SMT-based Verification of Heap-manipulating Programs

Ruzica Piskac

Eleventh SRI Summer School on Formal Techniques May 30 - June 5, 2022

Example Questions in Verification

- Will the program crash?
- Does it compute the correct result?
- Does it leak private information?
- How long does it take to run?
- How much power does it consume?
- Will it turn off automated cruise control?

Annotations

- Written by a programmer or a software analyst
- Added to the original program code to express properties that allow reasoning about the programs
- Examples:
 - Preconditions:
 - Describe properties of an input
 - Postconditions:
 - Describe what the program is supposed to do
 - Invariants:
 - Describe properties that have to hold in every program point

Decision Procedures for Collections

Verification Conditions

- Mathematical formulas derived based on:
 - Code
 - Annotations
- If a verification condition always holds (valid), then to code is correct w.r.t. the given property
- It does not depend on the input variables
- If a verification condition does not hold, we should be able to detect an error in the code

```
//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
    ??
    return y
}
```

```
//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
    val y = x - 2
    return y
}
```

Verification condition:

 $\forall x. \forall y. x > 0 \land y = x - 2 \rightarrow y > 0$

```
//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
    val y = x - 2
    return y
}
```

Verification condition:

 $\forall x. \forall y. x \ge 0 \land y = x - 2 \rightarrow y \ge 0$

Preconditions

```
//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
    val y = x - 2
    return y
}
```

Verification condition:

 $\forall x. \forall y. x > 0 \land y = x - 2 \rightarrow y > 0$

Program

```
//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
    val y = 1
    return y
}
```

Verification condition:

 $\forall x. \forall y. x > 0 \land y = 1 \rightarrow y > 0$

Postconditions

```
//: assume (x > 0)
def simple (Int x)
//: ensures y > 0
{
    val y = x - 2
    return y
}
```

Verification condition:

 $\forall x. \forall y. x > 0 \land y = x \cdot 2 \rightarrow y > 0$

Formula does not hold for input x = 1

Automation of Verification

• Windows XP has approximately 45 millions lines of source code

 \cong 300.000 DIN A4 papers \cong seven times my size high paper stack

Verification should be automated!!!

Software Verification

Decision Procedures

A decision procedure is an algorithm which answers whether the input formula is satisfiable or not
formula *x* ≤ *y* is satisfiable for x=0, y=1
formula *x* ≤ *y* ∧ *x*+1> *y*+1 is unsatisfiable

Language Semantics

Formal Semantics of Java Programs

- The Java Language Specification (JLS) [link] gives semantics to Java programs
 - The document has 780 pages.
 - 148 pages to define semantics of expression.
 - 42 pages to define semantics of method invocation.
- Semantics is only defined in prose.
 - How can we make the semantics formal?
 - We need a mathematical model of computation.

Semantics of Programming Languages

- Denotational Semantics
 - Meaning of a program is defined as the mathematical object it computes (e.g., partial functions).
 - Example: Abstract Interpretation
- Axiomatic Semantics
 - Meaning of a program is defined in terms of its effect on the truth of logical assertions.
 - Example: Hoare Logic
- (Structural) Operational Semantics
 - Meaning of a program is defined by formalizing the individual computation steps of the program.
 - Example: Labeled Transition Systems

IMP: A Simple Imperative Language

Before we move on to Java, we look at a simple imperative programming language IMP.

An IMP program:

p := 0; x := 1;while $x \le n$ do x := x + 1;p := p + m;

IMP: Syntactic Entities

- $n \in \mathbb{Z}$ integers
- true, false $\in \mathbb{B}$
- $x, y \in Vars$
- $e \in Aexp$
- $b \in Bexp$
- $c \in Com$

- Booleans
- Program variables
- arithmetic expressions
- Boolean expressions
- commands

Syntax of Arithmetic Expressions

• Arithmetic expressions (Aexp) e ::= n, for $n \in \mathbb{Z}$ $\mid x, \text{ for } x \in Vars$ $\mid e_1 + e_2$ $\mid e_1 - e_2$ $\mid e_1 * e_2$

• Notes:

- Variables are not declared before use.
- All variables have integer type.
- Expressions have no side-effects.

Syntax of Boolean Expressions

- Boolean expressions (*Bexp*)
 b ::= true
 - $\begin{array}{l|l} \mbox{ false } \\ \mbox{ } e_1 = e_2 \mbox{ for } e_1, e_2 \in Aexp \\ \mbox{ } e_1 \leq e_2 \mbox{ for } e_1, e_2 \in Aexp \\ \mbox{ } \neg b \mbox{ for } b \in Bexp \\ \mbox{ } \neg b \mbox{ for } b_2 \mbox{ for } b_1, b_2 \in Bexp \\ \mbox{ } b_1 \lor b_2 \mbox{ for } b_1, b_2 \in Bexp \end{array}$

Syntax of Commands

- Commands (Com) c ::= skip | x := e $| c_1; c_2$ $| if b then c_1 else c_2$ | while b do c
- Notes:
 - The typing rules have been embedded in the syntax definition.
 - Other parts are not context-free and need to be checked separately (e.g., all variables are declared).
 - Commands contain all the side-effects in the language.
 - Missing: references, function calls, ...

```
A simple example
```

```
//: assume (x > 5)
def simple (Int x)
//: ensures y > 7
{
    val y = x + 2
    return y
}
```

What do we need:

- Language in which we are writing programs
- Program execution and what does it mean "whenever the program is in the state"
- Language for annotation
- Combine all this somehow together

We need to express / derive / prove: "whenever the program takes as input x, such that x > 5, and we execute the program, the resulting output y will satisfy that y > 7"

 $\forall x. \forall y. x > 5 \land y = x + 2 \rightarrow y > 7$

Meaning of IMP Programs

Questions to answer:

- What is the "meaning" of a given IMP expression/command?
- How would we evaluate IMP expressions and commands?
- How are the evaluator and the meaning related?
- How can we reason about the effect of a command?

Semantics of IMP

- The meaning of IMP expressions depends on the values of variables, i.e. the current state.
- A state at a given moment is represented as a function from Vars to \mathbbm{Z}
- The set of all states is $Q = Vars \rightarrow \mathbb{Z}$
- We use q to range over Q

A simple example

```
//: assume (x > 5)
def simple (Int x)
//: ensures y > 7
{
    val y = x + 2
    return y
}
```


Starting state, preconditions are satisfied

Ending state, postconditions are satisfied

Judgments

- We write $\langle e, q \rangle \Downarrow n$ to mean that *e* evaluates to *n* in state *q*.
 - The formula <*e*, *q*> ↓ *n* is a judgment
 (a statement about a relation between *e*, *q* and *n*)
 - In this case, we can view \Downarrow as a function of two arguments e and q
- This formulation is called natural operational semantics
 - or big-step operational semantics
 - the judgment relates the expression and its "meaning"
- How can we define $\langle e1 + e2, q \rangle \Downarrow \dots ?$

Inference Rules

- We express the evaluation rules as inference rules for our judgments.
- The rules are also called evaluation rules.

