
First-Order Theorem Proving

Laura Kovács and Andrei Voronkov
TU Wien and U. Manchester and EasyChair

Outline
Setting the Scene

First-Order Theorem Proving - An Example

First-Order Logic and TPTP

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy Elimination

Equality

Term Orderings

Completeness of Ground Superposition

Unification and Lifting

Non-Ground Superposition

First-Order Theorem Proving

We will use the VAMPIRE theorem prover throughout the lecture.

Go to

https://vprover.github.io/download.html

and pick the route most suitable to you.

Notes:
I For Linux users, a binary is probably the easiest route
I For Mac users, you need to build from source

I run make vampire rel

I For Windows users, the easiest route is to thank Geoff and use
https://www.tptp.org/cgi-bin/SystemOnTPTP

https://vprover.github.io/download.html
https://www.tptp.org/cgi-bin/SystemOnTPTP

First-Order Theorem Proving

We will use the VAMPIRE theorem prover throughout the lecture.

Go to

https://vprover.github.io/download.html

and pick the route most suitable to you.

Notes:
I For Linux users, a binary is probably the easiest route
I For Mac users, you need to build from source

I run make vampire rel

I For Windows users, the easiest route is to thank Geoff and use
https://www.tptp.org/cgi-bin/SystemOnTPTP

https://vprover.github.io/download.html
https://www.tptp.org/cgi-bin/SystemOnTPTP

Outline
Setting the Scene

First-Order Theorem Proving - An Example

First-Order Logic and TPTP

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy Elimination

Equality

Term Orderings

Completeness of Ground Superposition

Unification and Lifting

Non-Ground Superposition

First-Order Theorem Proving. An Example

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.

More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”
What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))

First-Order Theorem Proving. An Example

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.
More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”

What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))

First-Order Theorem Proving. An Example

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.
More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”
What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))

Formulation in First-Order Logic

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))

Assumptions: ∀x(x · x = 1)
Conjecture: ∀x∀y(x · y = y · x)

In the TPTP Syntax
The TPTP library (Thousands of Problems for Theorem Provers),
http://www.tptp.org contains a large collection of first-order problems.
For representing these problems it uses the TPTP syntax, which is
understood by all modern theorem provers, including Vampire.

In the TPTP syntax this group theory problem can be written down as follows:

%---- 1 * x = x
fof(left identity,axiom,

! [X] : mult(e,X) = X).
%---- i(x) * x = 1
fof(left inverse,axiom,

! [X] : mult(inverse(X),X) = e).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,

! [X,Y,Z] : mult(mult(X,Y),Z) = mult(X,mult(Y,Z))).
%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X] : mult(X,Y) = mult(Y,X)).

http://www.tptp.org

In the TPTP Syntax
The TPTP library (Thousands of Problems for Theorem Provers),
http://www.tptp.org contains a large collection of first-order problems.
For representing these problems it uses the TPTP syntax, which is
understood by all modern theorem provers, including Vampire.
In the TPTP syntax this group theory problem can be written down as follows:

%---- 1 * x = x
fof(left identity,axiom,

! [X] : mult(e,X) = X).
%---- i(x) * x = 1
fof(left inverse,axiom,

! [X] : mult(inverse(X),X) = e).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,

! [X,Y,Z] : mult(mult(X,Y),Z) = mult(X,mult(Y,Z))).
%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X] : mult(X,Y) = mult(Y,X)).

http://www.tptp.org

Running Vampire on a TPTP file

is easy: simply use

vampire <filename>

One can also run Vampire with various options, some of them will be
explained later. For example, save the group theory problem in a file
group.tptp and try

vampire --thanks TUWien group.tptp

Running Vampire on a TPTP file

is easy: simply use

vampire <filename>

One can also run Vampire with various options, some of them will be
explained later. For example, save the group theory problem in a file
group.tptp and try

vampire --thanks TUWien group.tptp

Proof by Vampire (Slightliy Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Outline
Setting the Scene

First-Order Theorem Proving - An Example

First-Order Logic and TPTP

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy Elimination

Equality

Term Orderings

Completeness of Ground Superposition

Unification and Lifting

Non-Ground Superposition

First-Order Logic and TPTP – Recap
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol.

In TPTP: Variable names start with upper-case letters.
I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a

function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬a ˜a

a1 ∧ . . . ∧ an a1 & ... & an
a1 ∨ . . . ∨ an a1 | ... | an

a1 → a2 a1 => a2
(∀x1) . . . (∀xn)a ! [X1,...,Xn] : a
(∃x1) . . . (∃xn)a ? [X1,...,Xn] : a

First-Order Logic and TPTP – Recap
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol.
In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬a ˜a

a1 ∧ . . . ∧ an a1 & ... & an
a1 ∨ . . . ∨ an a1 | ... | an

a1 → a2 a1 => a2
(∀x1) . . . (∀xn)a ! [X1,...,Xn] : a
(∃x1) . . . (∃xn)a ? [X1,...,Xn] : a

First-Order Logic and TPTP – Recap
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol.
In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms.

Terms denote domain
elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬a ˜a

a1 ∧ . . . ∧ an a1 & ... & an
a1 ∨ . . . ∨ an a1 | ... | an

a1 → a2 a1 => a2
(∀x1) . . . (∀xn)a ! [X1,...,Xn] : a
(∃x1) . . . (∃xn)a ? [X1,...,Xn] : a

First-Order Logic and TPTP – Recap
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol.
In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬a ˜a

a1 ∧ . . . ∧ an a1 & ... & an
a1 ∨ . . . ∨ an a1 | ... | an

a1 → a2 a1 => a2
(∀x1) . . . (∀xn)a ! [X1,...,Xn] : a
(∃x1) . . . (∃xn)a ? [X1,...,Xn] : a

First-Order Logic and TPTP – Recap
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol.
In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms.

Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬a ˜a

a1 ∧ . . . ∧ an a1 & ... & an
a1 ∨ . . . ∨ an a1 | ... | an

a1 → a2 a1 => a2
(∀x1) . . . (∀xn)a ! [X1,...,Xn] : a
(∃x1) . . . (∃xn)a ? [X1,...,Xn] : a

First-Order Logic and TPTP – Recap
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol.
In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬a ˜a

a1 ∧ . . . ∧ an a1 & ... & an
a1 ∨ . . . ∨ an a1 | ... | an

a1 → a2 a1 => a2
(∀x1) . . . (∀xn)a ! [X1,...,Xn] : a
(∃x1) . . . (∃xn)a ? [X1,...,Xn] : a

First-Order Logic and TPTP – Recap
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol.
In TPTP: Variable names start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
elements.

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬a ˜a

a1 ∧ . . . ∧ an a1 & ... & an
a1 ∨ . . . ∨ an a1 | ... | an

a1 → a2 a1 => a2
(∀x1) . . . (∀xn)a ! [X1,...,Xn] : a
(∃x1) . . . (∃xn)a ? [X1,...,Xn] : a

More on the TPTP Syntax

I Comments;
I Input formula names;
I Input formula roles (very important);
I Equality

%---- 1 * x = x
fof(left identity,axiom,(
! [X] : mult(e,X) = X)).

%---- i(x) * x = 1
fof(left inverse,axiom,(
! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

More on the TPTP Syntax
I Comments;

I Input formula names;
I Input formula roles (very important);
I Equality

%---- 1 * x = x
fof(left identity,axiom,(
! [X] : mult(e,X) = X)).

%---- i(x) * x = 1
fof(left inverse,axiom,(
! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

More on the TPTP Syntax
I Comments;
I Input formula names;

I Input formula roles (very important);
I Equality

%---- 1 * x = x
fof(left identity,axiom,(
! [X] : mult(e,X) = X)).

%---- i(x) * x = 1
fof(left inverse,axiom,(
! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

More on the TPTP Syntax
I Comments;
I Input formula names;
I Input formula roles (very important);

I Equality

%---- 1 * x = x
fof(left identity,axiom,(
! [X] : mult(e,X) = X)).

%---- i(x) * x = 1
fof(left inverse,axiom,(
! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

More on the TPTP Syntax
I Comments;
I Input formula names;
I Input formula roles (very important);
I Equality

%---- 1 * x = x
fof(left identity,axiom,(
! [X] : mult(e,X) = X)).

%---- i(x) * x = 1
fof(left inverse,axiom,(
! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightly Modified)
Refutation found.
270. $false [trivial inequality removal 269]
269. mult(sk0,sk1) != mult (sk0,sk1) [superposition 14,125]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
75. mult(inverse(X3),e) = mult(X4,mult(X3,X4)) [superposition 22,19]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
17. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 12,11]
15. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 12,13]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
13. e = mult(X0,X0) [cnf transformation 4]
12. mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [cnf transformation 3]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
10. mult(e,X0) = X0 [cnf transformation 1]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
8. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) <=> mult(sK0,sK1) != mult(sK1,sK0)

[choice axiom]
7. ?[X0,X1]: mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜![X0,X1]: mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ![X0,X1]: mult(X0,X1) = mult(X1,X0) [input]
4. ![X0]: e = mult(X0,X0)[input]
3. ![X0,X1,X2]: mult(X0,mult(X1,X2)) = mult(mult(X0,X1),X2) [input]
2. ![X0]: e = mult(inverse(X0),X0) [input]
1. ![X0]: mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Vampire

I Completely automatic: once you started a proof attempt, it can
only be interrupted by terminating the process.

I Champion of the CASC world-cup in first-order theorem proving:
won CASC > 50 times.

Vampire

I Completely automatic: once you started a proof attempt, it can
only be interrupted by terminating the process.

I Champion of the CASC world-cup in first-order theorem proving:
won CASC > 50 times.

What an Automatic Theorem Prover is Expected to Do

Input:
I a set of axioms (first order formulas) or clauses;
I a conjecture (first-order formula or set of clauses).

Output:
I proof (hopefully).

Proof by Refutation

Given a problem with axioms and assumptions F1, . . . ,Fn and
conjecture G,

1. negate the conjecture;
2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G.

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

In this formulation the negation of the conjecture ¬G is treated like
any other formula. In fact, Vampire (and other provers) internally treat
conjectures differently, to make proof search more goal-oriented.

Proof by Refutation

Given a problem with axioms and assumptions F1, . . . ,Fn and
conjecture G,

1. negate the conjecture;
2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G.

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

In this formulation the negation of the conjecture ¬G is treated like
any other formula. In fact, Vampire (and other provers) internally treat
conjectures differently, to make proof search more goal-oriented.

