
First-Order Theorem Proving
Laura Kovács and Andrei Voronkov

Exercises
May 25-27, 2023

Lab Exercises for Lecture 1

Problem 1.1. Consider a well-founded strict ordering � on atoms. Prove that the induced ordering on
literals, as defined in the lecture, is also well-founded.

Problem 1.2. Consider an ordering � on ground non-equality atoms that is total and well-founded.
We denote the literal ordering induced by� also by�. Let C and D be ground clauses without equality
literals. Let A and B respectively denote the maximal atoms of C and D wrt �.
Assume that A and B are syntactically the same atoms. Assume also that A occurs negatively in C but
only positively in D. Show that C �bag D.

Solution:
Since B and A are syntactically the same atoms, we have that A is the maximal atom of D wrt �. We
know that A occurs only positively in D. By using properties of the induced literal ordering �, we
conclude that ¬A � A � ¬Dj � Dj for every atom Dj of D different than A. Hence, by properties of
the bag extension ordering of �, we have ¬A �bag D.

By assumption, A is the maximal atom of C wrt � and A occurs only negatively in C. As ¬A � A,
we thus conclude that ¬A � ¬Ci � Ci, where Ci is an atom of C different than A. That is ¬A is the
maximal literal of C.
As ¬A �bag D and ¬A is the maximal literal of C, by properties of the bag extension ordering of �,
we finally conclude that C �bag D.

Problem 1.3. Consider strict partial orderings �i over Mi, for i = 1, 2. Assume that �1 and �2 are
well-founded. We define the ordering �∗ over M1 ×M2 as:

(a1, a2) �∗ (b1, b2)⇔
(
a1 �1 b1 or (a1 = b1 and a2 �2 b2)

)
Show that �∗ is well-founded. Solution:

If �∗ is not well-founded, there has to be a an infinite decreasing chain of pairs:

(x0, y0) �∗ (x1, y1) �∗ (x2, y2) �∗ . . .

By the definition of �∗ it follows that for each i, either xi �1 xi+1 or xi = xi+1. However, since �1 is
well-founded, the sequence {xi}i≥0 has a minimal element: xn for some n. Then, from the definition
of �∗ we obtain ∀i ≥ n : yn �2 yn+1. However, that is a contradiction with �2 being well-founded.
Hence, �∗ must be well-founded as well.

Problem 1.4. Let I be a sound inference system on clauses and let S0 be a non-empty set of clauses.
Consider a fair I-inference process S0 → S1 → S2 → . . ., without redundancy elimination. Let I∞
denote the limit of this fair I-inference process. Show that I∞ is the I-closure of S0.

Note: You need to prove that I∞ is the smallest I-saturated set containing S0. Recall and use the
property from the lecture on I-inference processes S0 → S1 → S2 → . . ., in particular that every Si is
a subset of the I-closure of S0.

Solution.



1. First, we show that I∞ is saturated.

Towards a contradiction, assume I∞ is not saturated. This means there are clauses C1, . . . , Cn ∈
I∞ and an inference

C1 · · · Cn

C

such that C 6∈ I∞.

However, since I is fair, C is derived at some step Si. Thus C ∈ Si ⊆ I∞, a contradiction.

2. Next, we show that if X is an I-saturated set of clauses with S0 ⊆ X , then I∞ ⊆ X .

By induction over i, we see that Si ⊆ X for all i:

• S0 ⊆ X holds by assumption.

• Assume Si ⊆ X . Let C be the clause derived in step i + 1, i.e., Si+1 \ Si = {C}. This
means that we have clauses C1, . . . , Cn ∈ Si and an inference

C1 · · · Cn

C .

Because of Si ⊆ X , we have C1, . . . , Cn ∈ X and thus, because X is saturated, also
C ∈ X . Hence Si+1 ⊆ X .

Recall the definition of I∞ :=
⋃
i∈N Si. Since Si ⊆ X for all i, also I∞ ⊆ X .

