
SMT-based Verification of
Heap-manipulating
Programs
Ruzica Piskac

Eleventh SRI Summer School on Formal Techniques

May 30 - June 5, 2022

A Mathematical Proof of Program
Correctness?

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Can you verify

my program?

Which property

are you

interested in?

Example Questions in Verification

• Will the program crash?

• Does it compute the correct result?

• Does it leak private information?

• How long does it take to run?

• How much power does it consume?

• Will it turn off automated cruise control?

A Mathematical Proof of Program
Correctness?

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

I just want to be sure that

no element is lost in the

list – if I insert an element,

it is really there

A Mathematical Proof of Program
Correctness?

//: L = data[root.next*]

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Let L be a set (a

multiset) of all elements

stored in the list …

A Mathematical Proof of Program
Correctness?

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Annotations

Annotations

• Written by a programmer or a software analyst

• Added to the original program code to express properties that allow
reasoning about the programs

• Examples:

 Preconditions:

 Describe properties of an input

 Postconditions:

 Describe what the program is supposed to do

 Invariants:

 Describe properties that have to hold in every program point

Decision Procedures for Collections

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

} Prove that the following formula always

holds:

∀ X. ∀ L. |X| = 1  | L ⊎ X | = |L| + 1

Verification condition

Verification Conditions

• Mathematical formulas derived based on:

 Code

 Annotations

• If a verification condition always holds (valid), then to code is correct w.r.t.
the given property

• It does not depend on the input variables

• If a verification condition does not hold, we should be able to detect an error
in the code

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

??

return y

}

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Preconditions

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Program

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = 1

return y

}

∀ x. ∀ y. x > 0  y = 1  y > 0

Verification condition:

Postconditions

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0  y = x - 2  y > 0

Verification condition:

Formula does not hold for input x = 1

Automation of Verification

• Windows XP has approximately 45 millions
lines of source code

 300.000 DIN A4 papers

 seven times my size high

paper stack

Verification should be

automated!!!

Software Verification

program

formulas

correct

no

theorem prover

annotations

verifier

Prove formulas

automatically!

Decision Procedures

• A decision procedure is an algorithm which answers

whether the input formula is satisfiable or not
 formula is satisfiable for x=0, y=1

 formula is unsatisfiable

formula in

some logic
theorem prover

satisfiable(model)

unsatisfiable (proof)

11  yxyx

yx 

Language Semantics

Formal Semantics of Java Programs

• The Java Language Specification (JLS) [link] gives semantics to Java
programs

 The document has 780 pages.

 148 pages to define semantics of expression.

 42 pages to define semantics of method invocation.

• Semantics is only defined in prose.

 How can we make the semantics formal?

 We need a mathematical model of computation.

http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf

Semantics of Programming
Languages
• Denotational Semantics

 Meaning of a program is defined as the mathematical object it computes (e.g.,
partial functions).

 Example: Abstract Interpretation

• Axiomatic Semantics

 Meaning of a program is defined in terms of its effect on the truth of logical
assertions.

 Example: Hoare Logic

• (Structural) Operational Semantics

 Meaning of a program is defined by formalizing the individual computation steps of
the program.

 Example: Labeled Transition Systems

IMP: A Simple Imperative Language
Before we move on to Java, we look at a simple imperative programming
language IMP.

An IMP program:

p := 0;

x := 1;

while x ≤ n do

x := x + 1;

p := p + m;

IMP: Syntactic Entities

• n ∈ ℤ – integers

• true, false ∈ 𝔹 – Booleans

• x,y ∈ Vars – Program variables

• e ∈ Aexp – arithmetic expressions

• b ∈ Bexp – Boolean expressions

• c ∈ Com – commands

Syntax of Arithmetic Expressions

• Arithmetic expressions (Aexp)
e ::= n, for n ∈ ℤ

| x, for x ∈ Vars
| e1 + e2

| e1 – e2

| e1 * e2

• Notes:
 Variables are not declared before use.

 All variables have integer type.

 Expressions have no side-effects.

