SMT-based Verification of Heap-manipulating Programs

Ruzica Piskac

Eleventh SRI Summer School on Formal Techniques
May 30 - June 5, 2022

A Mathematical Proof of Program Correctness?

Example Questions in Verification

- Will the program crash?
- Does it compute the correct result?
- Does it leak private information?
- How long does it take to run?
- How much power does it consume?
- Will it turn off automated cruise control?

A Mathematical Proof of Program Correctness?

A Mathematical Proof of Program Correctness?

A Mathematical Proof of Program Correctness?

Annotations

- Written by a programmer or a software analyst
- Added to the original program code to express properties that allow reasoning about the programs
- Examples:
- Preconditions:
- Describe properties of an input
- Postconditions:
- Describe what the program is supposed to do
- Invariants:
- Describe properties that have to hold in every program point

Decision Procedures for Collections

Verification condition

Verification Conditions

- Mathematical formulas derived based on:
- Code
- Annotations
- If a verification condition always holds (valid), then to code is correct w.r.t. the given property
- It does not depend on the input variables
- If a verification condition does not hold, we should be able to detect an error in the code

Verification Condition: Example

```
//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
    ??
    return y
}
```


Verification Condition: Example

```
//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
    val y = x - 2
    return y
}
```

Verification condition:

$$
\forall x . \forall y . x>0 \wedge y=x-2 \rightarrow y>0
$$

Verification Condition: Example

```
//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
    val y = x - 2
    return y
}
```

Verification condition:

$$
\forall \mathrm{x} . \forall \mathrm{y} . \mathrm{x}>0 \wedge \mathrm{y}=\mathrm{x}-2 \rightarrow \mathrm{y}>0
$$

Preconditions

Verification Condition: Example

```
//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
    val y = x - 2
    return y
}
```

Verification condition:

$$
\forall \mathrm{x} . \forall \mathrm{y} . \mathrm{x}>0 \wedge \mathrm{y}=\mathrm{x}-2 \rightarrow \mathrm{y}>0
$$

Program

Verification Condition: Example

```
//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
    val y = 1
    return y
}
```

Verification condition:

$$
\forall x . \forall y . x>0 \wedge y=1 \rightarrow y>0
$$

Postconditions

Verification Condition: Example

```
//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
    val y = x - 2
    return y
}
```

Verification condition:

$$
\forall \mathrm{x} . \forall \mathrm{y} . \mathrm{x}>0 \wedge \mathrm{y}=\mathrm{x}-2 \rightarrow \mathrm{y}>0
$$

Formula does not hold for input $\mathrm{x}=1$

Automation of Verification

- Windows XP has approximately 45 millions lines of source code
$\cong 300.000$ DIN A4 papers
\cong seven times my size high paper stack

Verification should be automated!!!

Software Verification

Prove formulas automatically!

Decision Procedures

- A decision procedure is an algorithm which answers whether the input formula is satisfiable or not - formula $x \leq y$ is satisfiable for $\mathrm{x}=0, \mathrm{y}=1$
- formula $x \leq y \wedge x+1>y+1$ is unsatisfiable

Language Semantics

Formal Semantics of Java Programs

- The Java Language Specification (JLS) [link] gives semantics to Java programs
- The document has 780 pages.
- 148 pages to define semantics of expression.
- 42 pages to define semantics of method invocation.
- Semantics is only defined in prose.
- How can we make the semantics formal?
- We need a mathematical model of computation.

Semantics of Programming Languages

- Denotational Semantics
- Meaning of a program is defined as the mathematical object it computes (e.g., partial functions).
- Example: Abstract Interpretation

- Axiomatic Semantics

- Meaning of a program is defined in terms of its effect on the truth of logical assertions.
- Example: Hoare Logic
- (Structural) Operational Semantics
- Meaning of a program is defined by formalizing the individual computation steps of the program.
- Example: Labeled Transition Systems

IMP: A Simple Imperative Language

Before we move on to Java, we look at a simple imperative programming language IMP.

An IMP program:

$$
\begin{aligned}
& p:=0 ; \\
& x:=1 ; \\
& \text { while } x \leq n \text { do } \\
& \qquad x:=x+1 ; \\
& \qquad p:=p+m ;
\end{aligned}
$$

IMP: Syntactic Entities

$\cdot n \in \mathbb{Z}$	- integers
- true, false $\in \mathbb{B}$	- Booleans
- $x, y \in$ Vars	- Program variables
- $e \in A \exp$	- arithmetic expressions
- $b \in \operatorname{Bexp}$	- Boolean expressions
- $c \in C o m$	- commands

Syntax of Arithmetic Expressions

- Arithmetic expressions (Aexp)

$$
\begin{aligned}
\mathrm{e}::= & n, \quad \text { for } n \in \mathbb{Z} \\
& \mid x, \quad \text { for } x \in \text { Vars } \\
& \mid e_{1}+e_{2} \\
& \mid e_{1}-e_{2} \\
& e_{1} * e_{2}
\end{aligned}
$$

- Notes:
- Variables are not declared before use.
- All variables have integer type.
- Expressions have no side-effects.

Syntax of Boolean Expressions

- Boolean expressions (Bexp)
b ::= true
| false
| $e_{1}=e_{2}$ for $e_{1}, e_{2} \in \operatorname{Aexp}$
| $e_{1} \leq e_{2}$ for $e_{1}, e_{2} \in$ Aexp
| $\neg b$ for $b \in$ Bexp
| $b_{1} \wedge b_{2}$ for $b_{1}, b_{2} \in$ Bexp
$\mid b_{1} \vee b_{2}$ for $b_{1}, b_{2} \in B \exp$

Syntax of Commands

- Commands (Com)
$c::=$ skip
| x := e
| $c_{1} ; c_{2}$
| if b then c_{1} else c_{2} | while b do c
- Notes:
- The typing rules have been embedded in the syntax definition.
- Other parts are not context-free and need to be checked separately (e.g., all variables are declared).
- Commands contain all the side-effects in the language.
- Missing: references, function calls, ...

A simple example

```
//: assume (x > 5)
def simple (Int x)
//: ensures y > 7
{
    val y = x + 2
    return y
}
```

What do we need:

- Language in which we are writing programs
- Program execution and what does it mean "whenever the program is in the state"
- Language for annotation
- Combine all this somehow together

We need to express / derive / prove:
"whenever the program takes as input x, such that $x>5$, and we execute the program, the resulting output y will satisfy that y >7 "
$\forall \mathrm{x} . \forall \mathrm{y} . \mathrm{x}>5 \wedge \mathrm{y}=\mathrm{x}+2 \rightarrow \mathrm{y}>7$

Meaning of IMP Programs

Questions to answer:

- What is the "meaning" of a given IMP expression/command?
- How would we evaluate IMP expressions and commands?
- How are the evaluator and the meaning related?
- How can we reason about the effect of a command?

Semantics of IMP

- The meaning of IMP expressions depends on the values of variables, i.e. the current state.
- A state at a given moment is represented as a function from Vars to \mathbb{Z}
- The set of all states is $Q=$ Vars $\rightarrow \mathbb{Z}$
- We use q to range over Q

A simple example

```
//: assume (x > 5)
def simple (Int x)
//: ensures y > 7
{
    val y = x + 2
    return y
}
```

$$
X=6, Y=100
$$

$$
\mathrm{X}=6, \mathrm{Y}=8
$$

Ending state, postconditions are satisfied

Judgments

- We write $<e, q>\Downarrow n$ to mean that e evaluates to n in state q.
- The formula $\langle e, q>\Downarrow n$ is a judgment
(a statement about a relation between e, q and n)
- In this case, we can view \Downarrow as a function of two arguments e and q
- This formulation is called natural operational semantics
- or big-step operational semantics
- the judgment relates the expression and its "meaning"
- How can we define $<\mathrm{e} 1+\mathrm{e} 2, \mathrm{q}>\Downarrow \ldots ?$

Inference Rules

- We express the evaluation rules as inference rules for our judgments.
- The rules are also called evaluation rules.

An inference rule

$$
\frac{F_{1} \ldots F_{n}}{G} \text { where } H
$$

defines a relation between judgments F_{1}, \ldots, F_{n} and G.

- The judgments F_{1}, \ldots, F_{n} are the premises of the rule;
- The judgments G is the conclusion of the rule;
- The formula H is called the side condition of the rule. If $n=0$ the rule is called an axiom. In this case, the line separating premises and conclusion may be omitted.

