SMT-based Verification of
Heap-manipulating
Programs

Ruzica Piskac

Eleventh SRI Summer School on Formal Techniques

May 30 - June 5, 2022

A Mathematical Proof of Program
Correctness?

public void add (Object x)

: {
Can you verify
my program? Node e = new Node () ;
e.data = x;

e.next = root;

(™ . “
i’j S rclaot = e,. ‘
S~ o~ size = size + 1;
@» Ll AR Y
\
R A

)\
N
C~_

Which property
are you
Iinterested 1in?

Example Questions in Verification

- Will the program crash?

- Does 1t compute the correct result?
- Does 1t leak private information?

- How long does it take to run?

- How much power does it consume?

- Will 1t turn off automated cruise control?

A Mathematical Proof of Program
Correctness?

1c volid add (Object x)

I just want to be sure that
no element 1s lost 1n the
list — if I insert an element

it 1s really there gde e = new Node () ;

A Mathematical Proof of Program
Correctness?

//: L = data[root.next*]

public void add (Object x)

Let L be a set (a
multiset) of all elements

{

Node e = new Node () ; tored in the list ...
e.data = x;
§§$ e.next = root;
e

root

\'/i T~ size s;ze + 1;
\/L |
P

=R
C—~_

e

A Mathematical Proof of Program
Correctness?

//: L = data[root.next*]

//: invariant: size = card L
Annotations public void add (Object x)
//: ensures L = old L + {x}

{

Node e = new Node () ;
e.data = x;

e.next = root;

(™ . tl
('/2 S rclaot = e,. ‘
™~ o~ size = size + 1; J
ﬁb L pN T
\
\‘,// A

)
£
C—~_

Annotations

- Written by a programmer or a software analyst

- Added to the original program code to express properties that allow
reasoning about the programs

- Examples:
 Preconditions:
- Describe properties of an input
 Postconditions:
+ Describe what the program is supposed to do
 Invariants:

- Describe properties that have to hold in every program point

Decision Procedures for Collections

//: L = data[root.next*]

//: invariant: size = card L
public void add (Object x)
//: ensures L = old L + {x}

{

Node e = new Node() ;
e.data = x;

e.next = root;

root = ¢e;

Prove that the following formula alw
holds:

VX VL |[X|=1- |LuX | = |L}J4 1
Verification conditiol

Verification Conditions

- Mathematical formulas derived based on:
+ Code

- Annotations

- If a verification condition always holds (valid), then to code is correct w.r.t.
the given property

- It does not depend on the input variables

- If a verification condition does not hold, we should be able to detect an error
1n the code

Verification Condition: Example

//: assume (x > 0)
def simple (Int x)

//: ensures y > 0

{

N

return vy

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

}

val vy = x = 2

return vy

Verification condition:

VX.Vy. x>0 Ay=x-2—>5y>0

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

}

val vy = x = 2

return vy

Verification condition:

VX.Vy.x>0 Ay=x-2—-5y>0

Preconditions

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

}

val vy = x = 2

return vy

Verification condition:

VX.Vy.X>0 Ay=x-2—>5y>0

Program

Verification Condition: Example

//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{

val y =1

return vy

}

Verification condition:

VX Vy. x>0 Ay=1—>y>0

Postconditions

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

}

val vy = x = 2

return vy

Verification condition:

VX.Vy.Xx>0 Ay=x-2->5y>0

Formula does not hold for input x =1

Automation of Verification

- Windows XP has approximately 45 millions
lines of source code

=~ 300.000 DIN A4 papers
~ seven times my size high
paper stack

Verification should be
automated!!!

Software Verification

%

correct

theorem prover
program

no

Prove formulas
automatically!

Decision Procedures

i N satisfiable(model)

formulain ——

: h
some logic theorem prover

- J unsatisfiable (proof)

- A decision procedure 1s an algorithm which answers

whether the input formula 1s satisfiable or not
= formula x < y 1s satisfiable for x=0, y=1
= formula X< YAX+1>Yy+1 is unsatisfiable

Language Semantics

Formal Semantics of Java Programs

- The Java Language Specification (JLS) [link] gives semantics to Java
programs

* The document has 780 pages.
+ 148 pages to define semantics of expression.
+ 42 pages to define semantics of method invocation.

- Semantics 1s only defined in prose.
- How can we make the semantics formal?

* We need a mathematical model of computation.

http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf

Semantics of Programming
Languages

- Denotational Semantics

- Meaning of a program is defined as the mathematical object it computes (e.g.,
partial functions).

- Example: Abstract Interpretation

- Axiomatic Semantics

- Meaning of a program is defined in terms of its effect on the truth of logical
assertions.

- Example: Hoare Logic

« (Structural) Operational Semantics

- Meaning of a program is defined by formalizing the individual computation steps of
the program.

- Example: Labeled Transition Systems

IMP: A Simple Imperative Language

Before we move on to Java, we look at a simple imperative programming
language IMP.