Syntax of Boolean Expressions
• Boolean expressions (Bexp)

b ::= true
| false
| e1 = e2 for e1, e2 ∈ Aexp
| e1 ≤ e2 for e1, e2 ∈ Aexp
| ¬b for b ∈ Bexp
| b1 ∧ b2 for b1, b2 ∈ Bexp
| b1 ∨ b2 for b1, b2 ∈ Bexp

Syntax of Commands
• Commands (Com)

c ::= skip
| x := e
| c1 ; c2

| if b then c1 else c2

| while b do c

• Notes:
 The typing rules have been embedded in the syntax definition.

 Other parts are not context-free and need to be checked
separately (e.g., all variables are declared).

 Commands contain all the side-effects in the language.

 Missing: references, function calls, …

A simple example

What do we need:

• Language in which we are writing programs

• Program execution and what does it mean
“whenever the program is in the state”

• Language for annotation

• Combine all this somehow together

//: assume (x > 5)

def simple (Int x)

//: ensures y > 7

{

val y = x + 2

return y

}

We need to express / derive / prove:

“whenever the program takes as input x, such

that x > 5, and we execute the program, the

resulting output y will satisfy that y > 7”

∀ x. ∀ y. x > 5  y = x + 2  y > 7

Meaning of IMP Programs

Questions to answer:

• What is the “meaning” of a given IMP expression/command?

• How would we evaluate IMP expressions and commands?

• How are the evaluator and the meaning related?

• How can we reason about the effect of a command?

Semantics of IMP
• The meaning of IMP expressions depends on the values of variables, i.e.

the current state.

• A state at a given moment is represented as a function from Vars to ℤ

• The set of all states is Q = Vars → ℤ

• We use q to range over Q

A simple example

//: assume (x > 5)

def simple (Int x)

//: ensures y > 7

{

val y = x + 2

return y

}

X = 6, Y = 8X = 6, Y = 100

Starting state, preconditions are satisfied Ending state, postconditions are satisfied

Judgments
• We write <e, q> ⇓ n to mean that e evaluates to n in state q.

 The formula <e, q> ⇓ n is a judgment
(a statement about a relation between e, q and n)

 In this case, we can view ⇓ as a function of two arguments e and q

• This formulation is called natural operational semantics
 or big-step operational semantics

 the judgment relates the expression and its “meaning”

• How can we define <e1 + e2, q> ⇓ … ?

Inference Rules
• We express the evaluation rules as inference rules
for our judgments.

• The rules are also called evaluation rules.

An inference rule

defines a relation between judgments F1,...,Fn and G.

• The judgments F1,...,Fn are the premises of the rule;

• The judgments G is the conclusion of the rule;

• The formula H is called the side condition of the rule.

If n=0 the rule is called an axiom. In this case, the line
separating premises and conclusion may be omitted.

F1 ... Fn

G
where H

Inference Rules for Aexp
• In general, we have one rule per language
construct:

• This is called structural operational semantics.
 rules are defined based on the structure of the

expressions.

<n, q> ⇓ n <x, q> ⇓ q(x)

<e1 + e2, q> ⇓ (n1 + n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 – e2, q> ⇓ (n1 – n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 * e2, q> ⇓ (n1 * n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

Axiom

Inference Rules for Bexp
<true, q> ⇓ true <false, q> ⇓ false

<e1 = e2, q> ⇓ (n1 = n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 ≤ e2, q> ⇓ (n1 ≤ n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<b1 ∧ b2, q> ⇓ (t1 ∧ t2)

<b1, q> ⇓ t1 <b2, q> ⇓ t2

How to Read Inference Rules?
• Forward, as derivation rules of judgments

 if we know that the judgments in the premise hold then we can infer that the
conclusion judgment also holds.

 Example:

<2 * 3, q> ⇓ 6

<2, q> ⇓ 2 <3, q> ⇓ 3

How to Read Inference Rules?
• Backward, as evaluation rules:

 Suppose we want to evaluate e1 + e2, i.e., find n s.t. e1 + e2 ⇓ n is derivable
using the previous rules.

 By inspection of the rules we notice that the last step in the derivation of
e1 + e2 ⇓ n must be the addition rule.

 The other rules have conclusions that would not match e1 + e2 ⇓ n.

• This is called reasoning by inversion on the derivation rules.
 Thus we must find n1 and n2 such that e1 ⇓ n1 and e2 ⇓ n2 are derivable.

 This is done recursively.