Inference Rules for Aexp

- In general, we have one rule per language construct:

$$
<n, q>\Downarrow n \quad \text { Axiom } \longrightarrow<x, q>\Downarrow q(x)
$$

$$
\frac{<e_{1}, q>\Downarrow n_{1} \quad<e_{2}, q>\Downarrow n_{2}}{<e_{1}+e_{2}, q>\Downarrow\left(n_{1}+n_{2}\right)} \frac{<e_{1}, q>\Downarrow n_{1} \quad<e_{2}, q>\Downarrow n_{2}}{<e_{1}-e_{2}, q>\Downarrow\left(n_{1}-n_{2}\right)}
$$

$$
\frac{<e_{1}, q>\Downarrow n_{1} \quad<e_{2}, q>\Downarrow n_{2}}{<e_{1} * e_{2}, q>\Downarrow\left(n_{1} * n_{2}\right)}
$$

- This is called structural operational semantics.
- rules are defined based on the structure of the expressions.

Inference Rules for Bexp

$<$ true,$q>\Downarrow$ true
<false, $q>\Downarrow$ false

$$
\begin{gathered}
\frac{<e_{1}, q>\Downarrow n_{1} \quad<e_{2}, q>\Downarrow n_{2}}{<e_{1}=e_{2}, q>\Downarrow\left(n_{1}=n_{2}\right)} \frac{<e_{1}, q>\Downarrow n_{1} \quad<e_{2}, q>\Downarrow n_{2}}{<e_{1} \leq e_{2}, q>\Downarrow\left(n_{1} \leq n_{2}\right)} \\
\frac{<b_{1}, q>\Downarrow t_{1} \quad<b_{2}, q>\Downarrow t_{2}}{<b_{1} \wedge b_{2}, q>\Downarrow\left(t_{1} \wedge t_{2}\right)}
\end{gathered}
$$

How to Read Inference Rules?

- Forward, as derivation rules of judgments
- if we know that the judgments in the premise hold then we can infer that the conclusion judgment also holds.
- Example:

$$
\frac{<2, q>\Downarrow 2 \quad<3, q>\Downarrow 3}{<2 * 3, q>\Downarrow 6}
$$

How to Read Inference Rules?

- Backward, as evaluation rules:
- Suppose we want to evaluate $e_{1}+e_{2}$, i.e., find n s.t. $e_{1}+e_{2} \Downarrow n$ is derivable using the previous rules.
- By inspection of the rules we notice that the last step in the derivation of $e_{1}+e_{2} \Downarrow n$ must be the addition rule.
- The other rules have conclusions that would not match $e_{1}+e_{2} \Downarrow \mathrm{n}$.
- This is called reasoning by inversion on the derivation rules.
- Thus we must find n_{1} and n_{2} such that $e_{1} \Downarrow n_{1}$ and $e_{2} \Downarrow n_{2}$ are derivable.
- This is done recursively.
- Since there is exactly one rule for each kind of expression, we say that the rules are syntax-directed.
- At each step at most one rule applies.
- This allows a simple evaluation procedure as above.

How to Read Inference Rules?

- Example: evaluation of an arithmetic expression via reasoning by inversion:

$$
\begin{gathered}
<y,\{x \mapsto 3, y \mapsto 2\}>\Downarrow 2 \\
<\mathrm{x},\{x \mapsto 3, y \mapsto 2\}>\Downarrow 3 \quad
\end{gathered} \frac{\begin{array}{c}
<2,\{x \mapsto 3, y \mapsto 2\}>\Downarrow 2 \\
<2 * \mathrm{y},\{x \mapsto 3, y \mapsto 2\}>\Downarrow 4
\end{array}}{<\mathrm{x}+\left(2^{*} \mathrm{y}\right),\{x \mapsto 3, y \mapsto 2\}>\Downarrow 7}
$$

Semantics of Commands

- The evaluation of a command in Com has sideeffects, but no direct result.
- The "result" of a command c in a pre-state q is a transition from q to a post-state q ':

$$
q \xrightarrow{c} q^{\prime}
$$

- We can formalize this in terms of transition systems.

Labeled Transition Systems

A labeled transition system (LTS) is a structure
$L T S=(Q$, Act,$\rightarrow)$ where

- Q is a set of states,
- Act is a set of actions,
- $\rightarrow \subseteq Q \times$ Act $\times Q$ is a transition relation.

We write $q \xrightarrow{a} q^{\prime}$ for $\left(q, a, q^{\prime}\right) \in \rightarrow$.

Inference Rules for Transitions

$\frac{\left\langle b, q>\Downarrow \text { true } \underset{\text { if } b \text { then } c_{1} \text { else } c_{3}}{c_{1}} q^{\prime}\right.}{q \xrightarrow{\prime}}$

$$
\xrightarrow[{q \xrightarrow{<b, q>\Downarrow \text { false } q \text { then } c_{1} \text { else } c_{3}} q^{c}}]{q^{\prime}} q^{\prime}
$$

$$
<b, q>\Downarrow \text { false }
$$

$$
q \xrightarrow{\text { while } b \text { do } c} \quad q
$$

$<b, q>\Downarrow$ true $\quad q \xrightarrow{c} q^{\prime} q \xrightarrow{\prime}$ while b do $c>q^{\prime \prime}$ "

Axiomatic Semantics

Axiomatic Semantics

- An axiomatic semantics consists of:
- a language for stating assertions about programs;
- rules for establishing the truth of assertions.
- Some typical kinds of assertions:
- This program terminates.
- If this program terminates, the variables x and y have the same value throughout the execution of the program.
- The array accesses are within the array bounds.
- Some typical languages of assertions
- First-order logic
- Other logics (temporal, linear)
- Special-purpose specification languages (Z, Larch, JML)

Assertions for IMP

- The assertions we make about IMP programs are of the form:

$$
\{\mathrm{A}\}, \subset \mathrm{B}\}
$$

with the meaning that:

- If A holds in state q, and $q \xrightarrow{c} q$
- then B holds in q^{\prime}
- A is the precondition and B is the postcondition
- For example:

$$
\{y \leq x\} z:=x ; z:=z+1\{y<z\}
$$

is a valid assertion

- These are called Hoare triples or Hoare assertions

Assertions for IMP

- $\{\mathrm{A}\}$ c $\{\mathrm{B}\}$ is a partial correctness assertion. It does not imply termination of c .
- [A] c [B] is a total correctness assertion meaning that
- If A holds in state q
- then there exists q^{\prime} such that $q \xrightarrow{c} q^{\prime}$ and B holds in state q^{\prime}
- Now let's be more formal
- Formalize the language of assertions, A and B
- Say when an assertion holds in a state
- Give rules for deriving valid Hoare triples

The Assertion Language

- We use first-order predicate logic with IMP expressions

$$
\begin{aligned}
\mathrm{A}:: & =\text { true } \mid \text { false }\left|e_{1}=e_{2}\right| e_{1} \geq e_{2} \\
& \left|\mathrm{~A}_{1} \wedge \mathrm{~A}_{2}\right| \mathrm{A}_{1} \vee \mathrm{~A}_{2}\left|\mathrm{~A}_{1} \xlongequal{\Rightarrow} \mathrm{~A}_{2}\right| \forall x . \mathrm{A} \mid \exists x . \mathrm{A}
\end{aligned}
$$

- Note that we are somewhat sloppy and mix the logical variables and the program variables.
- Implicitly, all IMP variables range over integers.
- All IMP Boolean expressions are also assertions.

Semantics of Assertions

- We introduced a language of assertions, we need to assign meanings to assertions.
- Notation $q \vDash$ A says that assertion A holds in a given state q. - This is well-defined when q is defined on all variables occurring in A.
- The \vDash judgment is defined inductively on the structure of assertions.
- Notation \vDash A says that assertion A holds in any state, ie. it is always true.
- It relies on the semantics of arithmetic expressions from IMP.