An IMP program:

while x < n do
x:=x+1;

p=p+m;

IMP: Syntactic Entities

- nez — Integers

- true, false € B — Booleans

- x,y € Vars — Program variables

- e € Aexp — arithmetic expressions
- b € Bexp — Boolean expressions

- c €Com — commands

Syntax of Arithmetic Expressions

- Arithmetic expressions (Aexp)

e = n, forn € Z
x, forx € Vars
et e,
€1~ €
e; * e,
- Notes:

- Variables are not declared before use.
- All variables have integer type.
- Expressions have no side-effects.

Syntax of Boolean Expressions

- Boolean expressions (Bexp)

b ::= true
false
e; = e, for e, e, € Aexp
e; < e, for e, e, € Aexp
b for b € Bexp
b, A b, for b,, b, € Bexp
b,V b, for b,, b, € Bexp

Syntax of Commands

- Commands (Com)

c ;= skip
x:=e
C1 3 Co
if b then ¢, else ¢,
while b doc
- Notes:

 The typing rules have been embedded in the syntax definition.

- Other parts are not context-free and need to be checked
separately (e.g., all variables are declared).

- Commands contain all the side-effects in the language.
- Missing: references, function calls, ...

A simple example

//: assume (x > 5)
def simple (Int x)
//: ensures y > 7
{

val vy = x + 2

return y

We need to express / derive / prove:

What do we need:
- Language 1in which we are writing programs

- Program execution and what does it mean

“whenever the program is in the state”

- Language for annotation

Combine all this somehow together

“whenever the program takes as input x, such

that x > 5, and we execute the program, the
resulting output y will satisfy that y > 7”

VX.Vy.Xx>5 Ay=x+2->y>7

Meaning of IMP Programs

Questions to answer:

- What is the “meaning” of a given IMP expression/command?
- How would we evaluate IMP expressions and commands?
- How are the evaluator and the meaning related?

- How can we reason about the effect of a command?

Semantics of IMP

- The meaning of IMP expressions depends on the values of variables, 1.e.
the current state.

- A state at a given moment is represented as a function from Vars to Z
- The set of all states1s @ = Vars - Z

- We use q to range over @

A simple example

//: assume (x > 5)
def simple (Int x)

//: ensures y > 7

{

val vy = x + 2

return y

Starting state, preconditions are satisfied

Ending state, postconditions are satisfied

Judgments

- We write <e, g> U n to mean that e evaluates to n in state q.

* The formula <e, ¢> J n1s a judgment
(a statement about a relation between e, ¢ and n)

- In this case, we can view U as a function of two arguments e and q

- This formulation 1s called natural operational semantics
- or big-step operational semantics
- the judgment relates the expression and its “meaning”

- How can we define <el +e2,qg>1 ... 7

Inference Rules

We express the evaluation rules as
for our judgments.

The rules are also called

A
n F .. F,
where H
G
defines a relation between judgments F,,...,F, and G.
* The judgments F,,...,F, are the of the rule;
 The judgments G 1s the of the rule;
 The formula H 1s called the of the rule.
If n=0 the rule 1s called an . In this case, the line

separating premises and conclusion may be omitted.

Inference Rules for Aexp

- In general, we have one rule per language

construct:
<n, q> U n- Axiom <x, ¢> U q(x)

<e;,q>Un, <e,qg>ln, <e,q>dn, <e, q>ln,
<e;tey q> U (ny+ny <e;—ey g> U (ng—ny)

<e;, ¢> U n,y <ey, ¢> U n,

<e; ¥ ey, ¢> U (ny ¥ ny)

- This 1s called structural operational semantics.

- rules are defined based on the structure of the
expressions.

Inference Rules for Bexp

<true, g> U true <false, ¢> U false
<e;, > n,y <ey, > ny <e,q>ln; <ey,q>1n,
<e;=ey q> U (n; = ny) <e; < ey, ¢> U (ny < 1y)
<b,q>lt, <b,, q> U t

<b;ANb,,g> U (t; A L))

How to Read Inference Rules?

- Forward, as derivation rules of judgments

- 1f we know that the judgments in the premise hold then we can infer that the
conclusion judgment also holds.

- Example:

<2,q> 2 <3,qg>13
<2*3,g>U6

How to Read Inference Rules?

- Backward, as evaluation rules:

- Suppose we want to evaluate e; + ey, 1.e., find n s.t. e; + e, U n is derivable
using the previous rules.

- By inspection of the rules we notice that the last step in the derivation of
e; + e, I n must be the addition rule.

- The other rules have conclusions that would not match e; + e, U n.

- This 1s called reasoning by inversion on the derivation rules.
* Thus we must find n; and n, such that e; § n, and e, J n, are derivable.
* This 1s done recursively.

- Since there i1s exactly one rule for each kind of expression,
we say that the rules are syntax-directed.
- At each step at most one rule applies.
- This allows a simple evaluation procedure as above.

How to Read Inference Rules?

- Example: evaluation of an arithmetic expression via reasoning by inversion:

<y, x> 3,y 21> 1 2
<2,{x—> 3, y—> 21> 2
<X, x> 3,y 2{> 13 <2*%y x> 3,y 21> 4

<x+@2¥*y),x—3,y>21>1 7

Semantics of Commands

- The evaluation of a command in Com has side-
effects, but no direct result.