Proof by Refutation

Given a problem with axioms and assumptions F1, . . . ,Fn and
conjecture G,

1. negate the conjecture;
2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G.

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

In this formulation the negation of the conjecture ¬G is treated like
any other formula. In fact, Vampire (and other provers) internally treat
conjectures differently, to make proof search more goal-oriented.

General Scheme (simplified)

I Read a problem;
I Determine proof-search options to be used for this problem;
I Preprocess the problem;
I Convert it into CNF;
I Run a saturation algorithm on it, try to derive false.
I If false is derived, report the result, maybe including a refutation.

Trying to derive false using a saturation algorithm is the hardest part,
which in practice may not terminate or run out of memory.

General Scheme (simplified)

I Read a problem;
I Determine proof-search options to be used for this problem;
I Preprocess the problem;
I Convert it into CNF;
I Run a saturation algorithm on it, try to derive false.
I If false is derived, report the result, maybe including a refutation.

Trying to derive false using a saturation algorithm is the hardest part,
which in practice may not terminate or run out of memory.

Outline
Setting the Scene

First-Order Theorem Proving - An Example

First-Order Logic and TPTP

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy Elimination

Equality

Term Orderings

Completeness of Ground Superposition

Unification and Lifting

Non-Ground Superposition

Inference System

I inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An inference rule R is a set of inferences.
I Every inference I ∈ R is called an instance of R.
I An Inference system I is a set of inference rules.
I Axiom: inference rule with no premises.

Inference System: Example

Represent the natural number n by the string | . . . |︸︷︷︸
n times

ε.

The following inference system contains 6 inference rules for deriving
equalities between expressions containing natural numbers, addition
+ and multiplication ·.

ε = ε (ε)
x = y
|x = |y

(|)

ε+ x = x (+1)
x + y = z
|x + y = |z

(+2)

ε · x = ε (·1)
x · y = u y + u = z

|x · y = z
(·2)

Derivation, Proof

I Derivation in an inference system I: a tree built from inferences
in I.

I If the root of this derivation is E , then we say it is a derivation of
E .

I Proof of E : a finite derivation whose leaves are axioms.
I Derivation of E from E1, . . . ,Em: a finite derivation of E whose

every leaf is either an axiom or one of the expressions
E1, . . . ,Em.

Examples
For example,

||ε+ |ε = |||ε
|||ε+ |ε = ||||ε

(+2)

is an inference that is an instance (special case) of the inference rule

x + y = z
|x + y = |z

(+2)

It has one premise ||ε+ |ε = |||ε and the conclusion |||ε+ |ε = ||||ε.

The axiom

ε+ |||ε = |||ε
(+1)

is an instance of the rule

ε+ x = x (+1)

Examples
For example,

||ε+ |ε = |||ε
|||ε+ |ε = ||||ε

(+2)

is an inference that is an instance (special case) of the inference rule

x + y = z
|x + y = |z

(+2)

It has one premise ||ε+ |ε = |||ε and the conclusion |||ε+ |ε = ||||ε.

The axiom

ε+ |||ε = |||ε
(+1)

is an instance of the rule

ε+ x = x (+1)

Examples
For example,

||ε+ |ε = |||ε
|||ε+ |ε = ||||ε

(+2)

is an inference that is an instance (special case) of the inference rule

x + y = z
|x + y = |z

(+2)

It has one premise ||ε+ |ε = |||ε and the conclusion |||ε+ |ε = ||||ε.

The axiom

ε+ |||ε = |||ε
(+1)

is an instance of the rule

ε+ x = x (+1)

Proof

, Derivation

in this Inference System

Proof of ||ε · ||ε = ||||ε (that is, 2 · 2 = 4).

Derivation of |ε · ||ε = ||ε from ε · ||ε = ε and |ε+ ε = |ε.

ε · ||ε = ε
(·1)

ε+ ε = ε
(+1)

|ε+ ε = |ε
(+2)

||ε+ ε = ||ε
(+2)

|ε · ||ε = ||ε
(·2)

ε+ ||ε = ||ε
(+1)

|ε+ ||ε = |||ε
(+2)

||ε+ ||ε = ||||ε
(+2)

||ε · ||ε = ||||ε
(·2).

Proof, Derivation in this Inference System

Proof of ||ε · ||ε = ||||ε (that is, 2 · 2 = 4).

Derivation of |ε · ||ε = ||ε from ε · ||ε = ε and |ε+ ε = |ε.

ε · ||ε = ε
(·1)

ε+ ε = ε
(+1)

|ε+ ε = |ε
(+2)

||ε+ ε = ||ε
(+2)

|ε · ||ε = ||ε
(·2)

ε+ ||ε = ||ε
(+1)

|ε+ ||ε = |||ε
(+2)

||ε+ ||ε = ||||ε
(+2)

||ε · ||ε = ||||ε
(·2).

Arbitrary First-Order Formulas

I A first-order signature (vocabulary): function symbols (including
constants), predicate symbols. Equality is part of the language.

I A set of variables.
I Terms are buit using variables and function symbols. For

example, f (x) + g(x).
I Atoms, or atomic formulas are obtained by applying a predicate

symbol to a sequence of terms. For example, p(a, x) or
f (x) + g(x) ≥ 2.

I Formulas: built from atoms using logical connectives ¬, ∧, ∨,→,
↔ and quantifiers ∀, ∃. For example, (∀x)x = 0 ∨ (∃y)y > x .

Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.

I Empty clause, denoted by �: clause with 0 literals, that is, when
n = 0.

I A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

I From now on: A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).

Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.

I A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

I From now on: A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).

Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.
I A formula in Clausal Normal Form (CNF): a conjunction of

clauses.

I From now on: A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).

Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.
I A formula in Clausal Normal Form (CNF): a conjunction of

clauses.
I From now on: A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).

Binary Resolution Inference System

The binary resolution inference system, denoted by BR is an
inference system on propositional clauses (or ground clauses).
It consists of two inference rules:
I Binary resolution, denoted by BR:

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).

Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

BR is sound.

Consequence of soundness: let S be a set of clauses. If � can be
derived from S in BR, then S is unsatisfiable.

Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

BR is sound.

Consequence of soundness: let S be a set of clauses. If � can be
derived from S in BR, then S is unsatisfiable.

Example

Consider the following set of clauses

{¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q}.

The following derivation derives the empty clause from this set:

p ∨ q p ∨ ¬q
p ∨ p (BR)

p (Fact)

¬p ∨ q ¬p ∨ ¬q
¬p ∨ ¬p (BR)

¬p (Fact)

�
(BR)

Hence, this set of clauses is unsatisfiable.

Can this be used for checking (un)satisfiability

1. What happens when the empty clause cannot be derived from
S?

2. How can one search for possible derivations of the empty
clause?

Can this be used for checking (un)satisfiability

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there exists a
derivation of � from S in BR.

2. We have to formalize search for derivations.
However, before doing this we will introduce a slightly more refined
inference system.

Can this be used for checking (un)satisfiability

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there exists a
derivation of � from S in BR.

2. We have to formalize search for derivations.
However, before doing this we will introduce a slightly more refined
inference system.

Outline
Setting the Scene

First-Order Theorem Proving - An Example

First-Order Logic and TPTP

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy Elimination

Equality

Term Orderings

Completeness of Ground Superposition

Unification and Lifting

Non-Ground Superposition

Selection Function

A literal selection function selects literals in a clause.
I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.

Selection Function

A literal selection function selects literals in a clause.
I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.

Selection Function

A literal selection function selects literals in a clause.
I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.

Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal
selection function σ.
The binary resolution inference system, denoted by BRσ, consists of
two inference rules:
I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring, denoted by Fact:

p ∨ p ∨ C

p ∨ C
(Fact).

Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal
selection function σ.
The binary resolution inference system, denoted by BRσ, consists of
two inference rules:
I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring, denoted by Fact:

p ∨ p ∨ C

p ∨ C
(Fact).

Completeness?

Binary resolution with selection may be incomplete, even when
factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

Note the linear representation of
derivations (used by Vampire and
many other provers).

However, any inference with selection applied to this set of clauses
give either a clause in this set, or a clause containing a clause in this
set.

Completeness?

Binary resolution with selection may be incomplete, even when
factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

Note the linear representation of
derivations (used by Vampire and
many other provers).

However, any inference with selection applied to this set of clauses
give either a clause in this set, or a clause containing a clause in this
set.

Completeness?

Binary resolution with selection may be incomplete, even when
factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

Note the linear representation of
derivations (used by Vampire and
many other provers).

However, any inference with selection applied to this set of clauses
give either a clause in this set, or a clause containing a clause in this
set.

Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:
I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.

Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:
I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.

Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:
I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.

Orderings and Well-Behaved Selections

Fix an ordering �. A literal selection function is well-behaved if
I either a negative literal is selected,

or all maximal literals (w.r.t. �) must be selected in C.

To be well-behaved, we sometimes must select more than one
different literal in a clause. Example: p ∨ p or p(x) ∨ p(y).

Orderings and Well-Behaved Selections

Fix an ordering �. A literal selection function is well-behaved if
I either a negative literal is selected,

or all maximal literals (w.r.t. �) must be selected in C.

To be well-behaved, we sometimes must select more than one
different literal in a clause. Example: p ∨ p or p(x) ∨ p(y).

Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved
selection function.

Consider our previous example:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

A well-behave selection function
must satisfy:

1. r � q, because of (1)

2. q � p, because of (2)

3. p � r , because of (6)

There is no ordering that satisfies
these conditions.

Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved
selection function.

Consider our previous example:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

A well-behave selection function
must satisfy:

1. r � q, because of (1)

2. q � p, because of (2)

3. p � r , because of (6)

There is no ordering that satisfies
these conditions.

Checking (un)satisfiability – Where we are:

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there exists a
derivation of � from S in BR.

2. We have to formalize search for derivations.

We introduced well-behaved selection functions for selecting literals
in clauses and applying inferences only over selected literals.

Binary resolution BR with selection is complete for every
well-behaved selection function

.

Checking (un)satisfiability – Where we are:

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there exists a
derivation of � from S in BR.

2. We have to formalize search for derivations.

We introduced well-behaved selection functions for selecting literals
in clauses and applying inferences only over selected literals.

Binary resolution BR with selection is complete for every
well-behaved selection function

.

Checking (un)satisfiability – Where we are:

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there exists a
derivation of � from S in BR.