An inference rule
$$F_1 \dots F_n = G$$
 where H

defines a relation between judgments F_1, \dots, F_n and G.

- The judgments F_1, \dots, F_n are the premises of the rule;
- The judgments *G* is the conclusion of the rule;
- The formula *H* is called the side condition of the rule. If *n*=0 the rule is called an axiom. In this case, the line separating premises and conclusion may be omitted.

Inference Rules for Aexp

• In general, we have one rule per language construct: $< n, q > \Downarrow n \leftarrow Axiom \rightarrow < x, q > \Downarrow q(x)$

$$\frac{\langle e_1, q \rangle \Downarrow n_1}{\langle e_1 + e_2, q \rangle \Downarrow (n_1 + n_2)} \xrightarrow{\langle e_1, q \rangle \Downarrow n_1} \frac{\langle e_2, q \rangle \Downarrow n_2}{\langle e_1 - e_2, q \rangle \Downarrow (n_1 - n_2)}$$

$$\frac{\langle e_1, q \rangle \Downarrow n_1}{\langle e_1 \ast e_2, q \rangle \Downarrow (n_1 \ast n_2)} \xrightarrow{\langle e_1 \ast e_2, q \rangle \Downarrow (n_1 \ast n_2)}$$

This is called structural operational semantics.
rules are defined based on the structure of the expressions.

Inference Rules for *Bexp* $< true, q > \Downarrow$ true $\langle \text{false}, q \rangle \Downarrow \text{false}$ $\begin{array}{c|c} <\!\!e_1, q \! > \! \Downarrow n_1 & <\!\!e_2, q \! > \! \Downarrow n_2 \\ \hline <\!\!e_1 \! = \!\!e_2, q \! > \! \Downarrow (n_1 \! = \! n_2) \end{array} & \begin{array}{c} <\!\!e_1, q \! > \! \Downarrow n_1 & <\!\!e_2, q \! > \! \Downarrow n_2 \\ \hline <\!\!e_1 \! \le \!\!e_2, q \! > \! \Downarrow (n_1 \! \le \! n_2) \end{array} \end{array}$

How to Read Inference Rules?

- Forward, as derivation rules of judgments
 - if we know that the judgments in the premise hold then we can infer that the conclusion judgment also holds.
 - Example:

 $<2, q > \Downarrow 2$ $<3, q > \Downarrow 3$ $<2 * 3, q > \Downarrow 6$

How to Read Inference Rules?

- Backward, as evaluation rules:
 - Suppose we want to evaluate $e_1 + e_2$, i.e., find n s.t. $e_1 + e_2 \Downarrow n$ is derivable using the previous rules.
 - By inspection of the rules we notice that the last step in the derivation of $e_1 + e_2 \Downarrow n$ must be the addition rule.
 - The other rules have conclusions that would not match $e_1 + e_2 \Downarrow n$.
- This is called reasoning by inversion on the derivation rules.
 - Thus we must find n_1 and n_2 such that $e_1 \Downarrow n_1$ and $e_2 \Downarrow n_2$ are derivable.
 - This is done recursively.
- Since there is exactly one rule for each kind of expression, we say that the rules are syntax-directed.
 - At each step at most one rule applies.
 - This allows a simple evaluation procedure as above.
How to Read Inference Rules?

• Example: evaluation of an arithmetic expression via reasoning by inversion:

$$< x, \{x \mapsto 3, y \mapsto 2\} > \Downarrow 2$$

$$< x, \{x \mapsto 3, y \mapsto 2\} > \Downarrow 3$$

$$< x + (2 * y), \{x \mapsto 3, y \mapsto 2\} > \Downarrow 7$$

$$< y, \{x \mapsto 3, y \mapsto 2\} > \Downarrow 4$$

Semantics of Commands

- The evaluation of a command in *Com* has sideeffects, but no direct result.
- The "result" of a command *c* in a pre-state *q* is a transition from *q* to a post-state *q*?

$$q \stackrel{c}{\rightarrow} q'$$

• We can formalize this in terms of transition systems.

Labeled Transition Systems

A labeled transition system (LTS) is a structure $LTS = (Q, Act, \rightarrow)$ where • Q is a set of states, • Act is a set of actions, • $\rightarrow \subseteq Q \times Act \times Q$ is a transition relation.

We write $q \xrightarrow{a} q'$ for $(q, a, q') \in \rightarrow$.

Axiomatic Semantics

Axiomatic Semantics

- An axiomatic semantics consists of:
 - a language for stating assertions about programs;
 - rules for establishing the truth of assertions.
- Some typical kinds of assertions:
 - This program terminates.
 - If this program terminates, the variables x and y have the same value throughout the execution of the program.
 - The array accesses are within the array bounds.
- Some typical languages of assertions
 - First-order logic
 - Other logics (temporal, linear)
 - Special-purpose specification languages (Z, Larch, JML)

Assertions for IMP

• The assertions we make about IMP programs are of the form:

{A} *c* {B}

- with the meaning that:
- If A holds in state q, and $q \xrightarrow{c} q'$
- then B holds in q'
- ${\boldsymbol{\cdot}}$ A is the precondition and B is the postcondition
- For example:

 $\{\, y \leq x \,\} \; z := x; \; z := z + 1 \; \{\, y < z \,\}$ is a valid assertion

• These are called Hoare triples or Hoare assertions

Assertions for IMP

- {A} c {B} is a partial correctness assertion. It does not imply termination of c.
- [A] c [B] is a total correctness assertion meaning that
 If A holds in state q
 - then there exists q' such that $q \xrightarrow{c} q'$ and B holds in state q'
- Now let's be more formal
 - Formalize the language of assertions, A and B
 - Say when an assertion holds in a state
 - Give rules for deriving valid Hoare triples

The Assertion Language

• We use first-order predicate logic with IMP expressions

$$\begin{array}{l} \mathbf{A} ::= \mathrm{true} \ \mid \ \mathrm{false} \ \mid \ e_1 = e_2 \ \mid \ e_1 \geq e_2 \\ \quad \mid \ \mathbf{A}_1 \wedge \mathbf{A}_2 \ \mid \ \mathbf{A}_1 \vee \ \mathbf{A}_2 \ \mid \ \mathbf{A}_1 \Rightarrow \mathbf{A}_2 \ \mid \ \forall x.\mathbf{A} \ \mid \ \exists x.\mathbf{A} \end{array}$$

- Note that we are somewhat sloppy and mix the logical variables and the program variables.
- Implicitly, all IMP variables range over integers.
- All IMP Boolean expressions are also assertions.

