
SMT-based Verification of
Heap-manipulating
Programs
Ruzica Piskac

Eleventh SRI Summer School on Formal Techniques

May 30 - June 5, 2022

A Mathematical Proof of Program
Correctness?

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Can you verify

my program?

Which property

are you

interested in?

Example Questions in Verification

• Will the program crash?

• Does it compute the correct result?

• Does it leak private information?

• How long does it take to run?

• How much power does it consume?

• Will it turn off automated cruise control?

A Mathematical Proof of Program
Correctness?

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

I just want to be sure that

no element is lost in the

list – if I insert an element,

it is really there

A Mathematical Proof of Program
Correctness?

//: L = data[root.next*]

public void add (Object x)

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Let L be a set (a

multiset) of all elements

stored in the list …

A Mathematical Proof of Program
Correctness?

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

}

Annotations

Annotations

• Written by a programmer or a software analyst

• Added to the original program code to express properties that allow
reasoning about the programs

• Examples:

 Preconditions:

 Describe properties of an input

 Postconditions:

 Describe what the program is supposed to do

 Invariants:

 Describe properties that have to hold in every program point

Decision Procedures for Collections

//: L = data[root.next*]

//: invariant: size = card L

public void add (Object x)

//: ensures L = old L + {x}

{

Node e = new Node();

e.data = x;

e.next = root;

root = e;

size = size + 1;

} Prove that the following formula always

holds:

∀ X. ∀ L. |X| = 1 | L ⊎ X | = |L| + 1

Verification condition

Verification Conditions

• Mathematical formulas derived based on:

 Code

 Annotations

• If a verification condition always holds (valid), then to code is correct w.r.t.
the given property

• It does not depend on the input variables

• If a verification condition does not hold, we should be able to detect an error
in the code

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

??

return y

}

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0 y = x - 2 y > 0

Verification condition:

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0 y = x - 2 y > 0

Verification condition:

Preconditions

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0 y = x - 2 y > 0

Verification condition:

Program

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = 1

return y

}

∀ x. ∀ y. x > 0 y = 1 y > 0

Verification condition:

Postconditions

Verification Condition: Example

//: assume (x > 0)

def simple (Int x)

//: ensures y > 0

{

val y = x - 2

return y

}

∀ x. ∀ y. x > 0 y = x - 2 y > 0

Verification condition:

Formula does not hold for input x = 1

Automation of Verification

• Windows XP has approximately 45 millions
lines of source code

 300.000 DIN A4 papers

 seven times my size high

paper stack

Verification should be

automated!!!

Software Verification

program

formulas

correct

no

theorem prover

annotations

verifier

Prove formulas

automatically!

Decision Procedures

• A decision procedure is an algorithm which answers

whether the input formula is satisfiable or not
 formula is satisfiable for x=0, y=1

 formula is unsatisfiable

formula in

some logic
theorem prover

satisfiable(model)

unsatisfiable (proof)

11 yxyx

yx

Language Semantics

Formal Semantics of Java Programs

• The Java Language Specification (JLS) [link] gives semantics to Java
programs

 The document has 780 pages.

 148 pages to define semantics of expression.

 42 pages to define semantics of method invocation.

• Semantics is only defined in prose.

 How can we make the semantics formal?

 We need a mathematical model of computation.

http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf

Semantics of Programming
Languages
• Denotational Semantics

 Meaning of a program is defined as the mathematical object it computes (e.g.,
partial functions).

 Example: Abstract Interpretation

• Axiomatic Semantics

 Meaning of a program is defined in terms of its effect on the truth of logical
assertions.

 Example: Hoare Logic

• (Structural) Operational Semantics

 Meaning of a program is defined by formalizing the individual computation steps of
the program.

 Example: Labeled Transition Systems

IMP: A Simple Imperative Language
Before we move on to Java, we look at a simple imperative programming
language IMP.

An IMP program:

p := 0;

x := 1;

while x ≤ n do

x := x + 1;

p := p + m;

IMP: Syntactic Entities

• n ∈ ℤ – integers

• true, false ∈ 𝔹 – Booleans

• x,y ∈ Vars – Program variables

• e ∈ Aexp – arithmetic expressions

• b ∈ Bexp – Boolean expressions

• c ∈ Com – commands

Syntax of Arithmetic Expressions

• Arithmetic expressions (Aexp)
e ::= n, for n ∈ ℤ

| x, for x ∈ Vars
| e1 + e2

| e1 – e2

| e1 * e2

• Notes:
 Variables are not declared before use.