2. We have to formalize search for derivations.

We introduced well-behaved selection functions for selecting literals
in clauses and applying inferences only over selected literals.

Binary resolution BR with selection is complete for every
well-behaved selection function.

End of Lecture 1

Slides for lecture 1 ended here . . .

Outline
Setting the Scene

First-Order Theorem Proving - An Example

First-Order Logic and TPTP

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy Elimination

Equality

Term Orderings

Completeness of Ground Superposition

Unification and Lifting

Non-Ground Superposition

How to Establish Unsatisfiability?

Completeness is formulated in terms of derivability of the empty
clause � from a set S0 of clauses in an inference system I. However,
this formulations gives no hint on how to search for such a derivation.

Idea:
I Take a set of clauses S (the search space), initially S = S0.

Repeatedly apply inferences in I to clauses in S and add their
conclusions to S, unless these conclusions are already in S.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.

How to Establish Unsatisfiability?

Completeness is formulated in terms of derivability of the empty
clause � from a set S0 of clauses in an inference system I. However,
this formulations gives no hint on how to search for such a derivation.

Idea:
I Take a set of clauses S (the search space), initially S = S0.

Repeatedly apply inferences in I to clauses in S and add their
conclusions to S, unless these conclusions are already in S.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.

How to Establish Satisfiability?

When can we report satisfiability?

When we build a set S such that any inference applied to clauses in S
is already a member of S. Any such set of clauses is called saturated
(with respect to I).

In first-order logic it is often the case that all saturated sets are infinite
(due to undecidability), so in practice we can never build a saturated
set.

The process of trying to build one is referred to as saturation.

How to Establish Satisfiability?

When can we report satisfiability?

When we build a set S such that any inference applied to clauses in S
is already a member of S. Any such set of clauses is called saturated
(with respect to I).

In first-order logic it is often the case that all saturated sets are infinite
(due to undecidability), so in practice we can never build a saturated
set.

The process of trying to build one is referred to as saturation.

How to Establish Satisfiability?

When can we report satisfiability?

When we build a set S such that any inference applied to clauses in S
is already a member of S. Any such set of clauses is called saturated
(with respect to I).

In first-order logic it is often the case that all saturated sets are infinite
(due to undecidability), so in practice we can never build a saturated
set.

The process of trying to build one is referred to as saturation.

Saturated Set of Clauses

Let I be an inference system on formulas and S be a set of formulas.
I S is called saturated with respect to I, or simply I-saturated, if for

every inference of I with premises in S, the conclusion of this
inference also belongs to S.

I The closure of S with respect to I, or simply I-closure, is the
smallest set S′ containing S and saturated with respect to I.

Inference Process

Inference process: sequence of sets of formulas S0,S1, . . ., denoted
by

S0 ⇒ S1 ⇒ S2 ⇒ . . .

(Si ⇒ Si+1) is a step of this process.

We say that this step is an I-step if
1. there exists an inference

F1 . . . Fn

F

in I such that {F1, . . . ,Fn} ⊆ Si ;
2. Si+1 = Si ∪ {F}.

An I-inference process is an inference process whose every step is
an I-step.

Inference Process

Inference process: sequence of sets of formulas S0,S1, . . ., denoted
by

S0 ⇒ S1 ⇒ S2 ⇒ . . .

(Si ⇒ Si+1) is a step of this process.

We say that this step is an I-step if
1. there exists an inference

F1 . . . Fn

F

in I such that {F1, . . . ,Fn} ⊆ Si ;
2. Si+1 = Si ∪ {F}.

An I-inference process is an inference process whose every step is
an I-step.

Inference Process

Inference process: sequence of sets of formulas S0,S1, . . ., denoted
by

S0 ⇒ S1 ⇒ S2 ⇒ . . .

(Si ⇒ Si+1) is a step of this process.

We say that this step is an I-step if
1. there exists an inference

F1 . . . Fn

F

in I such that {F1, . . . ,Fn} ⊆ Si ;
2. Si+1 = Si ∪ {F}.

An I-inference process is an inference process whose every step is
an I-step.

Property

Let S0 ⇒ S1 ⇒ S2 ⇒ . . . be an I-inference process and a formula F
belongs to some Si . Then Si is derivable in I from S0. In particular,
every Si is a subset of the I-closure of S0.

Limit of a Process

The limit of an inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is the set of
formulas

⋃
i Si .

In other words, the limit is the set of all derived formulas.

Suppose that we have an infinite inference process such that S0 is
unsatisfiable and we use the binary resolution inference system.

Question: does completeness imply that the limit of the process
contains the empty clause?

Limit of a Process

The limit of an inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is the set of
formulas

⋃
i Si .

In other words, the limit is the set of all derived formulas.

Suppose that we have an infinite inference process such that S0 is
unsatisfiable and we use the binary resolution inference system.

Question: does completeness imply that the limit of the process
contains the empty clause?

Limit of a Process

The limit of an inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is the set of
formulas

⋃
i Si .

In other words, the limit is the set of all derived formulas.

Suppose that we have an infinite inference process such that S0 is
unsatisfiable and we use the binary resolution inference system.

Question: does completeness imply that the limit of the process
contains the empty clause?

Limit of a Process

The limit of an inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is the set of
formulas

⋃
i Si .

In other words, the limit is the set of all derived formulas.

Suppose that we have an infinite inference process such that S0 is
unsatisfiable and we use the binary resolution inference system.

Question: does completeness imply that the limit of the process
contains the empty clause?

Fairness

Let S0 ⇒ S1 ⇒ S2 ⇒ . . . be an inference process with the limit Sω.
The process is called fair if for every I-inference

F1 . . . Fn

F
,

if {F1, . . . ,Fn} ⊆ Sω, then there exists i such that F ∈ Si .

Completeness, reformulated

Theorem Let I be an inference system. The following conditions are
equivalent.

1. I is complete.
2. For every unsatisfiable set of formulas S0 and any fair I-inference

process with the initial set S0, the limit of this inference process
contains �.

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Saturation Algorithm

A saturation algorithm tries to saturate a set of clauses with respect to
a given inference system.
In theory there are three possible scenarios:

1. At some moment the empty clause � is generated, in this case
the input set of clauses is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of clauses in satisfiable.

3. Saturation will run forever, but without generating �. In this case
the input set of clauses is satisfiable.

Saturation Algorithm in Practice

In practice there are three possible scenarios:
1. At some moment the empty clause � is generated, in this case

the input set of clauses is unsatisfiable.
2. Saturation will terminate without ever generating �, in this case

the input set of clauses in satisfiable.
3. Saturation will run until we run out of resources, but without

generating �. In this case it is unknown whether the input set is
unsatisfiable.

Outline
Setting the Scene

First-Order Theorem Proving - An Example

First-Order Logic and TPTP

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy Elimination

Equality

Term Orderings

Completeness of Ground Superposition

Unification and Lifting

Non-Ground Superposition

Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form p ∨ ¬p ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6= b ∨ b 6= c ∨ f (c, c) = f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.

Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form p ∨ ¬p ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6= b ∨ b 6= c ∨ f (c, c) = f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.

Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form p ∨ ¬p ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6= b ∨ b 6= c ∨ f (c, c) = f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.

Problem

How can we prove that completeness is preserved if we remove
subsumed clauses and tautologies from the search space?

Solution: general theory of redundancy.

Problem

How can we prove that completeness is preserved if we remove
subsumed clauses and tautologies from the search space?

Solution: general theory of redundancy.

Bag Extension of an Ordering

Bag = finite multiset.
Let > be any (strict) ordering on a set X . The bag extension of > is a
binary relation >bag , on bags over X , defined as the smallest
transitive relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.

Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.
The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .

Bag Extension of an Ordering

Bag = finite multiset.
Let > be any (strict) ordering on a set X . The bag extension of > is a
binary relation >bag , on bags over X , defined as the smallest
transitive relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.
Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.

The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .

Bag Extension of an Ordering

Bag = finite multiset.
Let > be any (strict) ordering on a set X . The bag extension of > is a
binary relation >bag , on bags over X , defined as the smallest
transitive relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.
Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.
The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .

Clause Orderings

From now on consider clauses also as bags of literals. Note:
I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence
I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.

Clause Orderings

From now on consider clauses also as bags of literals. Note:
I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence
I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.

Clause Orderings

From now on consider clauses also as bags of literals. Note:
I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence
I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.

Redundancy

A clause C ∈ S is called redundant in S if it is a logical consequence
of clauses in S strictly smaller than C.

Examples

A tautology p ∨ ¬p ∨ C is a logical consequence of the empty set of
formulas:

|= p ∨ ¬p ∨ C,

therefore it is redundant.

We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.

Examples

A tautology p ∨ ¬p ∨ C is a logical consequence of the empty set of
formulas:

|= p ∨ ¬p ∨ C,

therefore it is redundant.
We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.

Examples

A tautology p ∨ ¬p ∨ C is a logical consequence of the empty set of
formulas:

|= p ∨ ¬p ∨ C,

therefore it is redundant.
We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.

Redundant Clauses Can be Removed

In BRσ (and in all calculi we will consider later) redundant clauses
can be removed from the search space.

Redundant Clauses Can be Removed

In BRσ (and in all calculi we will consider later) redundant clauses
can be removed from the search space.

Inference Process with Redundancy

Let I be an inference system. Consider an inference process with two
kinds of step Si ⇒ Si+1:

1. Adding the conclusion of an I-inference with premises in Si .
2. Deletion of a clause redundant in Si , that is

Si+1 = Si − {C},

where C is redundant in Si .

Fairness: Persistent Clauses and Limit

Consider an inference process

S0 ⇒ S1 ⇒ S2 ⇒ . . .

A clause C is called persistent if

∃i∀j ≥ i(C ∈ Sj).

The limit Sω of the inference process is the set of all persistent
clauses:

Sω =
⋃

i=0,1,...

⋂
j≥i

Sj .

Fairness

The process is called I-fair if every inference with persistent premises
in Sω has been applied, that is, if

C1 . . . Cn

C

is an inference in I and {C1, . . . ,Cn} ⊆ Sω, then C ∈ Si for some i .

Completeness of BRσ

Completeness Theorem. Let � be a well-founded ordering and σ a
well-behaved selection function. Let also

1. S0 be a set of clauses;
2. S0 ⇒ S1 ⇒ S2 ⇒ . . . be a fair BRσ-inference process.

Then S0 is unsatisfiable if and only if � ∈ Si for some i .