3. Since I∞ is saturated with S0 ⊆ I∞, and is a subset of all saturated sets with this property, I∞ is
the smallest such set.

Problem 1.5. Let S be the following set of clauses:

{ ¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q }

Consider the binary resolution inference system BR (without ordering and selection function). Show
that there exists an infinite number of different BR derivations of the empty clause from the clauses of
S.

Solution.
First consider the following derivation of the empty clause.

¬p ∨ ¬q p ∨ ¬q
¬q ∨ ¬q

¬p ∨ q p ∨ q
q ∨ q
q

¬q

¬p ∨ q p ∨ q
q ∨ q
q

(*)
�

Then consider the following other derivation:

. . .
q ¬p ∨ ¬q

¬p p ∨ q
q
. . .

The we can insert the latter derivation arbitrarily often at step (*) in the original derivation, hence there
is an abritrary number of derications of the empty clause.



First-Order Theorem Proving
Laura Kovács and Andrei Voronkov

Exercises
May 25-27, 2023

Lab Exercises for Lecture 2

Problem 2.1. Let � be a total well-founded ordering on the ground atoms p1, . . . , p6 such that p6 �
p5 � p4 � p3 � p2 � p1. Consider the bag extension of �; for simplicity, denote the bag extension of
� also by �.
Using �, compare and order the following three clauses:

p6 ∨ ¬p6, ¬p2 ∨ p4 ∨ p5, p2 ∨ p3.

Solution:

Since � is total, pi � pj and pi � ¬pj for each 1 ≤ j < i ≤ 6. Therefore p6 � ¬p2, p6 � p4, p6 � p5,
and p5 � p2, p5 � p3. Further, since for any two bags B,B′, such that B ⊃ B′, it holds that B � B′,
we have p6 ∨ ¬p6 � p6 and ¬p2 ∨ p4 ∨ p5 � p5. By combining these observations, we get:

p6 ∨ ¬p6 � p6 � ¬p2 ∨ p4 ∨ p5 � p5 � p2 ∨ p3

Therefore by transitivity of �:

p6 ∨ ¬p6 � ¬p2 ∨ p4 ∨ p5 � p2 ∨ p3

Problem 2.2. Let p, q be boolean atoms and let S be the following set of ground formulas:

{ ¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q }

Take any ordering such that p � q and any selection function σ over S such that

{ ¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q }.

(a) Is σ a well-behaved selection function over S? Justify your answer!

(b) How many inferences of BRσ are applicable to S? Justify your answer!

Solution.

(a) Recall that a well-behaved selection function selects a negative literal, or all maximal literals in a
clause.

In the first three clauses, a negative literal is selected. In the last clause, p is selected which is the
(only) maximal literal due to p � q. Hence σ is well-behaved.

(b) No factoring inference is possible, because no positive literal appears more than once in any of the
clauses. Binary resolution can only be performed on clauses where the resolved literal is selected.
As such, there is only one possible inference (between the second and the clause):

¬p ∨ q p ∨ q
q ∨ q



Problem 2.3. Give an example of a non-tautology ground clause with at least one selected literal so
that this selection is not well-behaved for any ordering �. Justify your solution!

Solution.
Consider the following clause:

p ∨ p

Obviously p is maximal in this clause, for any ordering. There is one maximal literal which is not
selected, hence the selection function is not well-behaved.

Problem 2.4. Let S be the set of clauses

¬q ∨ r, ¬p ∨ q, ¬r ∨ ¬q, ¬q ∨ ¬p, ¬p ∨ ¬r, ¬r ∨ p, r ∨ q ∨ p

(a) Prove unsatisfiabiliy of S using BR.

(b) Formalize S in TPTP and prove its unsatisfiability using Vampire, by running Vampire with
the additional option -av off .