 All variables have integer type.

 Expressions have no side-effects.

Syntax of Boolean Expressions
• Boolean expressions (Bexp)

b ::= true
| false
| e1 = e2 for e1, e2 ∈ Aexp
| e1 ≤ e2 for e1, e2 ∈ Aexp
| ¬b for b ∈ Bexp
| b1 ∧ b2 for b1, b2 ∈ Bexp
| b1 ∨ b2 for b1, b2 ∈ Bexp

Syntax of Commands
• Commands (Com)

c ::= skip
| x := e
| c1 ; c2

| if b then c1 else c2

| while b do c

• Notes:
 The typing rules have been embedded in the syntax definition.

 Other parts are not context-free and need to be checked
separately (e.g., all variables are declared).

 Commands contain all the side-effects in the language.

 Missing: references, function calls, …

A simple example

What do we need:

• Language in which we are writing programs

• Program execution and what does it mean
“whenever the program is in the state”

• Language for annotation

• Combine all this somehow together

//: assume (x > 5)

def simple (Int x)

//: ensures y > 7

{

val y = x + 2

return y

}

We need to express / derive / prove:

“whenever the program takes as input x, such

that x > 5, and we execute the program, the

resulting output y will satisfy that y > 7”

∀ x. ∀ y. x > 5 y = x + 2 y > 7

Meaning of IMP Programs

Questions to answer:

• What is the “meaning” of a given IMP expression/command?

• How would we evaluate IMP expressions and commands?

• How are the evaluator and the meaning related?

• How can we reason about the effect of a command?

Semantics of IMP
• The meaning of IMP expressions depends on the values of variables, i.e.

the current state.

• A state at a given moment is represented as a function from Vars to ℤ

• The set of all states is Q = Vars → ℤ

• We use q to range over Q

A simple example

//: assume (x > 5)

def simple (Int x)

//: ensures y > 7

{

val y = x + 2

return y

}

X = 6, Y = 8X = 6, Y = 100

Starting state, preconditions are satisfied Ending state, postconditions are satisfied

Judgments
• We write <e, q> ⇓ n to mean that e evaluates to n in state q.

 The formula <e, q> ⇓ n is a judgment
(a statement about a relation between e, q and n)

 In this case, we can view ⇓ as a function of two arguments e and q

• This formulation is called natural operational semantics
 or big-step operational semantics

 the judgment relates the expression and its “meaning”

• How can we define <e1 + e2, q> ⇓ … ?

Inference Rules
• We express the evaluation rules as inference rules
for our judgments.

• The rules are also called evaluation rules.

An inference rule

defines a relation between judgments F1,...,Fn and G.

• The judgments F1,...,Fn are the premises of the rule;

• The judgments G is the conclusion of the rule;

• The formula H is called the side condition of the rule.

If n=0 the rule is called an axiom. In this case, the line
separating premises and conclusion may be omitted.

F1 ... Fn

G
where H

Inference Rules for Aexp
• In general, we have one rule per language
construct:

• This is called structural operational semantics.
 rules are defined based on the structure of the

expressions.

<n, q> ⇓ n <x, q> ⇓ q(x)

<e1 + e2, q> ⇓ (n1 + n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 – e2, q> ⇓ (n1 – n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 * e2, q> ⇓ (n1 * n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

Axiom

Inference Rules for Bexp
<true, q> ⇓ true <false, q> ⇓ false

<e1 = e2, q> ⇓ (n1 = n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 ≤ e2, q> ⇓ (n1 ≤ n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<b1 ∧ b2, q> ⇓ (t1 ∧ t2)

<b1, q> ⇓ t1 <b2, q> ⇓ t2

How to Read Inference Rules?
• Forward, as derivation rules of judgments

 if we know that the judgments in the premise hold then we can infer that the
conclusion judgment also holds.

 Example:

<2 * 3, q> ⇓ 6

<2, q> ⇓ 2 <3, q> ⇓ 3

How to Read Inference Rules?
• Backward, as evaluation rules:

 Suppose we want to evaluate e1 + e2, i.e., find n s.t. e1 + e2 ⇓ n is derivable
using the previous rules.

 By inspection of the rules we notice that the last step in the derivation of
e1 + e2 ⇓ n must be the addition rule.

 The other rules have conclusions that would not match e1 + e2 ⇓ n.

• This is called reasoning by inversion on the derivation rules.
 Thus we must find n1 and n2 such that e1 ⇓ n1 and e2 ⇓ n2 are derivable.

