Lab Exercises for Lecture 1

Problem 1.1. Consider a well-founded strict ordering \succ on atoms. Prove that the induced ordering on literals, as defined in the lecture, is also well-founded.

Problem 1.2. Consider an ordering \succ on ground non-equality atoms that is total and well-founded. We denote the literal ordering induced by \succ also by \succ. Let C and D be ground clauses without equality literals. Let A and B respectively denote the maximal atoms of C and D wrt \succ.
Assume that A and B are syntactically the same atoms. Assume also that A occurs negatively in C but only positively in D. Show that $C \succ_{\text {bag }} D$.

Solution:

Since B and A are syntactically the same atoms, we have that A is the maximal atom of D wrt \succ. We know that A occurs only positively in D. By using properties of the induced literal ordering \succ, we conclude that $\neg A \succ A \succ \neg D_{j} \succ D_{j}$ for every atom D_{j} of D different than A. Hence, by properties of the bag extension ordering of \succ, we have $\neg A \succ_{\text {bag }} D$.

By assumption, A is the maximal atom of C wrt \succ and A occurs only negatively in C. As $\neg A \succ A$, we thus conclude that $\neg A \succ \neg C_{i} \succ C_{i}$, where C_{i} is an atom of C different than A. That is $\neg A$ is the maximal literal of C.
As $\neg A \succ_{b a g} D$ and $\neg A$ is the maximal literal of C, by properties of the bag extension ordering of \succ, we finally conclude that $C \succ_{\text {bag }} D$.

Problem 1.3. Consider strict partial orderings \succ_{i} over M_{i}, for $i=1,2$. Assume that \succ_{1} and \succ_{2} are well-founded. We define the ordering \succ^{*} over $M_{1} \times M_{2}$ as:

$$
\left(a_{1}, a_{2}\right) \succ^{*}\left(b_{1}, b_{2}\right) \Leftrightarrow\left(a_{1} \succ_{1} b_{1} \quad \text { or } \quad\left(a_{1}=b_{1} \quad \text { and } \quad a_{2} \succ_{2} b_{2}\right)\right)
$$

Show that \succ^{*} is well-founded. Solution:
If \succ^{*} is not well-founded, there has to be a an infinite decreasing chain of pairs:

$$
\left(x_{0}, y_{0}\right) \succ^{*}\left(x_{1}, y_{1}\right) \succ^{*}\left(x_{2}, y_{2}\right) \succ^{*} \ldots
$$

By the definition of \succ^{*} it follows that for each i, either $x_{i} \succ_{1} x_{i+1}$ or $x_{i}=x_{i+1}$. However, since \succ_{1} is well-founded, the sequence $\left\{x_{i}\right\}_{i \geq 0}$ has a minimal element: x_{n} for some n. Then, from the definition of \succ^{*} we obtain $\forall i \geq n: y_{n} \succ_{2} y_{n+1}$. However, that is a contradiction with \succ_{2} being well-founded. Hence, \succ^{*} must be well-founded as well.

Problem 1.4. Let \mathbb{I} be a sound inference system on clauses and let S_{0} be a non-empty set of clauses. Consider a fair \mathbb{I}-inference process $S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow \ldots$, without redundancy elimination. Let I_{∞} denote the limit of this fair \mathbb{I}-inference process. Show that I_{∞} is the \mathbb{I}-closure of S_{0}.
Note: You need to prove that I_{∞} is the smallest \mathbb{I}-saturated set containing S_{0}. Recall and use the property from the lecture on \mathbb{I}-inference processes $S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow \ldots$, in particular that every S_{i} is a subset of the \mathbb{I}-closure of S_{0}.

Solution.

1. First, we show that I_{∞} is saturated.

Towards a contradiction, assume I_{∞} is not saturated. This means there are clauses $C_{1}, \ldots, C_{n} \in$ I_{∞} and an inference

$$
\frac{C_{1} \cdots C_{n}}{C}
$$

such that $C \notin I_{\infty}$.
However, since \mathbb{I} is fair, C is derived at some step S_{i}. Thus $C \in S_{i} \subseteq I_{\infty}$, a contradiction.
2. Next, we show that if X is an \mathbb{I}-saturated set of clauses with $S_{0} \subseteq X$, then $I_{\infty} \subseteq X$.