Semantics of Assertions

- q ₹ true
- $q \vDash e_{1}=e_{2}$
- $q \vDash e_{1} \geq e_{2}$
- $q \vDash \mathrm{~A}_{1} \wedge \mathrm{~A}_{2}$
- $q \vDash \mathrm{~A}_{1} \vee \mathrm{~A}_{2}$
- q ю $\mathrm{A}_{1} \Rightarrow \mathrm{~A}_{2}$
- $q \vDash \forall x$.A
- q ト $\exists x$.A
always
iff $<e_{1}, q>\Downarrow=<e_{2}, q>\Downarrow$
iff $<e_{1}, q>\Downarrow \geq<e_{2}, q>\Downarrow$
iff $q \vDash \mathrm{~A}_{1}$ and $q \vDash \mathrm{~A}_{2}$
iff $q \vDash \mathrm{~A}_{1}$ or $q \vDash \mathrm{~A}_{2}$
iff $q \vDash \mathrm{~A}_{1}$ implies $q \vDash \mathrm{~A}_{2}$
iff $\forall n \in \mathbb{Z} . q[x:=n] \vDash \mathrm{A}$
iff $\exists n \in \mathbb{Z} . q[x:=n] \vDash \mathrm{A}$

Semantics of Hoare Triples

- We can define formally the meaning of a partial correctness assertion:
$\vDash\{\mathrm{A}\} c\{\mathrm{~B}\}$ iff $\forall q \in Q . \forall q^{\prime} \in Q . q \vDash \mathrm{~A} \wedge q \xrightarrow{c} q^{\prime} \Rightarrow q^{\prime} \vDash \mathrm{B}$
- and the meaning of a total correctness assertion:
$\vDash[\mathrm{A}] c[\mathrm{~B}]$ iff $\forall q \in Q . q \vDash \mathrm{~A} \Rightarrow \exists q^{\prime} \in Q . q \xrightarrow{c} q^{\prime} \wedge q^{\prime} \vDash \mathrm{B}$
$\mathrm{q}-a$ state, defines values of variables
$\{\mathrm{A}\} c\{\mathrm{~B}\}-a$ Hoare tripe, it is either true or false
$q \vDash \mathrm{~F}-$ in state q, formula F holds

Semantics of Hoare Triples

- We can define formally the meaning of a partial correctness assertion:
$\vDash\{\mathrm{A}\} c\{\mathrm{~B}\}$ iff $\forall q \in Q . \forall q^{\prime} \in Q . q \vDash \mathrm{~A} \wedge q \xrightarrow{c} q^{\prime} \Rightarrow q^{\prime} \vDash \mathrm{B}$
- and the meaning of a total correctness assertion:
$\vDash[\mathrm{A}] c[\mathrm{~B}]$ iff $\forall q \in Q . q \vDash \mathrm{~A} \Rightarrow \exists q^{\prime} \in Q . q \xrightarrow{c} q^{\prime} \wedge q^{\prime} \vDash \mathrm{B}$
Great result: we now formally can describe that a program is correct

Inferring Validity of Assertions

- Now we have the formal mechanism to decide when $\{A\} c\{B\}$
- But it is not satisfactory,
- because $\vDash\{A\} \subset\{B\}$ is defined in terms of the operational semantics.
- We practically have to run the program to verify an assertion.
- Also it is impossible to effectively verify the truth of a $\forall x$. A assertion (by using the definition of validity)
- So we define a symbolic technique for deriving valid assertions from others that are known to be valid
- We start with validity of first-order formulas

Now that we know what correctness means, what's next?

- By now we can express formally: if a program is in the state where preconditions hold, and we execute the program, we will end up in the state where postconditions hold
- For example, a formula $\{\mathrm{x}>0\} x:=x+2\{x>2\}$ is a correct Hoare triple and we can prove that by hand
- However, it is a manual work, therefore error-prone
- Goal: automatize the process of proving program correctness as much as possible
- End goal: develop a "push-the-button" tool for proving program correctness (something like a your own mini Dafny)

Natural Deduction

- Inference system introduces in 1934 in (Gentzen 1934, Jaśkowski 1934)
- The goal is to have a system that can automatically prove theorems in mathematics
- More reading:
- https://www.iep.utm.edu/nat-ded/ (at Internet Encyclopedia of Philosophy)

Inference Rules

- We write \vdash A when A can be inferred from basic axioms.
- The inference rules for $\vdash \mathrm{A}$ are the usual ones from first-order logic with arithmetic (examples)
- Natural deduction style rules:

$$
\begin{aligned}
& \frac{\vdash \mathrm{A}}{\vdash \mathrm{~A} \wedge \mathrm{~B}} \frac{\vdash \mathrm{~B}}{\vdash \mathrm{~A}[a / x]} \\
& \stackrel{\vdash \mathrm{A} \cdot \mathrm{~A}}{\vdash \mathrm{~A}} \\
& \frac{\vdash \mathrm{~A}}{\vdash \mathrm{~A} \vee \mathrm{~B} \text { fresh }} \frac{\vdash \mathrm{B}}{\vdash \mathrm{~A} \vee \mathrm{~B}} \quad \stackrel{\vdash \mathrm{~A}[a / x]}{\vdash \mathrm{A}[e / x]}
\end{aligned}
$$

$$
[\vdash \mathrm{A}]
$$

$$
\frac{\vdash \mathrm{A}[e x]}{\vdash \exists x . \mathrm{A}} \quad \frac{\vdash \exists x . \mathrm{A} \vdash \mathrm{~B}}{\vdash \mathrm{~B}} \text { where }{ }_{a}^{\text {is fresh }} \frac{\vdash \mathrm{A} \Rightarrow \mathrm{~B}}{\vdash \mathrm{~B}} \stackrel{\mathrm{~A}}{\vdash \mathrm{~B}} \frac{\vdash \mathrm{~B}}{\vdash \mathrm{~A} \Rightarrow \mathrm{~B}}
$$

Inference Rules for Hoare Logic

- One rule for each syntactic construct:

$$
\begin{aligned}
& \vdash\{\mathrm{A}\} \text { skip }\{\mathrm{A}\} \quad \stackrel{\vdash\{\mathrm{A}[e / x]\}}{ } \begin{array}{l}
x:=e\{\mathrm{~A}\} \\
\frac{\vdash\{\mathrm{A}\} c_{1}\{\mathrm{~B}\} \quad \vdash\{\mathrm{B}\} c_{2}\{\mathrm{C}\}}{\vdash\{\mathrm{A}\} c_{1} ; c_{2}\{\mathrm{C}\}} \\
\frac{\vdash\{\mathrm{A} \wedge b\} c_{1}\{\mathrm{~B}\} \quad \vdash\{\mathrm{A} \wedge \neg b\} c_{2}\{\mathrm{~B}\}}{\vdash\{\mathrm{A}\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{\mathrm{~B}\}} \\
\frac{\vdash\{\mathrm{I} \wedge b\} c\{\mathrm{I}\}}{} \\
\qquad\{\mathrm{I}\} \text { while } b \text { do } c\{\mathrm{I} \wedge \neg b\}
\end{array}
\end{aligned}
$$

Inference Rules for Hoare Logic

- One rule for each syntactic construct:

$$
\begin{aligned}
& \vdash\{\mathrm{A}\} \text { skip }\{\mathrm{A}\} \quad \stackrel{\vdash\{\mathrm{A}[e / x]\}}{ } \begin{array}{l}
x:=e\{\mathrm{~A}\} \\
\frac{\vdash\{\mathrm{A}\} c_{1}\{\mathrm{~B}\} \quad \vdash\{\mathrm{B}\} c_{2}\{\mathrm{C}\}}{\vdash\{\mathrm{A}\} c_{1} ; c_{2}\{\mathrm{C}\}} \\
\frac{\vdash\{\mathrm{A} \wedge b\} c_{1}\{\mathrm{~B}\} \quad \vdash\{\mathrm{A} \wedge \neg b\} c_{2}\{\mathrm{~B}\}}{\vdash\{\mathrm{A}\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{\mathrm{~B}\}} \\
\frac{\vdash\{\mathrm{I} \wedge b\} c\{\mathrm{I}\}}{} \\
\qquad\{\mathrm{I}\} \text { while } b \text { do } c\{\mathrm{I} \wedge \neg b\}
\end{array}
\end{aligned}
$$

Loop Invariants

- I is a loop invariant if the following three conditions hold:
- I holds initially in all states satisfying Pre, when execution reaches loop entry, I holds
- I is preserved: if we assume I and loop condition (b), we can prove that I will hold again after executing the loop body
- I is strong enough: if we assume I and the negation of loop condition b, we can prove that Post holds after the loop execution

Inference Rules for Hoare Triples

- Similarly we write $\vdash\{A\} c\{B\}$ when we can derive the triple using inference rules
- There is one inference rule for each command in the language.
- Plus, the rule of consequence

$$
\begin{array}{lll}
\vdash \mathrm{A}^{\prime} \Rightarrow \mathrm{A} & \vdash\{\mathrm{~A}\} c\{\mathrm{~B}\} & \vdash \mathrm{B} \Rightarrow \mathrm{~B}^{\prime} \\
\hline & \vdash\left\{\mathrm{A}^{\prime}\right\} c\left\{\mathrm{~B}^{\prime}\right\} &
\end{array}
$$

Hoare Logic: Summary

- We have a language for asserting properties of programs.
- We know when such an assertion is true.
- We also have a symbolic method for deriving assertions.