Semantics of Assertions

- We introduced a language of assertions, we need to assign meanings to assertions.
- Notation q = A says that assertion A holds in a given state q.
 This is well-defined when q is defined on all variables occurring in A.
- The ⊨ judgment is defined inductively on the structure of assertions.
- Notation ⊨ A says that assertion A holds in any state, ie. it is always true.
- It relies on the semantics of arithmetic expressions from IMP.

Semantics of Assertions

always • $q \models$ true $iff < e_1, q > \Downarrow = < e_2, q > \Downarrow$ • $q \models e_1 = e_2$ $iff < e_1, q > \Downarrow \geq < e_2, q > \Downarrow$ • $q \models e_1 \ge e_2$ • $q \models A_1 \land A_2$ iff $q \models A_1$ and $q \models A_2$ • $q \models A_1 \lor A_2$ iff $q \models A_1$ or $q \models A_2$ • $q \vDash A_1 \Rightarrow A_2$ iff $q \models A_1$ implies $q \models A_2$ • $q \models \forall x.A$ iff $\forall n \in \mathbb{Z}$. $q[x:=n] \models A$ iff $\exists n \in \mathbb{Z}$. $q[x:=n] \models A$ • $q \models \exists x.A$

Semantics of Hoare Triples

- We can define formally the meaning of a partial correctness assertion:
 - $\vDash \{ \mathbf{A} \} \ c \ \{ \mathbf{B} \} \ \text{iff} \ \ \forall q \in Q. \ \forall q' \in Q. \ q \vDash \mathbf{A} \land q \xrightarrow{c} q' \Rightarrow q' \vDash \mathbf{B}$

• and the meaning of a total correctness assertion:

 $\models [A] \ c \ [B] \ \text{iff} \ \forall q \in Q. \ q \models A \Rightarrow \exists q' \in Q. \ q \stackrel{c}{\rightarrow} q' \land q' \models B$

q-a state, defines values of variables

 $\{A\} c \{B\} - a Hoare tripe, it is either true or false$

 $q \models F - in \ state \ q$, formula $F \ holds$

Semantics of Hoare Triples

- We can define formally the meaning of a partial correctness assertion:
 - $\vDash \{ \mathbf{A} \} \ c \ \{ \mathbf{B} \} \ \text{iff} \ \forall q \in Q. \ \forall q' \in Q. \ q \vDash \mathbf{A} \land q \xrightarrow{c} q' \Rightarrow q' \vDash \mathbf{B}$

• and the meaning of a total correctness assertion:

 $\models [A] c [B] \text{ iff } \forall q \in Q. \ q \models A \Rightarrow \exists q' \in Q. \ q \stackrel{c}{\rightarrow} q' \land q' \models B$

Great result: we now formally can describe that a program is correct

Inferring Validity of Assertions

- Now we have the formal mechanism to decide when {A} c {B}
 - But it is not satisfactory,
 - because \models {A} *c* {B} is defined in terms of the operational semantics.
 - We practically have to run the program to verify an assertion.
 - Also it is impossible to effectively verify the truth of a $\forall x$. A assertion (by using the definition of validity)
- So we define a symbolic technique for deriving valid assertions from others that are known to be valid
 - We start with validity of first-order formulas

Now that we know what correctness means, what's next?

- By now we can express formally: *if a program is in the state where preconditions hold, and we execute the program, we will end up in the state where postconditions hold*
- For example, a formula $\{x > 0\}$ x:=x+2 $\{x > 2\}$ is a correct Hoare triple and we can prove that by hand
- However, it is a manual work, therefore error-prone
- Goal: automatize the process of proving program correctness as much as possible
- End goal: develop a "push-the-button" tool for proving program correctness (something like a your own mini Dafny)

Natural Deduction

- Inference system introduces in 1934 in (Gentzen 1934, Jaśkowski 1934)
- The goal is to have a system that can automatically prove theorems in mathematics
- More reading:
 - <u>https://www.iep.utm.edu/nat-ded/</u> (at Internet Encyclopedia of Philosophy)

Inference Rules

- We write $\vdash A$ when A can be inferred from basic axioms.
- The inference rules for ⊢ A are the usual ones from first-order logic with arithmetic (<u>examples</u>)
- Natural deduction style rules:

Inference Rules for Hoare Logic

• One rule for each syntactic construct:

 \vdash {A} skip {A} \vdash {A[e/x]} x := e {A} $\vdash \{A\} c_1 \{B\} \vdash \{B\} c_2 \{C\}$ $\vdash \{A\} c_1; c_2 \{C\}$ $\vdash \{A \land b\} c_1 \{B\} \vdash \{A \land \neg b\} c_2 \{B\}$ $\vdash \{A\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{B\}$ \vdash {I \land *b*} *c* {I} \vdash {I} while *b* do *c* {I $\land \neg b$ }

Inference Rules for Hoare Logic

• One rule for each syntactic construct:

 \vdash {A} skip {A} \vdash {A[e/x]} x := e {A} $\vdash \{A\} c_1 \{B\} \vdash \{B\} c_2 \{C\}$ $\vdash \{A\} c_1; c_2 \{C\}$ $\vdash \{A \land b\} c_1 \{B\} \vdash \{A \land \neg b\} c_2 \{B\}$ $\vdash \{A\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{B\}$ \vdash {I \land *b*} *c* {I} \vdash {I} while *b* do *c* {I $\land \neg b$ }

Loop Invariants

- I is a loop invariant if the following three conditions hold:
 - I holds **initially** in all states satisfying Pre, when execution reaches loop entry, I holds
 - I is **preserved**: if we assume I and loop condition (*b*), we can prove that I will hold again after executing the loop body
 - I is **strong enough**: if we assume I and the negation of loop condition *b*, we can prove that Post holds after the loop execution

Inference Rules for Hoare Triples

- Similarly we write ⊢ {A} *c* {B} when we can derive the triple using inference rules
- There is one inference rule for each command in the language.
- Plus, the rule of consequence

$$\begin{array}{ccc} \vdash A' \Rightarrow A & \vdash \{A\} \ c \ \{B\} & \vdash B \Rightarrow B' \\ & \vdash \{A'\} \ c \ \{B'\} \end{array} \end{array}$$

Hoare Logic: Summary

- We have a language for asserting properties of programs.
- We know when such an assertion is true.
- We also have a symbolic method for deriving assertions.

