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A Mathematical Proof of Program 
Correctness?

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Can you verify 

my program?

Which property 

are you 

interested in?



Example Questions in Verification

• Will the program crash?

• Does it compute the correct result?

• Does it leak private information?

• How long does it take to run?

• How much power does it consume?

• Will it turn off automated cruise control?



A Mathematical Proof of Program 
Correctness?

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

I just want to be sure that 

no element is lost in the 

list – if I insert an element, 

it is really there



A Mathematical Proof of Program 
Correctness?

//: L = data[root.next*]

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Let L be a set (a 

multiset) of all elements 

stored in the list …



A Mathematical Proof of Program 
Correctness?

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Annotations



Annotations

• Written by a programmer or a software analyst

• Added to the original program code to express properties that allow 
reasoning about the programs

• Examples:

 Preconditions:  

 Describe  properties of an input 

 Postconditions:

 Describe what the program is supposed to do

 Invariants:

 Describe properties that have to hold in every program point



Decision Procedures for Collections

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

} Prove that the following formula always 

holds:

∀ X. ∀ L. |X| = 1  | L ⊎ X | = |L| + 1 

Verification condition



Verification Conditions

• Mathematical formulas derived based on:

 Code

 Annotations

• If a verification condition always holds (valid), then to code is correct w.r.t. 
the given property

• It does not depend on the input variables

• If a verification condition does not hold, we should be able to detect an error 
in the code



Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

??

return y

}



Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:



Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Preconditions



Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Program



Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = 1

return y

}

∀ x. ∀ y. x > 0  y = 1  y > 0

Verification condition:

Postconditions



Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Formula does not hold for input x = 1



Automation of Verification

• Windows XP has approximately 45 millions 
lines of source code

 300.000 DIN A4 papers

 seven times my size high 

paper stack

Verification should be 

automated!!!



Software Verification

program

formulas

correct

no

theorem prover

annotations

verifier

Prove formulas 

automatically!



Decision Procedures

• A decision procedure is an algorithm which answers

whether the input formula is satisfiable or not
 formula          is satisfiable for x=0, y=1

 formula                               is unsatisfiable

formula in 

some logic 
theorem prover

satisfiable(model)

unsatisfiable (proof)

11  yxyx

yx 



Language Semantics



Formal Semantics of Java Programs

• The Java Language Specification (JLS) [link] gives semantics to Java 
programs

 The document has 780 pages.

 148 pages to define semantics of expression.

 42 pages to define semantics of method invocation.

• Semantics is only defined in prose.

 How can we make the semantics formal?

 We need a mathematical model of computation.

http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf


Semantics of Programming 
Languages
• Denotational Semantics

 Meaning of a program is defined as the mathematical object it computes (e.g., 
partial functions).

 Example: Abstract Interpretation

• Axiomatic Semantics

 Meaning of a program is defined in terms of its effect on the truth of logical 
assertions.

 Example: Hoare Logic

• (Structural) Operational Semantics

 Meaning of a program is defined by formalizing the individual computation steps of 
the program.

 Example: Labeled Transition Systems



IMP: A Simple Imperative Language
Before we move on to Java, we look at a simple imperative programming 
language IMP.

An IMP program:

p := 0;

x := 1;

while x ≤ n do

x := x + 1;

p := p + m;



IMP: Syntactic Entities

• n ∈ ℤ – integers

• true, false ∈ 𝔹 – Booleans

• x,y ∈ Vars – Program variables

• e ∈ Aexp – arithmetic expressions

• b ∈ Bexp – Boolean expressions

• c ∈ Com – commands



Syntax of Arithmetic Expressions

• Arithmetic expressions (Aexp)
e ::= n, for n ∈ ℤ

| x, for x ∈ Vars
| e1 + e2

| e1 – e2

| e1 * e2

• Notes:
 Variables are not declared before use.

 All variables have integer type.

 Expressions have no side-effects.



Syntax of Boolean Expressions
• Boolean expressions (Bexp)

b ::= true
| false
| e1 = e2 for e1, e2 ∈ Aexp
| e1 ≤ e2 for e1, e2 ∈ Aexp
| ¬b for b ∈ Bexp
| b1 ∧ b2 for b1, b2 ∈ Bexp
| b1 ∨ b2 for b1, b2 ∈ Bexp



Syntax of Commands
• Commands (Com)

c ::=  skip
| x := e
| c1 ; c2

| if b then c1 else c2

| while b do c

• Notes:
 The typing rules have been embedded in the syntax definition.