- The “result” of a command c in a pre-state q 1s a
transition from g to a post-state q~

¢ b
q—q
- We can formalize this 1n terms of transition
systems.

Labeled Transition Systems

A labeled transition system (LTS) 1s a
structure
LTS = (@, Act, ») where

“ @ 1s a set of states,

- Act 1s a set of actions,

+ > C @ X Act X @ 1s a transition relation.

We write g — q’ for (q, a, q) € —.

Inference Rules for Transitions

g skip g <€, q> U n q _ 4 o q’ QL q»

q—= qt+t{x>n; q—=> q”
<b, ¢> I true qg—4— ¢’ <b,q>Ufalse q 2 ¢
if b thenc,elsec, > if b thenc, else ¢y ’
q q
<b, g> | false
q while b do ¢ q
<b’ q> U true qQ c_. q’ q’ while b do ¢ q”

while b do ¢ 2

q q

Axiomatic Semantics

Axiomatic Semantics

- An axiomatic semantics consists of:
- a language for stating assertions about programs;
- rules for establishing the truth of assertions.

- Some typical kinds of assertions:
* This program terminates.

- If this program terminates, the variables x and y have the same value throughout
the execution of the program.

- The array accesses are within the array bounds.

- Some typical languages of assertions
+ First-order logic
+ Other logics (temporal, linear)
+ Special-purpose specification languages (%, Larch, JML)

Assertions tor IMP

- The assertions we make about IMP programs are of the
form:
A} ¢ {B}
with the meaning that: .
- If A holds in state ¢, and g — ¢’

* then B holds in ¢’
- A 1s the precondition and B 1s the postcondition

- For example:
ly<x}z=x;z:=z+1{y<z}
1s a valid assertion

- These are called Hoare triples or Hoare assertions

Assertions tor IMP

- {A} ¢ {B} 1s a partial correctness assertion. It does not
1mply termination of c.

- |[A] ¢ |B] 1s a total correctness assertion meaning that

- If A holds 1n state ¢q

- then there exists ¢ such that ¢q 5 q’
and B holds 1n state ¢~

- Now let’s be more formal
- Formalize the language of assertions, A and B
- Say when an assertion holds in a state
- G1ve rules for deriving valid Hoare triples

The Assertion Language

- We use first-order predicate logic with IMP
expressions

A::=true | false | e, =¢e, | e; > ¢,
| A;ANA, AV Ay | A=A, | VA | Jx.A

- Note that we are somewhat sloppy and mix the
logical variables and the program variables.

- Implicitly, all IMP variables range over integers.

- All IMP Boolean expressions are also assertions.

Semantics of Assertions

- We introduced a language of assertions, we need to assign
meanings to assertions.

- Notation ¢ = A says that assertion A holds in a given state ¢.
* This 1s well-defined when ¢ 1s defined on all variables occurring in A.

- The E judgment 1s defined inductively on the structure of
assertions.

- Notation = A says that assertion A holds in any state, 1e. it 1s
always true.

- It relies on the semantics of arithmetic expressions from
IMP.

Semantics of Assertions

- q F true always

*q Fe =e iff <e,,q>l = <e,,q>U
"qFe e iff <e,,qg>U > <e,,qg>U
"qE A NA iff g £ A, and q E A,
TqEAV A iffgeE A, orqgEA,

g FE A DA, iff ¢ = A, implies g E A,
- q F Vx.A iff Vvn € Z. qlx:==n] E A

- g = 3Ix.A iff An € Z. q[x:=n] E A

Semantics of Hoare Triples

- We can define formally the meaning of a partial correctness
assertion:

E{Alc{Bliff VgEQ.V' EQ.qEAN]g > g =>¢ EB
- and the meaning of a total correctness assertion:

=[A] ¢ [B] iff VgeQ. g = A =3¢€Q.q > q¢’'Aq¢’ EB

q — a state, defines values of variables

{A} ¢ {B} — a Hoare tripe, it is either true or false

q = F —in state q, formula F holds

Semantics of Hoare Triples

- We can define formally the meaning of a partial correctness
assertion:

E{Alc{Bliff VgEQ.V' EQ.qEAN]g > g =>¢ EB
- and the meaning of a total correctness assertion:

=[A] ¢ [B] iff Vg€Q. ¢ F A= 3¢€Q.¢ > ¢’'Aq’F B L

Great result: we now formally can

describe that a program is correct

Inferring Validity of Assertions

- Now we have the formal mechanism to decide when (A} ¢ {B}
- But it is not satisfactory,
- because E {A} ¢ {B} 1s defined in terms of the operational semantics.
- We practically have to run the program to verify an assertion.

- Also 1t 1s impossible to effectively verify the truth of a
Vx. A assertion (by using the definition of validity)

- S0 we define a symbolic technique for deriving valid assertions
from others that are known to be valid
- We start with validity of first-order formulas

Now that we know what correctness
means, what’s next?