First-Order Theorem Proving
Laura Kovács and Andrei Voronkov

Exercises
May 25-27, 2023

Lab Exercises for Lecture 3

Problem 3.1. Consider a KBO ordering � such that inverse � times by precedence. Consider the
literal:

inverse(times(x, y)) = times(inverse(y), inverse(x)).

Compare, w.r.t �, the left- and right-hand side terms of the equality when:

• weight(inverse) = weigth(times) = 1;

Solution:

As weight(inverse) = weigth(times) = 1, we have:

weight(inverse(times(x, y))) = 2 + weight(x) + weight(y)

and
weight(times(inverse(y), inverse(x))) = 3 + weight(y) + weight(x).

Thus,
times(inverse(y), inverse(x)) � inverse(times(x, y)).

• weight(inverse) = 0 and weight(times) = 1.

Solution:

Using the given weights of times and inverse, we have:

weight(inverse(times(x, y)))) = weight(times(inverse(y), inverse(x))) = 1+weight(x)+weight(y).

Then by precedence, given that inverse� times, we conclude that:

inverse(times(x, y)) � times(inverse(y), inverse(x)).

Problem 3.2. Let Σ be a signature containing only function symbols such that Σ contains at least one
constant. Let� be a precedence relation on Σ and w : Σ → N be a weight function compatible with
�. Consider the (ground) Knuth-Bendix order � induced by� and w on the set of ground terms of Σ.
Describe the set of ground terms that have the minimal weight wrt �.

Solution:
Every ground term of Σ that has the minimal weight wrt �KB is either:
– a constant c ∈ Σ such that c has the minimal weight among the constants of Σ,
– or a term fn(c), with n 6= 0, where c ∈ Σ is a constant of the minimal weight among the constants of
Σ and w(f) = 0.



Problem 3.3. Consider the set S of ground formulas:

{ g(f(a)) = a ∨ g(f(b)) = a,

f(a) = a,

f(b) 6= f(b) ∨ f(b) = a,

g(a) 6= a }

Show that S is unsatisfiable by applying saturation on S using an inference process based on the ground
superposition calculus Sup�,σ (including the inference rules of binary resolution BRσ), where σ is a
well-behaved selection function wrt � and:

(a) the ordering� is the KBO ordering generated by the precedence f � a� g � b and the weight
function w with w(f) = 0, w(b) = 1, w(a) = 2, w(g) = 3;

(b) the ordering� is the KBO ordering generated by the precedence g � a� b� f and the weight
function w with w(g) = 0, w(b) = 1, w(f) = 1, w(a) = 3.

Give details on what literals are selected and which terms are maximal.

Solution:
For clarity, we first number the clauses:

(1) g(f(a)) = a ∨ g(f(b)) = a

(2) f(a) = a

(3) f(b) 6= f(b) ∨ f(b) = a

(4) g(a) 6= a

In the solution we mark selected literals by underlining them.

(a) The following literals are selected:

(1) g(f(a)) = a ∨ g(f(b)) = a ({g(f(a)), a} � {g(f(b)), a} since g(f(a)) � g(f(b)) by weight)

(2) f(a) = a (since it is the only literal in the clause)

(3) f(b) 6= f(b) ∨ f(b) = a (since f(b) 6= f(b) is negative)

(4) g(a) 6= a (since it is the only literal in the clause)

By equality resolution over (3), we get:

(5) f(b) = a

Next, since f(a) � a (by precedence) and g(f(a)) � a (by weight), we apply superposition over
(2) and (1), and get

(6) g(a) = a ∨ g(f(b)) = a,

where g(a) = a is selected since g(a) � g(f(b)) (by weight) and thus {g(a), a} � {g(f(b)), a}.
We then apply binary resolution over (6) and (4):

(7) g(f(b)) = a

Next, since a � f(b) (by weight) and g(a) � a (by weight), we apply superposition over (4) and
(5):

(8) g(f(b)) 6= a

Finally, we apply binary resolution over (7) and (8):

(9) �

Hence, S is unsatisfiable.