By induction over i, we see that $S_{i} \subseteq X$ for all i :

- $S_{0} \subseteq X$ holds by assumption.
- Assume $S_{i} \subseteq X$. Let C be the clause derived in step $i+1$, i.e., $S_{i+1} \backslash S_{i}=\{C\}$. This means that we have clauses $C_{1}, \ldots, C_{n} \in S_{i}$ and an inference

$$
\frac{C_{1} \cdots C_{n}}{C}
$$

Because of $S_{i} \subseteq X$, we have $C_{1}, \ldots, C_{n} \in X$ and thus, because X is saturated, also $C \in X$. Hence $S_{i+1} \subseteq X$.

Recall the definition of $I_{\infty}:=\bigcup_{i \in \mathbb{N}} S_{i}$. Since $S_{i} \subseteq X$ for all i, also $I_{\infty} \subseteq X$.
3. Since I_{∞} is saturated with $S_{0} \subseteq I_{\infty}$, and is a subset of all saturated sets with this property, I_{∞} is the smallest such set.

Problem 1.5. Let S be the following set of clauses:

$$
\{\neg p \vee \neg q, \quad \neg p \vee q, \quad p \vee \neg q, \quad p \vee q\}
$$

Consider the binary resolution inference system BR (without ordering and selection function). Show that there exists an infinite number of different BR derivations of the empty clause from the clauses of S.

Solution.

First consider the following derivation of the empty clause.

$$
\frac{\neg p \vee \neg q \quad p \vee \neg q}{\frac{\neg q \vee \neg q}{} \frac{\neg p \vee q \quad p \vee q}{\frac{q \vee q}{q}}} \begin{array}{r}
\square q
\end{array} \frac{\neg p \vee q \quad p \vee q}{\frac{q \vee q}{q}\left({ }^{*}\right)}
$$

Then consider the following other derivation:

The we can insert the latter derivation arbitrarily often at step $\left({ }^{*}\right)$ in the original derivation, hence there is an abritrary number of derications of the empty clause.

Lab Exercises for Lecture 2

Problem 2.1. Let \succ be a total well-founded ordering on the ground atoms p_{1}, \ldots, p_{6} such that $p_{6} \succ$ $p_{5} \succ p_{4} \succ p_{3} \succ p_{2} \succ p_{1}$. Consider the bag extension of \succ; for simplicity, denote the bag extension of \succ also by \succ.
Using \succ, compare and order the following three clauses:

$$
p_{6} \vee \neg p_{6}, \quad \neg p_{2} \vee p_{4} \vee p_{5}, \quad p_{2} \vee p_{3} .
$$

Solution:

Since \succ is total, $p_{i} \succ p_{j}$ and $p_{i} \succ \neg p_{j}$ for each $1 \leq j<i \leq 6$. Therefore $p_{6} \succ \neg p_{2}, p_{6} \succ p_{4}, p_{6} \succ p_{5}$, and $p_{5} \succ p_{2}, p_{5} \succ p_{3}$. Further, since for any two bags B, B^{\prime}, such that $B \supset B^{\prime}$, it holds that $B \succ B^{\prime}$, we have $p_{6} \vee \neg p_{6} \succ p_{6}$ and $\neg p_{2} \vee p_{4} \vee p_{5} \succ p_{5}$. By combining these observations, we get:

$$
p_{6} \vee \neg p_{6} \succ p_{6} \succ \neg p_{2} \vee p_{4} \vee p_{5} \succ p_{5} \succ p_{2} \vee p_{3}
$$

Therefore by transitivity of \succ :

$$
p_{6} \vee \neg p_{6} \succ \neg p_{2} \vee p_{4} \vee p_{5} \succ p_{2} \vee p_{3}
$$

Problem 2.2. Let p, q be boolean atoms and let S be the following set of ground formulas:

$$
\{\neg p \vee \neg q, \quad \neg p \vee q, \quad p \vee \neg q, \quad p \vee q\}
$$

Take any ordering such that $p \succ q$ and any selection function σ over S such that

$$
\{\neg p \vee \neg q, \quad \underline{p} \vee q, \quad p \vee \neg q, \quad \underline{p} \vee q\} .
$$

(a) Is σ a well-behaved selection function over S ? Justify your answer!
(b) How many inferences of $\mathbb{B}_{\mathbb{R}_{\sigma}}$ are applicable to S ? Justify your answer!

Solution.