• Since there is exactly one rule for each kind of expression,
we say that the rules are syntax-directed.
 At each step at most one rule applies.

 This allows a simple evaluation procedure as above.

How to Read Inference Rules?
• Example: evaluation of an arithmetic expression via reasoning by inversion:

<x + (2 * y), {x  3, y  2}> ⇓ ?

<x, {x  3, y  2}> ⇓ 3 <2 * y, {x  3, y  2}> ⇓ ?

<2, {x  3, y  2}> ⇓ 2

<y, {x  3, y  2}> ⇓ 2

7

4

Semantics of Commands

• The evaluation of a command in Com has side-
effects, but no direct result.

• The “result” of a command c in a pre-state q is a
transition from q to a post-state q’:

q → q’

• We can formalize this in terms of transition
systems.

c

Labeled Transition Systems

A labeled transition system (LTS) is a
structure
LTS = (Q, Act, →) where
Q is a set of states,

Act is a set of actions,

 → ⊆ Q × Act × Q is a transition relation.

We write q → q’ for (q, a, q’) ∈ →.
a

q q ++ {x  n}x := e

Inference Rules for Transitions
<e, q> ⇓ n

q qskip

q q’’
c1 ; c2

q q’c1 q’ q’’c2

q q’
if b then c1 else c2

<b, q> ⇓ true q q’
c1

q q’
if b then c1 else c2

<b, q> ⇓ false q q’
c2

q q’’while b do c

<b, q> ⇓ true q q’
c

q qwhile b do c

<b, q> ⇓ false

q’ q’’while b do c

Axiomatic Semantics

Axiomatic Semantics
• An axiomatic semantics consists of:

 a language for stating assertions about programs;

 rules for establishing the truth of assertions.

• Some typical kinds of assertions:

 This program terminates.

 If this program terminates, the variables x and y have the same value throughout
the execution of the program.

 The array accesses are within the array bounds.

• Some typical languages of assertions

 First-order logic

 Other logics (temporal, linear)

 Special-purpose specification languages (Z, Larch, JML)

Assertions for IMP
• The assertions we make about IMP programs are of the

form:
{A} c {B}

with the meaning that:
 If A holds in state q , and q → q’

 then B holds in q’

• A is the precondition and B is the postcondition

• For example:
{ y ≤ x } z := x; z := z + 1 { y < z }

is a valid assertion

• These are called Hoare triples or Hoare assertions

c

Assertions for IMP

• {A} c {B} is a partial correctness assertion. It does not
imply termination of c.

• [A] c [B] is a total correctness assertion meaning that
 If A holds in state q

 then there exists q’ such that q → q’
and B holds in state q’

• Now let’s be more formal
 Formalize the language of assertions, A and B

 Say when an assertion holds in a state

 Give rules for deriving valid Hoare triples

c

The Assertion Language
• We use first-order predicate logic with IMP
expressions

A :: = true | false | e1 = e2 | e1 ≥ e2

| A1 ∧ A2 | A1 ∨ A2 | A1 ⇒ A2 | ∀x.A | ∃x.A

• Note that we are somewhat sloppy and mix the
logical variables and the program variables.

• Implicitly, all IMP variables range over integers.

• All IMP Boolean expressions are also assertions.

Semantics of Assertions

• We introduced a language of assertions, we need to assign
meanings to assertions.

• Notation q ⊨ A says that assertion A holds in a given state q.
 This is well-defined when q is defined on all variables occurring in A.

• The ⊨ judgment is defined inductively on the structure of
assertions.

• Notation ⊨ A says that assertion A holds in any state, ie. it is
always true.

• It relies on the semantics of arithmetic expressions from
IMP.