- By now we can express formally: if a program is in the state where
preconditions hold, and we execute the program, we will end up in the state
where postconditions hold

- For example, a formula {x > 0} x:=x+2 {x > 2} 1s a correct Hoare triple and we
can prove that by hand

- However, it 1s a manual work, therefore error-prone

- Goal: automatize the process of proving program correctness as much as
possible

- End goal: develop a “push-the-button” tool for proving program correctness
(something like a your own mini Dafny)

Natural Deduction

- Inference system introduces in 1934 in (Gentzen
1934, Jaskowsk1 1934)

r

- The goal 1s to have a system that can
automatically prove theorems in mathematics

- More reading:

- https://www.iep.utm.edu/nat-ded/ (at Internet Encyclopedia
of Philosophy)

https://www.iep.utm.edu/nat-ded/

Inference Rules

- We write - A when A can be inferred from basic axioms.

- The inference rules for - A are the usual ones from first-order
logic with arithmetic (examples)

- Natural deduction style rules:

FA FB F Ala/x] where FVx. A
FAAB FVx. A aisfresh Afg/x]
FA FB
FAvB HFAVB - Ala/x] [A]
- Ale/x] F3x. A FB where FA=>B A B

- 3x. A - B als fresh - B FA=B

https://leanprover.github.io/logic_and_proof/natural_deduction_for_propositional_logic.html

Inference Rules for Hoare Logic

- One rule for each syntactic construct:
- {A) skip {A} - {Ale/x]} x:=e {A}

F{A} 1By 1B} ¢, {C
- {A} ¢y; ¢o {C}
F{AAblc,{B} +{AA=b}c, {B}
- {A} if b then ¢, else ¢, {B}

F{I A b} c {I}
- {I} while b do c {I A —b}

Inference Rules for Hoare Logic

- One rule for each syntactic construct:
- {A) skip {A} - {Ale/x]} x:=e {A}

F{A} 1By 1B} ¢, {C
- {A} ¢y; ¢o {C}
F{AAblc,{B} +{AA=b}c, {B}
- {A} if b then ¢, else ¢, {B}

F{I A b} c {I}
- {I} while b do c {I A —b}

Loop Invariants

- I 1s a loop invariant if the following three conditions hold:

- I holds initially in all states satisfying Pre, when
execution reaches loop entry, I holds

- I 1s preserved: if we assume I and loop condition (b),
we can prove that I will hold again after executing the
loop body

- I 1s strong enough: if we assume I and the negation of
loop condition b, we can prove that Post holds after the
loop execution

Inference Rules for Hoare Triples

- Similarly we write + {A} ¢ {B} when we can derive
the triple using inference rules

- There 1s one inference rule for each command in
the language.

- Plus, the rule of consequence

FA > A - {A} ¢ {B} FB=FB
- {A%} c{B%

Hoare Logic: Summary

- We have a language for asserting properties of programs.
- We know when such an assertion is true.

- We also have a symbolic method for deriving assertions.

semantics = {A} P {B} is a valid statement
_— (1.e. always true)
A
(A} P (B} - {A} (B [AExZ0Tmodel

A “we can prove A”

: soundnes
makes no sense
theorem proving completeness
= {A} P {B}

Hoare Rules

- For some constructs, multiple rules are
possible

alternative “forward axiom” for assignment:
F{A} x:=e {3x,. x, = e A Alxy/x]}
alternative rule for while loops:

FIAbD=>C FH{C}ci{l} rIAN-bD=B
- {I} while b do c {B}

- These alternative rules are derivable from the
previous rules, plus the rule of consequence.

Exercise: Hoare Rules

- I's the following alternative rule for assignment
still correct?

- {true} x:=e {x = e}

Example: Conditional

F {true} if y<0thenx:=1elsex:=y{x>0}

- D1 1s obtained by consequence and assignment

FtrueAvy<0=1>0 F{1>0tx:=1{x>0}
F{trueAy<0}x:=1{x>0}

- D2 1s also obtained by consequence and assignment

Ftrue Avy>0=>vy>0 Fi{iy>0lx:=v {x>0}
F{true Ay >0} x:=y {x> 0}

Example: a simple loop

- We want to infer that
F{x<0}whilex<5dox:=x+1{x=6}

- Use the rule for while with invariant I = x<6

Fx<O6Ax<H=2>x+1<6 Fi{x+1<6lx:=x+1{x<6!}

Fix<6Ax<blx:=x+1{x<6}
F{x<6}whilex<5dox:=x+1{x<6AXx>5}

- Then finish-off with the rule of consequence
Fx<0=>x<6
Fx<6Ax>5=>x=6 F{x<6}while..{x<6Ax>5}

- {x <0} while ... {x =6}

Example: a more interesting program

- We want to derive that

{n > 0}

p = 0;

x = 0;

while x <n do
x:=x+1;
p:=p+tm

W =n*mj

Example: a more interesting program
Only applicable rule (except for rule of consequence):
1A} ¢ iCF F{C ¢y {B)
= A} ¢q5 ¢y B}

F{n = 0} p:=0; x:=0 {C} F{C} while x <n do (x:=x+1; p:=p+m) {p =n * m}

- {n = 0} p:=0; XI:O;\Whﬂe X <n do (x:=x+1; p:=p+m}) {p =n* m}}~
L]\ J
| |

|
A Cq Co B

Example: a more interesting program

What 1s C?Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):
F{I A b} c {1}
- {I}while b do c {I A —b}

We can match {I} with {C} but we cannot match {I A =b}
and {p = n * m} directly. Need to apply the rule of
consequence first!