 Other parts are not context-free and need to be checked 
separately (e.g., all variables are declared).

 Commands contain all the side-effects in the language.

 Missing: references, function calls, …



A simple example

What do we need:

• Language in which we are writing programs

• Program execution and what does it mean 
“whenever the program is in the state”

• Language for annotation

• Combine all this somehow together

//: assume (x > 5)

def simple (Int x)

//: ensures y > 7

{

val y = x + 2

return y

}

We need to express / derive / prove: 

“whenever the program takes as input x, such 

that x > 5, and we execute the program, the 

resulting output y will satisfy that y > 7”

∀ x. ∀ y. x > 5  y = x + 2  y > 7



Meaning of IMP Programs

Questions to answer:

• What is the “meaning” of a given IMP expression/command?

• How would we evaluate IMP expressions and commands?

• How are the evaluator and the meaning related?

• How can we reason about the effect of a command?



Semantics of IMP
• The meaning of IMP expressions depends on the values of variables, i.e. 

the current state.

• A state at a given moment is represented as a function from Vars to ℤ

• The set of all states is Q = Vars → ℤ

• We use q to range over Q



A simple example

//: assume (x > 5)

def simple (Int x)

//: ensures y > 7

{

val y = x + 2

return y

}

X = 6, Y = 8X = 6, Y = 100

Starting state, preconditions are satisfied Ending state, postconditions are satisfied



Judgments
• We write <e, q> ⇓ n to mean that e evaluates to n in state q.

 The formula <e, q> ⇓ n is a judgment
(a statement about a relation between e, q and n)

 In this case, we can view ⇓ as a function of two arguments e and q

• This formulation is called natural operational semantics
 or big-step operational semantics

 the judgment relates the expression and its “meaning”

• How can we define <e1 + e2, q> ⇓ … ?



Inference Rules
• We express the evaluation rules as inference rules 
for our judgments.

• The rules are also called evaluation rules.

An inference rule

defines a relation between judgments F1,...,Fn and G.

• The judgments F1,...,Fn are the premises of the rule;

• The judgments G is the conclusion of the rule;

• The formula H is called the side condition of the rule.

If n=0 the rule is called an axiom. In this case, the line 
separating premises and conclusion may be omitted.

F1 ... Fn

G
where H



Inference Rules for Aexp
• In general, we have one rule per language 
construct:

• This is called structural operational semantics.
 rules are defined based on the structure of the 

expressions.

<n, q> ⇓ n <x, q> ⇓ q(x)

<e1 + e2, q> ⇓ (n1 + n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 – e2, q> ⇓ (n1 – n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 * e2, q> ⇓ (n1 * n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

Axiom



Inference Rules for Bexp
<true, q> ⇓ true <false, q> ⇓ false

<e1 = e2, q> ⇓ (n1 = n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 ≤ e2, q> ⇓ (n1 ≤ n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<b1 ∧ b2, q> ⇓ (t1 ∧ t2)

<b1, q> ⇓ t1 <b2, q> ⇓ t2



How to Read Inference Rules?
• Forward, as derivation rules of judgments

 if we know that the judgments in the premise hold then we can infer that the 
conclusion judgment also holds.

 Example:

<2 * 3, q> ⇓ 6 

<2, q> ⇓ 2 <3, q> ⇓ 3 



How to Read Inference Rules?
• Backward, as evaluation rules:

 Suppose we want to evaluate e1 + e2, i.e., find n s.t. e1 + e2 ⇓ n is derivable 
using the previous rules.

 By inspection of the rules we notice that the last step in the derivation of 
e1 + e2 ⇓ n must be the addition rule.

 The other rules have conclusions that would not match e1 + e2 ⇓ n.

• This is called reasoning by inversion on the derivation rules.
 Thus we must find n1 and n2 such that e1 ⇓ n1 and e2 ⇓ n2 are derivable.

 This is done recursively.

• Since there is exactly one rule for each kind of expression, 
we say that the rules are syntax-directed.
 At each step at most one rule applies.