 This is done recursively.

• Since there is exactly one rule for each kind of expression,
we say that the rules are syntax-directed.
 At each step at most one rule applies.

 This allows a simple evaluation procedure as above.

How to Read Inference Rules?
• Example: evaluation of an arithmetic expression via reasoning by inversion:

<x + (2 * y), {x 3, y 2}> ⇓ ?

<x, {x 3, y 2}> ⇓ 3 <2 * y, {x 3, y 2}> ⇓ ?

<2, {x 3, y 2}> ⇓ 2

<y, {x 3, y 2}> ⇓ 2

7

4

Semantics of Commands

• The evaluation of a command in Com has side-
effects, but no direct result.

• The “result” of a command c in a pre-state q is a
transition from q to a post-state q’:

q → q’

• We can formalize this in terms of transition
systems.

c

Labeled Transition Systems

A labeled transition system (LTS) is a
structure
LTS = (Q, Act, →) where
Q is a set of states,

Act is a set of actions,

 → ⊆ Q × Act × Q is a transition relation.

We write q → q’ for (q, a, q’) ∈ →.
a

q q ++ {x n}x := e

Inference Rules for Transitions
<e, q> ⇓ n

q qskip

q q’’
c1 ; c2

q q’c1 q’ q’’c2

q q’
if b then c1 else c2

<b, q> ⇓ true q q’
c1

q q’
if b then c1 else c2

<b, q> ⇓ false q q’
c2

q q’’while b do c

<b, q> ⇓ true q q’
c

q qwhile b do c

<b, q> ⇓ false

q’ q’’while b do c

Axiomatic Semantics

Axiomatic Semantics
• An axiomatic semantics consists of:

 a language for stating assertions about programs;

 rules for establishing the truth of assertions.

• Some typical kinds of assertions:

 This program terminates.

 If this program terminates, the variables x and y have the same value throughout
the execution of the program.

 The array accesses are within the array bounds.

• Some typical languages of assertions

 First-order logic

 Other logics (temporal, linear)

 Special-purpose specification languages (Z, Larch, JML)

Assertions for IMP
• The assertions we make about IMP programs are of the

form:
{A} c {B}

with the meaning that:
 If A holds in state q , and q → q’

 then B holds in q’

• A is the precondition and B is the postcondition

• For example:
{ y ≤ x } z := x; z := z + 1 { y < z }

is a valid assertion

• These are called Hoare triples or Hoare assertions

c

Assertions for IMP

• {A} c {B} is a partial correctness assertion. It does not
imply termination of c.

• [A] c [B] is a total correctness assertion meaning that
 If A holds in state q

 then there exists q’ such that q → q’
and B holds in state q’

• Now let’s be more formal
 Formalize the language of assertions, A and B

 Say when an assertion holds in a state

 Give rules for deriving valid Hoare triples

c

The Assertion Language
• We use first-order predicate logic with IMP
expressions

A :: = true | false | e1 = e2 | e1 ≥ e2

| A1 ∧ A2 | A1 ∨ A2 | A1 ⇒ A2 | ∀x.A | ∃x.A

• Note that we are somewhat sloppy and mix the
logical variables and the program variables.

• Implicitly, all IMP variables range over integers.

• All IMP Boolean expressions are also assertions.

Semantics of Assertions

• We introduced a language of assertions, we need to assign
meanings to assertions.

• Notation q ⊨ A says that assertion A holds in a given state q.
 This is well-defined when q is defined on all variables occurring in A.

• The ⊨ judgment is defined inductively on the structure of
assertions.

• Notation ⊨ A says that assertion A holds in any state, ie. it is
always true.

• It relies on the semantics of arithmetic expressions from
IMP.

Semantics of Assertions
• q ⊨ true always

• q ⊨ e1 = e2 iff <e1,q>⇓ = <e2,q>⇓

• q ⊨ e1 ≥ e2 iff <e1,q>⇓ ≥ <e2,q>⇓

• q ⊨ A1 ∧ A2 iff q ⊨ A1 and q ⊨ A2

• q ⊨ A1 ∨ A2 iff q ⊨ A1 or q ⊨ A2

• q ⊨ A1 ⇒ A2 iff q ⊨ A1 implies q ⊨ A2

• q ⊨ ∀x.A iff ∀n ∈ ℤ. q[x:=n] ⊨ A

• q ⊨ ∃x.A iff ∃n ∈ ℤ. q[x:=n] ⊨ A

Semantics of Hoare Triples

• We can define formally the meaning of a partial correctness
assertion:

⊨ {A} c {B} iff ∀q ∈ Q. ∀q’ ∈ Q. q ⊨ A ∧ q → q’ ⇒ q’ ⊨ B

• and the meaning of a total correctness assertion:

⊨[A] c [B] iff ∀q∈Q. q ⊨ A ⇒ ∃q’∈Q. q → q’ ∧ q’ ⊨ B

c

c

q – a state, defines values of variables

{A} c {B} – a Hoare tripe, it is either true or false

q ⊨ F – in state q, formula F holds

Semantics of Hoare Triples

• We can define formally the meaning of a partial correctness
assertion:

⊨ {A} c {B} iff ∀q ∈ Q. ∀q’ ∈ Q. q ⊨ A ∧ q → q’ ⇒ q’ ⊨ B

• and the meaning of a total correctness assertion:

⊨[A] c [B] iff ∀q∈Q. q ⊨ A ⇒ ∃q’∈Q. q → q’ ∧ q’ ⊨ B

c

c

Great result: we now formally can

describe that a program is correct

Inferring Validity of Assertions

• Now we have the formal mechanism to decide when {A} c {B}
 But it is not satisfactory,

 because ⊨ {A} c {B} is defined in terms of the operational semantics.

 We practically have to run the program to verify an assertion.

 Also it is impossible to effectively verify the truth of a
∀x. A assertion (by using the definition of validity)

• So we define a symbolic technique for deriving valid assertions
from others that are known to be valid
 We start with validity of first-order formulas

Now that we know what correctness
means, what’s next?
• By now we can express formally: if a program is in the state where

preconditions hold, and we execute the program, we will end up in the state
where postconditions hold

• For example, a formula {x > 0} x:=x+2 {x > 2} is a correct Hoare triple and we
can prove that by hand

• However, it is a manual work, therefore error-prone

• Goal: automatize the process of proving program correctness as much as
possible

• End goal: develop a “push-the-button” tool for proving program correctness
(something like a your own mini Dafny)

Natural Deduction

• Inference system introduces in 1934 in (Gentzen
1934, Jaśkowski 1934)

• The goal is to have a system that can
automatically prove theorems in mathematics

• More reading:
 https://www.iep.utm.edu/nat-ded/ (at Internet Encyclopedia

of Philosophy)

https://www.iep.utm.edu/nat-ded/

⊢ A[e/x]

Inference Rules

• We write ⊢ A when A can be inferred from basic axioms.

• The inference rules for ⊢ A are the usual ones from first-order
logic with arithmetic (examples)

• Natural deduction style rules:

⊢ A ∧ B

⊢A ⊢ B

⊢ A ∨ B

⊢ A

⊢ A ∨ B

⊢ B

⊢ ∀x. A

⊢ A[a/x] where

a is fresh

⊢ ∀x. A

⊢ A[e/x]

⊢ ∃x. A ⊢ B

⊢ ∃x. A ⊢ B

⊢ A ⇒ B

⊢ B

⊢ B

⊢ A ⇒ B ⊢ A

⊢ A[a/x]
...

where

a is fresh

[⊢ A]
...

https://leanprover.github.io/logic_and_proof/natural_deduction_for_propositional_logic.html

Inference Rules for Hoare Logic

• One rule for each syntactic construct:

⊢ {A} skip {A} ⊢ {A[e/x]} x:=e {A}

⊢ {A} if b then c1 else c2 {B}

⊢ {A ∧ b} c1 {B} ⊢ {A ∧ ¬b} c2 {B}

⊢ {A} c1; c2 {C}

⊢ {A} c1 {B} ⊢ {B} c2 {C}

⊢ {I} while b do c {I ∧ ¬b}

⊢ {I ∧ b} c {I}

Inference Rules for Hoare Logic

• One rule for each syntactic construct:

⊢ {A} skip {A} ⊢ {A[e/x]} x:=e {A}

⊢ {A} if b then c1 else c2 {B}

⊢ {A ∧ b} c1 {B} ⊢ {A ∧ ¬b} c2 {B}

⊢ {A} c1; c2 {C}

⊢ {A} c1 {B} ⊢ {B} c2 {C}

⊢ {I} while b do c {I ∧ ¬b}

⊢ {I ∧ b} c {I}

Loop Invariants
• I is a loop invariant if the following three conditions hold:

 I holds initially in all states satisfying Pre, when
execution reaches loop entry, I holds

 I is preserved: if we assume I and loop condition (b),
we can prove that I will hold again after executing the
loop body

 I is strong enough: if we assume I and the negation of
loop condition b, we can prove that Post holds after the
loop execution

Inference Rules for Hoare Triples

• Similarly we write ⊢ {A} c {B} when we can derive
the triple using inference rules

• There is one inference rule for each command in
the language.