Hoare Rules

- For some constructs, multiple rules are possible
 - alternative "forward axiom" for assignment:

 $\vdash \{A\} x := e \{\exists x_0. x_0 = e \land A[x_0/x]\}$

alternative rule for while loops:

$$\begin{array}{ccc} \vdash \mathtt{I} \land b \Rightarrow \mathtt{C} & \vdash \{\mathtt{C}\} c \ \{\mathtt{I}\} & \vdash \mathtt{I} \land \neg b \Rightarrow \mathtt{B} \\ \\ \vdash \{\mathtt{I}\} \text{ while } b \text{ do } c \ \{\mathtt{B}\} \end{array}$$

• These alternative rules are derivable from the previous rules, plus the rule of consequence.

Exercise: Hoare Rules

• Is the following alternative rule for assignment still correct?

 $\vdash \{ \text{true} \} x := e \{ x = e \}$

Example: Conditional

 $\vdash \{true\} \text{ if } y \leq 0 \text{ then } x := 1 \text{ else } x := y \{x > 0\}$

• D1 is obtained by consequence and assignment

 $\begin{array}{c} \vdash \text{true } \land y \leq 0 \Rightarrow 1 \geq 0 & \vdash \{1 \geq 0\} \text{ } \text{x} := 1 \ \{x \geq 0\} \\ \vdash \{\text{true } \land y \leq 0\} \text{ } \text{x} := 1 \ \{x \geq 0\} \end{array}$

• D2 is also obtained by consequence and assignment

 $\vdash \text{true } \land y > 0 \Rightarrow y > 0 \qquad \vdash \{y > 0\} \text{ } x := y \{x > 0\}$ $\vdash \{\text{true } \land y > 0\} \text{ } x := y \{x > 0\}$

Example: a simple loop

- We want to infer that $\vdash \{x \le 0\}$ while $x \le 5$ do x := x + 1 $\{x = 6\}$
- Use the rule for while with invariant $I \equiv x \leq 6$

 $\begin{array}{l} \vdash x \leq 6 \land x \leq 5 \Rightarrow x + 1 \leq 6 & \vdash \{x + 1 \leq 6\} \ x := x + 1 \ \{x \leq 6\} \\ \hline \vdash \{x \leq 6 \land x \leq 5\} \ x := x + 1 \ \{x \leq 6\} \\ \hline \vdash \{x \leq 6\} \ \text{while} \ x \leq 5 \ \text{do} \ x := x + 1 \ \{x \leq 6 \land x > 5\} \end{array}$

• Then finish-off with the rule of consequence $\vdash x \le 0 \Rightarrow x \le 6$ $\vdash x \le 6 \land x > 5 \Rightarrow x = 6 \qquad \vdash \{x \le 6\} \text{ while } \dots \{x \le 6 \land x > 5\}$ $\vdash \{x \le 0\} \text{ while } \dots \{x = 6\}$

Example: a more interesting program

• We want to derive that

 $\{n \ge 0\}$ p := 0;x := 0;while x < n do x := x + 1;p := p + m ${p = n * m}$

Example: a more interesting program

Only applicable rule (except for rule of consequence):

 $\begin{array}{ccc} \vdash \{A\} \ c_1\{C\} & \vdash \{C\} \ c_2 \\ \hline \vdash \{A\} \ c_1; \ c_2 \ \{B\} \end{array}$

$$\vdash \underbrace{\{n \ge 0\} \text{ p:=0; x:=0 } \{C\}}_{A} \quad \vdash \{C\} \text{ while } x < n \text{ do } (x:=x+1; \text{ p:=p+m}) \{p = n * m\}$$

Example: a more interesting program What is C?Look at the next possible matching rules for c_2 ! Only applicable rule (except for rule of consequence): $\vdash \{I \land b\} \in \{I\}$

 $\vdash \{I\}$ while b do c $\{I \land \neg b\}$

We can match $\{I\}$ with $\{C\}$ but we cannot match $\{I \land \neg b\}$ and $\{p = n * m\}$ directly. Need to apply the rule of consequence first!

$$\vdash \underbrace{\{n \ge 0\} \text{ p}:=0; x:=0 \{C\}}_{A} \quad \vdash \{C\} \text{ while } x < n \text{ do } (x:=x+1; p:=p+m) \{p = n * m\}$$

Example: a more interesting program What is C?Look at the next possible matching rules for $c_2!$ Only applicable rule (except for rule of consequence): $\vdash \{\mathbf{I} \land b\} \in \{\mathbf{I}\}$ $\vdash \{I\} \text{ while } b \text{ do } c \{I \land \neg b\}$ Rule of consequence: $\vdash A' \Rightarrow A \vdash \{A\} c' \{B\}$ $\vdash B \Rightarrow B'$ I = A = A' = C $\vdash \{A'\} c' \{B'\}$ \vdash {n \geq 0} p:=0; x:=0 {C} \vdash {C} while x < n do (x:=x+1; p:=p+m) {p = n * m} $\vdash \{n \ge 0\} \text{ p:=0; x:=0; while } x < n \text{ do } (x:=x+1; \text{ p:=p+m}) \{p = n * m\}$

Example: a more interesting program

What is I? Let's keep it as a placeholder for now!

Next applicable rule:

 $\begin{array}{ccc} \vdash \{A\} \ c_1\{C\} & \vdash \{C\} \ c_2 \ \{B\} \\ \vdash \{A\} \ c_1; \ c_2 \ \{B\} \end{array} \end{array}$

$$A \qquad c_1 \qquad c_2 \qquad B$$

$$\vdash \{I \land x \lt n\} x := x+1; p := p+m \{I\}$$

$$\vdash \{I\} \text{ while } x \lt n \text{ do } (x := x+1; p := p+m) \{I \land x \ge n\}$$

$$\vdash I \land x \ge n \Rightarrow p = n * m$$

 $\vdash \{n \ge 0\} \text{ p:=0; x:=0 } \{I\} \qquad \vdash \{I\} \text{ while } x < n \text{ do } (x:=x+1; \text{ p:=p+m}) \ \{p = n * m\}$

Example: a more interesting program What is C?Look at the next possible matching rules for c_2 ! Only applicable rule (except for rule of consequence):