 This allows a simple evaluation procedure as above.



How to Read Inference Rules?
• Example: evaluation of an arithmetic expression via reasoning  by inversion:

<x + (2 * y), {x  3, y  2}> ⇓ ? 

<x, {x  3, y  2}> ⇓ 3 <2 * y, {x  3, y  2}> ⇓ ? 

<2, {x  3, y  2}> ⇓ 2 

<y, {x  3, y  2}> ⇓ 2 

7

4



Semantics of Commands

• The evaluation of a command in Com has side-
effects, but no direct result.

• The “result” of a command c in a pre-state q is a 
transition from q to a post-state q’:

q → q’

• We can formalize this in terms of transition 
systems.

c



Labeled Transition Systems

A labeled transition system (LTS) is a 
structure 
LTS = (Q, Act, →) where
Q is a set of states,

Act is a set of actions,

 → ⊆ Q × Act × Q is a transition relation.

We write  q → q’ for  (q, a, q’) ∈ →.
a



q           q ++ {x  n}x := e

Inference Rules for Transitions
<e, q> ⇓ n

q           qskip

q           q’’
c1 ; c2 

q           q’c1 q’          q’’c2 

q                         q’
if b then c1 else c2

<b, q> ⇓ true q           q’
c1 

q                         q’
if b then c1 else c2

<b, q> ⇓ false q           q’
c2 

q                             q’’while b do c

<b, q> ⇓ true q           q’
c

q                             qwhile b do c

<b, q> ⇓ false

q’                             q’’while b do c



Axiomatic Semantics



Axiomatic Semantics
• An axiomatic semantics consists of:

 a language for stating assertions about programs;

 rules for establishing the truth of assertions.

• Some typical kinds of assertions:

 This program terminates.

 If this program terminates, the variables x and y have the same value throughout 
the execution of the program.

 The array accesses are within the array bounds.

• Some typical languages of assertions

 First-order logic

 Other logics (temporal, linear)

 Special-purpose specification languages (Z, Larch, JML)



Assertions for IMP
• The assertions we make about IMP programs are of the 

form:
{A} c {B}

with the meaning that:
 If A holds in state q , and q → q’

 then B holds in q’

• A is the precondition and B is the postcondition

• For example:
{ y ≤ x } z := x; z := z + 1 { y < z }

is a valid assertion

• These are called Hoare triples or Hoare assertions

c



Assertions for IMP

• {A} c {B} is a partial correctness assertion. It does not 
imply termination of c.

• [A] c [B] is a total correctness assertion meaning that
 If A holds in state q

 then there exists q’ such that q → q’
and B holds in state q’

• Now let’s be more formal
 Formalize the language of assertions, A and B

 Say when an assertion holds in a state

 Give rules for deriving valid Hoare triples

c



The Assertion Language
• We use first-order predicate logic with IMP 
expressions

A :: = true | false | e1 = e2 | e1 ≥ e2

| A1 ∧ A2 | A1 ∨ A2 | A1 ⇒ A2 | ∀x.A | ∃x.A

• Note that we are somewhat sloppy and mix the 
logical variables and the program variables.

• Implicitly, all IMP variables range over integers.

• All IMP Boolean expressions are also assertions.



Semantics of Assertions

• We introduced a language of assertions, we need to assign 
meanings to assertions.

• Notation q ⊨ A says that assertion A holds in a given state q.
 This is well-defined when q is defined on all variables occurring in A.

• The ⊨ judgment is defined inductively on the structure of 
assertions.

• Notation ⊨ A says that assertion A holds in any state, ie. it is 
always true.

• It relies on the semantics of arithmetic expressions from 
IMP.