(b) All steps of the solution (a) depended on the following comparisons between (bags of) terms:
{g(f(a)), a} � {g(f(b)), a}, f(a) � a, g(f(a)) � a, {g(a), a} � {g(f(b)), a}, a �
f(b), g(a) � a. However, all these comparisons hold also for the KBO generated by the prece-
dence and the weight function from (b):

– from g(f(a)) � g(f(b)) by weight we get {g(f(a)), a} � {g(f(b)), a},
– f(a) � a by weight,

– g(f(a)) � a by weight,

– from g(a) � g(f(b)) by weight it follows {g(a), a} � {g(f(b)), a},
– a � f(b) by weight,

– g(a) � a by precedence.

Therefore the proof in (b) is the same as in (a).



First-Order Theorem Proving
Laura Kovács and Andrei Voronkov

Exercises
May 25-27, 2023

Lab Exercises for Lecture 4

Problem 4.1. Apply the unification algorithm and show the most general unifier of the following
atoms:

(a) p(a, f(y), y) and p(a, x, f(x));

Solution:

E = {p(a, f(y), y) = p(a, x, f(x))} =⇒
E = {a = a, f(y) = x, y = f(x)} =⇒
E = {f(y) = x, y = f(x)} =⇒
E = {x = f(y), y = f(x)} =⇒ x→f(y)
E = {x = f(y), y = f(f(y))} =⇒ Failure

(b) p(f(x, a), f(f(b, a))) and p(z, f(z));

Solution: Note that f occurs both as a unary and as a binary function. Hence, there are two
possibilities to proceed:

• Report syntax error because one cannot use the same function name with different arities;

• Consider the unary and binary occurences of f as different functions. Use then f1 for the
unary occurence of f and f2 for the binary function f . (Note: In Prolog, it is still possible
to use the same function name with different arities.).
In this case, we have:

E = {p(f2(x, a), f1(f2(b, a))) = p(z, f1(z))} =⇒
E = {f2(x, a) = z, f1(f2(b, a)) = f1(z)} =⇒
E = {z = f2(x, a), f1(f2(b, a)) = f1(z)} =⇒ z→f2(x,a)
E = {z = f2(x, a), f1(f2(b, a)) = f1(f2(x, a))} =⇒
E = {z = f2(x, a), f2(b, a) = f2(x, a)} =⇒
E = {z = f2(x, a), b = x, a = a} =⇒
E = {z = f2(x, a), x = b, a = a} =⇒ x→b
E = {z = f2(b, a), x = b, a = a} =⇒
E = {z = f2(b, a), x = b} =⇒ Success

The mgu in this case is {z → f2(b, a), x→ b}.

(c) p(f(x, y), f(y, z)) and p(z, f(w, f(y, w))).

Solution:



E = {p(f(x, y), f(y, z)) = p(z, f(w, f(y, w)))} =⇒
E = {f(x, y) = z, f(y, z) = f(w, f(y, w))} =⇒
E = {z = f(x, y), f(y, z) = f(w, f(y, w))} =⇒ z→f(x,y)
E = {z = f(x, y), f(y, f(x, y) = f(w, f(y, w))}} =⇒
E = {z = f(x, y), y = w, f(x, y) = f(y, w)} =⇒ y→w
E = {z = f(x,w), y = w, f(x,w), f(w,w)}} =⇒
E = {z = f(x,w), y = w, x = w, w = w} =⇒ x→w
E = {z = f(w,w), y = w, x = w, w = w} =⇒
E = {z = f(w,w), y = w, x = w} =⇒ Success

The mgu is:
{z → f(w,w), y → w, x→ w}.

Note: x, y, z, w denote variables, f is a function symbol, p is a predicate symbol and a, b are constants.