 $\vdash \{A[e/x]\} x := e \{A\}$

$$\begin{array}{c} A & c_1 & c_2 & B \\ \hline \left\{ \mathbf{I} \land \mathbf{x} < \mathbf{n} \right\} \mathbf{x} := \mathbf{x} + \mathbf{1} \left\{ \mathbf{C} \right\} & \vdash \left\{ \mathbf{C} \right\} \mathbf{p} := \mathbf{p} + \mathbf{m} \left\{ \mathbf{I} \right\} \\ \hline \left\{ \mathbf{I} \land \mathbf{x} < \mathbf{n} \right\} \mathbf{x} := \mathbf{x} + \mathbf{1}; \mathbf{p} := \mathbf{p} + \mathbf{m} \left\{ \mathbf{I} \right\} \\ \hline \left\{ \mathbf{I} \right\} \text{ while } \mathbf{x} < \mathbf{n} \text{ do } (\mathbf{x} := \mathbf{x} + \mathbf{1}; \mathbf{p} := \mathbf{p} + \mathbf{m} \right\} \\ \hline \left\{ \mathbf{I} \right\} \text{ while } \mathbf{x} < \mathbf{n} \text{ do } (\mathbf{x} := \mathbf{x} + \mathbf{1}; \mathbf{p} := \mathbf{p} + \mathbf{m}) \left\{ \mathbf{I} \land \mathbf{x} \ge \mathbf{n} \right\} \\ \hline \left\{ \mathbf{I} \right\} \text{ while } \mathbf{x} < \mathbf{n} \text{ do } (\mathbf{x} := \mathbf{x} + \mathbf{1}; \mathbf{p} := \mathbf{p} + \mathbf{m}) \left\{ \mathbf{I} \land \mathbf{x} \ge \mathbf{n} \right\} \\ \hline \left\{ \mathbf{I} \land \mathbf{x} \ge \mathbf{n} \right\} \mathbf{p} = \mathbf{n} \ast \mathbf{m} \\ \hline \left\{ \mathbf{I} \ge \mathbf{0} \right\} \mathbf{p} := \mathbf{0}; \mathbf{x} := \mathbf{0} \left\{ \mathbf{I} \right\} \vdash \left\{ \mathbf{I} \right\} \text{ while } \mathbf{x} < \mathbf{n} \text{ do } (\mathbf{x} := \mathbf{x} + \mathbf{1}; \mathbf{p} := \mathbf{p} + \mathbf{m}) \left\{ \mathbf{p} = \mathbf{n} \ast \mathbf{m} \right\} \end{array}$$

Example: a more interesting program What is C?Look at the next possible matching rules for c_2 ! Only applicable rule (except for rule of consequence): $\vdash \{A[e/x]\} x := e \{A\}$

 $\vdash \{\mathbf{I} \land \mathbf{x} < \mathbf{n}\} \text{ } x := x+1 \{\mathbf{I}[\mathbf{p}+\mathbf{m}/\mathbf{p}]\} \vdash \{\mathbf{I}[\mathbf{p}+\mathbf{m}/\mathbf{p}]\} \text{ } \mathbf{p} := \mathbf{p}+\mathbf{m} \{\mathbf{I}\}$

 \vdash {I \land x < n} x:=x+1; p:=p+m {I}

 $\vdash \{\mathtt{I}\} \text{ while } \mathtt{x} < \mathtt{n} \text{ do } (\mathtt{x}:=\mathtt{x}+1; \mathtt{p}:=\mathtt{p}+\mathtt{m}) \{ \mathtt{I} \land \mathtt{x} \ge \mathtt{n} \}$

 $\vdash I \land x \ge n \Rightarrow p = n * m$

 $\vdash \{n \ge 0\} \text{ p:=0; x:=0 } \{I\} \qquad \vdash \{I\} \text{ while } x < n \text{ do } (x:=x+1; \text{ p:=p+m}) \ \{p = n * m\}$

Example: a more interesting program Only applicable rule (except for rule of consequence):

 $\vdash \{A[e/x]\} x := e \{A\}$

Need rule of consequence to match $\{I \land x \lt n\}$ and $\{I[x+1/x, p+m/p]\}$

 $\vdash \{ \mathtt{I} \land \mathtt{x} \lt \mathtt{n} \} x := x+1 \{ \mathtt{I}[\mathtt{p}+\mathtt{m}/\mathtt{p}] \} \quad \vdash \{ \mathtt{I}[\mathtt{p}+\mathtt{m}/\mathtt{p}\} \ \mathtt{p} := \mathtt{p}+\mathtt{m} \{ \mathtt{I} \}$

 \vdash {I \land x < n} x:=x+1; p:=p+m {I}

 $\vdash \{\mathtt{I}\} \text{ while } \mathtt{x} < \mathtt{n} \text{ do } (\mathtt{x}{:=}\mathtt{x}{+}1; \mathtt{p}{:=}\mathtt{p}{+}\mathtt{m}) \ \{\mathtt{I} \land \mathtt{x} \geq \mathtt{n}\}$

 $\vdash I \land x \ge n \Rightarrow p = n * m$

 $\vdash \{n \ge 0\} \text{ p:=0; x:=0 } \{I\} \qquad \vdash \{I\} \text{ while } x < n \text{ do } (x:=x+1; \text{ p:=p+m}) \{p = n * m\}$

Example: a more interesting program Let's just remember the open proof obligations!

 $\vdash {I[x+1/x, p+m/p]} x:=x+1 {I[p+m/p]}$

 $\vdash I \land x < n \Rightarrow I[x+1/x, p+m/p]$

 $\vdash \{\mathbf{I} \land \mathbf{x} \lt \mathbf{n}\} \text{ } x := x+1 \{\mathbf{I}[p+m/p]\} \qquad \vdash \{\mathbf{I}[p+m/p] \text{ } p := p+m \{\mathbf{I}\}\} \\ \vdash \{\mathbf{I} \land \mathbf{x} \lt \mathbf{n}\} \text{ } x := x+1; \text{ } p := p+m \{\mathbf{I}\}\}$

 $\vdash \{\mathtt{I}\} \text{ while } \mathtt{x} < \mathtt{n} \text{ do } (\mathtt{x}{:=}\mathtt{x}{+}1; \mathtt{p}{:=}\mathtt{p}{+}\mathtt{m}) \ \{\mathtt{I} \land \mathtt{x} \ge \mathtt{n}\}$

 $\vdash I \land x \ge n \Rightarrow p = n * m$

 $\vdash \{n \ge 0\} p := 0; x := 0 \{I\}$ $\vdash \{I\} while x < n do (x := x+1; p := p+m) \{p = n * m\}$

Example: a more interesting program Let's just remember the open proof obligations! $\vdash I \land x < n \Rightarrow I[x+1/x, p+m/p]$ $\vdash I \land x \ge n \Rightarrow p = n * m$

Continue with the remaining part of the proof tree, as before.