(a) Recall that a well-behaved selection function selects a negative literal, or all maximal literals in a clause.
In the first three clauses, a negative literal is selected. In the last clause, p is selected which is the (only) maximal literal due to $p \succ q$. Hence σ is well-behaved.
(b) No factoring inference is possible, because no positive literal appears more than once in any of the clauses. Binary resolution can only be performed on clauses where the resolved literal is selected. As such, there is only one possible inference (between the second and the clause):

$$
\frac{\underline{\neg p} \vee q \quad \underline{p} \vee q}{q \vee q}
$$

Problem 2.3. Give an example of a non-tautology ground clause with at least one selected literal so that this selection is not well-behaved for any ordering \succ. Justify your solution!

Solution.

Consider the following clause:

$$
p \vee \underline{p}
$$

Obviously p is maximal in this clause, for any ordering. There is one maximal literal which is not selected, hence the selection function is not well-behaved.

Problem 2.4. Let S be the set of clauses

$$
\neg q \vee r, \quad \neg p \vee q, \quad \neg r \vee \neg q, \quad \neg q \vee \neg p, \quad \neg p \vee \neg r, \quad \neg r \vee p, \quad r \vee q \vee p
$$

(a) Prove unsatisfiabiliy of S using BR.
(b) Formalize S in TPTP and prove its unsatisfiability using Vampire, by running Vampire with the additional option -av off.

First-Order Theorem Proving

Laura Kovács and Andrei Voronkov

Exercises

May 25-27, 2023

Lab Exercises for Lecture 3

Problem 3.1. Consider a KBO ordering \succ such that inverse \gg times by precedence. Consider the literal:

$$
\operatorname{inverse}(\operatorname{times}(x, y))=\operatorname{times}(\operatorname{inverse}(y), \text { inverse }(x)) .
$$

Compare, w.r.t \succ, the left- and right-hand side terms of the equality when:

- $\operatorname{weight}($ inverse $)=$ weigth $($ times $)=1$;

Solution:
As weight $($ inverse $)=$ weigth $($ times $)=1$, we have:

$$
\text { weight }(\operatorname{inverse}(\operatorname{times}(x, y)))=2+\operatorname{weight}(x)+\operatorname{weight}(y)
$$

and

$$
\text { weight }(\operatorname{times}(\operatorname{inverse}(y), \operatorname{inverse}(x)))=3+\text { weight }(y)+\operatorname{weight}(x) .
$$

Thus,

$$
\operatorname{times}(\operatorname{inverse}(y), \operatorname{inverse}(x)) \succ \operatorname{inverse}(\operatorname{times}(x, y)) .
$$

- $\operatorname{weight}($ inverse $)=0$ and weight $($ times $)=1$.

Solution:

Using the given weights of times and inverse, we have:

$$
\text { weight }(\operatorname{inverse}(\operatorname{times}(x, y))))=\operatorname{weight}(\operatorname{times}(\operatorname{inverse}(y), \operatorname{inverse}(x)))=1+\operatorname{weight}(x)+\operatorname{weight}(y) .
$$

Then by precedence, given that inverse \gg times, we conclude that:

$$
\text { inverse }(\operatorname{times}(x, y)) \succ \operatorname{times}(\text { inverse }(y), \text { inverse }(x)) \text {. }
$$

Problem 3.2. Let Σ be a signature containing only function symbols such that Σ contains at least one constant. Let \gg be a precedence relation on Σ and $w: \Sigma \rightarrow \mathbb{N}$ be a weight function compatible with \gg. Consider the (ground) Knuth-Bendix order \succ induced by \gg and w on the set of ground terms of Σ. Describe the set of ground terms that have the minimal weight wrt \succ.

Solution:

Every ground term of Σ that has the minimal weight wrt $\succ_{K B}$ is either:

- a constant $c \in \Sigma$ such that c has the minimal weight among the constants of Σ,
- or a term $f^{n}(c)$, with $n \neq 0$, where $c \in \Sigma$ is a constant of the minimal weight among the constants of Σ and $w(f)=0$.