Hoare Rules

- For some constructs, multiple rules are possible alternative "forward axiom" for assignment:

$$
\vdash\{\mathrm{A}\} x:=e\left\{\exists x_{0} \cdot x_{0}=e \wedge \mathrm{~A}\left[x_{0} / x\right]\right\}
$$

alternative rule for while loops:

$$
\frac{\vdash \mathrm{I} \wedge b \Rightarrow \mathrm{C} \vdash\{\mathrm{C}\} \subset\{\mathrm{I}\} \vdash \mathrm{I} \wedge \neg b \Rightarrow \mathrm{~B}}{\vdash\{\mathrm{I}\} \text { while } b \text { do } c\{\mathrm{~B}\}}
$$

- These alternative rules are derivable from the previous rules, plus the rule of consequence.

Exercise: Hoare Rules

- Is the following alternative rule for assignment still correct?

$$
\vdash\{\text { true }\} x:=e\{x=e\}
$$

Example: Conditional

$$
\vdash\{\text { true }\} \text { if } y \leq 0 \text { then } x:=1 \text { else } x:=y\{x>0\}
$$

- D1 is obtained by consequence and assignment

$$
\frac{\vdash \operatorname{true} \wedge \mathrm{y}<0 \Rightarrow 1 \geq 0 \quad \vdash\{1 \geq 0\} \mathrm{x}:=1\{\mathrm{x} \geq 0\}}{\vdash\{\operatorname{true} \wedge \mathrm{y} \leq 0\} \mathrm{x}:=1\{\mathrm{x} \geq 0\}}
$$

- D2 is also obtained by consequence and assignment
\vdash true $\wedge \mathrm{y}>0 \Rightarrow \mathrm{y}>0 \quad \vdash\{\mathrm{y}>0\} \mathrm{x}:=\mathrm{y}\{\mathrm{x}>0\}$

$$
\vdash\{\text { true } \wedge \mathrm{y}>0\} \mathrm{x}:=\mathrm{y}\{\mathrm{x}>0\}
$$

Example: a simple loop

- We want to infer that

$$
\vdash\{x \leq 0\} \text { while } x \leq 5 \text { do } x:=x+1\{x=6\}
$$

- Use the rule for while with invariant $\mathrm{I} \equiv x \leq 6$

$$
\begin{gathered}
\vdash x \leq 6 \wedge x \leq 5 \Rightarrow x+1 \leq 6 \quad \vdash\{x+1 \leq 6\} x:=x+1\{x \leq 6\} \\
\frac{\vdash\{x \leq 6 \wedge x \leq 5\} x:=x+1\{x \leq 6\}}{\vdash\{\mathrm{x} \leq 6\} \text { while } \mathrm{x} \leq 5 \text { do } \mathrm{x}:=\mathrm{x}+1\{\mathrm{x} \leq 6 \wedge \mathrm{x}>5\}}
\end{gathered}
$$

- Then finish-off with the rule of consequence

$$
\vdash x \leq 0 \Rightarrow x \leq 6
$$

$$
\vdash x \leq 6 \wedge x>5 \Rightarrow x=6 \quad \vdash\{x<6\} \text { while } \ldots\{x \leq 6 \wedge x>5\}
$$

$$
\vdash\{x \leq 0\} \text { while ... }\{x=6\}
$$

Example: a more interesting program

- We want to derive that

$$
\begin{aligned}
& \{\mathrm{n} \geq 0\} \\
& p:=0 ; \\
& x:=0 ; \\
& \text { while } x<n \text { do } \\
& \quad x:=x+1 ; \\
& \quad p:=p+m \\
& \{p=n * m\}
\end{aligned}
$$

Example: a more interesting program

Only applicable rule (except for rule of consequence):

$$
\frac{\vdash\{\mathrm{A}\} \mathrm{c}_{1}\{\mathrm{C}\} \quad \vdash\{\mathrm{C}\} \mathrm{c}_{2}}{\vdash\{\mathrm{~A}\} \mathrm{c}_{1} ; \mathrm{c}_{2}\{\mathrm{~B}\}}
$$

$$
\begin{aligned}
& \vdash \underline{\mathrm{n} \geq 0\}} \mathrm{p}:=0 ; \mathrm{x}:=0\{\mathrm{C}\} \quad \vdash\{\mathrm{C}\} \text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n} \text { * } \mathrm{m}\} \\
& \vdash \underbrace{\{\mathrm{n} \geq 0\}}_{\mathrm{A}} \underbrace{\mathrm{p}:=0 ; \mathrm{x}:=0}_{\mathrm{c}_{1}} ; \underbrace{\text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})}_{\mathrm{c}_{2}} \underbrace{\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\}}_{\mathrm{B}}
\end{aligned}
$$

Example: a more interesting program

What is C?Look at the next possible matching rules for c_{2} !
Only applicable rule (except for rule of consequence):

$$
\vdash\{I \wedge b\} \subset\{I\}
$$

$\vdash\{I\}$ while b do $c\{I \wedge \neg b\}$
We can match $\{\mathrm{I}\}$ with $\{\mathrm{C}\}$ but we cannot match $\{\mathrm{I} \wedge \neg \mathrm{b}\}$ and $\{p=n * m\}$ directly. Need to apply the rule of consequence first!

$$
\begin{aligned}
& \vdash \underline{\mathrm{n} \geq 0\}} \mathrm{p}:=0 ; \mathrm{x}:=0\{\mathrm{C}\} \quad \vdash\{\mathrm{C}\} \text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\} \\
& \vdash \underbrace{\{\mathrm{n} \geq 0\}}_{\mathrm{A}} \underbrace{\mathrm{p}:=0 ; \mathrm{x}:=0}_{\mathrm{c}_{1}} ; \underbrace{\text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})}_{\mathrm{c}_{2}}\{\underbrace{\mathrm{p}=\mathrm{n} * \mathrm{~m}}_{\mathrm{B}}\}
\end{aligned}
$$

Example: a more interesting program

What is C?Look at the next possible matching rules for c_{2} !
Only applicable rule (except for rule of consequence):

$$
\vdash\{I \wedge b\} \subset\{I\}
$$

Rule of consequence:

$$
\mathrm{I}=\mathrm{A}=\mathrm{A}^{\prime}=\mathrm{C}
$$

$$
\begin{aligned}
\vdash A^{\prime} \Rightarrow A \quad & \vdash\{A\} c^{\prime}\{B\} \quad \vdash B \Rightarrow B^{\prime} \\
& \vdash\left\{A^{\prime}\right\} c^{\prime}\left\{B^{\prime}\right\}
\end{aligned}
$$

$$
\vdash \frac{\vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0 ; \mathrm{x}:=0\{\mathrm{C}\}}{\vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0 ; \mathrm{x}:=0 ; \text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\}} \overbrace{\text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})}^{\mathrm{c}^{\prime}} \overbrace{\mathrm{p}=\mathrm{n}}^{\mathrm{A}^{\prime}} \mathrm{B}^{\prime} \mathrm{m}\}
$$

Example: a more interesting program

What is I? Let's keep it as a placeholder for now!
Next applicable rule:

$$
\frac{\vdash\{\mathrm{A}\} \mathrm{c}_{1}\{\mathrm{C}\} \quad \vdash\{\mathrm{C}\} \mathrm{c}_{2}\{\mathrm{~B}\}}{\vdash\{\mathrm{A}\} \mathrm{c}_{1} ; \mathrm{c}_{2}\{\mathrm{~B}\}}
$$

