(E ∪ {l ' r}; ŝ[rσ] 6' t̂)
lσ � rσ

(E ∪ {p[lσ] ' q, l ' r}; ŝ 6' t̂)

(E ∪ {p[rσ] ' q, l ' r}; ŝ 6' t̂)

I lσ � rσ

I p[lσ] ·� l ∨ q � p[rσ]

What is ·� ?
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The encompassment ordering

I Encompassment: t ·� s if t = c[sϑ]

I ϑ is a substitution

I Strict: either c is not empty or ϑ is not a variable renaming
(A variable renaming is a substitution that maps variables to

variables and is injective)
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The side condition for simplification of equations

I p[lσ] ·� l ∨ q � p[rσ]

I It lets l ' r simplify p[lσ] ' q when p[lσ] is a variant of l
provided that q � p[rσ]

I Apply f (e, y) ' y to simplify f (e, x) ' h(x)?
Yes because h(x) � x

I Apply f (e, y) ' y to simplify f (e, x) ' x?
No because x 6� y

I Apply f (e, x) ' h(x) to simplify f (e, y) ' y?
No because y 6� h(y)
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Example of simplification

1. f (x) ' g(x)

2. g(h(y)) ' k(y)

3. f (h(b)) 6' k(b) (target theorem)

I Precedence: f > g > h > k > b

I (1) simplifies the target to g(h(b)) 6' k(b)
with matching substitution σ = {x ← h(b)}
since f (h(b)) � g(h(b))

I (2) simplifies g(h(b)) 6' k(b) to k(b) 6' k(b)
with matching substitution ϑ = {y ← b}
since g(h(b)) � k(b)
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A simplification inference rule for clauses

S ∪ {C [lσ], l ' r}
S ∪ {C [rσ], l ' r}

lσ � rσ, C [lσ] � (lσ ' rσ)

In the superposition calculus SP

[Leo Bachmair & Harald Ganzinger 1994]
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The above example revisited

1. f (x) ' g(x)

2. g(h(y)) ' k(y)

3. f (h(b)) 6' k(b) (target theorem)

I Precedence: f > g > h > k > b

I (1) simplifies the target to g(h(b)) 6' k(b)
with matching substitution σ = {x ← h(b)}
since {f (h(b)), f (h(b)), k(b), k(b)} �mul {f (h(b)), g(h(b))}

I (2) simplifies g(h(b)) 6' k(b) to k(b) 6' k(b)
with matching substitution ϑ = {y ← b}
since {g(h(b)), g(h(b)), k(b), k(b)} �mul {g(h(b)), k(b)}
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Another example

1. f (x) ' b

2. f (b) ' c

I Precedence: b � c

I Simplification of completion allows (1) to simplify (2) to
b ' c with matching substitution σ = {x ← b}
because f (b) � b and f (b) ·� f (x)

I But {f (b), c} �mul {f (b), b} does not hold

I Simplification of SP does not apply

I Encompassment demodulation for SP
[André Duarte and Konstantin Korovin at IJCAR 2022]

[André Duarte’s PhD thesis 2023]
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