Problem 3.3. Consider the set S of ground formulas:

$$
\begin{aligned}
& \{g(f(a))=a \vee g(f(b))=a, \\
& \quad f(a)=a, \\
& f(b) \neq f(b) \vee f(b)=a, \\
& g(a) \neq a\}
\end{aligned}
$$

Show that S is unsatisfiable by applying saturation on S using an inference process based on the ground superposition calculus $\mathbb{S u p}_{\succ, \sigma}$ (including the inference rules of binary resolution $\mathbb{B}_{\mathbb{R}_{\sigma}}$), where σ is a well-behaved selection function wrt \succ and:
(a) the ordering \succ is the KBO ordering generated by the precedence $f \gg a \gg g \gg b$ and the weight function w with $w(f)=0, w(b)=1, w(a)=2, w(g)=3$;
(b) the ordering \succ is the KBO ordering generated by the precedence $g \gg a \gg b \gg f$ and the weight function w with $w(g)=0, w(b)=1, w(f)=1, w(a)=3$.
Give details on what literals are selected and which terms are maximal.

Solution:

For clarity, we first number the clauses:

$$
\begin{aligned}
& \text { (1) } g(f(a))=a \vee g(f(b))=a \\
& \text { (2) } f(a)=a \\
& \text { (3) } f(b) \neq f(b) \vee f(b)=a \\
& \text { (4) } g(a) \neq a
\end{aligned}
$$

In the solution we mark selected literals by underlining them.
(a) The following literals are selected:
(1) $g(f(a))=a \vee g(f(b))=a \quad(\{g(f(a)), a\} \succ\{g(f(b)), a\}$ since $g(f(a)) \succ g(f(b))$ by weight $)$
(2) $f(a)=a$
(since it is the only literal in the clause)
(3) $\underline{f(b) \neq f(b)} \vee f(b)=a$ (since $f(b) \neq f(b)$ is negative)
(4) $\underline{g(a) \neq a}$
(since it is the only literal in the clause)
By equality resolution over (3), we get:

$$
\text { (5) } \underline{f(b)=a}
$$

Next, since $f(a) \succ a$ (by precedence) and $g(f(a)) \succ a$ (by weight), we apply superposition over (2) and (1), and get

$$
\text { (6) } \underline{g(a)=a} \vee g(f(b))=a \text {, }
$$

where $g(a)=a$ is selected since $g(a) \succ g(f(b))$ (by weight) and thus $\{g(a), a\} \succ\{g(f(b)), a\}$. We then apply binary resolution over (6) and (4):

$$
\text { (7) } \underline{g(f(b))=a}
$$

Next, since $a \succ f(b)$ (by weight) and $g(a) \succ a$ (by weight), we apply superposition over (4) and (5):

$$
\text { (8) } \underline{g(f(b)) \neq a}
$$

Finally, we apply binary resolution over (7) and (8):

> (9)

Hence, S is unsatisfiable.
(b) All steps of the solution (a) depended on the following comparisons between (bags of) terms: $\{g(f(a)), a\} \succ\{g(f(b)), a\}, \quad f(a) \succ a, g(f(a)) \succ a,\{g(a), a\} \succ\{g(f(b)), a\}, a \succ$ $f(b), g(a) \succ a$. However, all these comparisons hold also for the KBO generated by the precedence and the weight function from (b):

- from $g(f(a)) \succ g(f(b))$ by weight we get $\{g(f(a)), a\} \succ\{g(f(b)), a\}$,
- $f(a) \succ a$ by weight,
- $g(f(a)) \succ a$ by weight,
- from $g(a) \succ g(f(b))$ by weight it follows $\{g(a), a\} \succ\{g(f(b)), a\}$,
- $a \succ f(b)$ by weight,
- $g(a) \succ a$ by precedence.

Therefore the proof in (b) is the same as in (a).

Lab Exercises for Lecture 4

Problem 4.1. Apply the unification algorithm and show the most general unifier of the following atoms:
(a) $p(a, f(y), y)$ and $p(a, x, f(x))$;

Solution:

$$
\begin{array}{ll}
E=\{p(a, f(y), y)=p(a, x, f(x))\} & \Longrightarrow \\
E=\{a=a, \quad f(y)=x, \quad y=f(x)\} & \Longrightarrow \\
E=\{f(y)=x, \quad y=f(x)\} & \Longrightarrow \\
E=\{x=f(y), \quad y=f(x)\} & \Longrightarrow{ }_{x \rightarrow f(y)} \\
E=\{x=f(y), \quad y=f(f(y))\} & \Longrightarrow \text { Failure }
\end{array}
$$

(b) $p(f(x, a), f(f(b, a)))$ and $p(z, f(z))$;

Solution: Note that f occurs both as a unary and as a binary function. Hence, there are two possibilities to proceed:

- Report syntax error because one cannot use the same function name with different arities;
- Consider the unary and binary occurences of f as different functions. Use then f_{1} for the unary occurence of f and f_{2} for the binary function f. (Note: In Prolog, it is still possible to use the same function name with different arities.).
In this case, we have:

$$
\begin{aligned}
& E=\left\{p\left(f_{2}(x, a), f_{1}\left(f_{2}(b, a)\right)\right)=p\left(z, f_{1}(z)\right)\right\} \quad \Longrightarrow \\
& E=\left\{f_{2}(x, a)=z, \quad f_{1}\left(f_{2}(b, a)\right)=f_{1}(z)\right\} \quad \Longrightarrow \\
& E=\left\{z=f_{2}(x, a), \quad f_{1}\left(f_{2}(b, a)\right)=f_{1}(z)\right\} \quad \Longrightarrow z \rightarrow f_{2}(x, a) \\
& E=\left\{z=f_{2}(x, a), \quad f_{1}\left(f_{2}(b, a)\right)=f_{1}\left(f_{2}(x, a)\right)\right\} \quad \Longrightarrow \\
& E=\left\{z=f_{2}(x, a), \quad f_{2}(b, a)=f_{2}(x, a)\right\} \quad \Longrightarrow \\
& E=\left\{z=f_{2}(x, a), \quad b=x, \quad a=a\right\} \quad \Longrightarrow \\
& E=\left\{z=f_{2}(x, a), \quad x=b, \quad a=a\right\} \quad \Longrightarrow{ }_{x \rightarrow b} \\
& E=\left\{z=f_{2}(b, a), \quad x=b, \quad a=a\right\} \quad \Longrightarrow \\
& E=\left\{z=f_{2}(b, a), \quad x=b\right\} \quad \Longrightarrow \text { Success }
\end{aligned}
$$

The mgu in this case is $\left\{z \rightarrow f_{2}(b, a), x \rightarrow b\right\}$.
(c) $p(f(x, y), f(y, z))$ and $p(z, f(w, f(y, w)))$.

Solution:

$$
\begin{array}{ll}
E=\{p(f(x, y), f(y, z))=p(z, f(w, f(y, w)))\} & \Longrightarrow \\
E=\{f(x, y)=z, \quad f(y, z)=f(w, f(y, w))\} & \Longrightarrow \\
E=\{z=f(x, y), \quad f(y, z)=f(w, f(y, w))\} & \Longrightarrow z \rightarrow f(x, y) \\
E=\{z=f(x, y), \quad f(y, f(x, y)=f(w, f(y, w))\}\} & \Longrightarrow \\
E=\{z=f(x, y), \quad y=w, \quad f(x, y)=f(y, w)\} & \Longrightarrow y \rightarrow w \\
E=\{z=f(x, w), \quad y=w, \quad f(x, w), f(w, w)\}\} & \Longrightarrow \\
E=\{z=f(x, w), \quad y=w, \quad x=w, \quad w=w\} & \Longrightarrow x \rightarrow w \\
E=\{z=f(w, w), \quad y=w, \quad x=w, \quad w=w\} & \Longrightarrow \\
E=\{z=f(w, w), \quad y=w, \quad x=w\} \Longrightarrow \text { Success } & \Longrightarrow
\end{array}
$$

The mgu is:

$$
\{z \rightarrow f(w, w), y \rightarrow w, x \rightarrow w\}
$$

Note: x, y, z, w denote variables, f is a function symbol, p is a predicate symbol and a, b are constants.

Problem 4.2. Consider the following set S of clauses:

$$
\begin{aligned}
& \neg p(z, a) \vee \neg p(z, x) \vee \neg p(x, z) \\
& p(y, a) \vee p(y, f(y)) \\
& p(w, a) \vee p(f(w), w)
\end{aligned}
$$

where p is a predicate symbol, f is a function symbol, x, y, z, w are variables and a is a constant.
Give a refutation proof of S by using the non-ground binary resolution inference system $\mathbb{B} \mathbb{R}$. For each newly derived clause, label the clauses from which it was derived by which inference rule and indicate most general unifiers.