$\vdash\{\underline{n \geq 0\}} \mathrm{p}:=0 ; \mathrm{x}:=0\{\mathrm{I}\} \quad \vdash\{\mathrm{I}\}$ while $\mathrm{x}<\mathrm{n}$ do $(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n}$ * m$\}$ $\vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0 ; \mathrm{x}:=0$; while $\mathrm{x}<\mathrm{n}$ do $(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\}$

Example: a more interesting program

What is C?Look at the next possible matching rules for c_{2} !
Only applicable rule (except for rule of consequence):
$\vdash\{\mathrm{A}[e / x]\} x:=e\{\mathrm{~A}\}$

$$
\begin{aligned}
& \overbrace{\{I \wedge x<n}^{A} \overbrace{x:=x+1}^{c_{1}}\{C\} \quad \vdash\{C\} p:=\overbrace{p: m}^{c_{2}} \overbrace{\{I}^{B} \\
& \vdash\{I \wedge x<n\} x:=x+1 ; p:=p+m\{I\} \\
& \vdash\{I\} \text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 \text {; } \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{I} \wedge \mathrm{x} \geq \mathrm{n}\} \\
& \vdash \mathrm{I} \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow \mathrm{p}=\mathrm{n} \text { * } \mathrm{m}
\end{aligned}
$$

$\vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0 ; \mathrm{x}:=0\{\mathrm{I}\} \vdash\{\mathrm{I}\}$ while $\mathrm{x}<\mathrm{n}$ do $(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n}$ * m$\}$
$\vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0 ; \mathrm{x}:=0$; while $\mathrm{x}<\mathrm{n}$ do $(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\}$

Example: a more interesting program

What is C?Look at the next possible matching rules for c_{2} !
Only applicable rule (except for rule of consequence):
$\vdash\{\mathrm{A}[e / x]\} x:=e\{\mathrm{~A}\}$

$$
\begin{aligned}
& \vdash\{I \wedge x<n\} x:=x+1\{I[p+m / p]\} \quad \vdash\{I[p+m / p]\} p:=p+m\{I\} \\
& \frac{\vdash\{I \wedge x<n\} x:=x+1 ; p:=p+m\{I\}}{\vdash\{I\} \text { while } x<n \text { do }(x:=x+1 ; p:=p+m)\{I \wedge x \geq n\}} \\
& \vdash \mathrm{I} \wedge x \geq n \Rightarrow p=n * m
\end{aligned}
$$

$$
\vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0 ; \mathrm{x}:=0\{\mathrm{I}\} \quad \vdash\{\mathrm{I}\} \text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\}
$$

$$
\vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0 ; \mathrm{x}:=0 ; \text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\}
$$

Example: a more interesting program Only applicable rule (except for rule of consequence):

$$
\vdash\{\mathrm{A}[e \mid x]\} x:=e\{\mathrm{~A}\}
$$

Need rule of consequence to match $\{I \wedge x<n\}$ and $\{I[x+1 / x, p+m / p]\}$

$$
\begin{aligned}
& \vdash\{I \wedge x<n\} x:=x+1\{I[p+m / p]\} \quad \vdash\{I[p+m / p\} p:=p+m\{I\} \\
& \frac{\vdash\{I \wedge x<n\} x:=x+1 ; p:=p+m\{I\}}{\vdash\{I\} \text { while } x<n \text { do }(x:=x+1 ; p:=p+m)\{I \wedge x \geq n\}} \\
& \vdash I \wedge x \geq n \Rightarrow p=n * m
\end{aligned}
$$

$\vdash\{n \geq 0\} p:=0 ; x:=0\{I\} \quad \vdash\{I\}$ while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$ $\vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0 ; \mathrm{x}:=0 ;$ while $\mathrm{x}<\mathrm{n}$ do $(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\}$

Example: a more interesting program

Let's just remember the open proof obligations!

$$
\begin{aligned}
& \vdash\{I[\mathrm{x}+1 / \mathrm{x}, \mathrm{p}+\mathrm{m} / \mathrm{p}]\} \mathrm{x}:=\mathrm{x}+1\{\mathrm{I}[\mathrm{p}+\mathrm{m} / \mathrm{p}]\} \\
& \vdash \mathrm{I} \wedge \mathrm{x}<\mathrm{n} \Rightarrow \mathrm{I}[\mathrm{x}+1 / \mathrm{x}, \mathrm{p}+\mathrm{m} / \mathrm{p}] \\
& \vdash\{I \wedge \underline{x<n\}} x:=x+1\{I[p+m / p]\} \quad \vdash\{I[p+m / p\} p:=p+m\{I\} \\
& \vdash\{I \wedge x<n\} x:=x+1 ; p:=p+m\{I\} \\
& \vdash\{I\} \text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 \text {; } \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{I} \wedge \mathrm{x} \geq \mathrm{n}\} \\
& \vdash \mathrm{I} \wedge \mathrm{x} \geq \dot{\mathrm{n}} \Rightarrow \mathrm{p}=\mathrm{n} * \mathrm{~m} \\
& \vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0 ; \mathrm{x}:=0\{\mathrm{I}\} \quad \vdash\{\mathrm{I}\} \text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\} \\
& \vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0 ; \mathrm{x}:=0 \text {; while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\}
\end{aligned}
$$

Example: a more interesting program

Let's just remember the open proof obligations!

$$
\begin{aligned}
& \vdash \mathrm{I} \wedge \mathrm{x}<\mathrm{n} \Rightarrow \mathrm{I}[\mathrm{x}+1 / \mathrm{x}, \mathrm{p}+\mathrm{m} / \mathrm{p}] \\
& \vdash \mathrm{I} \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow \mathrm{p}=\mathrm{n} * \mathrm{~m}
\end{aligned}
$$

Continue with the remaining part of the proof tree, as before.

$$
\begin{aligned}
& \vdash \mathrm{n} \geq 0 \Rightarrow \mathrm{I}[0 / \mathrm{p}, 0 / \mathrm{x}] \\
& \frac{\vdash\{\mathrm{I}[0 / \mathrm{p}, 0 / \mathrm{x}]\} \mathrm{p}:=0\{\mathrm{I}[0 / \mathrm{x}]\}}{\vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0\{\mathrm{I}[0 / \mathrm{x}]\}} \\
& \vdash\{I[0 / x]\} \mathrm{x}:=0\{\mathrm{I}\} \\
& \vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0 ; \mathrm{x}:=0\{\mathrm{I}\} \quad \vdash\{\mathrm{I}\} \text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n} \text { * m\}} \\
& \vdash\{\mathrm{n} \geq 0\} \mathrm{p}:=0 ; \mathrm{x}:=0 \text {; while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\}
\end{aligned}
$$

Example: a more interesting program

Find I such that all constraints are simultaneously valid:

$$
\begin{aligned}
& \vdash \mathrm{n} \geq 0 \Rightarrow \mathrm{I}[0 / \mathrm{p}, 0 / \mathrm{x}] \\
& \vdash \mathrm{I} \wedge \mathrm{x}<\mathrm{n} \Rightarrow \mathrm{I}[\mathrm{x}+1 / \mathrm{x}, \mathrm{p}+\mathrm{m} / \mathrm{p}] \\
& \vdash \mathrm{I} \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow \mathrm{p}=\mathrm{n} * \mathrm{~m} \\
& \mathrm{I} \equiv \mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n} \\
& \vdash \mathrm{n} \geq 0 \Rightarrow 0=0 * \mathrm{~m} \wedge 0 \leq \mathrm{n} \\
& \vdash \mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n} \wedge \mathrm{x}<\mathrm{n} \Rightarrow \mathrm{p}+\mathrm{m}=(\mathrm{x}+1) * \mathrm{~m} \wedge \mathrm{x}+1 \leq \mathrm{n} \\
& \vdash \mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n} \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow \mathrm{p}=\mathrm{n} * \mathrm{~m}
\end{aligned}
$$

All constraints are valid!