- {n =0} p:=0; x:=0 {C} H{C} while x <n do (x:=x+1; p:=p+m) {p =n * mj

F {n = 0} p:=0; x:=0; while x <n do (x:=x+1; p:=p+m) ’{\p =n* m}}
\]\] |\
|

Y Y Y
A Cq Co B

Example: a more interesting program

What 1s C?Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):
F{I A b} c {1}
- {I}while b doc{I A -Db}

A c’ B Rule of consequence:
e FAS A FALCB BB
tmasast - A} (B
A, C, B7
e * k

| \
F {n 2 0} p:=0; x:=0 {C} H{C} while x <n do (x:=x+1; p:=p+m) {p =n * m;}
F {n = 0} p:=0; x:=0; while x <n do (x:=x+1; p:=p+m) {p =n * m}

Example: a more interesting program
What is I? Let’s keep 1t as a placeholder for now!

Next applicable rule:

F {Alc,{C} + {Clc, (B!
- {A} ¢ ¢y {B]

A Cq1 Co B

A

(T A x<n! x = x+1; pr=p+m (I}
H{I} while x <n do (x:=x+1; p:=p+m) {I A X 2 n}
FIAX2Zn=>p=n*m
F{n =0} p:=0; x:=0 {I} H{I} while x <n do (x:=x+1; p:=p+m) {p =n * m}
F {n = 0} p:=0; x:=0; while x <n do (x:=x+1; p:=p+m) {p =n * m}

Example: a more interesting program

What 1s C?Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):
- {Alelx]} x:=e {A}

R © B
F{{I A X< nll X 1= x+1 {C} H{C} p':=p+m\{I}‘
H{I A X<n} x := x+1; p:=p+m {I}
H{I} while x <n do (x:=x+1; p:=p+m) {I A X 2 n}
FIAX2Zn=>p=n*m
F{n = 0} p:=0; x:=0 {I} H{I} while x <n do (x:=x+1; p:=p+m) {p = n * m}

F {n = 0} p:=0; x:=0; while x <n do (x:=x+1; p:=p+m) {p =n * m}

Example: a more interesting program

What 1s C?Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):
- {Alelx]} x:=e {A}

HI A x<n} x:=x+1 {I[ptm/p]} H{I[p+tm/p]} p:=p+m {I}
H{I A x<n} x:=x+1; p:=p+m {I}
H{I} while x <n do (x:=x+1; p:=p+m) {I A X 2 n}
FIAX2Zn=>p=n*m
- {n = 0} p:=0; x:=0 {I} H{I} while x <n do (x:=x+1; p:=p+m) {p =n * m}
F {n = 0} p:=0; x:=0; while x <n do (x:=x+1; p:=p+m) {p =n * m}

Example: a more interesting program

Only applicable rule (except for rule of consequence):
- {Alelx]} x:=e {A}
Need rule of consequence to match {I A x<n} and {I[x+1/x, p+m/p]}

H{I A x<n{ x:=x+1 {I[p+m/p]} H{I[p+m/p} p:=p+m {I}
H{I A x<n} x:=x+1; p:=p+m {I}
H{I} while x <n do (x:=x+1; p:=p+m) {I A X 2 n}
FIAX2Zn=>p=n*m
 {n = 0} p:=0; x:=0 {I} H{I} while x <n do (x:=x+1; p:=p+m) {p =n * m}
F {n = 0} p:=0; x:=0; while x <n do (x:=x+1; p:=p+m) {p =n * m}

Example: a more interesting program

Let’s just remember the open proof obligations!

HI[x+1/x, ptm/p]} x:=x+1 {I[p+m/p]}

FIAx<n= I[xt1l/x, ptm/p]

H{I A x<n} x:=x+1 {I[p+m/p]} H{I[p+m/p} p:=p+m (I}
H{I A x<n} x:=x+1; p:=p+m {I}
H{I} while x <n do (x:=x+1; p:=p+m) {I A X 2 n}
FIAX2n=p=n*m
- {n 2 0} p:=0; x:=0 {I} H{I} while x <n do (x:=x+1; p:=p+tm) {p =n * m}
F {n = 0} p:=0; x:=0; while x <n do (x:=x+1; p:=p+m) {p =n * m}

Example: a more interesting program

Let’s just remember the open proof obligations!
FIAX<n= I[xt1l/x, ptm/p]

FIAX2Zn=p=n*m

Continue with the remaining part of the proof tree, as before.