Semantics of Assertions
• q ⊨ true always

• q ⊨ e1 = e2 iff <e1,q>⇓ = <e2,q>⇓

• q ⊨ e1 ≥ e2 iff <e1,q>⇓ ≥ <e2,q>⇓

• q ⊨ A1 ∧ A2 iff q ⊨ A1 and q ⊨ A2

• q ⊨ A1 ∨ A2 iff q ⊨ A1 or q ⊨ A2

• q ⊨ A1 ⇒ A2 iff q ⊨ A1 implies q ⊨ A2

• q ⊨ ∀x.A iff  ∀n ∈ ℤ. q[x:=n] ⊨ A

• q ⊨ ∃x.A iff ∃n ∈ ℤ. q[x:=n] ⊨ A



Semantics of Hoare Triples

• We can define formally the meaning of a partial correctness 
assertion:

⊨ {A} c {B} iff ∀q ∈ Q. ∀q’ ∈ Q. q ⊨ A ∧ q → q’ ⇒ q’ ⊨ B

• and the meaning of a total correctness assertion:

⊨[A] c [B] iff ∀q∈Q. q ⊨ A ⇒ ∃q’∈Q. q → q’ ∧ q’ ⊨ B

c

c

q – a state, defines values of variables

{A} c {B} – a Hoare tripe, it is either true or false

q ⊨ F – in state q, formula F holds



Semantics of Hoare Triples

• We can define formally the meaning of a partial correctness 
assertion:

⊨ {A} c {B} iff ∀q ∈ Q. ∀q’ ∈ Q. q ⊨ A ∧ q → q’ ⇒ q’ ⊨ B

• and the meaning of a total correctness assertion:

⊨[A] c [B] iff ∀q∈Q. q ⊨ A ⇒ ∃q’∈Q. q → q’ ∧ q’ ⊨ B

c

c

Great result: we now formally can 

describe that a program is correct



Inferring Validity of Assertions

• Now we have the formal mechanism to decide when {A} c {B}
 But it is not satisfactory,

 because ⊨ {A} c {B} is defined in terms of the operational semantics.

 We practically have to run the program to verify an assertion.

 Also it is impossible to effectively verify the truth of a
∀x. A assertion (by using the definition of validity)

• So we define a symbolic technique for deriving valid assertions 
from others that are known to be valid
 We start with validity of first-order formulas



Now that we know what correctness 
means, what’s next?
• By now we can express formally: if a program is in the state where 

preconditions hold, and we execute the program, we will end up in the state 
where postconditions hold

• For example, a formula {x > 0} x:=x+2 {x > 2} is a correct Hoare triple and we 
can prove that by hand

• However, it is a manual work, therefore error-prone

• Goal: automatize the process of proving program correctness as much as 
possible

• End goal: develop a “push-the-button” tool for proving program correctness 
(something like a your own mini Dafny)



Natural Deduction 

• Inference system introduces in 1934 in (Gentzen
1934, Jaśkowski 1934)

• The goal is to have a system that can 
automatically prove theorems in mathematics

• More reading:
 https://www.iep.utm.edu/nat-ded/ (at Internet Encyclopedia 

of Philosophy)

https://www.iep.utm.edu/nat-ded/


⊢ A[e/x] 

Inference Rules

• We write ⊢ A when A can be inferred from basic axioms.

• The inference rules for ⊢ A are the usual ones from first-order 
logic with arithmetic (examples)

• Natural deduction style rules:

⊢ A ∧ B

⊢A        ⊢ B

⊢ A ∨ B

⊢ A

⊢ A ∨ B

⊢ B

⊢ ∀x. A

⊢ A[a/x] where 

a is fresh

⊢ ∀x. A

⊢ A[e/x] 

⊢ ∃x. A ⊢ B

⊢ ∃x. A   ⊢ B

⊢ A ⇒ B

⊢ B

⊢ B

⊢ A ⇒ B    ⊢ A

⊢ A[a/x] 
...

where 

a is fresh

[⊢ A] 
...

https://leanprover.github.io/logic_and_proof/natural_deduction_for_propositional_logic.html


Inference Rules for Hoare Logic

• One rule for each syntactic construct:                                                                                                                            

⊢ {A} skip {A} ⊢ {A[e/x]} x:=e {A}                                         

⊢ {A} if b then c1 else c2 {B}

⊢ {A ∧ b} c1 {B}     ⊢ {A ∧ ¬b} c2 {B}

⊢ {A} c1; c2 {C}

⊢ {A} c1 {B}     ⊢ {B} c2 {C}

⊢ {I} while b do c {I ∧ ¬b}

⊢ {I ∧ b} c {I} 



Inference Rules for Hoare Logic

• One rule for each syntactic construct:                                                                                                                            