Semantics of Assertions
• q ⊨ true always

• q ⊨ e1 = e2 iff <e1,q>⇓ = <e2,q>⇓

• q ⊨ e1 ≥ e2 iff <e1,q>⇓ ≥ <e2,q>⇓

• q ⊨ A1 ∧ A2 iff q ⊨ A1 and q ⊨ A2

• q ⊨ A1 ∨ A2 iff q ⊨ A1 or q ⊨ A2

• q ⊨ A1 ⇒ A2 iff q ⊨ A1 implies q ⊨ A2

• q ⊨ ∀x.A iff ∀n ∈ ℤ. q[x:=n] ⊨ A

• q ⊨ ∃x.A iff ∃n ∈ ℤ. q[x:=n] ⊨ A

Semantics of Hoare Triples

• We can define formally the meaning of a partial correctness
assertion:

⊨ {A} c {B} iff ∀q ∈ Q. ∀q’ ∈ Q. q ⊨ A ∧ q → q’ ⇒ q’ ⊨ B

• and the meaning of a total correctness assertion:

⊨[A] c [B] iff ∀q∈Q. q ⊨ A ⇒ ∃q’∈Q. q → q’ ∧ q’ ⊨ B

c

c

q – a state, defines values of variables

{A} c {B} – a Hoare tripe, it is either true or false

q ⊨ F – in state q, formula F holds

Semantics of Hoare Triples

• We can define formally the meaning of a partial correctness
assertion:

⊨ {A} c {B} iff ∀q ∈ Q. ∀q’ ∈ Q. q ⊨ A ∧ q → q’ ⇒ q’ ⊨ B

• and the meaning of a total correctness assertion:

⊨[A] c [B] iff ∀q∈Q. q ⊨ A ⇒ ∃q’∈Q. q → q’ ∧ q’ ⊨ B

c

c

Great result: we now formally can

describe that a program is correct

Inferring Validity of Assertions

• Now we have the formal mechanism to decide when {A} c {B}
 But it is not satisfactory,

 because ⊨ {A} c {B} is defined in terms of the operational semantics.

 We practically have to run the program to verify an assertion.

 Also it is impossible to effectively verify the truth of a
∀x. A assertion (by using the definition of validity)

• So we define a symbolic technique for deriving valid assertions
from others that are known to be valid
 We start with validity of first-order formulas

Now that we know what correctness
means, what’s next?
• By now we can express formally: if a program is in the state where

preconditions hold, and we execute the program, we will end up in the state
where postconditions hold

• For example, a formula {x > 0} x:=x+2 {x > 2} is a correct Hoare triple and we
can prove that by hand

• However, it is a manual work, therefore error-prone

• Goal: automatize the process of proving program correctness as much as
possible

• End goal: develop a “push-the-button” tool for proving program correctness
(something like a your own mini Dafny)

Natural Deduction

• Inference system introduces in 1934 in (Gentzen
1934, Jaśkowski 1934)

• The goal is to have a system that can
automatically prove theorems in mathematics

• More reading:
 https://www.iep.utm.edu/nat-ded/ (at Internet Encyclopedia

of Philosophy)

https://www.iep.utm.edu/nat-ded/

⊢ A[e/x]

Inference Rules

• We write ⊢ A when A can be inferred from basic axioms.

• The inference rules for ⊢ A are the usual ones from first-order
logic with arithmetic (examples)

• Natural deduction style rules:

⊢ A ∧ B

⊢A ⊢ B

⊢ A ∨ B

⊢ A

⊢ A ∨ B

⊢ B

⊢ ∀x. A

⊢ A[a/x] where

a is fresh

⊢ ∀x. A

⊢ A[e/x]

⊢ ∃x. A ⊢ B

⊢ ∃x. A ⊢ B

⊢ A ⇒ B

⊢ B

⊢ B

⊢ A ⇒ B ⊢ A

⊢ A[a/x]
...

where

a is fresh

[⊢ A]
...

https://leanprover.github.io/logic_and_proof/natural_deduction_for_propositional_logic.html

Inference Rules for Hoare Logic

• One rule for each syntactic construct:

⊢ {A} skip {A} ⊢ {A[e/x]} x:=e {A}

⊢ {A} if b then c1 else c2 {B}

⊢ {A ∧ b} c1 {B} ⊢ {A ∧ ¬b} c2 {B}

⊢ {A} c1; c2 {C}

⊢ {A} c1 {B} ⊢ {B} c2 {C}

⊢ {I} while b do c {I ∧ ¬b}

⊢ {I ∧ b} c {I}

Inference Rules for Hoare Logic

• One rule for each syntactic construct:

⊢ {A} skip {A} ⊢ {A[e/x]} x:=e {A}

⊢ {A} if b then c1 else c2 {B}

⊢ {A ∧ b} c1 {B} ⊢ {A ∧ ¬b} c2 {B}

⊢ {A} c1; c2 {C}

⊢ {A} c1 {B} ⊢ {B} c2 {C}

⊢ {I} while b do c {I ∧ ¬b}

⊢ {I ∧ b} c {I}

Loop Invariants
• I is a loop invariant if the following three conditions hold:

 I holds initially in all states satisfying Pre, when
execution reaches loop entry, I holds

 I is preserved: if we assume I and loop condition (b),
we can prove that I will hold again after executing the
loop body

 I is strong enough: if we assume I and the negation of
loop condition b, we can prove that Post holds after the
loop execution

Inference Rules for Hoare Triples

• Similarly we write ⊢ {A} c {B} when we can derive
the triple using inference rules

• There is one inference rule for each command in
the language.

• Plus, the rule of consequence

⊢ A’ ⇒ A ⊢ {A} c {B} ⊢ B ⇒ B’
⊢ {A’} c {B’}

Hoare Logic: Summary
• We have a language for asserting properties of programs.

• We know when such an assertion is true.

• We also have a symbolic method for deriving assertions.

A

{A} P {B}
⊨ A

⊨ {A} P {B}

⊢ A

⊢ {A} P {B}

semantics

soundness

completenesstheorem proving

⊨ {A} P {B} is a valid statement

(i.e. always true)

q ⊨ x > 0 “models”

⊢ A “we can prove A”

q ⊢ A makes no sense

Hoare Rules
• For some constructs, multiple rules are
possible

alternative “forward axiom” for assignment:

alternative rule for while loops:

• These alternative rules are derivable from the
previous rules, plus the rule of consequence.

⊢ {A} x:=e {∃x0. x0 = e ∧ A[x0/x]}

⊢ {I} while b do c {B}

⊢ {C} c {I} ⊢ I ∧ b ⇒ C ⊢ I ∧ ¬b ⇒ B

Exercise: Hoare Rules

• Is the following alternative rule for assignment
still correct?

⊢ {true} x:=e {x = e}

Example: Conditional

D1 :: ⊢ {true ∧ y ≤ 0} x := 1 {x > 0}

D2 :: ⊢ {true ∧ y > 0} x := y {x > 0}

⊢ {true} if y ≤ 0 then x := 1 else x := y {x > 0}

• D1 is obtained by consequence and assignment

⊢ true ∧ y ≤ 0 ⇒ 1 ≥ 0 ⊢ {1 ≥ 0} x := 1 {x ≥ 0}
⊢ {true ∧ y ≤ 0} x := 1 {x ≥ 0}

• D2 is also obtained by consequence and assignment

⊢ true ∧ y > 0 ⇒ y > 0 ⊢ {y > 0} x := y {x > 0}
⊢ {true ∧ y > 0} x := y {x > 0}

Example: a simple loop

• We want to infer that
⊢ {x ≤ 0} while x ≤ 5 do x := x + 1 {x = 6}

• Use the rule for while with invariant I ≡ x ≤ 6

⊢ x ≤ 6 ∧ x ≤ 5 ⇒ x + 1 ≤ 6 ⊢ {x + 1 ≤ 6} x := x + 1 {x ≤ 6}
⊢ {x ≤ 6 ∧ x ≤ 5} x := x + 1 {x ≤ 6}

⊢ {x ≤ 6} while x ≤ 5 do x := x + 1 { x ≤ 6 ∧ x > 5}

• Then finish-off with the rule of consequence
⊢ x ≤ 0 ⇒ x ≤ 6
⊢ x ≤ 6 ∧ x > 5 ⇒ x = 6 ⊢ {x ≤ 6} while ... {x ≤ 6 ∧ x > 5}

⊢ {x ≤ 0} while ... {x = 6}

Example: a more interesting program
• We want to derive that

{n ≥ 0}

p := 0;

x := 0;

while x < n do

x := x + 1;

p := p + m

{p = n * m}

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Only applicable rule (except for rule of consequence):

⊢ {A} c1; c2 {B}

⊢ {A} c1{C} ⊢ {C} c2 {B}

c1 c2 BA

⊢{C} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {C}

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is C?