Saturation up to Redundancy

A set S of clauses is called saturated up to redundancy if for every
I-inference

C1 . . . Cn

C

with premises in S, either
1. C ∈ S; or
2. C is redundant w.r.t. S, that is, S≺C |= C.

Saturation up to Redundancy and Satisfiability
Checking

Lemma. A set S of clauses saturated up to redundancy is
unsatisfiable if and only if � ∈ S.

Therefore, if we built a set saturated up to redundancy, then the initial
set S0 is satisfiable. This is a powerful way of checking redundancy:
one can even check satisfiability of formulas having only infinite
models.

The only problem with this characterisation is that there is no obvious
way to build a model of S0 out of a saturated set.

Saturation up to Redundancy and Satisfiability
Checking

Lemma. A set S of clauses saturated up to redundancy is
unsatisfiable if and only if � ∈ S.

Therefore, if we built a set saturated up to redundancy, then the initial
set S0 is satisfiable. This is a powerful way of checking redundancy:
one can even check satisfiability of formulas having only infinite
models.

The only problem with this characterisation is that there is no obvious
way to build a model of S0 out of a saturated set.

Saturation up to Redundancy and Satisfiability
Checking

Lemma. A set S of clauses saturated up to redundancy is
unsatisfiable if and only if � ∈ S.

Therefore, if we built a set saturated up to redundancy, then the initial
set S0 is satisfiable. This is a powerful way of checking redundancy:
one can even check satisfiability of formulas having only infinite
models.

The only problem with this characterisation is that there is no obvious
way to build a model of S0 out of a saturated set.

Binary Resolution with Selection

One of the key properties to satisfy this lemma is the following: the
conclusion of every rule is strictly smaller that the rightmost premise
of this rule.
I Binary resolution,

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring,

p ∨ p ∨ C

p ∨ C
(Fact).

End of Lecture 2

Slides for lecture 2 ended here . . .

Outline
Setting the Scene

First-Order Theorem Proving - An Example

First-Order Logic and TPTP

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy Elimination

Equality

Term Orderings

Completeness of Ground Superposition

Unification and Lifting

Non-Ground Superposition

First-order logic with equality

I Equality predicate: =.
I Equality: l = r .

The order of literals in equalities does not matter, that is, we consider
an equality l = r as a multiset consisting of two terms l , r , and so
consider l = r and r = l equal.

Equality. An Axiomatisation (Recap)

I reflexivity axiom: x = x ;
I symmetry axiom: x = y → y = x ;
I transitivity axiom: x = y ∧ y = z → x = z;
I function substitution (congruence) axioms:

x1 = y1 ∧ . . . ∧ xn = yn → f (x1, . . . , xn) = f (y1, . . . , yn), for every
function symbol f ;

I predicate substitution (congruence) axioms:
x1 = y1 ∧ . . . ∧ xn = yn ∧ P(x1, . . . , xn)→ P(y1, . . . , yn) for every
predicate symbol P.

Inference systems for logic with equality

We will define a resolution and superposition inference system. This
system is complete. One can eliminate redundancy.

We will first define it only for ground clauses. On the theoretical side,
I Completeness is first proved for ground clauses only.

I It is then “lifted” to arbitrary first-order clauses using a technique
called lifting.

I Moreover, this way some notions (ordering, selection function)
can first be defined for ground clauses only and then it is
relatively easy to see how to generalise them for non-ground
clauses.

Inference systems for logic with equality

We will define a resolution and superposition inference system. This
system is complete. One can eliminate redundancy.

We will first define it only for ground clauses. On the theoretical side,
I Completeness is first proved for ground clauses only.

I It is then “lifted” to arbitrary first-order clauses using a technique
called lifting.

I Moreover, this way some notions (ordering, selection function)
can first be defined for ground clauses only and then it is
relatively easy to see how to generalise them for non-ground
clauses.

Simple Ground Superposition Inference System

Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D
s[r] = t ∨ C ∨ D

(Sup),
l = r ∨ C s[l] 6= t ∨ D

s[r] 6= t ∨ C ∨ D
(Sup),

Equality Resolution:

s 6= s ∨ C
C

(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6= t ′ ∨ C

(EF),

Simple Ground Superposition Inference System

Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D
s[r] = t ∨ C ∨ D

(Sup),
l = r ∨ C s[l] 6= t ∨ D

s[r] 6= t ∨ C ∨ D
(Sup),

Equality Resolution:

s 6= s ∨ C
C

(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6= t ′ ∨ C

(EF),

Simple Ground Superposition Inference System

Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D
s[r] = t ∨ C ∨ D

(Sup),
l = r ∨ C s[l] 6= t ∨ D

s[r] 6= t ∨ C ∨ D
(Sup),

Equality Resolution:

s 6= s ∨ C
C

(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6= t ′ ∨ C

(EF),

Example

f (a) = a ∨ g(a) = a
f (f (a)) = a ∨ g(g(a)) 6= a
f (f (a)) 6= a

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause
f (a) = a we can derive any clause of the form

f m(a) = f n(a)

where m,n ≥ 0.

Worst of all, the derived clauses can be much larger than the original
clause f (a) = a.
The recipe is to use the previously introduced ingredients:

1. Ordering;
2. Literal selection;
3. Redundancy elimination.

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause
f (a) = a we can derive any clause of the form

f m(a) = f n(a)

where m,n ≥ 0.
Worst of all, the derived clauses can be much larger than the original
clause f (a) = a.

The recipe is to use the previously introduced ingredients:
1. Ordering;
2. Literal selection;
3. Redundancy elimination.

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause
f (a) = a we can derive any clause of the form

f m(a) = f n(a)

where m,n ≥ 0.
Worst of all, the derived clauses can be much larger than the original
clause f (a) = a.
The recipe is to use the previously introduced ingredients:

1. Ordering;
2. Literal selection;
3. Redundancy elimination.

Atom and literal orderings on equalities

Equality atom comparison treats an equality s = t as the multiset
{̇s, t }̇.
I (s′ = t ′) �lit (s = t) if {̇s′, t ′}̇ � {̇s, t }̇
I (s′ 6= t ′) �lit (s 6= t) if {̇s′, t ′}̇ � {̇s, t }̇

with �lit being an induced ordering on literals.

Ground Superposition Inference System Sup�,σ
Let σ be a well-behaved literal selection function.
Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D

s[r] = t ∨ C ∨ D
(Sup),

l = r ∨ C s[l] 6= t ∨ D

s[r] 6= t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t

, (iii) l = r is strictly greater than any literal in C,
(iv) (only for the superposition-right rule) s[l] = t is greater than or equal to
any literal in D.
Equality Resolution:

s 6= s ∨ C

C
(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6= t ′ ∨ C

(EF),

where (i) s � t � t ′; (ii) s = t is greater than or equal to any literal in C.

Ground Superposition Inference System Sup�,σ
Let σ be a well-behaved literal selection function.
Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D

s[r] = t ∨ C ∨ D
(Sup),

l = r ∨ C s[l] 6= t ∨ D

s[r] 6= t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t , (iii) l = r is strictly greater than any literal in C,
(iv) (only for the superposition-right rule) s[l] = t is greater than or equal to
any literal in D.

Equality Resolution:

s 6= s ∨ C

C
(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6= t ′ ∨ C

(EF),

where (i) s � t � t ′; (ii) s = t is greater than or equal to any literal in C.

Ground Superposition Inference System Sup�,σ
Let σ be a well-behaved literal selection function.
Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D

s[r] = t ∨ C ∨ D
(Sup),

l = r ∨ C s[l] 6= t ∨ D

s[r] 6= t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t , (iii) l = r is strictly greater than any literal in C,
(iv) (only for the superposition-right rule) s[l] = t is greater than or equal to
any literal in D.
Equality Resolution:

s 6= s ∨ C

C
(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6= t ′ ∨ C

(EF),

where (i) s � t � t ′; (ii) s = t is greater than or equal to any literal in C.

Ground Superposition Inference System Sup�,σ
Let σ be a well-behaved literal selection function.
Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D

s[r] = t ∨ C ∨ D
(Sup),

l = r ∨ C s[l] 6= t ∨ D

s[r] 6= t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t , (iii) l = r is strictly greater than any literal in C,
(iv) (only for the superposition-right rule) s[l] = t is greater than or equal to
any literal in D.
Equality Resolution:

s 6= s ∨ C

C
(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6= t ′ ∨ C

(EF),

where (i) s � t � t ′; (ii) s = t is greater than or equal to any literal in C.

Extension to arbitrary (non-equality) literals

I Consider a two-sorted logic in which equality is the only
predicate symbol.

I Interpret terms as terms of the first sort and non-equality atoms
as terms of the second sort.

I Add a constant > of the second sort.
I Replace non-equality atoms p(t1, . . . , tn) by equalities of the

second sort p(t1, . . . , tn) = >.

For example, the clause

p(a,b) ∨ ¬q(a) ∨ a 6= b

becomes

p(a,b) = > ∨ q(a) 6= > ∨ a 6= b.

Extension to arbitrary (non-equality) literals

I Consider a two-sorted logic in which equality is the only
predicate symbol.

I Interpret terms as terms of the first sort and non-equality atoms
as terms of the second sort.

I Add a constant > of the second sort.
I Replace non-equality atoms p(t1, . . . , tn) by equalities of the

second sort p(t1, . . . , tn) = >.
For example, the clause

p(a,b) ∨ ¬q(a) ∨ a 6= b

becomes

p(a,b) = > ∨ q(a) 6= > ∨ a 6= b.

Binary resolution inferences can be represented by
inferences in the superposition system

We ignore selection functions.

A ∨ C1 ¬A ∨ C2

C1 ∨ C2
(BR)

A = > ∨ C1 A 6= > ∨ C2

> 6= > ∨ C1 ∨ C2
(Sup)

C1 ∨ C2
(ER)

Exercise

Positive factoring can also be represented by inferences in the
superposition system.

Outline
Setting the Scene

First-Order Theorem Proving - An Example

First-Order Logic and TPTP

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy Elimination

Equality

Term Orderings

Completeness of Ground Superposition

Unification and Lifting

Non-Ground Superposition

Simplification Ordering

When we deal with equality, we need to work with term orderings.
Consider a strict ordering � on signature symbols, such that � is
well-founded.
The ordering � on terms is called a simplification ordering if

1. � is well-founded;
2. � is monotonic: if l � r , then s[l] � s[r];
3. � is stable under substitutions: if l � r , then lθ � rθ.