⊢ {A} skip {A} ⊢ {A[e/x]} x:=e {A}                                         

⊢ {A} if b then c1 else c2 {B}

⊢ {A ∧ b} c1 {B}     ⊢ {A ∧ ¬b} c2 {B}

⊢ {A} c1; c2 {C}

⊢ {A} c1 {B}     ⊢ {B} c2 {C}

⊢ {I} while b do c {I ∧ ¬b}

⊢ {I ∧ b} c {I} 



Loop Invariants
• I is a loop invariant if the following three conditions hold:

 I holds initially in all states satisfying Pre, when 
execution reaches loop entry, I holds 

 I is preserved: if we assume I and loop condition (b), 
we can prove that I will hold again after executing the 
loop body

 I is strong enough: if we assume I and the negation of 
loop condition b, we can prove that Post holds after the 
loop execution



Inference Rules for Hoare Triples

• Similarly we write ⊢ {A} c {B} when we can derive 
the triple using inference rules

• There is one inference rule for each command in 
the language.

• Plus, the rule of consequence

⊢ A’ ⇒ A  ⊢ {A} c {B} ⊢ B ⇒ B’
⊢ {A’} c {B’}



Hoare Logic: Summary
• We have a language for asserting properties of programs.

• We know when such an assertion is true.

• We also have a symbolic method for deriving assertions.

A

{A} P {B}
⊨ A

⊨ {A} P {B}

⊢ A

⊢ {A} P {B}

semantics

soundness

completenesstheorem proving

⊨ {A} P {B} is a valid statement 

(i.e. always true)

q ⊨ x > 0  “models”

⊢ A  “we can prove A”

q ⊢ A  makes no sense



Hoare Rules
• For some constructs, multiple rules are 
possible

alternative “forward axiom” for assignment:

alternative rule for while loops:

• These alternative rules are derivable from the 
previous rules, plus the rule of consequence.

⊢ {A} x:=e {∃x0. x0 = e ∧ A[x0/x]}

⊢ {I} while b do c {B}

⊢ {C} c {I} ⊢ I ∧ b ⇒ C ⊢ I ∧ ¬b ⇒ B 



Exercise: Hoare Rules

• Is the following alternative rule for assignment 
still correct?

⊢ {true} x:=e {x = e}



Example: Conditional

D1 :: ⊢ {true ∧ y ≤ 0} x := 1 {x > 0}

D2 :: ⊢ {true ∧ y > 0} x := y {x > 0}

⊢ {true} if y ≤ 0 then x := 1 else x := y {x > 0}

• D1 is obtained by consequence and assignment

⊢ true ∧ y ≤ 0 ⇒ 1 ≥ 0 ⊢ {1 ≥ 0} x := 1 {x ≥ 0}
⊢ {true ∧ y ≤ 0} x := 1 {x ≥ 0}

• D2 is also obtained by consequence and assignment

⊢ true ∧ y > 0 ⇒ y > 0 ⊢ {y > 0} x := y {x > 0}
⊢ {true ∧ y > 0} x := y {x > 0}



Example: a simple loop 

• We want to infer that
⊢ {x ≤ 0} while x ≤ 5 do x := x + 1 {x = 6}

• Use the rule for while with invariant I ≡ x ≤ 6

⊢ x ≤ 6 ∧ x ≤ 5 ⇒ x + 1 ≤ 6      ⊢ {x + 1 ≤ 6} x := x + 1 {x ≤ 6}
⊢ {x ≤ 6 ∧ x ≤ 5} x := x + 1 {x ≤ 6}

⊢ {x ≤ 6} while x ≤ 5 do x := x + 1 { x ≤ 6 ∧ x > 5}

• Then finish-off with the rule of consequence
⊢ x ≤ 0 ⇒ x ≤ 6 
⊢ x ≤ 6 ∧ x > 5 ⇒ x = 6      ⊢ {x ≤ 6} while ... {x ≤ 6 ∧ x > 5}

⊢ {x ≤ 0} while ... {x = 6}



Example: a more interesting program
• We want to derive that

{n ≥ 0}

p := 0; 

x := 0;

while x < n do 

x := x + 1; 

p := p + m

{p = n * m}



Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

Only applicable rule (except for rule of consequence):

⊢ {A} c1; c2 {B} 

⊢ {A} c1{C} ⊢ {C} c2 {B} 

c1 c2 BA

⊢{C} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {C}



Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

What is C?