⊢{C} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {C}

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

⊢ {I} while b do c {I ∧ ¬b}

⊢ {I ∧ b} c {I}

We can match {I} with {C} but we cannot match {I ∧ ¬b}

and {p = n * m} directly. Need to apply the rule of

consequence first!

c1
c2 BA

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is C?

B’A’

⊢{C} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {C}

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

⊢ {I} while b do c {I ∧ ¬b}

⊢ {I ∧ b} c {I}

⊢ A’ ⇒ A ⊢ {A} c’ {B} ⊢ B ⇒ B’

⊢ {A’} c’ {B’}

Rule of consequence:

c’

c’A B

I = A = A’ = C

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is I?

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

Let’s keep it as a placeholder for now!

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

⊢{I ∧ x<n} x := x+1; p:=p+m {I}

Next applicable rule:

⊢ {A} c1; c2 {B}

⊢ {A} c1{C} ⊢ {C} c2 {B}

BA c1 c2

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

⊢{I ∧ x<n} x := x+1; p:=p+m {I}

BA c1 c2

⊢{I ∧ x<n} x := x+1 {C}

What is C?Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

⊢ {A[e/x]} x:=e {A}

⊢{C} p:=p+m {I}

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

What is C?Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

⊢ {A[e/x]} x:=e {A}

⊢{I[p+m/p]} p:=p+m {I}

⊢{I ∧ x<n} x:=x+1; p:=p+m {I}

⊢{I ∧ x<n} x:=x+1 {I[p+m/p]}

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

⊢{I ∧ x<n} x:=x+1; p:=p+m {I}

⊢{I ∧ x<n} x:=x+1 {I[p+m/p]}

Only applicable rule (except for rule of consequence):

⊢ {A[e/x]} x:=e {A}

⊢{I[p+m/p} p:=p+m {I}

Need rule of consequence to match {I ∧ x<n} and {I[x+1/x, p+m/p]}

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

⊢{I ∧ x<n} x:=x+1; p:=p+m {I}

⊢{I ∧ x<n} x:=x+1 {I[p+m/p]} ⊢{I[p+m/p} p:=p+m {I}

⊢ I ∧ x < n ⇒ I[x+1/x, p+m/p]

⊢{I[x+1/x, p+m/p]} x:=x+1 {I[p+m/p]}

Let’s just remember the open proof obligations!

...

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢ I ∧ x < n ⇒ I[x+1/x, p+m/p]

Let’s just remember the open proof obligations!

...

Continue with the remaining part of the proof tree, as before.

⊢ {I[0/x]} x:=0 {I}

⊢ {n ≥ 0} p:=0 {I[0/x]}

⊢ {I[0/p, 0/x]} p:=0 {I[0/x]}

⊢ n ≥ 0 ⇒ I[0/p, 0/x] Now we only need to solve the

remaining constraints!

Example: a more interesting program

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢ I ∧ x < n ⇒ I[x+1/x, p+m/p]

Find I such that all constraints are simultaneously valid:

⊢ n ≥ 0 ⇒ I[0/p, 0/x]

I ≡ p = x * m ∧ x ≤ n

⊢ p = x * m ∧ x ≤ n ∧ x ≥ n ⇒ p = n * m

⊢ p = x * m ∧ x ≤ n ∧ x < n ⇒ p+m = (x+1) * m ∧ x+1 ≤ n

⊢ n ≥ 0 ⇒ 0 = 0 * m ∧ 0 ≤ n

All constraints are valid!

Another example: check if a number
is prime

{n ≥ 2}

p := 1;

i := 2;

while i < n do

if (n mod i = 0) then p := 0;

i := i + 1;

{p = 1 ⇒ 𝑝𝑟𝑖𝑚𝑒(𝑛)}

Another example: check if a number
is prime

{n ≥ 2}

p := 1;

i := 2;

while i < n do

if (n mod i = 0) then p := 0;

i := i + 1;

{p = 1 ⇒ ∀𝑘. (2 ≤ 𝑘 ∧ k < n ⇒ n mod k ≠ 0)}

Another example: check if a number
is prime

{n ≥ 2}

p := 1;

i := 2;

while i < n do

if (n mod i = 0) then p := 0;

i := i + 1;

{p = 1 ⇒ 𝑝𝑟𝑖𝑚𝑒(𝑛)}

Invariant:
I ≡ (p = 1 ⇒ prime(n)) ∧ i ≤ n

Using Hoare Rules

• Hoare rules are mostly syntax directed

• There are three obstacles to automation of Hoare logic
proofs:
 When to apply the rule of consequence?