Another example: check if a number is prime

$$
\begin{aligned}
& \{n \geq 2\} \\
& p:=1 ; \\
& i:=2 \\
& \text { while } i<n \text { do } \\
& \quad \text { if }(n \bmod i=0) \text { then } p:=0 ; \\
& \quad i:=i+1 ; \\
& \{p=1 \Rightarrow \operatorname{prime}(n)\}
\end{aligned}
$$

Another example: check if a number is prime

$$
\begin{aligned}
& \{n \geq 2\} \\
& p:=1 \\
& i:=2 \\
& \text { while } i<n \text { do } \\
& \quad \text { if }(n \bmod i=0) \text { then } p:=0 \\
& \quad i:=i+1 \\
& \{p=1 \Rightarrow \forall k \cdot(2 \leq k \wedge k<n \Rightarrow n \bmod k \neq 0)\}
\end{aligned}
$$

Another example: check if a number is prime

$$
\begin{aligned}
& \{n \geq 2\} \\
& p:=1 ; \\
& i:=2 \\
& \text { while } i<n \text { do } \\
& \quad \text { if }(n \bmod i=0) \text { then } p:=0 ; \\
& \quad i:=i+1 ; \\
& \{p=1 \Rightarrow \operatorname{prime}(n)\}
\end{aligned}
$$

Invariant:
$\mathrm{I} \equiv(\mathrm{p}=1 \Rightarrow \operatorname{prime}(\mathrm{n})) \wedge \mathrm{i} \leq \mathrm{n}$

Using Hoare Rules

- Hoare rules are mostly syntax directed
- There are three obstacles to automation of Hoare logic proofs:
- When to apply the rule of consequence?
- What invariant to use for while?
- How do you prove the implications involved in the rule of consequence?
- The last one is how theorem proving gets in the picture
- This turns out to be doable!
- The loop invariants turn out to be the hardest problem!
- Should the programmer give them?

Computing VC

Verification Condition Generation

- Idea for VC generation: propagate the postcondition backwards through the program:
- From $\{\mathrm{A}\}$ P $\{\mathrm{B}\}$
- Generate formula $A \Rightarrow F(P, B)$, where $F(P, B)$ is a formula describing the starting states for program to end in B
- This backwards propagation $F(P, B)$ can be formalized in terms of weakest preconditions.

Weakest Preconditions

- The weakest precondition WP $(c, \mathrm{~B})$ holds for any state q whose c-successor states all satisfy B :

$$
q \vDash \mathrm{WP}(c, \mathrm{~B}) \quad \text { iff } \forall q^{\prime} \in Q . q \xrightarrow{c} q^{\prime} \Rightarrow q^{\prime} \vDash \mathrm{B}
$$

- Compute $\mathrm{WP}(P, \mathrm{~B})$ recursively according to the structure of the program P.

Loop-Free Guarded Commands

- Introduce loop-free guarded commands as an intermediate representation of the verification condition
- $c::=$ assume b
| assert b
| havoc x
| $c_{1} ; c_{2}$
$\mid c_{1} \square c_{2}$

From Programs to Guarded Commands

- GC(skip) $=$
assume true
- $\mathrm{GC}(x:=e)=$
assume tmp $=x$; havoc x; assume $(x=e[t m p / x])$
- $\operatorname{GC}\left(c_{1} ; c_{2}\right)=$
$\mathrm{GC}\left(c_{1}\right) ; \mathrm{GC}\left(c_{2}\right)$
- GC(if b then c_{1} else $\left.c_{2}\right)=$?
- $\mathrm{GC}(\{\mathrm{I}\}$ while b do $c)=$?

From Programs to Guarded Commands

- GC(skip) $=$
assume true
- $\mathrm{GC}(x:=e)=$
assume tmp $=x$; havoc x; assume $(x=e[t m p / x])$
- $\operatorname{GC}\left(c_{1} ; c_{2}\right)=$
$\mathrm{GC}\left(c_{1}\right) ; \mathrm{GC}\left(c_{2}\right)$
- GC(if b then c_{1} else $\left.c_{2}\right)=$
(assume $\left.b ; \mathrm{GC}\left(c_{1}\right)\right) \square$ (assume $\left.\neg b ; \mathrm{GC}\left(c_{2}\right)\right)$
- $\mathrm{GC}(\{\mathrm{I}\}$ while b do $c)=$?

Guarded Commands for Loops

- GC(\{I $\}$ while b do $c)=$ assert I; havoc $x_{1} ; \ldots$; havoc x_{n}; assume I;
(assume b; GC(c); assert I; assume false) $]$ assume $\neg b$
where $x_{1}, \ldots, x_{\mathrm{n}}$ are the variables modified in c

Example: VC Generation

$$
\begin{aligned}
& \{n \geq 0\} \\
& p:=0 ; \\
& x:=0 ; \\
& \{p=x * m \wedge x \leq n\} \\
& \text { while } x<n \text { do } \\
& x:=x+1 ; \\
& p:=p+m \\
& \{p=n * m\}
\end{aligned}
$$

Example: VC Generation

- Computing the guarded command

$$
\{n \geq 0\}
$$

$$
\text { assume } p_{0}=p \text {; havoc } p \text {; assume } p=0 ;
$$

$$
\text { assume } x_{0}=x \text {; havoc } x \text {; assume } x=0 \text {; }
$$

$$
\text { assert } p=x * m \wedge x \leq n
$$

$$
\text { havoc } x \text {; havoc } p \text {; assume } \mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n} \text {; }
$$

(assume $\mathrm{x}<\mathrm{n}$;

assume $\mathrm{x}_{1}=\mathrm{x}$; havoc x ; assume $\mathrm{x}=\mathrm{x}_{1}+1$; assume $p_{1}=p$; havoc p; assume $p=p_{1}+m$; assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$; assume false)
\square assume $\mathrm{x} \geq \mathrm{n}$;
$\{p=n * m\}$

Computing Weakest Preconditions

-WP(assume $b, \mathrm{~B})=b \Rightarrow \mathrm{~B}$

- WP(assert $b, \mathrm{~B})=b \wedge \mathrm{~B}$
- WP(havoc $x, \mathrm{~B})=\mathrm{B}[a / x]$
(a fresh in B)
- $\mathrm{WP}\left(c_{1} ; c_{2}, \mathrm{~B}\right)=\mathrm{WP}\left(c_{1}, \mathrm{WP}\left(c_{2}, \mathrm{~B}\right)\right)$
- $\mathrm{WP}\left(c_{1} \square c_{2}, \mathrm{~B}\right)=\mathrm{WP}\left(c_{1}, \mathrm{~B}\right) \wedge \mathrm{WP}\left(c_{2}, \mathrm{~B}\right)$

Putting Everything Together

- Given a Hoare triple $\mathrm{H} \vdash\{\mathrm{A}\} \mathrm{P}\{\mathrm{B}\}$
- Compute $c_{\mathrm{H}}=$ assume A; GC(P); assert B
- Compute $\mathrm{VC}_{\mathrm{H}}=\mathrm{WP}\left(c_{\mathrm{H}}\right.$, true $)$
- Check $\vdash \mathrm{VC}_{\mathrm{H}}$ using a theorem prover.

Example: VC Generation

- Computing the weakest precondition

```
WP ( assume n \geq0;
    assume }\mp@subsup{p}{0}{}=p;\mathrm{ havoc p; assume p=0;
    assume }\mp@subsup{x}{0}{}=x\mathrm{ ; havoc }x\mathrm{ ; assume }x=0\mathrm{ ;
    assert p = x * m ^ x \leqn;
    havoc }x\mathrm{ ; havoc p; assume p = x * m ^x \ n;
        (assume x < n;
    assume }\mp@subsup{\textrm{x}}{1}{}=\textrm{x}\mathrm{ ; havoc x; assume x = x 
    assume p}\mp@subsup{p}{1}{}=p;\mathrm{ havoc p; assume p= p
    assert p=x* m ^x\leqn; assume false)
\squareassume x \geq n;
assert p=n* m, true)
```


Example: VC Generation

- Computing the weakest precondition

$$
\text { WP (assume } \mathrm{n} \geq 0 \text {; }
$$

assume $p_{0}=p$; havoc p; assume $p=0$; assume $x_{0}=x$; havoc x; assume $x=0$; assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$; havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$; (assume $\mathrm{x}<\mathrm{n}$; assume $\mathrm{x}_{1}=\mathrm{x}$; havoc x ; assume $\mathrm{x}=\mathrm{x}_{1}+1$; assume $p_{1}=p$; havoc p; assume $p=p_{1}+m$; assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$; assume false)
Dassume $\mathrm{x} \geq \mathrm{n}, p=n * m$)