⊢{C} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {C}

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

⊢ {I} while b do c {I ∧ ¬b}

⊢ {I ∧ b} c {I}

We can match {I} with {C} but we cannot match {I ∧ ¬b}

and {p = n * m} directly. Need to apply the rule of 

consequence first!

c1
c2 BA



Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

What is C?

B’A’

⊢{C} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {C}

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

⊢ {I} while b do c {I ∧ ¬b}

⊢ {I ∧ b} c {I}

⊢ A’ ⇒ A ⊢ {A} c’ {B} ⊢ B ⇒ B’

⊢ {A’} c’ {B’}

Rule of consequence:

c’

c’A B

I = A = A’ = C



Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

What is I?

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

Let’s keep it as a placeholder for now!

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

⊢{I ∧ x<n} x := x+1; p:=p+m {I}

Next applicable rule:

⊢ {A} c1; c2 {B} 

⊢ {A} c1{C} ⊢ {C} c2 {B} 

BA c1 c2



Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

⊢{I ∧ x<n} x := x+1; p:=p+m {I}

BA c1 c2

⊢{I ∧ x<n} x := x+1 {C} 

What is C?Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

⊢ {A[e/x]} x:=e {A}

⊢{C} p:=p+m {I}



Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

What is C?Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

⊢ {A[e/x]} x:=e {A}

⊢{I[p+m/p]} p:=p+m {I}

⊢{I ∧ x<n} x:=x+1; p:=p+m {I}

⊢{I ∧ x<n} x:=x+1 {I[p+m/p]} 



Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

⊢{I ∧ x<n} x:=x+1; p:=p+m {I}

⊢{I ∧ x<n} x:=x+1 {I[p+m/p]} 

Only applicable rule (except for rule of consequence):

⊢ {A[e/x]} x:=e {A}

⊢{I[p+m/p} p:=p+m {I}

Need rule of consequence to match {I ∧ x<n} and {I[x+1/x, p+m/p]}



Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

⊢{I ∧ x<n} x:=x+1; p:=p+m {I}

⊢{I ∧ x<n} x:=x+1 {I[p+m/p]} ⊢{I[p+m/p} p:=p+m {I}

⊢ I ∧ x < n ⇒ I[x+1/x, p+m/p]

⊢{I[x+1/x, p+m/p]} x:=x+1 {I[p+m/p]} 

Let’s just remember the open proof obligations!

...



Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m} 

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢ I ∧ x < n ⇒ I[x+1/x, p+m/p]

Let’s just remember the open proof obligations!

...

Continue with the remaining part of the proof tree, as before.

⊢ {I[0/x]} x:=0 {I}

⊢ {n ≥ 0} p:=0 {I[0/x]}

⊢ {I[0/p, 0/x]} p:=0 {I[0/x]}

⊢ n ≥ 0 ⇒ I[0/p, 0/x] Now we only need to solve the 

remaining constraints!



Example: a more interesting program

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢ I ∧ x < n ⇒ I[x+1/x, p+m/p]

Find I such that all constraints are simultaneously valid:

⊢ n ≥ 0 ⇒ I[0/p, 0/x]

I ≡ p = x * m ∧ x ≤ n

⊢ p = x * m ∧ x ≤ n ∧ x ≥ n ⇒ p = n * m

⊢ p = x * m ∧ x ≤ n ∧ x < n ⇒ p+m = (x+1) * m ∧ x+1 ≤ n

⊢ n ≥ 0 ⇒ 0 = 0 * m ∧ 0 ≤ n

All constraints are valid!