 What invariant to use for while?

 How do you prove the implications involved in the rule of
consequence?

• The last one is how theorem proving gets in the picture
 This turns out to be doable!

 The loop invariants turn out to be the hardest problem!

 Should the programmer give them?

Computing VC

Verification Condition Generation

• Idea for VC generation: propagate the post-
condition backwards through the program:
 From {A} P {B}

 Generate formula A ⇒ F(P, B), where F(P, B) is a
formula describing the starting states for program to
end in B

• This backwards propagation F(P, B) can be formalized in
terms of weakest preconditions.

Weakest Preconditions
• The weakest precondition WP(c,B) holds for any
state q whose c-successor states all satisfy B:

q ⊨ WP(c,B) iff ∀q’∈Q. q → q’ ⇒ q’ ⊨ B

• Compute WP(P,B) recursively according to the
structure of the program P.

BWP(c,B)

q q’ q’’

c
c

c

c

Loop-Free Guarded Commands

• Introduce loop-free guarded commands as an
intermediate representation of the verification
condition

• c ::= assume b
| assert b
| havoc x
| c1 ; c2

| c1  c2

https://slang.soe.ucsc.edu/cormac/papers/popl01.pdf

From Programs to Guarded
Commands

• GC(skip) =

assume true

• GC(x := e) =

assume tmp = x; havoc x; assume (x = e[tmp/x])

• GC(c1 ; c2) =
GC(c1) ; GC(c2)

• GC(if b then c1 else c2) = ?
(assume b; GC(c1))  (assume ¬b; GC(c2))

• GC({I} while b do c) = ?

where tmp is fresh

From Programs to Guarded
Commands

• GC(skip) =

assume true

• GC(x := e) =

assume tmp = x; havoc x; assume (x = e[tmp/x])

• GC(c1 ; c2) =
GC(c1) ; GC(c2)

• GC(if b then c1 else c2) =
(assume b; GC(c1))  (assume ¬b; GC(c2))

• GC({I} while b do c) = ?

where tmp is fresh

Guarded Commands for Loops

• GC({I} while b do c) =
assert I;

havoc x1; ...; havoc xn;
assume I;
(assume b; GC(c); assert I; assume false) 

assume ¬b

where x1, ..., xn are the variables modified in c

Example: VC Generation
{n ≥ 0}

p := 0;

x := 0;

{p = x * m ∧ x ≤ n}

while x < n do

x := x + 1;

p := p + m

{p = n * m}

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

{ n ≥ 0 }

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n;

(assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n; assume false)

 assume x ≥ n;

{ p = n * m }

• Computing the guarded command

Example: VC Generation

Computing Weakest Preconditions

• WP(assume b, B) = b ⇒ B

• WP(assert b, B) = b ∧ B

• WP(havoc x, B) = B[a/x] (a fresh in B)

• WP(c1;c2, B) = WP(c1, WP(c2, B))

• WP(c1  c2,B) = WP(c1, B) ∧ WP(c2, B)

Putting Everything Together

• Given a Hoare triple H ⊢ {A} P {B}

• Compute cH = assume A; GC(P); assert B

• Compute VCH = WP(cH, true)

• Check ⊢VCH using a theorem prover.

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n;

(assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n; assume false)

 assume x ≥ n;

assert p = n * m, true)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n;

(assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n; assume false)

 assume x ≥ n, p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,
WP ((assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n; assume false)

 assume x ≥ n, p = n * m))

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n; assume false, p = n * m)

∧ WP (assume x ≥ n, p = n * m))