• Plus, the rule of consequence

⊢ A’ ⇒ A ⊢ {A} c {B} ⊢ B ⇒ B’
⊢ {A’} c {B’}

Hoare Logic: Summary
• We have a language for asserting properties of programs.

• We know when such an assertion is true.

• We also have a symbolic method for deriving assertions.

A

{A} P {B}
⊨ A

⊨ {A} P {B}

⊢ A

⊢ {A} P {B}

semantics

soundness

completenesstheorem proving

⊨ {A} P {B} is a valid statement

(i.e. always true)

q ⊨ x > 0 “models”

⊢ A “we can prove A”

q ⊢ A makes no sense

Hoare Rules
• For some constructs, multiple rules are
possible

alternative “forward axiom” for assignment:

alternative rule for while loops:

• These alternative rules are derivable from the
previous rules, plus the rule of consequence.

⊢ {A} x:=e {∃x0. x0 = e ∧ A[x0/x]}

⊢ {I} while b do c {B}

⊢ {C} c {I} ⊢ I ∧ b ⇒ C ⊢ I ∧ ¬b ⇒ B

Exercise: Hoare Rules

• Is the following alternative rule for assignment
still correct?

⊢ {true} x:=e {x = e}

Example: Conditional

D1 :: ⊢ {true ∧ y ≤ 0} x := 1 {x > 0}

D2 :: ⊢ {true ∧ y > 0} x := y {x > 0}

⊢ {true} if y ≤ 0 then x := 1 else x := y {x > 0}

• D1 is obtained by consequence and assignment

⊢ true ∧ y ≤ 0 ⇒ 1 ≥ 0 ⊢ {1 ≥ 0} x := 1 {x ≥ 0}
⊢ {true ∧ y ≤ 0} x := 1 {x ≥ 0}

• D2 is also obtained by consequence and assignment

⊢ true ∧ y > 0 ⇒ y > 0 ⊢ {y > 0} x := y {x > 0}
⊢ {true ∧ y > 0} x := y {x > 0}

Example: a simple loop

• We want to infer that
⊢ {x ≤ 0} while x ≤ 5 do x := x + 1 {x = 6}

• Use the rule for while with invariant I ≡ x ≤ 6

⊢ x ≤ 6 ∧ x ≤ 5 ⇒ x + 1 ≤ 6 ⊢ {x + 1 ≤ 6} x := x + 1 {x ≤ 6}
⊢ {x ≤ 6 ∧ x ≤ 5} x := x + 1 {x ≤ 6}

⊢ {x ≤ 6} while x ≤ 5 do x := x + 1 { x ≤ 6 ∧ x > 5}

• Then finish-off with the rule of consequence
⊢ x ≤ 0 ⇒ x ≤ 6
⊢ x ≤ 6 ∧ x > 5 ⇒ x = 6 ⊢ {x ≤ 6} while ... {x ≤ 6 ∧ x > 5}

⊢ {x ≤ 0} while ... {x = 6}

Example: a more interesting program
• We want to derive that

{n ≥ 0}

p := 0;

x := 0;

while x < n do

x := x + 1;

p := p + m

{p = n * m}

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Only applicable rule (except for rule of consequence):

⊢ {A} c1; c2 {B}

⊢ {A} c1{C} ⊢ {C} c2 {B}

c1 c2 BA

⊢{C} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {C}

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is C?

⊢{C} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {C}

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

⊢ {I} while b do c {I ∧ ¬b}

⊢ {I ∧ b} c {I}

We can match {I} with {C} but we cannot match {I ∧ ¬b}

and {p = n * m} directly. Need to apply the rule of

consequence first!

c1
c2 BA

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is C?

B’A’

⊢{C} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {C}

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

⊢ {I} while b do c {I ∧ ¬b}

⊢ {I ∧ b} c {I}

⊢ A’ ⇒ A ⊢ {A} c’ {B} ⊢ B ⇒ B’

⊢ {A’} c’ {B’}

Rule of consequence:

c’

c’A B

I = A = A’ = C

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is I?