Solution:

For simplicity, we name the given clauses by numbers:
(1) $\neg p(z, a) \vee \neg p(z, x) \vee \neg p(x, z)$
(2) $p(y, a) \vee p(y, f(y))$
(3) $\quad p(w, a) \vee p(f(w), w)$

By negative factoring on (1), with the mgu $\{x \rightarrow a\}$, we get:

$$
\text { (4) } \neg p(z, a) \vee \neg p(a, z)
$$

By negative factoring on (4), with the mgu $\{z \rightarrow a\}$, we get:

$$
(5) \quad \neg p(a, a)
$$

By resolution on (5) and (2), with the mgu $\{y \rightarrow a\}$, we get:

$$
\text { (6) } \quad p(a, f(a))
$$

By resolution on (4) and (6), with the $\operatorname{mgu}\{z \rightarrow f(a)\}$, we get:

$$
\text { (7) } \quad \neg p(f(a), a)
$$

By resolution on (3) and (7), with the mgu $\{w \rightarrow a\}$, we get:

$$
\text { (8) } \quad p(a, a)
$$

By resolution on (5) and (8), we finally obtain the empty clause:

Hence, our input set S of clauses (1), (2) and (3) is unsatisfiable.

Problem 4.3. Let p denote a unary predicate symbol, f a unary function symbol, x, y variables and c a constant. Let C_{1} be the clause $p(x) \vee p(y)$ and consider C_{2} to be the clause $p(x)$. Further, let D denote the clause $p(f(c))$.
(a) Does C_{1} subsume D ?
(b) Does C_{2} subsume D ?

Justify your answers!

Solution:

(a) No. For C_{1} to subsume D, there must be a substitution θ such that $C_{1} \theta$ is a sub-multiset of D. However, since C_{1} has two literals, also $C_{1} \theta$ has two literals and therefore it cannot be a sub-multiset of D, which only has one literal.
(b) Yes. For $\theta=\{x \mapsto f(c)\}$, it holds that $C_{2} \theta$ is a sub-multiset of D.

Problem 4.4. Let x denote a variable, a, b, c constants, and f a unary function symbol.
Give a superposition refutation of the following set of two clauses:

$$
\left\{\begin{array}{l}
x=f(c) \\
a \neq b
\end{array}\right\}
$$

such that, in every inference, the premises and the conclusion of that inference do not use the symbols f, c together with the symbols a, b. That is, every inference has the following property: if the premise or the conclusion contain any of the symbols f, c, then the premise and the conclusion contain neither a nor b.
In your proof, use only the inference system of the superposition calculus $\mathbb{S u p}$ (without ordering and selection function); that is, no inferences of binary resolution $\mathbb{B} \mathbb{R}$ should be used. For each newly derived clause, clearly label the clauses from which it was derived and indicate most general unifiers.

Solution. Note that if we apply a rule to two clauses, we consider the variables in both clauses to be distinct, even if the two clauses are actually the same one. Therefore we when we apply can use superposition using $f(c)=x$, as both of the premises it is the same thing as applying it to the premises $f(c)=x$ and $f(c)=y$. This means we can do the following derivation:

1) $f(c)=x$ Axiom
2) $\quad a \neq b \quad$ Axiom
3) $\quad x=y \quad \operatorname{Superposition~using~(1),~and~(1),~} \sigma=\emptyset$
4) $\quad a \neq x \quad$ Superposition using (2), and (3), $\sigma=\{y \mapsto b\}$
5) $\quad \square \quad$ Equality resolution using (4), $\sigma=\{x \mapsto a\}$

Problem 4.5.

Let f be a unary and g be a binary function symbol. Further let a, b, c be constants, and x, y, z be variables. We define the weight function $w(s)=w(v)=1$, for every symbol s and variable v, and let $g \gg f \gg c \gg b \gg a$. Answer the following questions using a KBO with the weight function w and the precedence relation \gg to order terms, and its extension to compare literals and clauses.
(a) Do the clauses C_{1} and C_{2} make the clause C_{3} redundant?

$$
\begin{aligned}
& C_{1}: \quad a \neq b \vee f(a) \neq a \\
& C_{2}: \quad f(f(x))=a \\
& C_{3}: \quad f(f(b)) \neq b \vee f(a) \neq a
\end{aligned}
$$

(b) Does the clause C_{4} make the clause C_{5} redundant?

$$
\begin{array}{ll}
C_{4}: & f(g(x, a)) \neq f(y) \\
C_{5}: & f(g(x, z)) \neq f(g(y, b)) \vee f(g(x, b)) \neq f(g(a, b))
\end{array}
$$

(c) Does the clause C_{6} make the clause C_{7} redundant?

$$
\begin{aligned}
& C_{6}: g(x, y) \neq f(x) \\
& C_{7}: \\
& \hline
\end{aligned}
$$

Solution.