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n; assume false, p = n * m)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n, WP (assume false, p = n * m)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n, false ⇒ p = n * m)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n, true)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m,
p = x * m ∧ x ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p,

p = p1 + m ⇒ p = x * m ∧ x ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1,
p1 = p ∧ pa1 = p1 + m ⇒ pa1 = x * m ∧ x ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n; assume x1 = x; havoc x,

x = x1 + 1 ∧ p1 = p ∧ pa1 = p1 + m

⇒ pa1 = x * m ∧ x ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n; assume x1 = x,

xa1 = x1 + 1 ∧ p1 = p ∧ pa1 = p1 + m

⇒ pa1 = xa1 * m ∧ xa1 ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n,

x1 = x ∧ xa1 = x1 + 1 ∧ p1 = p ∧ pa1 = p1 + m

⇒ pa1 = xa1 * m ∧ xa1 ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

(x < n ∧ x1 = x ∧ xa1 = x1 + 1 ∧ p1 = p ∧ pa1 = p1 + m

⇒ pa1 = xa1 * m ∧ xa1 ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

n ≥ 0 ∧ p0 = p ∧ pa3 = 0 ∧ x0 = x ∧ xa3 = 0 ⇒ pa3 = xa3 *

m ∧ xa3 ≤ n ∧

(pa2 = xa2 * m ∧ xa2 ≤ n ⇒

((xa2 < n ∧ x1 = xa2 ∧ xa1 = x1 + 1 ∧
p1 = pa2 ∧ pa1 = p1 + m) ⇒ pa1 = xa1 * m ∧

xa1 ≤ n)

∧ (xa2 ≥ n ⇒ pa2 = n * m))

• Computing the weakest precondition

Example: VC Generation

• The resulting VC is equivalent to the conjunction of the
following implications

Example: VC Generation

n ≥ 0 ∧ p0 = p ∧ pa3 = 0 ∧ x0 = x ∧ xa3 = 0 ⇒
pa3 = xa3 * m ∧ xa3 ≤ n

n ≥ 0 ∧ p0 = p ∧ pa3 = 0 ∧ x0 = x ∧ xa3 = 0 ∧ pa2 = xa2 * m ∧

xa2 ≤ n ⇒

xa2 ≥ n ⇒ pa2 = n * m

n ≥ 0 ∧ p0 = p ∧ pa3 = 0 ∧ x0 = x ∧ xa3 = 0 ∧ pa2 = xa2 * m ∧ xa2 < n

∧ x1 = xa2 ∧ xa1 = x1 + 1 ∧ p1 = pa2 ∧ pa1 = p1 + m ⇒

pa1 = xa1 * m ∧ xa1 ≤ n

• simplifying the constraints yields

• all of these implications are valid, which proves that
the original Hoare triple was valid, too.

Example: VC Generation

n ≥ 0 ⇒ 0 = 0 * m ∧ 0 ≤ n

xa2 ≤ n ∧ xa2 ≥ n ⇒ xa2 * m = n * m

xa2 < n ⇒ xa2 * m + m = (xa2 + 1) * m ∧ xa2 + 1 ≤ n

Translating Method Calls to GCs
method m (p1: T_1, ..., pk: Tk) returns (r: T)

requires P

modifies x1, ..., xn

ensures Q

A method call

y := m(y1, ..., yk);

is desugared into the guarded command

assert P[y1/p1, ..., yk/pk];

havoc x1; ..., havoc xn; havoc y;

assume Q[y1/p1, ..., yk/pk, y/r]

Software Verification

program

formulas

correct

no

theorem prover

annotations

VCG

Adding arrays to language
• Given command: a[i] := v

• In array theory a := write(a, i, v)

• GC: assume tmp = a; havoc a; assume (a = write(tmp, i, v))

WP(GC, F) = WP(assume tmp = a; havoc a; assume (a = write(tmp, i, v)), F)

= WP(assume tmp = a; havoc a; a = write(tmp, i, v) ⇒ F)

= WP(assume tmp = a; af = write(tmp, i, v) ⇒ F[af/a])

= tmp = a ⇒ af = write(tmp, i, v) ⇒ F[af/a]

= tmp = a  af = write(tmp, i, v) ⇒ F[af/a]

= af = write(a, i, v) ⇒ F[af/a] Disclaimer: you need to learn a theory of

arrays first

What we have learned so far

• Hoare logic reduces program verification to
proving the validity of verification conditions
expressed as statements in some assertion logic

• The actual verification process can be completely
mechanized modulo

1. inference of loop invariants / procedure contracts

2. the actual validity checking of the generated VCs