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

Let’s keep it as a placeholder for now!

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

⊢{I ∧ x<n} x := x+1; p:=p+m {I}

Next applicable rule:

⊢ {A} c1; c2 {B}

⊢ {A} c1{C} ⊢ {C} c2 {B}

BA c1 c2

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

⊢{I ∧ x<n} x := x+1; p:=p+m {I}

BA c1 c2

⊢{I ∧ x<n} x := x+1 {C}

What is C?Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

⊢ {A[e/x]} x:=e {A}

⊢{C} p:=p+m {I}

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

What is C?Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

⊢ {A[e/x]} x:=e {A}

⊢{I[p+m/p]} p:=p+m {I}

⊢{I ∧ x<n} x:=x+1; p:=p+m {I}

⊢{I ∧ x<n} x:=x+1 {I[p+m/p]}

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

⊢{I ∧ x<n} x:=x+1; p:=p+m {I}

⊢{I ∧ x<n} x:=x+1 {I[p+m/p]}

Only applicable rule (except for rule of consequence):

⊢ {A[e/x]} x:=e {A}

⊢{I[p+m/p} p:=p+m {I}

Need rule of consequence to match {I ∧ x<n} and {I[x+1/x, p+m/p]}

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢{I} while x < n do (x:=x+1; p:=p+m) {I ∧ x ≥ n}

⊢{I ∧ x<n} x:=x+1; p:=p+m {I}

⊢{I ∧ x<n} x:=x+1 {I[p+m/p]} ⊢{I[p+m/p} p:=p+m {I}

⊢ I ∧ x < n ⇒ I[x+1/x, p+m/p]

⊢{I[x+1/x, p+m/p]} x:=x+1 {I[p+m/p]}

Let’s just remember the open proof obligations!

...

Example: a more interesting program

⊢ {n ≥ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

⊢{I} while x < n do (x:=x+1; p:=p+m) {p = n * m}⊢ {n ≥ 0} p:=0; x:=0 {I}

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢ I ∧ x < n ⇒ I[x+1/x, p+m/p]

Let’s just remember the open proof obligations!

...

Continue with the remaining part of the proof tree, as before.

⊢ {I[0/x]} x:=0 {I}

⊢ {n ≥ 0} p:=0 {I[0/x]}

⊢ {I[0/p, 0/x]} p:=0 {I[0/x]}

⊢ n ≥ 0 ⇒ I[0/p, 0/x] Now we only need to solve the

remaining constraints!

Example: a more interesting program

⊢ I ∧ x ≥ n ⇒ p = n * m

⊢ I ∧ x < n ⇒ I[x+1/x, p+m/p]

Find I such that all constraints are simultaneously valid:

⊢ n ≥ 0 ⇒ I[0/p, 0/x]

I ≡ p = x * m ∧ x ≤ n

⊢ p = x * m ∧ x ≤ n ∧ x ≥ n ⇒ p = n * m

⊢ p = x * m ∧ x ≤ n ∧ x < n ⇒ p+m = (x+1) * m ∧ x+1 ≤ n

⊢ n ≥ 0 ⇒ 0 = 0 * m ∧ 0 ≤ n

All constraints are valid!

Another example: check if a number
is prime

{n ≥ 2}

p := 1;

i := 2;

while i < n do

if (n mod i = 0) then p := 0;

i := i + 1;

{p = 1 ⇒ 𝑝𝑟𝑖𝑚𝑒(𝑛)}

Another example: check if a number
is prime

{n ≥ 2}

p := 1;

i := 2;

while i < n do

if (n mod i = 0) then p := 0;

i := i + 1;

{p = 1 ⇒ ∀𝑘. (2 ≤ 𝑘 ∧ k < n ⇒ n mod k ≠ 0)}

Another example: check if a number
is prime

{n ≥ 2}

p := 1;

i := 2;

while i < n do

if (n mod i = 0) then p := 0;

i := i + 1;

{p = 1 ⇒ 𝑝𝑟𝑖𝑚𝑒(𝑛)}

Invariant:
I ≡ (p = 1 ⇒ prime(n)) ∧ i ≤ n

Using Hoare Rules

• Hoare rules are mostly syntax directed

• There are three obstacles to automation of Hoare logic
proofs:
 When to apply the rule of consequence?

 What invariant to use for while?

 How do you prove the implications involved in the rule of
consequence?

• The last one is how theorem proving gets in the picture
 This turns out to be doable!

 The loop invariants turn out to be the hardest problem!

 Should the programmer give them?