Another example: check if a number 
is prime

{n ≥ 2} 

p := 1; 

i := 2;

while i < n do 

if (n mod i = 0) then p := 0; 

i := i + 1;

{p = 1 ⇒ 𝑝𝑟𝑖𝑚𝑒(𝑛)}



Another example: check if a number 
is prime

{n ≥ 2} 

p := 1; 

i := 2;

while i < n do 

if (n mod i = 0) then p := 0; 

i := i + 1;

{p = 1 ⇒ ∀𝑘. (2 ≤ 𝑘 ∧ k < n ⇒ n mod k ≠ 0)}



Another example: check if a number 
is prime

{n ≥ 2} 

p := 1; 

i := 2;

while i < n do 

if (n mod i = 0) then p := 0; 

i := i + 1;

{p = 1 ⇒ 𝑝𝑟𝑖𝑚𝑒(𝑛)}

Invariant:
I ≡ (p = 1 ⇒ prime(n)) ∧ i ≤ n



Using Hoare Rules

• Hoare rules are mostly syntax directed

• There are three obstacles to automation of Hoare logic 
proofs:
 When to apply the rule of consequence?

 What invariant to use for while?

 How do you prove the implications involved in the rule of 
consequence?

• The last one is how theorem proving gets in the picture
 This turns out to be doable!

 The loop invariants turn out to be the hardest problem!

 Should the programmer give them?



Computing VC



Verification Condition Generation

• Idea for VC generation: propagate the post-
condition backwards through the program:
 From {A} P {B}  

 Generate formula A ⇒ F(P, B), where F(P, B) is a 
formula describing the starting states for program to 
end in B

• This backwards propagation F(P, B) can be formalized in 
terms of weakest preconditions.



Weakest Preconditions
• The weakest precondition WP(c,B) holds for any 
state q whose c-successor states all satisfy B:

q ⊨ WP(c,B)   iff ∀q’∈Q. q → q’ ⇒ q’ ⊨ B

• Compute WP(P,B) recursively according to the 
structure of the program P.

BWP(c,B)

q q’ q’’

c
c

c

c



Loop-Free Guarded Commands

• Introduce loop-free guarded commands as an 
intermediate representation of the verification 
condition

• c ::=  assume b
| assert b
| havoc x
| c1 ; c2

| c1  c2

https://slang.soe.ucsc.edu/cormac/papers/popl01.pdf


From Programs to Guarded 
Commands

• GC(skip) = 

assume true

• GC(x := e) = 

assume tmp = x; havoc x; assume (x = e[tmp/x])

• GC(c1 ; c2) = 
GC(c1) ; GC(c2)

• GC(if b then c1 else c2) = ?
(assume b; GC(c1))  (assume ¬b; GC(c2))

• GC({I} while b do c) = ?

where tmp is fresh



From Programs to Guarded 
Commands

• GC(skip) = 

assume true

• GC(x := e) = 

assume tmp = x; havoc x; assume (x = e[tmp/x])

• GC(c1 ; c2) = 
GC(c1) ; GC(c2)

• GC(if b then c1 else c2) = 
(assume b; GC(c1))  (assume ¬b; GC(c2))

• GC({I} while b do c) = ?

where tmp is fresh



Guarded Commands for Loops

• GC({I} while b do c) =
assert I;

havoc x1; ...; havoc xn;
assume I;
(assume b; GC(c); assert I; assume false) 

assume ¬b

where x1, ..., xn are the variables modified in c



Example: VC Generation
{n ≥ 0} 

p := 0; 

x := 0;

{p = x * m ∧ x ≤ n}

while x < n do 

x := x + 1; 

p := p + m

{p = n * m}



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

{ n ≥ 0 }

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n;

(assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ∧ x ≤ n; assume false) 

 assume x ≥ n;

{ p = n * m }

• Computing the guarded command

Example: VC Generation



Computing Weakest Preconditions

• WP(assume b, B) = b ⇒ B

• WP(assert b, B) = b ∧ B

• WP(havoc x, B) = B[a/x] (a fresh in B)

• WP(c1;c2, B) = WP(c1, WP(c2, B))

• WP(c1  c2,B) = WP(c1, B) ∧ WP(c2, B)



Putting Everything Together

• Given a Hoare triple H ⊢ {A} P {B}

• Compute cH = assume A; GC(P); assert B

• Compute VCH = WP(cH, true)

• Check ⊢VCH using a theorem prover.