 $\begin{array}{ll} \vdash n \geq 0 \Rightarrow \mathbb{I}[0/p, 0/x] & \text{Now we only need to solve the} \\ \vdash \{\mathbb{I}[0/p, 0/x]\} \text{ p:=0 } \{\mathbb{I}[0/x]\} & \text{remaining constraints!} \end{array}$

 $\vdash \{n \ge 0\} \text{ p:=0; x:=0 } \{I\} \quad \vdash \{I\} \text{ while } x < n \text{ do } (x:=x+1; \text{ p:=p+m}) \{p = n * m\} \\ \vdash \{n \ge 0\} \text{ p:=0; } x:=0; \text{ while } x < n \text{ do } (x:=x+1; \text{ p:=p+m}) \{p = n * m\}$

 $\vdash \{I[0/x]\} x := 0 \{I\}$
Example: a more interesting program Find I such that all constraints are simultaneously valid: \vdash n \geq 0 \Rightarrow I[0/p, 0/x] $\vdash I \land x < n \Rightarrow I[x+1/x, p+m/p]$ $\vdash I \land x \ge n \Rightarrow p = n * m$ $I \equiv p = x * m \land x \leq n$ \vdash n \geq 0 \Rightarrow 0 = 0 * m \land 0 \leq n \vdash p = x * m \land x \leq n \land x < n \Rightarrow p+m = (x+1) * m \land x+1 \leq n $\vdash p = x * m \land x \leq n \land x \geq n \Rightarrow p = n * m$

All constraints are valid!

Another example: check if a number is prime

 $\{n \ge 2\}$

p := 1;

i := 2;

while i < n do

if $(n \mod i = 0)$ then p := 0; i := i + 1; $\{p = 1 \Rightarrow prime(n)\}$

Another example: check if a number is prime

 $\{n \ge 2\}$

p := 1;

i := 2;

while i < n do

if $(n \mod i = 0)$ then p := 0; i := i + 1; $\{p = 1 \Rightarrow \forall k. (2 \le k \land k \le n \Rightarrow n \mod k \ne 0)\}$

Another example: check if a number is prime

 $\{n \geq 2\}$ p := 1;i := 2;while i < n do if $(n \mod i = 0)$ then p := 0; i := i + 1; $\{p = 1 \Rightarrow prime(n)\}$

Invariant: $I \equiv (p = 1 \Rightarrow prime(n)) \land i \leq n$

Using Hoare Rules

- Hoare rules are mostly syntax directed
- There are three obstacles to automation of Hoare logic proofs:
 - When to apply the rule of consequence?
 - What invariant to use for while?
 - How do you prove the implications involved in the rule of consequence?
- The last one is how theorem proving gets in the picture
 - This turns out to be doable!
 - The loop invariants turn out to be the hardest problem!
 - Should the programmer give them?

Computing VC

Verification Condition Generation

- Idea for VC generation: propagate the postcondition backwards through the program:
 - From {A} P {B}
 - Generate formula $A \Rightarrow F(P, B)$, where F(P, B) is a formula describing the starting states for program to end in B
- This backwards propagation *F*(*P*, *B*) can be formalized in terms of weakest preconditions.

Weakest Preconditions

- The weakest precondition WP(c,B) holds for any state q whose c-successor states all satisfy B:
 - $q \vDash WP(c,B)$ iff $\forall q' \in Q. q \xrightarrow{c} q' \Rightarrow q' \vDash B$

• Compute WP(P,B) recursively according to the structure of the program P.

Loop-Free Guarded Commands

- Introduce loop-free guarded commands as an intermediate representation of the verification condition
- c ::= assume b | assert b | havoc x | c_1 ; c_2 | $c_1 \square c_2$

From Programs to Guarded Commands

• GC(skip) =

assume true

• $\operatorname{GC}(x := e) =$

assume tmp = x; havoc x; assume (x = e[tmp/x])where tmp is fresh

• GC(
$$c_1$$
; c_2) =
GC(c_1); GC(c_2)

• GC(if *b* then c_1 else c_2) = ?

• $GC({I} while b do c) = ?$

From Programs to Guarded Commands

• GC(skip) =

assume true

• $\operatorname{GC}(x := e) =$

assume tmp = x; havoc x; assume (x = e[tmp/x])where tmp is fresh

- $\operatorname{GC}(c_1; c_2) =$ $\operatorname{GC}(c_1); \operatorname{GC}(c_2)$
- GC(if *b* then c_1 else c_2) = (assume *b*; GC(c_1)) [] (assume $\neg b$; GC(c_2))

• $GC({I} while b do c) = ?$

Guarded Commands for Loops

```
• GC({I} \text{ while } b \text{ do } c) =

assert I;

havoc x_1; ...; havoc x_n;

assume I;

(assume b; GC(c); assert I; assume false) \Box

assume \neg b
```

where $x_1, ..., x_n$ are the variables modified in *c*

Example: VC Generation $\{n \geq 0\}$ p := 0;x := 0; $\{p = x * m \land x \leq n\}$ while x < n do x := x + 1;p := p + m ${p = n * m}$

• Computing the guarded command $\{ n \ge 0 \}$ assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc *x*; havoc *p*; assume $p = x * m \land x \le n$; (assume x < n; assume $x_1 = x$; havoc x; assume $x = x_1 + 1$; assume $p_1 = p$; havoc p; assume $p = p_1 + m$; assert $p = x * m \land x \le n$; assume false) \square assume $x \ge n$; $\{ p = n * m \}$

Computing Weakest Preconditions

- WP(assume $b, B) = b \Rightarrow B$
- WP(assert b, B) = $b \wedge B$
- WP(havoc x, B) = B[a/x] (a fresh in B)
- $\bullet \operatorname{WP}(c_1;c_2,\,\operatorname{B}) = \operatorname{WP}(c_1,\,\operatorname{WP}(c_2,\,\operatorname{B}))$
- $\bullet \operatorname{WP}(c_1 \ \Box \ c_2, \operatorname{B}) = \operatorname{WP}(c_1, \ \operatorname{B}) \land \operatorname{WP}(c_2, \ \operatorname{B})$

Putting Everything Together

- Given a Hoare triple $H \vdash \{A\} P \{B\}$
- Compute $c_{\rm H}$ = assume A; GC(P); assert B
- Compute $VC_H = WP(c_H, true)$
- Check $\vdash VC_H$ using a theorem prover.