One can combine the last two properties into one:
2a. If l � r , then s[lθ] � s[rθ].

Simplification Ordering

When we deal with equality, we need to work with term orderings.
Consider a strict ordering � on signature symbols, such that � is
well-founded.
The ordering � on terms is called a simplification ordering if

1. � is well-founded;
2. � is monotonic: if l � r , then s[l] � s[r];
3. � is stable under substitutions: if l � r , then lθ � rθ.

One can combine the last two properties into one:
2a. If l � r , then s[lθ] � s[rθ].

A General Property of Term Orderings

If � is a simplification ordering, then for every term t [s] and its proper
subterm s we have s 6� t [s]. Why?

Consider an example.

f (a) = a
f (f (a)) = a
f (f (f (a))) = a

Then both f (f (a)) = a and f (f (f (a))) = a are redundant. The clause
f (a) = a is a logical consequence of {f (f (a)) = a, f (f (f (a))) = a} but
is not redundant.

Exercise: Show that {f (a) = a, f (f (f (a))) 6= a} is unsatisfiable, by
using superposition with redundancy elimination.

How to “come up” with simplification orderings?

A General Property of Term Orderings

If � is a simplification ordering, then for every term t [s] and its proper
subterm s we have s 6� t [s]. Why?

Consider an example.

f (a) = a
f (f (a)) = a
f (f (f (a))) = a

Then both f (f (a)) = a and f (f (f (a))) = a are redundant. The clause
f (a) = a is a logical consequence of {f (f (a)) = a, f (f (f (a))) = a} but
is not redundant.

Exercise: Show that {f (a) = a, f (f (f (a))) 6= a} is unsatisfiable, by
using superposition with redundancy elimination.

How to “come up” with simplification orderings?

A General Property of Term Orderings

If � is a simplification ordering, then for every term t [s] and its proper
subterm s we have s 6� t [s]. Why?

Consider an example.

f (a) = a
f (f (a)) = a
f (f (f (a))) = a

Then both f (f (a)) = a and f (f (f (a))) = a are redundant. The clause
f (a) = a is a logical consequence of {f (f (a)) = a, f (f (f (a))) = a} but
is not redundant.

Exercise: Show that {f (a) = a, f (f (f (a))) 6= a} is unsatisfiable, by
using superposition with redundancy elimination.

How to “come up” with simplification orderings?

A General Property of Term Orderings

If � is a simplification ordering, then for every term t [s] and its proper
subterm s we have s 6� t [s]. Why?

Consider an example.

f (a) = a
f (f (a)) = a
f (f (f (a))) = a

Then both f (f (a)) = a and f (f (f (a))) = a are redundant. The clause
f (a) = a is a logical consequence of {f (f (a)) = a, f (f (f (a))) = a} but
is not redundant.

Exercise: Show that {f (a) = a, f (f (f (a))) 6= a} is unsatisfiable, by
using superposition with redundancy elimination.

How to “come up” with simplification orderings?

Term Algebra

Term algebra TA(Σ) of signature Σ:
I Domain: the set of all ground terms of Σ.
I Interpretation of any function symbol f or constant c is defined as

follows::

fTA(Σ)(t1, . . . , tn)
def⇔ f (t1, . . . , tn);

cTA(Σ)
def⇔ c.

Knuth-Bendix Ordering (KBO), Ground Case

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sm) if

1. |g(t1, . . . , tn)| > |h(s1, . . . , sm)|
(by weight) or

2. |g(t1, . . . , tn)| = |h(s1, . . . , sm)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering (KBO), Ground Case

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sm) if

1. |g(t1, . . . , tn)| > |h(s1, . . . , sm)|
(by weight) or

2. |g(t1, . . . , tn)| = |h(s1, . . . , sm)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering (KBO), Ground Case

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sm) if

1. |g(t1, . . . , tn)| > |h(s1, . . . , sm)|
(by weight) or

2. |g(t1, . . . , tn)| = |h(s1, . . . , sm)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering (KBO), Ground Case

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sm) if
1. |g(t1, . . . , tn)| > |h(s1, . . . , sm)|

(by weight) or

2. |g(t1, . . . , tn)| = |h(s1, . . . , sm)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering (KBO), Ground Case

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sm) if
1. |g(t1, . . . , tn)| > |h(s1, . . . , sm)|

(by weight) or
2. |g(t1, . . . , tn)| = |h(s1, . . . , sm)|

and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering (KBO), Ground Case

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sm) if
1. |g(t1, . . . , tn)| > |h(s1, . . . , sm)|

(by weight) or
2. |g(t1, . . . , tn)| = |h(s1, . . . , sm)|

and one of the following holds:
2.1 g � h (by precedence) or
2.2 g = h and for some

1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Example

w(a) = 1
w(b) = 2
w(f) = 3
w(g) = 0

|f (g(a), f (a,b))|

= |3(0(1),3(1,2))| = 3 + 0 + 1 + 3 + 1 + 2 = 10.

The Knuth-Bendix ordering is the main ordering used in Vampire and
all other resolution and superposition theorem provers.

Example

w(a) = 1
w(b) = 2
w(f) = 3
w(g) = 0

|f (g(a), f (a,b))| = |3(0(1),3(1,2))|

= 3 + 0 + 1 + 3 + 1 + 2 = 10.

The Knuth-Bendix ordering is the main ordering used in Vampire and
all other resolution and superposition theorem provers.

Example

w(a) = 1
w(b) = 2
w(f) = 3
w(g) = 0

|f (g(a), f (a,b))| = |3(0(1),3(1,2))| = 3 + 0 + 1 + 3 + 1 + 2

= 10.

The Knuth-Bendix ordering is the main ordering used in Vampire and
all other resolution and superposition theorem provers.

Example

w(a) = 1
w(b) = 2
w(f) = 3
w(g) = 0

|f (g(a), f (a,b))| = |3(0(1),3(1,2))| = 3 + 0 + 1 + 3 + 1 + 2 = 10.

The Knuth-Bendix ordering is the main ordering used in Vampire and
all other resolution and superposition theorem provers.

Example

w(a) = 1
w(b) = 2
w(f) = 3
w(g) = 0

|f (g(a), f (a,b))| = |3(0(1),3(1,2))| = 3 + 0 + 1 + 3 + 1 + 2 = 10.

The Knuth-Bendix ordering is the main ordering used in Vampire and
all other resolution and superposition theorem provers.

Knuth-Bendix Ordering (KBO), Ground Case: Summary

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sm) if
1. |g(t1, . . . , tn)| > |h(s1, . . . , sm)|

(by weight) or
2. |g(t1, . . . , tn)| = |h(s1, . . . , sm)|

and one of the following holds:
2.1 g � h (by precedence) or
2.2 g = h and for some

1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically,
i.e. left-to-right).

Note: Weight functions w are not arbitrary functions
– need to be “compatible” with�.

Why? Compare for example a and f (a) with arbitrary� and w .

Knuth-Bendix Ordering (KBO), Ground Case

: Summary

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sm) if
1. |g(t1, . . . , tn)| > |h(s1, . . . , sm)|

(by weight) or
2. |g(t1, . . . , tn)| = |h(s1, . . . , sm)|

and one of the following holds:
2.1 g � h (by precedence) or
2.2 g = h and for some

1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically,
i.e. left-to-right).

Note: Weight functions w are not arbitrary functions
– need to be “compatible” with�.

Why? Compare for example a and f (a) with arbitrary� and w .

Knuth-Bendix Ordering (KBO), Ground Case

: Summary

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sm) if
1. |g(t1, . . . , tn)| > |h(s1, . . . , sm)|

(by weight) or
2. |g(t1, . . . , tn)| = |h(s1, . . . , sm)|

and one of the following holds:
2.1 g � h (by precedence) or
2.2 g = h and for some

1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically,
i.e. left-to-right).

Note: Weight functions w are not arbitrary functions
– need to be “compatible” with�.

Why? Compare for example a and f (a) with arbitrary� and w .

Weight Functions, Ground Case

A weight function w : Σ→ N is any function satisfying:
I w(a) > 0 for any constant a ∈ Σ;

I if w(f) = 0 for a unary function f ∈ Σ, then f � g for all functions
g ∈ Σ with f 6= g.
That is, f is the greatest element of Σ wrt�.

As a consequence, there is at most one unary function f with
w(f) = 0.

Example

Consider the KBO ordering � generated by the precedence
inverse� times.

Consider the literal:

inverse(times(a,b)) = times(inverse(a), inverse(b)).

Compare, w.r.t �, the left- and right-hand side terms of the equality
when:
I weight(inverse) = weigth(times) = 1;

I weight(inverse) = 0 and weight(times) = 1.

Example

Consider the KBO ordering � generated by the precedence
inverse� times.

Consider the literal:

inverse(times(a,b)) = times(inverse(a), inverse(b)).

Compare, w.r.t �, the left- and right-hand side terms of the equality
when:
I weight(inverse) = weigth(times) = 1;

I weight(inverse) = 0 and weight(times) = 1.

Same Property for Sup�,σ as for BRσ

The conclusion is strictly smaller than the rightmost premise:

l = r ∨ C s[l] = t ∨ D

s[r] = t ∨ C ∨ D
(Sup),

l = r ∨ C s[l] 6= t ∨ D

s[r] 6= t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t , (iii) l = r is strictly greater than any literal
in C, (iv) s[l] = t is greater than or equal to any literal in D.

New Redundancy
Consider a superposition with a unit left premise:

l = r s[l] = t ∨ D

s[r] = t ∨ D
(Sup),

Note that we have

l = r , s[r] = t ∨ D |= s[l] = t ∨ D

and we have

s[l] = t ∨ D � s[r] = t ∨ D.

If we also have s[l] = t ∨ D � l = r , then the second premise is
redundant and can be removed.

This rule (superposition plus deletion) is sometimes called
demodulation (also rewriting by unit equalities).

New Redundancy
Consider a superposition with a unit left premise:

l = r s[l] = t ∨ D

s[r] = t ∨ D
(Sup),

Note that we have

l = r , s[r] = t ∨ D |= s[l] = t ∨ D

and we have

s[l] = t ∨ D � s[r] = t ∨ D.

If we also have s[l] = t ∨ D � l = r , then the second premise is
redundant and can be removed.

This rule (superposition plus deletion) is sometimes called
demodulation (also rewriting by unit equalities).