Fn =0 = I[0/p, 0/x] Now we only need to solve the
- (T[0/p, O/x]} p:=0 {I[0/x]} remaining constraints!
 {n = 0} p:=0 {I[0/x]}
- {I[0/x]} x:=0 {I}
F{n = 0} p:=0; x:=0 {I} K{I}whilex<n do (x:=x+1; p:=p+m) {p =n * m}
F {n = 0} p:=0; x:=0; while x <n do (x:=x+1; p:=p+m) {p =n * m}

Example: a more interesting program

Find I such that all constraints are simultaneously valid:

Fn=0= I|0/p, 0/x]
FIAX<n= I[xt1l/x, ptm/p]

FIAX2n=p=n*m
IZp=x*mAxXx<n

Fn20=>0=0"mAO=<n
FPp=Xx*mMAXSnAxX<n=>p+tm=(x+1) *mAx+]l<n

Fp=Xx*"mMmAXS<nAX2n=>p=n*m

All constraints are valid!

Another example: check if a number
1S prime
in> 2/
p =1
1= 2;
while i1 <ndo
if (n mod 1 =0) then p:=0;
=1+ 1;

{p = 1= prime(n)}

Another example: check if a number
1S prime
in> 2/
p =1
1= 2;
while i1 <ndo
if (n mod 1 =0) then p:=0;
=1+ 1;

p=1=>Vk.(2<kANk<n=nmodk=*0)

Another example: check if a number

1S prime
in = 2} Invariant:
I=(p=1=prime(n)) A1<n
p=1
1= 2;

while i1 <ndo
if (n mod 1 =0) then p:=0;
1 =1+ 1;

{p = 1= prime(n)}

Using Hoare Rules

- Hoare rules are mostly syntax directed

- There are three obstacles to automation of Hoare logic
proofs:
- When to apply the rule of consequence?
- What invariant to use for while?

- How do you prove the implications involved in the rule of
consequence?

- The last one 1s how theorem proving gets in the picture
* This turns out to be doable!
 The loop invariants turn out to be the hardest problem!
- Should the programmer give them?

Computing VC

Verification Condition Generation

- Idea for VC generation: propagate the post-
condition backwards through the program:
- From {A} P {B}
- Generate formula A = F(P, B), where F(P, B) 1s a

formula describing the starting states for program to
end in B

* This backwards propagation F(P, B) can be formalized in
terms of weakest preconditions.

Weakest Preconditions

- The weakest precondition WP(c,B) holds for any
state ¢ whose c-successor states all satisty B:

qg E WP(,B) iff VgeQ®.q 5 q'=>q EB

- Compute WP(P,B) recursively according to the
structure of the program P.

Loop-Free Guarded Commands

- Introduce loop-free guarded commands as an
intermediate representation of the verification
condition

-c ;= assume b

Y8
assert b O
XD QY
eﬂ““\@ oo Co¥
havoc x e
OO e e
C Y C P\" ‘“ % (/\()\"‘Q '_\'E‘S“C“ ‘“"L‘
Lo WO an k(‘)‘;.\x ’
1) 2 Ge\\e‘;" \gﬁ\ag;l “9,“‘??‘ i\ﬁg.
Gm“‘@ﬁ A ST 10 gand
C 1 C2 ComPT 40 g\"(_&‘n oM
\O

https://slang.soe.ucsc.edu/cormac/papers/popl01.pdf

From Programs to Guarded
Commands

- GC(skip) =

assume true

-GC(x:=¢e) =

assume tmp = x; havoc x; assume (x = e[tmp/x])
where tmp 1s fresh
- GC(cq ;¢ = b

GC(cy) 5 GC(ey)
- GC(1if b then ¢, elsec,) =7

-GC({I}whilebdoc)=7?

From Programs to Guarded
Commands

- GC(skip) =

assume true

-GC(x:=¢e) =

assume tmp = x; havoc x; assume (x = e[tmp/x])
where tmp 1s fresh
- GC(cq ;¢ = b

GC(cy) 5 GC(ey)

- GC(if b then ¢, else ¢,) =
(assume b; GC(cy)) U (assume 7b; GC(cy))

-GC({I}whilebdoc)=7?

Guarded Commands for Loops
-GC({I}while bdoc) =

assert I;

havoc x4; ...; havoc x,;

assume I;

(assume b; GC(c); assert I; assume false) [
assume b

where x,, ..., x, are the variables modified in c

Example: VC Generation

in > 0/
p:=0;
x = 0;

D=x*mAx<n}

while x <n do
x:=x+1;
p=p+tm

W =n*mj

Example: VC Generation

- Computing the guarded command
{n>0}
assume p, = p, havoc p, assume p = 0;
assume x, = x, havoc x; assume x = 0;
assert p=x*m A x<n;
havoc x; havoc p; assume p=x *m A x < n;
(assume x < n;

assume X; = X; havoc x; assume x = x; + 1;
assume p; = p; havoc p; assume p =p, + m;
assert p =x * m A x <n,; assume false

0 assume x > n;
{ip=n~*m;

Computing Weakest Preconditions

- WP(assume b, B)=b =B

- WP(assert b, B)=b A B

- WP(havoc x, B) = Bla/x] (a fresh 1n B)
- WP(cq;¢,, B) = WP(c{, WP(c,, B))

- WP(c, O ¢,,B) = WP(c;, B) A WP(c,, B)

Putting Everything Together

- Given a Hoare triple H - {A} P {B}
- Compute cy = assume A; GC(P); assert B
- Compute VCy = WP(cy, true)

- Check FVC(Cy using a theorem prover.