(a) No, because $C_{2}: f(f(x))=a$ is incomparable to $C_{3}: f(f(b)) \neq b \vee f(a) \neq a$.
(b) Yes, because $C_{4}: f(g(x, a)) \neq f(y)$ is unsat, and smaller than C_{5}.
(c) Yes because firstly we can rename the variable z to y in the second clause. This means, since $g(x, y) \neq f(x) \prec g(f(x), f(z)) \neq f(f(x))$, that $C_{6} \prec C_{7}$. Further $g(f(x), f(z)) \neq f(f(x))$ is an instance of $g(x, y) \neq f(x)$, which means that we C_{6} implies C_{7}.

Problem 4.6. Consider the following inference:

$$
\frac{x=f(c) \vee p(x) \quad f(h(b))=h(g(y, y)) \vee h(g(d, b)) \neq f(c)}{p(h(g(d, b))) \vee f(h(b))=h(g(y, y))}
$$

in the non-ground superposition inference system $\mathbb{S u p}$ (without the rules of the non-ground binary resolution inference system $\mathbb{B} \mathbb{R}$), where p is a predicate symbol, f, g, h are function symbols, b, c, d are constants, and x, y are variables.
(a) Prove that the above inference is a sound inference of Sup.
(b) Is the above inference a simplifying inference of Sup? Justify your answer.

Solution.

(a) Let M be a model of both assumptions of the rule:

$$
\begin{align*}
& M \models x=f(c) \vee p(x) \tag{1}\\
& M \models f(h(b))=h(g(y, y)) \vee h(g(d, b)) \neq f(c) \tag{2}
\end{align*}
$$

If $M \models f(h(b))=h(g(y, y))$, then the conclusion is obviously true in M. Otherwise due to (2) we know that it must be the case that $M \models h(g(d, b)) \neq f(c)$. This means due to (1) that $M \models p(g(d, b))$ must hold, which means that the conclusion is true in this case as well.
(b) We will call the left assumption C_{1} and the right assumption of the rule C_{2}, and the conclusion of the rule D.
In order for the rule to be a simplifying rule, it could either make C_{1}, or C_{2} redundant, so there are two cases to check.
Let's first have a look at whether C_{1} is being made redundant. In order for that to hold we would need to have that $C_{2}, D \models C_{1}$. This does not hold since the model M_{1} is a counterexample.

$$
\begin{aligned}
M_{1}(\top) & =\{\mathrm{a}, \mathrm{~b}\} \\
M_{1}(p) & =\emptyset \\
M_{1}(f)(x) & =\mathrm{a} \\
M_{1}(h)(x) & =\mathrm{a} \\
M_{1}(g)(x, y) & =\mathrm{a}
\end{aligned}
$$

(Note that by $M(T)$ we denote the domain of the model here.)
Similarly we can build a counterexample M_{2} for the statement $C_{1}, D \models C_{2}$.

$$
\begin{aligned}
M_{2}(p)=M_{2}(\mathrm{~T}) & =\{\mathrm{b}, \mathrm{c}, \mathrm{~d}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}\} \\
M_{2}(b) & =\mathrm{b} \\
M_{2}(c) & =\mathrm{c} \\
M_{2}(d) & =\mathrm{d} \\
M_{2}(f)(x) & = \begin{cases}\mathrm{h} & \text { if } x=\mathrm{c} \\
\mathrm{f} & \text { else }\end{cases} \\
M_{2}(g)(x, y) & =\mathrm{g} \\
M_{2}(h)(x) & =\mathrm{h}
\end{aligned}
$$

Problem 4.7. Recall that the inverse of the binary relation $r_{1}(x, y)$ is the binary relation $r_{2}(y, x)$ such that $r_{1}(x, y)$ if and only if $r_{2}(y, x)$.
Prove that the inverse of a dense order is also dense. For doing so, you are required to do the following steps:

- Formalize the problem in TPTP and prove it using Vampire.
- Explain the superposition reasoning part of the Vampire proof by detailing the superposition inferences, generated clauses and mgus in the poof. Use Vampire with the AVATAR option off, that is -av off.

Problem 4.8. Consider the group theory axiomatization used in the lecture. Prove that the group's left identity element e is also a right identity.

- Formalize the problem in TPTP and use it using Vampire, by running Vampire with the additional option-av off.
- Explain the superposition reasoning part of the Vampire proof by detailing the superposition inferences, generated clauses and mgus in the poof.