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$;
assume $p_{0}=p$; havoc p; assume $p=0 ;$ assume $x_{0}=x$; havoc x; assume $x=0$; assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$; havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$, WP ((assume $\mathrm{x}<\mathrm{n}$; assume $\mathrm{x}_{1}=\mathrm{x}$; havoc x ; assume $\mathrm{x}=\mathrm{x}_{1}+1$; assume $p_{1}=p$; havoc p; assume $p=p_{1}+m$; assert $\mathrm{p}=\mathrm{x}$ * $\mathrm{m} \wedge \mathrm{x} \leq \mathrm{n}$; assume false)
\square assume $\left.\mathrm{x} \geq \mathrm{n}, p=n^{*} m\right)$)

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$; assume $p_{0}=p$; havoc p; assume $p=0$; assume $x_{0}=x$; havoc x; assume $x=0$;
assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$;
havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$,
WP (assume $\mathrm{x}<\mathrm{n}$;
assume $\mathrm{x}_{1}=\mathrm{x}$; havoc x ; assume $\mathrm{x}=\mathrm{x}_{1}+1$;
assume $p_{1}=p$; havoc p; assume $p=p_{1}+m$;
assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$; assume false, $p=n * m$)
\wedge WP (assume x $\left.\geq \mathrm{n}, p=n^{*} m\right)$)

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$;
assume $p_{0}=p$; havoc p; assume $p=0$; assume $x_{0}=x$; havoc x; assume $x=0$;
assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$;
havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$,
WP (assume $\mathrm{x}<\mathrm{n}$;
assume $\mathrm{x}_{1}=\mathrm{x}$; havoc x ; assume $\mathrm{x}=\mathrm{x}_{1}+1$;
assume $p_{1}=p$; havoc p; assume $p=p_{1}+m$;
assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$; assume false, $p=n * m$)
$\wedge \mathrm{x} \geq \mathrm{n} \Rightarrow p=n * m)$

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$; assume $p_{0}=p$; havoc p; assume $p=0 ;$ assume $x_{0}=x$; havoc x; assume $x=0$; assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$; havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$, WP (assume $\mathrm{x}<\mathrm{n}$;
assume $\mathrm{x}_{1}=\mathrm{x}$; havoc x ; assume $\mathrm{x}=\mathrm{x}_{1}+1$;
assume $p_{1}=p$; havoc p; assume $p=p_{1}+m$;
assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$, WP (assume false, $p=n * m)$
$\left.\wedge \mathrm{x} \geq \mathrm{n} \Rightarrow p=n^{*} m\right)$

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$;
assume $p_{0}=p$; havoc p; assume $p=0$;
assume $x_{0}=x$; havoc x; assume $x=0$;
assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$;
havoc x; havoc p; assume $p=x * m \wedge x \leq n$, WP (assume $\mathrm{x}<\mathrm{n}$;

$$
\text { assume } \mathrm{x}_{1}=\mathrm{x} ; \text { havoc } \mathrm{x} ; \text { assume } \mathrm{x}=\mathrm{x}_{1}+1 ;
$$ assume $p_{1}=p$; havoc p; assume $p=p_{1}+m$; assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$, false $\Rightarrow p=n * m$)

$$
\left.\wedge \mathrm{x} \geq \mathrm{n} \Rightarrow p=n^{*} m\right)
$$

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$;
assume $p_{0}=p$; havoc p; assume $p=0$; assume $x_{0}=x$; havoc x; assume $x=0$; assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$; havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$, WP (assume $\mathrm{x}<\mathrm{n}$; assume $\mathrm{x}_{1}=\mathrm{x}$; havoc x ; assume $\mathrm{x}=\mathrm{x}_{1}+1$; assume $p_{1}=p$; havoc p; assume $p=p_{1}+m$; assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$, true)

$$
\left.\wedge \mathrm{x} \geq \mathrm{n} \Rightarrow p=n^{*} m\right)
$$

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$;
assume $p_{0}=p$; havoc p; assume $p=0$;
assume $x_{0}=x$; havoc x; assume $x=0$;
assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$;
havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$,
WP (assume $\mathrm{x}<\mathrm{n}$;
assume $\mathrm{x}_{1}=\mathrm{x}$; havoc x ; assume $\mathrm{x}=\mathrm{x}_{1}+1$;
assume $p_{1}=p$; havoc p; assume $p=p_{1}+m$,
$\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n})$
$\wedge \mathrm{x} \geq \mathrm{n} \Rightarrow p=n * m)$

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$;
assume $p_{0}=p$; havoc p; assume $p=0$;
assume $x_{0}=x$; havoc x; assume $x=0$;
assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$;
havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$,
WP (assume $\mathrm{x}<\mathrm{n}$;
assume $\mathrm{x}_{1}=\mathrm{x}$; havoc x ; assume $\mathrm{x}=\mathrm{x}_{1}+1$;
assume $p_{1}=p$; havoc p,

$$
\left.p=p_{1}+m \Rightarrow \mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}\right)
$$

$\left.\wedge \mathrm{x} \geq \mathrm{n} \Rightarrow p=n^{*} m\right)$

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$;
assume $p_{0}=p$; havoc p; assume $p=0$;
assume $x_{0}=x$; havoc x; assume $x=0$;
assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$;
havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$,
WP (assume $\mathrm{x}<\mathrm{n}$;
assume $\mathrm{x}_{1}=\mathrm{x}$; havoc x ; assume $\mathrm{x}=\mathrm{x}_{1}+1$, $\left.p_{1}=p \wedge p a_{1}=p_{1}+m \Rightarrow \mathrm{p} a_{1}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}\right)$
$\wedge \mathrm{x} \geq \mathrm{n} \Rightarrow p=n * m)$

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$;
assume $p_{0}=p$; havoc p; assume $p=0$; assume $x_{0}=x$; havoc x; assume $x=0$;
assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$;
havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$,
WP (assume $\mathrm{x}<\mathrm{n}$; assume $\mathrm{x}_{1}=\mathrm{x}$; havoc x ,

$$
\begin{aligned}
& \quad \mathrm{x}=\mathrm{x}_{1}+1 \wedge p_{1}=p \wedge p a_{1}=p_{1}+m \\
& \left.\quad \Rightarrow \mathrm{p} a_{1}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}\right) \\
& \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow p=n * m)
\end{aligned}
$$

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$;
assume $p_{0}=p$; havoc p; assume $p=0$;
assume $x_{0}=x$; havoc x; assume $x=0$;
assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$;
havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$,
WP (assume $\mathrm{x}<\mathrm{n}$; assume $\mathrm{x}_{1}=\mathrm{x}$,

$$
\begin{aligned}
& \quad \mathrm{x} a_{1}=\mathrm{x}_{1}+1 \wedge p_{1}=p \wedge p a_{1}=p_{1}+m \\
& \left.\quad \Rightarrow \mathrm{p} a_{1}=\mathrm{x} a_{1}^{*} \mathrm{~m} \wedge \mathrm{x} a_{1} \leq \mathrm{n}\right) \\
& \left.\wedge \mathrm{x} \geq \mathrm{n} \Rightarrow p=n^{*} m\right)
\end{aligned}
$$

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$; assume $p_{0}=p$; havoc p; assume $p=0$; assume $x_{0}=x$; havoc x; assume $x=0$; assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$; havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$, WP (assume $\mathrm{x}<\mathrm{n}$,

$$
\begin{aligned}
& \mathrm{x}_{1}=\mathrm{x} \wedge \mathrm{x} \alpha_{1}=\mathrm{x}_{1}+1 \wedge p_{1}=p \wedge p a_{1}=p_{1}+m \\
& \left.\quad \Rightarrow \mathrm{p} \alpha_{1}=\mathrm{x} \alpha_{1} * \mathrm{~m} \wedge \mathrm{x} \alpha_{1} \leq \mathrm{n}\right) \\
& \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow p=n * m)
\end{aligned}
$$