Problem 4.2. Consider the following set S of clauses:

¬p(z, a) ∨ ¬p(z, x) ∨ ¬p(x, z)
p(y, a) ∨ p(y, f(y))
p(w, a) ∨ p(f(w), w)

where p is a predicate symbol, f is a function symbol, x, y, z, w are variables and a is a constant.
Give a refutation proof of S by using the non-ground binary resolution inference system BR. For each
newly derived clause, label the clauses from which it was derived by which inference rule and indicate
most general unifiers.

Solution:
For simplicity, we name the given clauses by numbers:

(1) ¬p(z, a) ∨ ¬p(z, x) ∨ ¬p(x, z)
(2) p(y, a) ∨ p(y, f(y))
(3) p(w, a) ∨ p(f(w), w)

By negative factoring on (1), with the mgu {x→ a}, we get:

(4) ¬p(z, a) ∨ ¬p(a, z)

By negative factoring on (4), with the mgu {z → a}, we get:

(5) ¬p(a, a)

By resolution on (5) and (2), with the mgu {y → a}, we get:

(6) p(a, f(a))

By resolution on (4) and (6), with the mgu {z → f(a)}, we get:

(7) ¬p(f(a), a)

By resolution on (3) and (7), with the mgu {w → a}, we get:

(8) p(a, a)



By resolution on (5) and (8), we finally obtain the empty clause:

(9) �

Hence, our input set S of clauses (1), (2) and (3) is unsatisfiable.

Problem 4.3. Let p denote a unary predicate symbol, f a unary function symbol, x, y variables and c a
constant. Let C1 be the clause p(x) ∨ p(y) and consider C2 to be the clause p(x). Further, let D denote
the clause p(f(c)).

(a) Does C1 subsume D?

(b) Does C2 subsume D?

Justify your answers!

Solution:

(a) No. For C1 to subsume D, there must be a substitution θ such that C1θ is a sub-multiset of
D. However, since C1 has two literals, also C1θ has two literals and therefore it cannot be a
sub-multiset of D, which only has one literal.

(b) Yes. For θ = {x 7→ f(c)}, it holds that C2θ is a sub-multiset of D.

Problem 4.4. Let x denote a variable, a, b, c constants, and f a unary function symbol.
Give a superposition refutation of the following set of two clauses:

{ x = f(c),
a 6= b }

such that, in every inference, the premises and the conclusion of that inference do not use the symbols
f, c together with the symbols a, b. That is, every inference has the following property: if the premise
or the conclusion contain any of the symbols f, c, then the premise and the conclusion contain neither a
nor b.
In your proof, use only the inference system of the superposition calculus Sup (without ordering and
selection function); that is, no inferences of binary resolution BR should be used. For each newly
derived clause, clearly label the clauses from which it was derived and indicate most general unifiers.

Solution. Note that if we apply a rule to two clauses, we consider the variables in both clauses to
be distinct, even if the two clauses are actually the same one. Therefore we when we apply can use
superposition using f(c) = x, as both of the premises it is the same thing as applying it to the premises
f(c) = x and f(c) = y. This means we can do the following derivation:

1) f(c) = x Axiom
2) a 6= b Axiom
3) x = y Superposition using (1), and (1), σ = ∅
4) a 6= x Superposition using (2), and (3), σ = {y 7→ b}
5) � Equality resolution using (4), σ = {x 7→ a}

Problem 4.5.
Let f be a unary and g be a binary function symbol. Further let a, b, c be constants, and x, y, z be
variables. We define the weight function w(s) = w(v) = 1, for every symbol s and variable v, and let
g � f � c � b � a. Answer the following questions using a KBO with the weight function w and
the precedence relation� to order terms, and its extension to compare literals and clauses.



(a) Do the clauses C1 and C2 make the clause C3 redundant?

C1 : a 6= b ∨ f(a) 6= a

C2 : f(f(x)) = a

C3 : f(f(b)) 6= b ∨ f(a) 6= a

(b) Does the clause C4 make the clause C5 redundant?