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n;

(assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ∧ x ≤ n; assume false) 

 assume x ≥ n;

assert p = n * m, true)

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n;

(assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ∧ x ≤ n; assume false) 

 assume x ≥ n,  p = n * m)

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,       
WP ((assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ∧ x ≤ n; assume false) 

 assume x ≥ n,  p = n * m))

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ∧ x ≤ n; assume false, p = n * m)

∧ WP (assume x ≥ n,  p = n * m))

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ∧ x ≤ n; assume false, p = n * m)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ∧ x ≤ n, WP ( assume false, p = n * m)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

WP ( assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n; 

assume x1 = x; havoc x; assume x = x1 + 1; 
assume p1 = p; havoc p; assume p = p1 + m; 
assert p = x * m ∧ x ≤ n, false ⇒ p = n * m)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation



assume n ¸ 0;

GC( p := 0; 

x := 1;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

GC( x := 0;

{p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

GC( {p = x * m Æ x · n}

while x < n do 

x := x + 1; 

p := p + m  );

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0; 

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n; 
GC( x := x + 1; 

p := p + m); 
assert p = x * m Æ x · n; assume false) 

 assume x ¸ n;

assert p = n * m
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n ≥ 0 ∧ p0 = p ∧ pa3 = 0 ∧ x0 = x ∧ xa3 = 0 ⇒ pa3 = xa3 * 

m ∧ xa3 ≤ n ∧

(pa2 = xa2 * m ∧ xa2 ≤ n ⇒

((xa2 < n ∧ x1 = xa2 ∧ xa1 = x1 + 1 ∧
p1 = pa2 ∧ pa1 = p1 + m) ⇒ pa1 = xa1 * m ∧

xa1 ≤ n)
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• The resulting VC is equivalent to the conjunction of the 
following implications
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n ≥ 0 ∧ p0 = p ∧ pa3 = 0 ∧ x0 = x ∧ xa3 = 0 ⇒
pa3 = xa3 * m ∧ xa3 ≤ n 

n ≥ 0 ∧ p0 = p ∧ pa3 = 0 ∧ x0 = x ∧ xa3 = 0 ∧ pa2 = xa2 * m ∧

xa2 ≤ n ⇒

xa2 ≥ n ⇒ pa2 = n * m

n ≥ 0 ∧ p0 = p ∧ pa3 = 0 ∧ x0 = x ∧ xa3 = 0 ∧ pa2 = xa2 * m ∧ xa2 < n

∧ x1 = xa2 ∧ xa1 = x1 + 1 ∧ p1 = pa2 ∧ pa1 = p1 + m ⇒

pa1 = xa1 * m ∧ xa1 ≤ n



• simplifying the constraints yields

• all of these implications are valid, which proves that 
the original Hoare triple was valid, too.
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n ≥ 0 ⇒ 0 = 0 * m ∧ 0 ≤ n

xa2 ≤ n ∧ xa2 ≥ n ⇒ xa2 * m = n * m

xa2 < n ⇒ xa2 * m + m = (xa2 + 1) * m ∧ xa2 + 1 ≤ n



Translating Method Calls to GCs
method m (p1: T_1, ..., pk: Tk) returns (r: T)

requires P

modifies x1, ..., xn

ensures Q

A method call 

y := m(y1, ..., yk);

is desugared into the guarded command

assert P[y1/p1, ..., yk/pk];

havoc x1; ..., havoc xn; havoc y;

assume Q[y1/p1, ..., yk/pk, y/r]





Software Verification

program

formulas

correct

no

theorem prover

annotations

VCG



Adding arrays to language
• Given command: a[i] := v

• In array theory a := write(a, i, v)

• GC: assume tmp = a; havoc a; assume (a = write(tmp, i, v))

WP(GC, F) = WP(assume tmp = a; havoc a; assume (a = write(tmp, i, v)), F)

= WP(assume tmp = a; havoc a; a = write(tmp, i, v) ⇒ F)

= WP(assume tmp = a; af = write(tmp, i, v) ⇒ F[af/a])

= tmp = a ⇒ af = write(tmp, i, v) ⇒ F[af/a]

= tmp = a  af = write(tmp, i, v) ⇒ F[af/a]

= af = write(a, i, v) ⇒ F[af/a] Disclaimer: you need to learn a theory of 

arrays first



What we have learned so far

• Hoare logic reduces program verification to 
proving the validity of verification conditions 
expressed as statements in some assertion logic

• The actual verification process can be completely 
mechanized modulo

1. inference of loop invariants / procedure contracts

2. the actual validity checking of the generated VCs