• Computing the weakest precondition WP (assume $n \ge 0$; assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc *x*; havoc *p*; assume $p = x * m \land x \le n$; (assume x < n; assume $x_1 = x$; havoc x; assume $x = x_1 + 1$; assume $p_1 = p$; havoc p; assume $p = p_1 + m$; assert $p = x * m \land x \le n$; assume false) \square assume $x \ge n$; assert p = n * m, true)

• Computing the weakest precondition WP (assume $n \ge 0$; assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc *x*; havoc *p*; assume $p = x * m \land x \le n$; (assume x < n; assume $x_1 = x$; havoc x; assume $x = x_1 + 1$; assume $p_1 = p$; havoc p; assume $p = p_1 + m$; assert $p = x * m \land x \le n$; assume false) \square assume x \ge n, p = n * m)

• Computing the weakest precondition WP (assume $n \ge 0$;

assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc x; havoc p; assume $p = x * m \land x \le n$, WP ((assume x < n;

assume $x_1 = x$; havoc x; assume $x = x_1 + 1$; assume $p_1 = p$; havoc p; assume $p = p_1 + m$; assert $p = x * m \land x \le n$; assume false) \Box assume $x \ge n$, p = n * m)

• Computing the weakest precondition WP (assume $n \ge 0$;

> assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \leq n$; havoc x; havoc p; assume $p = x * m \land x \le n$, WP (assume x < n; assume $x_1 = x$; havoc x; assume $x = x_1 + 1$; assume $p_1^{-} = p$; havoc p; assume $p = p_1^{-} + m$; assert $p = x * m \land x \le n$; assume false, p = n * m)

 \land WP (assume x \geq n, p = n * m))

• Computing the weakest precondition WP (assume $n \ge 0$;

assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc x; havoc p; assume $p = x * m \land x \le n$, WP (assume x < n; assume $x_1 = x$; havoc x; assume $x = x_1 + 1$; assume $p_1^{-} = p$; havoc p; assume $p = p_1^{-} + m$; assert $p = x * m \land x \le n$; assume false, p = n * m)

 $\wedge \mathbf{x} \geq \mathbf{n} \Rightarrow p = n * m)$

• Computing the weakest precondition WP (assume $n \ge 0$;

assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$;

havoc *x;* havoc *p;* assume $p = x * m \land x \le n$,

WP (assume x < n;

assume $x_1 = x$; havoc x; assume $x = x_1 + 1$; assume $p_1 = p$; havoc p; assume $p = p_1 + m$; assert $p = x * m \land x \le n$, WP (assume false, p = n * m) $\land x \ge n \Rightarrow p = n * m$)

• Computing the weakest precondition WP (assume $n \ge 0$;

assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc x; havoc p; assume $p = x * m \land x \le n$,

WP (assume x < n;

assume $x_1 = x$; havoc x; assume $x = x_1 + 1$; assume $p_1 = p$; havoc p; assume $p = p_1 + m$; assert $p = x * m \land x \le n$, false $\Rightarrow p = n * m$) $\land x \ge n \Rightarrow p = n * m$)

• Computing the weakest precondition WP (assume $n \ge 0$;

assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc x; havoc p; assume $p = x * m \land x \le n$,

WP (assume x < n;

assume $x_1 = x$; havoc x; assume $x = x_1 + 1$; assume $p_1 = p$; havoc p; assume $p = p_1 + m$; assert $p = x * m \land x \le n$, true)

 $\wedge \mathbf{x} \geq \mathbf{n} \Rightarrow p \equiv n * m)$

• Computing the weakest precondition WP (assume $n \ge 0$;

assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc x; havoc p; assume $p = x * m \land x \le n$, WP (assume x < n; assume $x_1 = x$; havoc x; assume $x = x_1 + 1$; assume $p_1 = p$; havoc p; assume $p = p_1 + m$, $p = x * m \land x \leq n$ $\land x \ge n \Rightarrow p = n * m$

• Computing the weakest precondition WP (assume $n \ge 0$;

assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc x; havoc p; assume $p = x * m \land x \le n$, WP (assume x < n; assume $x_1 = x$; havoc x; assume $x = x_1 + 1$; assume $p_1^- = p$; havoc p, $p = p_1 + m \Rightarrow p = x * m \land x \le n$ $\wedge x \ge n \Rightarrow p = n * m$

• Computing the weakest precondition

WP (assume $n \ge 0$;

assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc x; havoc p; assume $p = x * m \land x \le n$, **WP** (assume x < n; assume $x_1 = x$; havoc x; assume $x = x_1 + 1$,

 $p_1 = p \land pa_1 = p_1 + m \Rightarrow pa_1 = x * m \land x \le n)$ $\land x \ge n \Rightarrow p = n * m)$

• Computing the weakest precondition WP (assume $n \ge 0$; assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc *x*; havoc *p*; assume $p = x * m \land x \le n$, WP (assume x < n; assume $x_1 = x$; havoc x, $\mathbf{x} = \mathbf{x}_1 + 1 \wedge p_1 = p \wedge pa_1 = p_1 + m$ \Rightarrow p $a_1 = x * m \land x \le n$) $\land x \ge n \Rightarrow p = n * m$

• Computing the weakest precondition WP (assume $n \ge 0$;

assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc x; havoc p; assume $p = x * m \land x \le n$, WP (assume x < n; assume $x_1 = x$, $\mathbf{x}a_1 = \mathbf{x}_1 + 1 \land p_1 = p \land pa_1 = p_1 + m$ \Rightarrow p $a_1 = xa_1 * m \land xa_1 \le n$) $\land x \ge n \Rightarrow p = n * m$

• Computing the weakest precondition WP (assume $n \ge 0$;

assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc x; havoc p; assume $p = x * m \land x \le n$, WP (assume x < n,

$$\begin{aligned} \mathbf{x}_1 &= \mathbf{x} \wedge \mathbf{x} a_1 = \mathbf{x}_1 + 1 \wedge p_1 = p \wedge p a_1 = p_1 + m \\ &\Rightarrow \mathbf{p} a_1 = \mathbf{x} a_1 * \mathbf{m} \wedge \mathbf{x} a_1 \leq \mathbf{n} \end{aligned}$$
$$\land \mathbf{x} \geq \mathbf{n} \Rightarrow p = n * m \end{aligned}$$