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;

assume p, = p, havoc p, assume p = 0;

assume x, = x; havoc x; assume x = 0;

assert p=x*m A x<n;

havoc x; havoc p; assume p=x *m A X < n;
(assume x < n;

assume X; = X; havoc x; assume x = x; + 1;
assume p, = p; havoc p; assume p =p, + m;
assert p=x * m A x <n,; assume false

0 assume x > n;
assert p = n * m, true)

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;
assume p, = p, havoc p; assume p = 0;
assume X, = x, havoc x; assume x = 0;
assert p=x*m A x<n;
havoc x; havoc p; assume p=x *m A x <n;
(assume x < n;

assume X, = X; havoc x; assume x = x; + 1;
assume p,; = p; havoc p; assume p = p; + m;
assert p=x * m A x <n; assume false)

0 assumex >n, p=n* m)

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;
assume p, = p, havoc p, assume p = 0;
assume x, = x, havoc x; assume x = 0;
assert p=x*m A x<n;

havoc x; havoc p; assume p=x*m A x<n,
WP ((assume x < n;
assume X; = X; havoc x; assume x = x; + 1;
assume p; = p; havoc p; assume p = p,; + m;
assert p =x * m A x <n,; assume false)

0 assumex >n, p=n* m))

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;

assume p, = p, havoc p,; assume p = 0;

assume x, = x; havoc x; assume x = 0;

assert p=x*mAx<n;

havoc x; havoc p; assume p=x*m A x<n,
WP (assume x < n;

assume X; = X; havoc x; assume x = x; + 1;
assume p, = p; havoc p; assume p =p,; + m;
assert p=x *m A x <n, assume false, p=n+* m)

A WP (assume x >n, p=n* m))

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;

assume p, = p, havoc p,; assume p = 0;

assume x, = x; havoc x; assume x = 0;

assert p=x*mAx<n;

havoc x; havoc p; assume p=x*m A x<n,
WP (assume x < n;

assume X, = X; havoc x; assume x = x; + 1;
assume p, = p; havoc p; assume p = p; + m,
assert p=x *m A x <n, assume false, p=n+* m)

AX >n=>p=n+*m)

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;
assume p, = p, havoc p; assume p = 0;
assume X, = x, havoc x; assume x = 0;
assert p=x*m A x<n;
havoc x; havoc p; assume p=x*m A x<n,
WP (assume x < n;

assume X, = X; havoc x; assume x = x; + 1;
assume p, = p; havoc p; assume p =p,; + m;

tp=x* <n, WP fal =n*
assert p=x*mAx<n, (assume false, p=n* m)

AX >n=>p=n+*m)

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;
assume p, = p, havoc p, assume p = 0;
assume X, = x; havoc x; assume x = 0;
assert p=x*mAx<n;
havoc x; havoc p; assumep=x*m A x<n,
WP (assume x < n;

assume X; = X; havoc x; assume x = x; + 1;
assume p, = p; havoc p; assume p =p, + m;
assert p=x*mAx<n, false = p=n*m)

AX >n=>p=n*m)

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;
assume p, = p, havoc p, assume p = 0;
assume X, = x; havoc x; assume x = 0;
assert p=x*mAx<n;
havoc x; havoc p; assume p=x*m A x<n,
WP (assume x < n;

assume x; = X; havoc x; assume x = x; + 1;
assume p; = p; havoc p; assume p = p, + m,
assert p=x*mAx<n, true)

AX >n=>p=n*m)

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;

assume p, = p, havoc p, assume p = 0;

assume X, = x, havoc x; assume x = 0;

assert p=x*mAx<n;

havoc x; havoc p; assumep=x*m A x<n,
WP (assume x < n;

assume X; = X; havoc x; assume x = x; + 1;
assume p, = p; havoc p; assume p = p; + m,
P=x*mAxX<n)

AX >n=>p=n+*m)

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;

assume p, = p, havoc p, assume p = 0;

assume X, = x, havoc x; assume x = 0;

assert p=x*mAx<n;

havoc x; havoc p; assumep=x*m A x<n,
WP (assume x < n;

assume X; = X; havoc x; assume x = x; + 1;
assume p, = p; havoc p,

p=p;tm =>2p=x*mAxXx<n)
AX >n=>p=n+*m)

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;
assume p, = p, havoc p, assume p = 0;
assume x, = X, havoc x; assume x = 0;
assert p=x*m A x<n;
havoc x; havoc p; assume p=x*m A x<n,
WP (assume x < n;

assume X, = X; havoc x; assume x = x; + 1,
p1=pPApa;=p;+m =pa;=x*mAx<n)

AX >n=>p=n*m)

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;

assume p, = p, havoc p, assume p = 0;
assume x, = X, havoc x; assume x = 0;
assert p=x*mAx<n;
havoc x; havoc p; assumep=x*mAx<n,
WP (assume x < n; assume X, = x; havoc x,
X=x,+t1Ap=pApa;=p;,+m
> pa;=x*mAxX<n)
AX >n=>p=n*m)