New Redundancy
Consider a superposition with a unit left premise:

l = r s[l] = t ∨ D

s[r] = t ∨ D
(Sup),

Note that we have

l = r , s[r] = t ∨ D |= s[l] = t ∨ D

and we have

s[l] = t ∨ D � s[r] = t ∨ D.

If we also have s[l] = t ∨ D � l = r , then the second premise is
redundant and can be removed.

This rule (superposition plus deletion) is sometimes called
demodulation (also rewriting by unit equalities).

New Redundancy
Consider a superposition with a unit left premise:

l = r s[l] = t ∨ D

s[r] = t ∨ D
(Sup),

Note that we have

l = r , s[r] = t ∨ D |= s[l] = t ∨ D

and we have

s[l] = t ∨ D � s[r] = t ∨ D.

If we also have s[l] = t ∨ D � l = r , then the second premise is
redundant and can be removed.

This rule (superposition plus deletion) is sometimes called
demodulation (also rewriting by unit equalities).

Exercise

Consider the KBO ordering � generated by:

– the precedence P � Q � f � a;

and

– the weight function w with w(P) = w(Q) = 2, w(f) = w(a) = 1.

Consider the set of clauses S to be:

Q(a),
¬Q(a) ∨ f (a) = a,
¬P(a),
P(f (a))}.

Apply saturation on S by using an inferece process with redundancy
based on the (ground) superposition calculus Sup�,σ.

Exercise
Consider the KBO ordering � generated by:

– the precedence f � a� b � c;

and

– the weight function w with w(f) = w(a) = w(b) = w(c) = 1.

Consider the set S of ground formulas:

a = b ∨ a = c
f (a) 6= f (b)
b = c

Apply saturation on S using an inference process based on the
ground superposition calculus Sup�,σ (including the inference rules of
ground binary resolution with selection).

Show that S is unsatisfiable.

Challenge: Show that S is unsatisfiable such that during saturation
only 4 new clauses are generated.

Exercise
Consider the KBO ordering � generated by:

– the precedence f � a� b � c;

and

– the weight function w with w(f) = w(a) = w(b) = w(c) = 1.

Consider the set S of ground formulas:

a = b ∨ a = c
f (a) 6= f (b)
b = c

Apply saturation on S using an inference process based on the
ground superposition calculus Sup�,σ (including the inference rules of
ground binary resolution with selection).

Show that S is unsatisfiable.

Challenge: Show that S is unsatisfiable such that during saturation
only 4 new clauses are generated.

Outline
Setting the Scene

First-Order Theorem Proving - An Example

First-Order Logic and TPTP

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy Elimination

Equality

Term Orderings

Completeness of Ground Superposition

Unification and Lifting

Non-Ground Superposition

Completeness of Sup�,σ

Completeness Theorem. Let � be a simplification ordering and σ a
well-behaved selection function. Let also

1. S0 be a set of clauses;
2. S0 ⇒ S1 ⇒ S2 ⇒ . . . be a fair Sup�,σ-inference process with

redundancy.
Then S0 is unsatisfiable if and only if � ∈ Si for some i .

End of Lecture 3

Slides for lecture 3 ended here . . .

Outline
Setting the Scene

First-Order Theorem Proving - An Example

First-Order Logic and TPTP

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy Elimination

Equality

Term Orderings

Completeness of Ground Superposition

Unification and Lifting

Non-Ground Superposition

Substitution

I A substitution θ is a mapping from variables to terms such that
the set {x | θ(x) 6= x} is finite.

I This set is called the domain of θ.
I Notation: {x1 7→ t1, . . . , xn 7→ tn}, where x1, . . . , xn are pairwise

different variables, denotes the substitution θ such that

θ(x) =

{
ti if x = xi ;
x if x 6∈ {x1, . . . , xn}.

I Application of this substitution to an expression E : simultaneous
replacement of xi by ti .

I Application of a substitution θ to E is denoted by Eθ.
I Since substitutions are functions, we can define their composition

(written στ instead of τ ◦ σ). Note that we have E(στ) = (Eσ)τ .

Substitution

I A substitution θ is a mapping from variables to terms such that
the set {x | θ(x) 6= x} is finite.

I This set is called the domain of θ.
I Notation: {x1 7→ t1, . . . , xn 7→ tn}, where x1, . . . , xn are pairwise

different variables, denotes the substitution θ such that

θ(x) =

{
ti if x = xi ;
x if x 6∈ {x1, . . . , xn}.

I Application of this substitution to an expression E : simultaneous
replacement of xi by ti .

I Application of a substitution θ to E is denoted by Eθ.
I Since substitutions are functions, we can define their composition

(written στ instead of τ ◦ σ). Note that we have E(στ) = (Eσ)τ .

Example

Consider:
E = p(x , y , f (a))
θ = {x 7→ b, y 7→ x}

What is Eθ?

Substitution composition

Suppose we have two substitutions

θ1 = {x1 7→ s1, . . . , xm 7→ sm} and
θ2 = {y1 7→ t1, . . . , yn 7→ tn}.

How can we compute their composition θ1θ2?

The substitution θ1θ2 is obtained from the set:

{x1 7→ s1θ2, . . . , xm 7→ smθ2,
y1 7→ t1, . . . , yn 7→ tn},

by deleting
I all yi 7→ ti with yi ∈ {x1, . . . , xm},
I all xi 7→ siθ2 with xi = siθ2.

Substitution composition

Suppose we have two substitutions

θ1 = {x1 7→ s1, . . . , xm 7→ sm} and
θ2 = {y1 7→ t1, . . . , yn 7→ tn}.

How can we compute their composition θ1θ2?

The substitution θ1θ2 is obtained from the set:

{x1 7→ s1θ2, . . . , xm 7→ smθ2,
y1 7→ t1, . . . , yn 7→ tn},

by deleting
I all yi 7→ ti with yi ∈ {x1, . . . , xm},
I all xi 7→ siθ2 with xi = siθ2.

Substitution composition

Suppose we have two substitutions

θ1 = {x1 7→ s1, . . . , xm 7→ sm} and
θ2 = {y1 7→ t1, . . . , yn 7→ tn}.

How can we compute their composition θ1θ2?

The substitution θ1θ2 is obtained from the set:

{x1 7→ s1θ2, . . . , xm 7→ smθ2,
y1 7→ t1, . . . , yn 7→ tn},

by deleting
I all yi 7→ ti with yi ∈ {x1, . . . , xm},
I all xi 7→ siθ2 with xi = siθ2.

Example

Consider:

θ1 = {x 7→ f (y), y 7→ z},
θ2 = {x 7→ a, y 7→ b, z 7→ y}.

What is θ1θ2?

Instances, Ground

An instance of an expression (that is term, atom, literal, or clause) E
is obtained by applying a substitution to E . Examples:
I some instances of the term f (x ,a,g(x)) are:

f (x ,a,g(x)),
f (y ,a,g(y)),
f (a,a,g(a)),
f (g(b),a,g(g(b)));

I but the term f (b,a,g(c)) is not an instance of this term.
Ground instance: instance with no variables.

Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem Let Σ be a signature with at least one constant symbol and
S be a set of (universal) clauses over Σ. The following conditions are
equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

By compactness of first-order logic the last condition is equivalent to
3. there exists a finite unsatisfiable set of ground instances of

clauses in S.

The theorem reduces the problem of checking unsatisfiability of sets
of arbitrary clauses to checking unsatisfiability of sets of ground
clauses . . .

The only problem is that S∗ can be infinite even if S is finite.

Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem Let Σ be a signature with at least one constant symbol and
S be a set of (universal) clauses over Σ. The following conditions are
equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

By compactness of first-order logic the last condition is equivalent to
3. there exists a finite unsatisfiable set of ground instances of

clauses in S.

The theorem reduces the problem of checking unsatisfiability of sets
of arbitrary clauses to checking unsatisfiability of sets of ground
clauses . . .

The only problem is that S∗ can be infinite even if S is finite.

Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem Let Σ be a signature with at least one constant symbol and
S be a set of (universal) clauses over Σ. The following conditions are
equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

By compactness of first-order logic the last condition is equivalent to
3. there exists a finite unsatisfiable set of ground instances of

clauses in S.

The theorem reduces the problem of checking unsatisfiability of sets
of arbitrary clauses to checking unsatisfiability of sets of ground
clauses . . .

The only problem is that S∗ can be infinite even if S is finite.

Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem Let Σ be a signature with at least one constant symbol and
S be a set of (universal) clauses over Σ. The following conditions are
equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

By compactness of first-order logic the last condition is equivalent to
3. there exists a finite unsatisfiable set of ground instances of

clauses in S.

The theorem reduces the problem of checking unsatisfiability of sets
of arbitrary clauses to checking unsatisfiability of sets of ground
clauses . . .

The only problem is that S∗ can be infinite even if S is finite.

Lifting

Lifting is a technique for proving completeness theorems in the
following way:

1. Prove completeness of the system for a set of ground clauses;
2. Lift the proof to the non-ground case.

Lifting, Example

Consider two (non-ground) clauses p(x ,a) ∨ q1(x) and
¬p(y , z) ∨ q2(y , z). If the signature contains function symbols, then
both clauses have infinite sets of instances:

{p(r ,a) ∨ q1(r) | r is ground}
{¬p(s, t) ∨ q2(s, t) | s, t are ground}

We can resolve such instances if and only if r = s and t = a. Then we
can apply the following inference

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

But there is an infinite number of such inferences.

Lifting, Idea

The idea is to represent an infinite number of ground inferences of the
form

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

by a single non-ground inference

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Is this always possible?

Yes!

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Note that the substitution {x 7→ y , z 7→ a} is a solution of the
“equation” p(x ,a) = p(y , z).

Lifting

(Robinson, 1965)

(Bachmair & Ganzinger, 1990)

Idea: Represent an infinite number of ground inferences by a single
non-ground inference.

In case of BR:
I Resolution for non-ground clauses
I The notion of “same” ground atoms is generalized to unifiability

of non-ground atoms;
I Only compute substitutions that are most general unifiers (mgu).

Lifting (Robinson, 1965)

(Bachmair & Ganzinger, 1990)

Idea: Represent an infinite number of ground inferences by a single
non-ground inference.

In case of BR:
I Resolution for non-ground clauses
I The notion of “same” ground atoms is generalized to unifiability

of non-ground atoms;
I Only compute substitutions that are most general unifiers (mgu).