Computing VC

Verification Condition Generation

• Idea for VC generation: propagate the post-
condition backwards through the program:
 From {A} P {B}

 Generate formula A ⇒ F(P, B), where F(P, B) is a
formula describing the starting states for program to
end in B

• This backwards propagation F(P, B) can be formalized in
terms of weakest preconditions.

Weakest Preconditions
• The weakest precondition WP(c,B) holds for any
state q whose c-successor states all satisfy B:

q ⊨ WP(c,B) iff ∀q’∈Q. q → q’ ⇒ q’ ⊨ B

• Compute WP(P,B) recursively according to the
structure of the program P.

BWP(c,B)

q q’ q’’

c
c

c

c

Loop-Free Guarded Commands

• Introduce loop-free guarded commands as an
intermediate representation of the verification
condition

• c ::= assume b
| assert b
| havoc x
| c1 ; c2

| c1 c2

https://slang.soe.ucsc.edu/cormac/papers/popl01.pdf

From Programs to Guarded
Commands

• GC(skip) =

assume true

• GC(x := e) =

assume tmp = x; havoc x; assume (x = e[tmp/x])

• GC(c1 ; c2) =
GC(c1) ; GC(c2)

• GC(if b then c1 else c2) = ?
(assume b; GC(c1)) (assume ¬b; GC(c2))

• GC({I} while b do c) = ?

where tmp is fresh

From Programs to Guarded
Commands

• GC(skip) =

assume true

• GC(x := e) =

assume tmp = x; havoc x; assume (x = e[tmp/x])

• GC(c1 ; c2) =
GC(c1) ; GC(c2)

• GC(if b then c1 else c2) =
(assume b; GC(c1)) (assume ¬b; GC(c2))

• GC({I} while b do c) = ?

where tmp is fresh

Guarded Commands for Loops

• GC({I} while b do c) =
assert I;

havoc x1; ...; havoc xn;
assume I;
(assume b; GC(c); assert I; assume false)

assume ¬b

where x1, ..., xn are the variables modified in c

Example: VC Generation
{n ≥ 0}

p := 0;

x := 0;

{p = x * m ∧ x ≤ n}

while x < n do

x := x + 1;

p := p + m

{p = n * m}

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

{ n ≥ 0 }

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n;

(assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n; assume false)

 assume x ≥ n;

{ p = n * m }

• Computing the guarded command

Example: VC Generation

Computing Weakest Preconditions

• WP(assume b, B) = b ⇒ B

• WP(assert b, B) = b ∧ B

• WP(havoc x, B) = B[a/x] (a fresh in B)

• WP(c1;c2, B) = WP(c1, WP(c2, B))

• WP(c1 c2,B) = WP(c1, B) ∧ WP(c2, B)

Putting Everything Together

• Given a Hoare triple H ⊢ {A} P {B}

• Compute cH = assume A; GC(P); assert B

• Compute VCH = WP(cH, true)

• Check ⊢VCH using a theorem prover.

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n;

(assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n; assume false)

 assume x ≥ n;

assert p = n * m, true)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n;

(assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n; assume false)

 assume x ≥ n, p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,
WP ((assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n; assume false)

 assume x ≥ n, p = n * m))

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n; assume false, p = n * m)

∧ WP (assume x ≥ n, p = n * m))

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n; assume false, p = n * m)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n, WP (assume false, p = n * m)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n, false ⇒ p = n * m)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m;
assert p = x * m ∧ x ≤ n, true)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p; assume p = p1 + m,
p = x * m ∧ x ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1;
assume p1 = p; havoc p,

p = p1 + m ⇒ p = x * m ∧ x ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n;

assume x1 = x; havoc x; assume x = x1 + 1,
p1 = p ∧ pa1 = p1 + m ⇒ pa1 = x * m ∧ x ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n; assume x1 = x; havoc x,

x = x1 + 1 ∧ p1 = p ∧ pa1 = p1 + m

⇒ pa1 = x * m ∧ x ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n; assume x1 = x,

xa1 = x1 + 1 ∧ p1 = p ∧ pa1 = p1 + m

⇒ pa1 = xa1 * m ∧ xa1 ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

WP (assume x < n,

x1 = x ∧ xa1 = x1 + 1 ∧ p1 = p ∧ pa1 = p1 + m

⇒ pa1 = xa1 * m ∧ xa1 ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

WP (assume n ≥ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m ∧ x ≤ n;

havoc x; havoc p; assume p = x * m ∧ x ≤ n,

(x < n ∧ x1 = x ∧ xa1 = x1 + 1 ∧ p1 = p ∧ pa1 = p1 + m

⇒ pa1 = xa1 * m ∧ xa1 ≤ n)