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;

assume p, = p, havoc p, assume p = 0;
assume x, = X, havoc x; assume x = 0;
assert p=x*mAx<n;
havoc x; havoc p; assumep=x*m A x<n,
WP (assume x < n; assume X; = X,
Xa; =X+ 1A py=pA pa;=p;+m
= pa; =xXa; *m A xXa; <n)

AX >n=>p=n+*m)

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;

assume p, = p, havoc p, assume p = 0;
assume X, = x, havoc x; assume x = 0;
assert p=x*mAx<n;
havoc x; havoc p; assume p=x*m A x<n,
WP (assume x <n,
X{=XAXq;=X;+1A p;=pA pa,=p;,+m
= pa; =xXa; *m A xXa; <n)
AX >n=>p=n+*m)

Example: VC Generation

- Computing the weakest precondition
WP (assume n > 0;
assume p, = p, havoc p, assume p = 0;
assume x, = X, havoc x; assume x = 0;
assert p=x*m A x<n;
havoc x; havoc p; assume p=x*m A x<n,
x<nA xX,=xAXxq,=x;+1A p;=pA pa,=p,+m
= pa; =xa; * m A xa; <n)

AX >n=>p=n+*m)

Example: VC Generation

- Computing the weakest precondition
n>0Ap,=pApa;=0Ax,=xAxa;=0= pa;=xa;*
mAxas=nA

(pa,=xa,* m Axa,<n =

(Xa, <nA x; =xa,Axa;=x;+1A
pPi=pasApa;=p;+m)=>pa;,=xa;* mA
xa;<n)

A (Xa, >n = pa,=n* m))

Example: VC Generation

- The resulting VC 1s equivalent to the conjunction of the
following 1implications

n>0Ap,=pApa;=0Axy;=xAxa;=0=
pas=xas;*mAxas;<n
n>0Ap,=pApa;=0Ax,=xAxa3=0Apa,=xa,*mA
XAy <N =
Xa, >N =>pa,=n*m

n>0Ap,=pApa;=0Ax,=xAxa;=0Apa,=xa,* mAxa,<n
N x,=xa,ANxa,=x;+1 Ap;=pa,Apa,=p;+m=

pa;,=xa;*mAxa,<n

Example: VC Generation

- simplifying the constraints yields
n>0=>0=0"mAO<n

Xds <N AXa,>N>X0,*m=n*m

Xao <N =>xa,*m+m=(xa,+1) *mAxa,+1<n

- all of these implications are valid, which proves that
the original Hoare triple was valid, too.

Translating Method Calls to GCs

method m (p;: T_1, ..., p.: T,) returns (r: T)
requires P
modifies x;, ..., X

ensures Q

A method call
y 1= MYy, e Yids
1s desugared into the guarded command

assert PLy,{/pq, «--» Yi/Pr];

havoc X;; ..., havoc x,; havoc y;

assume Qy,/p1, -.., Yi/ Py Y/1]

ddickstein:projl$./ exec.sh
precondition: { n =2 8 }
p == B;
®x = @;
invariant: { (p = x * m) A (x £ n) }
while x < n do
oot X o4+ 1;
P = p 4+ m;
postcondition: { p = n * m }

assume m = @;
assume p@ = p;
havoc p;
azsume p = B;
OSsume NP = x;
havoc x;
assume ¥ = B;
assert (p = x * m) A (x = n);
havoc x;
havoc p;
assume (p = x * m) A (x = n);
C
assume X < n;j
assume X1 = x;
hawvoc x;
assime X o= =1 «+ 1;
assume pl = p;
havoc p;
assume p = pl <+ m;
assert (p = x * m) A {(x £ n);
azszume False:;
b I 4

assiume —={xX < nJ}j;
>
assert p = n * m;

(n 2@ A (p@ = p) A (pa2 = @) A (x@ = x) A (xal = B) = (pald = xalx * m) A (a3 = n) A
(pa2 = xa2 * m) A (xa2 = n) = (
(a2 = n) A (1 = %22 A (Mal = x1 + 1) A (pl = pa2) A (pal = pl + m) » (pal = xal * m) A (xal = n)
JAxaZ = n) » (pa2 = nmn * m))

R - . I,

)

Software Verification

@

program

correct

theorem prover

no

Adding arrays to language

- Gilven command: afi] :==v
- In array theory a := write(a, 1, v)
- GC: assume tmp = a; havoc a; assume (a = write(tmp, 1, v))

WP(GC, F) = WP(assume tmp = a; havoc a; assume (a = write(tmp, 1, v)), F)
= WP(assume tmp = a; havoc a; a = write(tmp, 1, v) = F)
= WP(assume tmp = a; af = write(tmp, 1, v) = F[af/a])
=tmp =a = af = write(tmp, 1, v) = F[af/a]
=tmp =a Aaf=write(tmp, 1, v) = F[af/a]

= af = write(a, 1, v) = F[af/a] Disclaimer: you need to learn a theory of

arrays first

What we have learned so far

- Hoare logic reduces program verification to
proving the validity of verification conditions
expressed as statements 1n some assertion logic

- The actual verification process can be completely
mechanized modulo

1. 1nference of loop invariants / procedure contracts

2. the actual validity checking of the generated VCs