Lifting (Robinson, 1965)

(Bachmair & Ganzinger, 1990)

Lifting Lemma for BR in BR:
Let C and D clauses with no shared variables. If:

Cyσ1

Cσ1

Dyσ2

Dσ2

C′
(ground BR)

then there exists a substitution σ sucht that:

C D
C′′yσ

C′ = C′′σ

(non − ground BR)

Similar lifting lemmas each inferences of BR and SRF.

Lifting (Robinson, 1965)(Bachmair & Ganzinger, 1990)

Lifting Lemma for BR in BR:
Let C and D clauses with no shared variables. If:

Cyσ1

Cσ1

Dyσ2

Dσ2

C′
(ground BR)

then there exists a substitution σ sucht that:

C D
C′′yσ

C′ = C′′σ

(non − ground BR)

Similar lifting lemmas each inferences of BR and SRF.

What should we lift?

I Ordering �;
I Selection function σ;
I Calculus Sup�,σ.

Most importantly, for the lifting to work we should be able to solve
equations s = t between terms and between atoms. This can be
done using most general unifiers.

Unifier

Unifier of expressions s1 and s2: a substitution θ such that s1θ = s2θ.
In other words, a unifier is a solution to an “equation” s1 = s2. In a
similar way we can define solutions to systems of equations
s1 = s′1, . . . , sn = s′n. We call such solutions simultaneous unifiers of
s1, . . . , sn and s′1, . . . , s

′
n.

(Most General) Unifiers

A solution θ to a set of equations E is said to be a most general
solution if for every other solution σ there exists a substitution τ such
that θτ = σ. In a similar way can define a most general unifier.

Consider terms f (x1,g(x1), x2) and f (y1, y2, y2).
(Some of) their unifiers are
θ1 = {y1 7→ x1, y2 7→ g(x1), x2 7→ g(x1)} and
θ2 = {y1 7→ a, y2 7→ g(a), x2 7→ g(a), x1 7→ a}:

f (x1,g(x1), x2)θ1 = f (x1,g(x1),g(x1));
f (y1, y2, y2)θ1 = f (x1,g(x1),g(x1));
f (x1,g(x1), x2)θ2 = f (a,g(a),g(a));
f (y1, y2, y2)θ2 = f (a,g(a),g(a)).
But only θ1 is most general.

(Most General) Unifiers

A solution θ to a set of equations E is said to be a most general
solution if for every other solution σ there exists a substitution τ such
that θτ = σ. In a similar way can define a most general unifier.

Consider terms f (x1,g(x1), x2) and f (y1, y2, y2).
(Some of) their unifiers are
θ1 = {y1 7→ x1, y2 7→ g(x1), x2 7→ g(x1)} and
θ2 = {y1 7→ a, y2 7→ g(a), x2 7→ g(a), x1 7→ a}:

f (x1,g(x1), x2)θ1 = f (x1,g(x1),g(x1));
f (y1, y2, y2)θ1 = f (x1,g(x1),g(x1));
f (x1,g(x1), x2)θ2 = f (a,g(a),g(a));
f (y1, y2, y2)θ2 = f (a,g(a),g(a)).
But only θ1 is most general.

Unification
Let E be a set of equations. An isolated equation in E is any equation x = t in E such
that x has exactly one occurrence in E .
input:

A finite set of equations E
(s, t denote terms, c, d constants, f , g function symbols, x variable)

output:
A solution to E or failure.

begin
while there exists a non-isolated equation (s = t) ∈ E
do

case (s, t) of
(t , t) ⇒ Remove this equation from E
(x , t) ⇒

if x occurs in t
then halt with failure
else replace x by t in all other equations of E

(t , x) ⇒ replace this equation by x = t
and do the same as in the case (x , t)

(c, d) ⇒ halt with failure
(c, f (t1, . . . , tn)) ⇒ halt with failure
(f (t1, . . . , tn), c) ⇒ halt with failure
(f (s1, . . . , sm), g(t1, . . . , tn)) ⇒ halt with failure
(f (s1, . . . , sn), f (t1, . . . , tn)) ⇒ replace this equation by the set

s1 = t1, . . . , sn = tn
end

od
Now E has the form {x1 = r1, . . . , xl = rl} and every equation in it
is isolated
return the substitution {x1 7→ r1, . . . , xl 7→ rl}

end

Examples

{h(g(f (x),a)) = h(g(y , y))}
{h(f (y), y , f (z)) = h(z, f (x), x)}
{h(g(f (x), z)) = h(g(y , y))}

Properties

Theorem Suppose we run the unification algorithm on s = t . Then
I If s and t are unifiable, then the algorithms terminates and

outputs a most general unifier of s and t .
I If s and t are not unifiable, then the algorithms terminates with

failure.
Notation (slightly ambiguous):
I mgu(s, t) for a most general unifier;
I mgs(E) for a most general solution.

Outline
Setting the Scene

First-Order Theorem Proving - An Example

First-Order Logic and TPTP

Inference Systems

Selection Functions

Saturation Algorithms

Redundancy Elimination

Equality

Term Orderings

Completeness of Ground Superposition

Unification and Lifting

Non-Ground Superposition

Revisit: What should we lift?

I Ordering �;
I Selection function σ;
I Calculus Sup�,σ (thanks to lifting lemmas).

Most importantly, for the lifting to work we use most general unifiers.

Knuth-Bendix Ordering (KBO), Ground Case (Recap)

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sm) if
1. |g(t1, . . . , tn)| > |h(s1, . . . , sm)|

(by weight) or
2. |g(t1, . . . , tn)| = |h(s1, . . . , sm)|

and one of the following holds:
2.1 g � h (by precedence) or
2.2 g = h and for some

1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically,
i.e. left-to-right).

Note: Weight functions w are not arbitrary functions
– need to be “compatible” with�.

Why? Compare for example a and f (a) with arbitrary� and w .

Knuth-Bendix Ordering (KBO), Ground Case (Recap)

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sm) if
1. |g(t1, . . . , tn)| > |h(s1, . . . , sm)|

(by weight) or
2. |g(t1, . . . , tn)| = |h(s1, . . . , sm)|

and one of the following holds:
2.1 g � h (by precedence) or
2.2 g = h and for some

1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically,
i.e. left-to-right).

Note: Weight functions w are not arbitrary functions
– need to be “compatible” with�.

Why? Compare for example a and f (a) with arbitrary� and w .

Knuth-Bendix Ordering (KBO), Ground Case (Recap)

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tn) �KB h(s1, . . . , sm) if
1. |g(t1, . . . , tn)| > |h(s1, . . . , sm)|

(by weight) or
2. |g(t1, . . . , tn)| = |h(s1, . . . , sm)|

and one of the following holds:
2.1 g � h (by precedence) or
2.2 g = h and for some

1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically,
i.e. left-to-right).

Note: Weight functions w are not arbitrary functions
– need to be “compatible” with�.

Why? Compare for example a and f (a) with arbitrary� and w .

Weight Functions, Ground Case

A weight function w : Σ→ N is any function satisfying:
I w(a) > 0 for any constant a ∈ Σ;

I if w(f) = 0 for a unary function f ∈ Σ, then f � g for all functions
g ∈ Σ with f 6= g.
That is, f is the greatest element of Σ wrt�.

As a consequence, there is at most one unary function f with
w(f) = 0.

Weight Functions, Non-Ground Case

A weight function w : Σ ∪ Vars → N, with Vars denoting the set of
variables, is any function satisfying:
I w(x) = v0 for all variables x ∈ Vars, where v0 > 0;
I w(a) ≥ v0 for any constant a ∈ Σ;

I if w(f) = 0 for a unary function f ∈ Σ, then f � g for all functions
g ∈ Σ with f 6= g.
That is, f is the greatest element of Σ wrt�.

As a consequence, there is at most one unary function f with
w(f) = 0.

Notation: Given a term s and variable x , we write #(x , s) to denote
the number of occurences of x in s.

Weight Functions, Non-Ground Case

A weight function w : Σ ∪ Vars → N, with Vars denoting the set of
variables, is any function satisfying:
I w(x) = v0 for all variables x ∈ Vars, where v0 > 0;
I w(a) ≥ v0 for any constant a ∈ Σ;

I if w(f) = 0 for a unary function f ∈ Σ, then f � g for all functions
g ∈ Σ with f 6= g.
That is, f is the greatest element of Σ wrt�.

As a consequence, there is at most one unary function f with
w(f) = 0.

Notation: Given a term s and variable x , we write #(x , s) to denote
the number of occurences of x in s.

Knuth-Bendix Ordering (KBO), Non-Ground Case

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function

w : Σ ∪ Vars → N.
Weight of a term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

s �KB t if
1. #(x , s) ≥ #(x , t) for all

variables x and |s| > |t |
(by weight) or

2. #(x , s) ≥ #(x , t) for all
variables x and |s| = |t | and
one of the following holds:
2.1 t = x , s = f n(x) for some

n ≥ 1, or
2.2 s = g(t1, . . . , tn),

t = h(s1, . . . , sm) and g � h
(by precedence) or

2.3 s = g(t1, . . . , tn),
t = g(s1, . . . , sn) and for
some 1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically,
i.e. left-to-right).

Knuth-Bendix Ordering (KBO), Non-Ground Case

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function

w : Σ ∪ Vars → N.
Weight of a term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

s �KB t if
1. #(x , s) ≥ #(x , t) for all

variables x and |s| > |t |
(by weight) or

2. #(x , s) ≥ #(x , t) for all
variables x and |s| = |t | and
one of the following holds:
2.1 t = x , s = f n(x) for some

n ≥ 1, or
2.2 s = g(t1, . . . , tn),

t = h(s1, . . . , sm) and g � h
(by precedence) or

2.3 s = g(t1, . . . , tn),
t = g(s1, . . . , sn) and for
some 1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically,
i.e. left-to-right).

Knuth-Bendix Ordering (KBO), Non-Ground Case

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function

w : Σ ∪ Vars → N.
Weight of a term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

s �KB t if
1. #(x , s) ≥ #(x , t) for all

variables x and |s| > |t |
(by weight) or

2. #(x , s) ≥ #(x , t) for all
variables x and |s| = |t | and
one of the following holds:
2.1 t = x , s = f n(x) for some

n ≥ 1, or
2.2 s = g(t1, . . . , tn),

t = h(s1, . . . , sm) and g � h
(by precedence) or

2.3 s = g(t1, . . . , tn),
t = g(s1, . . . , sn) and for
some 1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically,
i.e. left-to-right).