C4 : f(g(x, a)) 6= f(y)

C5 : f(g(x, z)) 6= f(g(y, b)) ∨ f(g(x, b)) 6= f(g(a, b))

(c) Does the clause C6 make the clause C7 redundant?

C6 : g(x, y) 6= f(x)

C7 : g(f(x), f(z)) 6= f(f(x)) ∨ g(a, b) 6= c

Solution.

(a) No, because C2 : f(f(x)) = a is incomparable to C3 : f(f(b)) 6= b ∨ f(a) 6= a.

(b) Yes, because C4 : f(g(x, a)) 6= f(y) is unsat, and smaller than C5.

(c) Yes because firstly we can rename the variable z to y in the second clause. This means, since
g(x, y) 6= f(x) ≺ g(f(x), f(z)) 6= f(f(x)), that C6 ≺ C7. Further g(f(x), f(z)) 6= f(f(x)) is
an instance of g(x, y) 6= f(x), which means that we C6 implies C7.

Problem 4.6. Consider the following inference:

x = f(c) ∨ p(x) f(h(b)) = h(g(y, y)) ∨ h(g(d, b)) 6= f(c)

p(h(g(d, b))) ∨ f(h(b)) = h(g(y, y))

in the non-ground superposition inference system Sup (without the rules of the non-ground binary
resolution inference system BR), where p is a predicate symbol, f , g, h are function symbols, b, c, d are
constants, and x, y are variables.

(a) Prove that the above inference is a sound inference of Sup.

(b) Is the above inference a simplifying inference of Sup? Justify your answer.

Solution.

(a) Let M be a model of both assumptions of the rule:

M |= x = f(c) ∨ p(x) (1)

M |= f(h(b)) = h(g(y, y)) ∨ h(g(d, b)) 6= f(c) (2)

If M |= f(h(b)) = h(g(y, y)), then the conclusion is obviously true in M . Otherwise due to
(2) we know that it must be the case that M |= h(g(d, b)) 6= f(c). This means due to (1) that
M |= p(g(d, b)) must hold, which means that the conclusion is true in this case as well.



(b) We will call the left assumption C1 and the right assumption of the rule C2, and the conclusion of
the rule D.

In order for the rule to be a simplifying rule, it could either make C1, or C2 redundant, so there
are two cases to check.

Let’s first have a look at whether C1 is being made redundant. In order for that to hold we would
need to have that C2, D |= C1. This does not hold since the model M1 is a counterexample.

M1(>) = {a, b}
M1(p) = ∅

M1(f)(x) = a

M1(h)(x) = a

M1(g)(x, y) = a

(Note that by M(>) we denote the domain of the model here.)

Similarly we can build a counterexample M2 for the statement C1, D |= C2.

M2(p) = M2(>) = {b, c, d, f, g, h}
M2(b) = b

M2(c) = c

M2(d) = d

M2(f)(x) =

{
h if x = c

f else

M2(g)(x, y) = g

M2(h)(x) = h

Problem 4.7. Recall that the inverse of the binary relation r1(x, y) is the binary relation r2(y, x) such
that r1(x, y) if and only if r2(y, x).

Prove that the inverse of a dense order is also dense. For doing so, you are required to do the following
steps:

• Formalize the problem in TPTP and prove it using Vampire.

• Explain the superposition reasoning part of the Vampire proof by detailing the superposition
inferences, generated clauses and mgus in the poof. Use Vampire with the AVATAR option off,
that is -av off.

Problem 4.8. Consider the group theory axiomatization used in the lecture. Prove that the group’s left
identity element e is also a right identity.

• Formalize the problem in TPTP and use it using Vampire, by running Vampire with the addi-
tional option -av off .

• Explain the superposition reasoning part of the Vampire proof by detailing the superposition
inferences, generated clauses and mgus in the poof.