∧ x ≥ n ⇒ p = n * m)

• Computing the weakest precondition

Example: VC Generation

assume n ¸ 0;

GC(p := 0;

x := 1;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

GC(x := 0;

{p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

GC({p = x * m Æ x · n}

while x < n do

x := x + 1;

p := p + m);

assert p = n * m

assume n ¸ 0;

assume p0 = p; havoc p; assume p = 0;

assume x0 = x; havoc x; assume x = 0;

assert p = x * m Æ x · n;

havoc x; havoc p; assume p = x * m Æ x · n;

(assume x < n;
GC(x := x + 1;

p := p + m);
assert p = x * m Æ x · n; assume false)

 assume x ¸ n;

assert p = n * m

n ≥ 0 ∧ p0 = p ∧ pa3 = 0 ∧ x0 = x ∧ xa3 = 0 ⇒ pa3 = xa3 *

m ∧ xa3 ≤ n ∧

(pa2 = xa2 * m ∧ xa2 ≤ n ⇒

((xa2 < n ∧ x1 = xa2 ∧ xa1 = x1 + 1 ∧
p1 = pa2 ∧ pa1 = p1 + m) ⇒ pa1 = xa1 * m ∧

xa1 ≤ n)

∧ (xa2 ≥ n ⇒ pa2 = n * m))

• Computing the weakest precondition

Example: VC Generation

• The resulting VC is equivalent to the conjunction of the
following implications

Example: VC Generation

n ≥ 0 ∧ p0 = p ∧ pa3 = 0 ∧ x0 = x ∧ xa3 = 0 ⇒
pa3 = xa3 * m ∧ xa3 ≤ n

n ≥ 0 ∧ p0 = p ∧ pa3 = 0 ∧ x0 = x ∧ xa3 = 0 ∧ pa2 = xa2 * m ∧

xa2 ≤ n ⇒

xa2 ≥ n ⇒ pa2 = n * m

n ≥ 0 ∧ p0 = p ∧ pa3 = 0 ∧ x0 = x ∧ xa3 = 0 ∧ pa2 = xa2 * m ∧ xa2 < n

∧ x1 = xa2 ∧ xa1 = x1 + 1 ∧ p1 = pa2 ∧ pa1 = p1 + m ⇒

pa1 = xa1 * m ∧ xa1 ≤ n

• simplifying the constraints yields

• all of these implications are valid, which proves that
the original Hoare triple was valid, too.

Example: VC Generation

n ≥ 0 ⇒ 0 = 0 * m ∧ 0 ≤ n

xa2 ≤ n ∧ xa2 ≥ n ⇒ xa2 * m = n * m

xa2 < n ⇒ xa2 * m + m = (xa2 + 1) * m ∧ xa2 + 1 ≤ n

Translating Method Calls to GCs
method m (p1: T_1, ..., pk: Tk) returns (r: T)

requires P

modifies x1, ..., xn

ensures Q

A method call

y := m(y1, ..., yk);

is desugared into the guarded command

assert P[y1/p1, ..., yk/pk];

havoc x1; ..., havoc xn; havoc y;

assume Q[y1/p1, ..., yk/pk, y/r]

Software Verification

program

formulas

correct

no

theorem prover

annotations

VCG

Adding arrays to language
• Given command: a[i] := v

• In array theory a := write(a, i, v)

• GC: assume tmp = a; havoc a; assume (a = write(tmp, i, v))

WP(GC, F) = WP(assume tmp = a; havoc a; assume (a = write(tmp, i, v)), F)

= WP(assume tmp = a; havoc a; a = write(tmp, i, v) ⇒ F)

= WP(assume tmp = a; af = write(tmp, i, v) ⇒ F[af/a])

= tmp = a ⇒ af = write(tmp, i, v) ⇒ F[af/a]

= tmp = a af = write(tmp, i, v) ⇒ F[af/a]

= af = write(a, i, v) ⇒ F[af/a] Disclaimer: you need to learn a theory of

arrays first

What we have learned so far

• Hoare logic reduces program verification to
proving the validity of verification conditions
expressed as statements in some assertion logic

• The actual verification process can be completely
mechanized modulo

1. inference of loop invariants / procedure contracts

2. the actual validity checking of the generated VCs