Knuth-Bendix Ordering (KBO), Non-Ground Case

Let us fix
I Signature Σ, it induces the

term algebra TA(Σ).
I Total ordering� on Σ, called

precedence relation;
I Weight function

w : Σ ∪ Vars → N.
Weight of a term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

s �KB t if
1. #(x , s) ≥ #(x , t) for all

variables x and |s| > |t |
(by weight) or

2. #(x , s) ≥ #(x , t) for all
variables x and |s| = |t | and
one of the following holds:
2.1 t = x , s = f n(x) for some

n ≥ 1, or
2.2 s = g(t1, . . . , tn),

t = h(s1, . . . , sm) and g � h
(by precedence) or

2.3 s = g(t1, . . . , tn),
t = g(s1, . . . , sn) and for
some 1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically,
i.e. left-to-right).

Selection Functions, Lifting

If for some grounding substitution θ, Lθ is selected in Lθ ∨ Cθ,
then L is selected in L ∨ C.

If the ground selection function is well-behaved, then its
corresponding non-ground selection function lifted as above is also
well-behaved.

Selection Functions, Lifting

If for some grounding substitution θ, Lθ is selected in Lθ ∨ Cθ,
then L is selected in L ∨ C.

If the ground selection function is well-behaved, then its
corresponding non-ground selection function lifted as above is also
well-behaved.

Non-Ground Superposition, Lifting
Superposition:

l = r ∨ C s[l ′] = t ∨ D

(s[r] = t ∨ C ∨ D)θ
(Sup),

l = r ∨ C s[l ′] 6= t ∨ D

(s[r] 6= t ∨ C ∨ D)θ
(Sup),

where
1. θ is an mgu of l and l ′;
2. l ′ is not a variable;
3. rθ 6� lθ;
4. tθ 6� s[l ′]θ.

Observations:
I ordering is partial, hence conditions like rθ 6� lθ;
I these conditions must be checked a posteriori, that is, after the

rule has been applied.
Note, however, that l � r implies lθ � rθ, so checking orderings a
priory helps.

Non-Ground Superposition, Lifting
Superposition:

l = r ∨ C s[l ′] = t ∨ D

(s[r] = t ∨ C ∨ D)θ
(Sup),

l = r ∨ C s[l ′] 6= t ∨ D

(s[r] 6= t ∨ C ∨ D)θ
(Sup),

where
1. θ is an mgu of l and l ′;
2. l ′ is not a variable;
3. rθ 6� lθ;
4. tθ 6� s[l ′]θ.

Observations:
I ordering is partial, hence conditions like rθ 6� lθ;
I these conditions must be checked a posteriori, that is, after the

rule has been applied.
Note, however, that l � r implies lθ � rθ, so checking orderings a
priory helps.

More rules

Equality Resolution:

s 6= s′ ∨ C

Cθ
(ER),

where θ is an mgu of s and s′.
Equality Factoring:

l = r ∨ l ′ = r ′ ∨ C
(l = r ∨ r 6= r ′ ∨ C)θ

(EF),

where θ is an mgu of l and l ′, rθ 6� lθ, r ′θ 6� lθ, and r ′θ 6� rθ.

Non-Ground Binary Resolution

I Binary resolution,

P ∨ C1 ¬P ′ ∨ C2

(C1 ∨ C2)θ
(BR).

where θ is the mgu of P and P ′.
I Positive factoring,

P ∨ P ′ ∨ C
(P ∨ C)θ

(Fact).

where θ is the mgu of P and P ′.
I Negative factoring,

¬P ∨ ¬P ′ ∨ C
(¬P ∨ C)θ

(Fact).

where θ is the mgu of P and P ′.

Checking Redundancy

Suppose that the current search space S contains no redundant
clauses. How can a redundant clause appear in the inference
process?

Only when a new clause (a child of the selected clause and possibly
other clauses) is added.
Classification of redundancy checks:
I The child is redundant;
I The child makes one of the clauses in the search space

redundant.
We use some fair strategy and perform these checks after every
inference that generates a new clause.
In fact, one can do better in some of the cases.

Checking Redundancy

Suppose that the current search space S contains no redundant
clauses. How can a redundant clause appear in the inference
process?
Only when a new clause (a child of the selected clause and possibly
other clauses) is added.
Classification of redundancy checks:
I The child is redundant;
I The child makes one of the clauses in the search space

redundant.

We use some fair strategy and perform these checks after every
inference that generates a new clause.
In fact, one can do better in some of the cases.

Checking Redundancy

Suppose that the current search space S contains no redundant
clauses. How can a redundant clause appear in the inference
process?
Only when a new clause (a child of the selected clause and possibly
other clauses) is added.
Classification of redundancy checks:
I The child is redundant;
I The child makes one of the clauses in the search space

redundant.
We use some fair strategy and perform these checks after every
inference that generates a new clause.
In fact, one can do better in some of the cases.

Subsumption, Non-Ground Case

A clause C subsumes any clause D if Cθ ⊆ D for some substitution θ.

Subsumption and redundancy: If a clause set S contains two different
clauses C and D and C subsumes D, then D is redundant in S (and
can be removed).

Subsumption, Non-Ground Case

A clause C subsumes any clause D if Cθ ⊆ D for some substitution θ.

Subsumption and redundancy: If a clause set S contains two different
clauses C and D and C subsumes D, then D is redundant in S (and
can be removed).

Demodulation, Non-Ground Case

l = r ����L[l ′] ∨ D
L[rθ] ∨ D

(Dem),

where lθ = l ′, lθ � rθ, and (L[l ′] ∨ D) � (lθ = rθ).

Easier to understand:

l = r �����L[lθ] ∨ D
L[rθ] ∨ D

(Dem),

where lθ � rθ, and (L[lθ] ∨ D) � (lθ = rθ).

Demodulation, Non-Ground Case

l = r ����L[l ′] ∨ D
L[rθ] ∨ D

(Dem),

where lθ = l ′, lθ � rθ, and (L[l ′] ∨ D) � (lθ = rθ).

Easier to understand:

l = r �����L[lθ] ∨ D
L[rθ] ∨ D

(Dem),

where lθ � rθ, and (L[lθ] ∨ D) � (lθ = rθ).

General Redundancy, Non-Ground Case

D is redundant wrt C if D∗ is redundant wrt C∗,
where D∗ and C∗ are respectively the set of ground instances of D and C.

Consider two non-ground clauses C,D.
To show that D is redundant wrt C, it is sufficient to find a substitution
θ such that:

1. D∗ � Cθ;
2. D∗ is a logical consequence of Cθ,

for any ground instance D∗ of D.

General Redundancy, Non-Ground Case

D is redundant wrt C if D∗ is redundant wrt C∗,
where D∗ and C∗ are respectively the set of ground instances of D and C.

Consider two non-ground clauses C,D.
To show that D is redundant wrt C, it is sufficient to find a substitution
θ such that:

1. D∗ � Cθ;
2. D∗ is a logical consequence of Cθ,

for any ground instance D∗ of D.

Generating and Simplifying Inferences

An inference

C1 . . . Cn

C
.

is called simplifying if at least one premise Ci becomes redundant
after the addition of the conclusion C to the search space. We then
say that Ci is simplified into C.
A non-simplifying inference is called generating.

Note. The property of being simplifying is undecidable. So is the
property of being redundant. So in practice we employ sufficient
conditions for simplifying inferences and for redundancy.

Idea: try to search eagerly for simplifying inferences bypassing the
strategy for inference selection.

Generating and Simplifying Inferences

An inference

C1 . . . Cn

C
.

is called simplifying if at least one premise Ci becomes redundant
after the addition of the conclusion C to the search space. We then
say that Ci is simplified into C.
A non-simplifying inference is called generating.

Note. The property of being simplifying is undecidable. So is the
property of being redundant. So in practice we employ sufficient
conditions for simplifying inferences and for redundancy.

Idea: try to search eagerly for simplifying inferences bypassing the
strategy for inference selection.

Generating and Simplifying Inferences

An inference

C1 . . . Cn

C
.

is called simplifying if at least one premise Ci becomes redundant
after the addition of the conclusion C to the search space. We then
say that Ci is simplified into C.
A non-simplifying inference is called generating.

Note. The property of being simplifying is undecidable. So is the
property of being redundant. So in practice we employ sufficient
conditions for simplifying inferences and for redundancy.

Idea: try to search eagerly for simplifying inferences bypassing the
strategy for inference selection.

Generating and Simplifying Inferences

Two main implementation principles:

apply simplifying inferences
eagerly;

apply generating inferences
lazily.

checking for simplifying
inferences should pay off;

so it must be cheap.

Redundancy Checking

Redundancy-checking occurs upon addition of a new child C. It
works as follows
I Retention test: check if C is redundant.
I Forward simplification: check if C can be simplified using a

simplifying inference.
I Backward simplification: check if C simplifies or makes

redundant an old clause.

Examples

Retention test:
I tautology-check;
I subsumption.

Simplification:
I demodulation (forward and backward);
I subsumption resolution (forward and backward):

A ∨ C ����¬B ∨ D
D

(Subs),
or

¬A ∨ C ���B ∨ D
D

(Subs),

such that for some substitution θ we have Aθ ∨ Cθ ⊆ B ∨ D.

Some redundancy criteria are expensive

I Tautology-checking is based on congruence closure.
I Subsumption and subsumption resolution are NP-complete.

Observations

I There may be chains (repeated applications) of forward
simplifications.

I After a chain of forward simplifications another retention test can
(should) be done.

I Backward simplification is often expensive.
I In practice, the retention test may include other checks, resulting

in the loss of completeness, for example, we may decide to
discard too heavy clauses.

Observations

I There may be chains (repeated applications) of forward
simplifications.

I After a chain of forward simplifications another retention test can
(should) be done.

I Backward simplification is often expensive.

I In practice, the retention test may include other checks, resulting
in the loss of completeness, for example, we may decide to
discard too heavy clauses.

Observations

I There may be chains (repeated applications) of forward
simplifications.

I After a chain of forward simplifications another retention test can
(should) be done.

I Backward simplification is often expensive.
I In practice, the retention test may include other checks, resulting

in the loss of completeness, for example, we may decide to
discard too heavy clauses.

	Setting the Scene
	First-Order Theorem Proving - An Example
	First-Order Logic and TPTP
	Inference Systems
	Selection Functions
	Saturation Algorithms
	Redundancy Elimination
	Equality
	Term Orderings
	Completeness of Ground Superposition
	Unification and Lifting
	Non-Ground Superposition