• Computing the weakest precondition WP (assume $n \ge 0$; assume $p_0 = p$; havoc p; assume p = 0; assume $x_0 = x$; havoc x; assume x = 0; assert $p = x * m \land x \le n$; havoc x; havoc p; assume $p = x * m \land x \le n$, $(\mathbf{x} < \mathbf{n} \land \mathbf{x}_1 = \mathbf{x} \land \mathbf{x}a_1 = \mathbf{x}_1 + 1 \land p_1 = p \land pa_1 = p_1 + m$ \Rightarrow p $a_1 = xa_1 * m \land xa_1 \le n$) $\land x \ge n \Rightarrow p = n * m$

• Computing the weakest precondition

 $n \ge 0 \land p_0 = p \land pa_3 = 0 \land x_0 = x \land xa_3 = 0 \Rightarrow pa_3 = xa_3 *$ $m \wedge x \alpha_3 \leq n \wedge$ $(pa_2 = xa_2 * m \land xa_2 \leq n \Rightarrow$ $((xa_2 < n \land x_1 = xa_2 \land xa_1 = x_1 + 1 \land x_1 = x_1 \land x_1 = x_1 \land x_1 = x_1 \land x_1 \land x_1 = x_1 \land x_1$ $p_1 = pa_2 \wedge pa_1 = p_1 + m) \Rightarrow pa_1 = xa_1 * m \wedge pa_1 = pa_2 \wedge pa_1 = p_1 + m + m \wedge pa_1 = pa_2 \wedge pa_2 \wedge pa_2 = pa_2 \wedge pa_2 = pa_2 \wedge pa_2 \wedge pa_2 = pa_2 \wedge pa_2 = pa_2 \wedge pa_2 = pa_2 \wedge pa_2 \wedge pa_2 = pa_2 \wedge pa_2 = pa_2 \wedge pa_2 \wedge$ $xa_1 \leq n$) $\wedge (xa_2 \ge n \Rightarrow pa_2 = n * m))$

• The resulting VC is equivalent to the conjunction of the following implications

$$n \ge 0 \land p_0 = p \land pa_3 = 0 \land x_0 = x \land xa_3 = 0 \Rightarrow$$
$$pa_3 = xa_3 * m \land xa_3 \le n$$

$$n \ge 0 \land p_0 = p \land pa_3 = 0 \land x_0 = x \land xa_3 = 0 \land pa_2 = xa_2 * m \land xa_2 \le n \Rightarrow$$

$$xa_2 \ge n \Rightarrow pa_2 \equiv n * m$$

$$\begin{split} \mathbf{n} &\geq 0 \land p_0 = p \land pa_3 = 0 \land x_0 = x \land xa_3 = 0 \land pa_2 = xa_2 \ast m \land xa_2 < \mathbf{n} \\ &\land x_1 = xa_2 \land xa_1 = x_1 + 1 \land p_1 = pa_2 \land pa_1 = p_1 + m \Rightarrow \\ &pa_1 = xa_1 \ast m \land xa_1 \leq n \end{split}$$

• simplifying the constraints yields

 $n \ge 0 \Rightarrow 0 = 0 * m \land 0 \le n$

$$xa_2 \le n \land xa_2 \ge n \Rightarrow xa_2 * m = n * m$$

$$xa_2 < n \Rightarrow xa_2 * m + m = (xa_2 + 1) * m \land xa_2 + 1 \le n$$

• all of these implications are valid, which proves that the original Hoare triple was valid, too.

Translating Method Calls to GCs

```
method m (p<sub>1</sub>: T_1, ..., p<sub>k</sub>: T<sub>k</sub>) returns (r: T)
    requires P
    modifies x<sub>1</sub>, ..., x<sub>n</sub>
    ensures Q
```

A method call

 $y := m(y_1, \ldots, y_k);$

is desugared into the guarded command assert $P[y_1/p_1, ..., y_k/p_k]$; havoc x_1 ; ..., havoc x_n ; havoc y; assume $Q[y_1/p_1, ..., y_k/p_k, y/r]$

```
ddickstein:proj1$ ./exec.sh
precondition: \{n \ge 0\}
 p := 0;
 x :- 0;
 invariant: { (p = x * m) \land (x \le n) }
 while x < n do
         x := x + 1;
           p := p + m;
 postcondition: { p = n * m }
 assume n ≥ 0;
 assume p0 = p;
 havoc p;
 assume p = 0;
 assume x0 = x;
 havoc x;
 assume x = 0;
 assert (p = x * m) \land (x \le n);
 havoc x;
 havoc p;
 assume (p = x * m) \land (x \le n);
 C
           assume x < n;
            assume x1 = x;
            havoc x;
            assume x = x1 + 1;
            assume p1 = p;
            havoc p;
            assume p = p1 + m;
            assert (p = x * m) \land (x \le n);
            assume false;
) • (
            assume \neg(x < n);
 assert p = n * m;
(n \ge 0) \land (p0 = p) \land (pa3 = 0) \land (x0 = x) \land (xa3 = 0) + (pa3 = xa3 * m) \land (xa3 \le n) \land (n \ge 0) 
           (pa2 = xa2 * m) \land (xa2 \le n) \rightarrow (
                      (xa2 < n) \land (x1 = xa2) \land (xa1 = x1 + 1) \land (p1 = pa2) \land (pa1 = p1 + m) + (pa1 = xa1 * m) \land (xa1 \le n)
            ) \land ((xa2 \ge n) \rightarrow (pa2 = n * m))
)
```
Software Verification

Adding arrays to language

- Given command: a[i] := v
- In array theory a := write(a, i, v)
- GC: assume *tmp* = *a*; havoc *a*; assume (*a* = write(tmp, i, v))

$$\begin{split} & \text{WP}(\text{GC}, \text{F}) = \text{WP}(\text{assume } tmp = a; \text{havoc } a; \text{assume } (a = \text{write}(\text{tmp, i, v})), \text{F}) \\ &= \text{WP}(\text{assume } tmp = a; \text{havoc } a; a = \text{write}(\text{tmp, i, v}) \Rightarrow \text{F}) \\ &= \text{WP}(\text{assume } tmp = a; af = \text{write}(\text{tmp, i, v}) \Rightarrow \text{F}[af/a]) \\ &= tmp = a \Rightarrow af = \text{write}(\text{tmp, i, v}) \Rightarrow \text{F}[af/a] \\ &= tmp = a \land af = \text{write}(\text{tmp, i, v}) \Rightarrow \text{F}[af/a] \\ &= af = \text{write}(a, i, v) \Rightarrow \text{F}[af/a] \end{split}$$

arrays first

What we have learned so far

- Hoare logic reduces program verification to proving the validity of verification conditions expressed as statements in some assertion logic
- The actual verification process can be completely mechanized modulo
 - 1. inference of loop invariants / procedure contracts
 - 2. the actual validity checking of the generated VCs