Example: VC Generation

- Computing the weakest precondition WP (assume $\mathrm{n} \geq 0$;
assume $p_{0}=p$; havoc p; assume $p=0$;
assume $x_{0}=x$; havoc x; assume $x=0$; assert $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$; havoc x; havoc p; assume $\mathrm{p}=\mathrm{x} * \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n}$,

$$
\begin{aligned}
& \left(\mathrm{x}<\mathrm{n} \wedge \mathrm{x}_{1}=\mathrm{x} \wedge \mathrm{x} a_{1}=\mathrm{x}_{1}+1 \wedge p_{1}=p \wedge p a_{1}=p_{1}+m\right. \\
& \left.\quad \Rightarrow \mathrm{p} a_{1}=\mathrm{x} a_{1} * \mathrm{~m} \wedge \mathrm{x} a_{1} \leq \mathrm{n}\right) \\
& \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow p=n * m)
\end{aligned}
$$

Example: VC Generation

- Computing the weakest precondition

$$
\mathrm{n} \geq 0 \wedge p_{0}=p \wedge p a_{3}=0 \wedge x_{0}=x \wedge x a_{3}=0 \Rightarrow p a_{3}=x a_{3} *
$$ $m \wedge x a_{3} \leq n \wedge$

$$
\begin{aligned}
& \left(p a_{2}=x a_{2} * m \wedge x a_{2} \leq n \Rightarrow\right. \\
& \quad\left(\left(\mathrm{xa}_{2}<\mathrm{n} \wedge x_{1}=x a_{2} \wedge x a_{1}=x_{1}+1 \wedge\right.\right. \\
& \left.\quad p_{1}=p a_{2} \wedge p a_{1}=p_{1}+m\right) \Rightarrow p a_{1}=x a_{1} * m \wedge
\end{aligned}
$$

$\left.x a_{1} \leq n\right)$

$$
\left.\wedge\left(\mathrm{xa}_{2} \geq \mathrm{n} \Rightarrow p a_{2}=n^{*} m\right)\right)
$$

Example: VC Generation

- The resulting VC is equivalent to the conjunction of the following implications

$$
\begin{aligned}
& \mathrm{n} \geq 0 \wedge p_{0}=p \wedge p a_{3}=0 \wedge x_{0}=x \wedge x a_{3}=0 \Rightarrow \\
& \quad p a_{3}=x a_{3} * m \wedge x a_{3} \leq n \\
& \mathrm{n} \geq 0 \wedge p_{0}=p \wedge p a_{3}=0 \wedge x_{0}=x \wedge x a_{3}=0 \wedge p a_{2}=x a_{2} * m \wedge \\
& x a_{2} \leq n \Rightarrow \\
& \quad \mathrm{xa} \mathrm{a}_{2} \geq \mathrm{n} \Rightarrow p a_{2}=n * m \\
& \mathrm{n} \geq 0 \wedge p p_{0}=p \wedge p a_{3}=0 \wedge x_{0}=x \wedge x a_{3}=0 \wedge p a_{2}=x a_{2} * m \wedge \mathrm{xa}_{2}<\mathrm{n} \\
& \wedge x_{1}=x a_{2} \wedge x a_{1}=x_{1}+1 \wedge p_{1}=p a_{2} \wedge p a_{1}=p_{1}+m \Rightarrow \\
& \quad p a_{1}=x a_{1} * m \wedge x a_{1} \leq n
\end{aligned}
$$

Example: VC Generation

- simplifying the constraints yields

$$
\begin{aligned}
& \mathrm{n} \geq 0 \Rightarrow 0=0 * m \wedge 0 \leq n \\
& x a_{2} \leq n \wedge \mathrm{xa}_{2} \geq \mathrm{n} \Rightarrow x a_{2} * m=n * m \\
& x a_{2}<\mathrm{n} \Rightarrow x a_{2}^{*} m+m=\left(x a_{2}+1\right) * m \wedge x a_{2}+1 \leq n
\end{aligned}
$$

- all of these implications are valid, which proves that the original Hoare triple was valid, too.

Translating Method Calls to GCs

```
method m ( }\mp@subsup{p}{1}{}:T,T,\ldots,\mp@subsup{p}{k}{}:\mp@subsup{T}{k}{})\mathrm{ returns (r: T)
    requires P
    modifies }\mp@subsup{x}{1}{},\ldots,.., x
    ensures Q
```

A method call

$$
y:=m\left(y_{1}, \ldots, y_{k}\right) ;
$$

is desugared into the guarded command

$$
\begin{aligned}
& \operatorname{assert} \mathrm{P}\left[\mathrm{y}_{1} / \mathrm{p}_{1}, \ldots, \mathrm{y}_{\mathrm{k}} / \mathrm{p}_{\mathrm{k}}\right] ; \\
& \text { havoc } \mathrm{x}_{1} ; \ldots, \text { havoc } \mathrm{x}_{\mathrm{n}} ; \text { havoc } \mathrm{y} \text {; } \\
& \text { assume } \mathrm{Q}\left[\mathrm{y}_{1} / \mathrm{p}_{1}, \ldots, \mathrm{y}_{\mathrm{k}} / \mathrm{p}_{\mathrm{k}}, \mathrm{y} / \mathrm{r}\right]
\end{aligned}
$$

```
ddickstein:proj1$ ./exec.sh
precondition: { n \geq0}
p := 0;
x := 0;
invariant: {(P = x * m)^(x < n) }
while x < n do
    x := x + 1;
    p := p + m;
postcondition: {p = n * m }
assume n \geq 0;
assume p0 = p;
havoc p;
assume p = 0;
assume x0 = x;
havoc x;
assume x = 0;
assert (p = x * m) & (x < n);
havoc x;
havoc p;
assume (p = x * m) ^ (x s n);
C
    assume x < n;
    assume x1 = x;
    havoc x;
    assume x = x1 + 1;
    assume p1 = p;
    havoc p;
    assume p = p1 + m;
    assert (p = x *m) ^ (x < n);
    assume false;
) (C
    assume -(x < < n);
)
assert p = n * m;
(n\geq0) ^(p0-p)^(pa3-0) ^(x0 - x) ^(xa3 - 0) - (pa3-xa3 *m) ^(xa3 \leqn) ^(
    (pa2 = xa2 * m) ^(xa2 < n) +C
        (xa2 < n) ^(x1 = xa2) ^(xa1 = x1 + 1) ^(p1 = pa2) ^(pa1 = p1 +m) ->(pa1 = xa1 * m) ^(xa1 \leqslant n)
    ) ^(cxaz \geqn) ->(paz = n *m))
D
```


Software Verification

Adding arrays to language

- Given command:
- In array theory
- GC:
$\mathrm{a}[\mathrm{i}]:=\mathrm{v}$
$\mathrm{a}:=\operatorname{write}(\mathrm{a}, \mathrm{i}, \mathrm{v})$
assume tmp $=\alpha$; havoc α; assume ($\alpha=\operatorname{write}(\operatorname{tmp}, \mathrm{i}, \mathrm{v})$)

$$
\begin{aligned}
\mathrm{WP}(\mathrm{GC}, \mathrm{~F}) & =\mathrm{WP}(\text { assume } t m p=a ; \text { havoc } a ; \operatorname{assume}(a=\mathrm{write}(\mathrm{tmp}, \mathrm{i}, \mathrm{v})), \mathrm{F}) \\
& =\mathrm{WP}(\text { assume } t m p=a ; \text { havoc } a ; a=\mathrm{write}(\mathrm{tmp}, \mathrm{i}, \mathrm{v}) \Rightarrow \mathrm{F}) \\
& =\mathrm{WP}(\text { assume } t m p=a ; a f=\mathrm{write}(\mathrm{tmp}, \mathrm{i}, \mathrm{v}) \Rightarrow \mathrm{F}[\mathrm{af} / \mathrm{a}]) \\
& =t m p=a \Rightarrow a f=\operatorname{write}(\mathrm{tmp}, \mathrm{i}, \mathrm{v}) \Rightarrow \mathrm{F}[\mathrm{af} / \mathrm{a}] \\
& =t m p=a \wedge a f=\mathrm{write}(\mathrm{tmp}, \mathrm{i}, \mathrm{v}) \Rightarrow \mathrm{F}[\mathrm{af} / \mathrm{a}] \\
& =a f=\operatorname{write}(\mathrm{a}, \mathrm{i}, \mathrm{v}) \Rightarrow \mathrm{F}[\mathrm{af} / \mathrm{a}] \quad
\end{aligned}
$$

What we have learned so far

- Hoare logic reduces program verification to proving the validity of verification conditions expressed as statements in some assertion logic
- The actual verification process can be completely mechanized modulo

1. inference of loop invariants / procedure contracts
2. the actual validity checking of the generated VCs
