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Software Safety and Security

❖ Software systems become more pervasive and complex

❖ Increased need for techniques and tools that ensure 
safety and security of software systems

❖ Research directions: 

❖ automated verification techniques

❖ application at all phases of software development

❖ theoretical foundations and practical tools



Symbolic Execution
❖ Systematic program analysis technique — King [Comm. ACM 1976], Clarke 

[IEEE TSE 1976]

❖ Executes programs on symbolic inputs — represent multiple concrete inputs 

❖ Path conditions — conditions on inputs following same program path

❖ Check satisfiability using off-the-shelf solvers (Z3)  – explore only feasible paths

❖ Solve path conditions: obtain test inputs

❖ Bounded execution

❖ Many applications: test-case generation, error detection, …

❖ Many tools: SAGE, DART, KLEE, Pex, BitBlaze …

❖ Symbolic PathFinder



Example Concrete Execution



Example Symbolic Execution



Loops



Symbolic PathFinder
❖ Symbolic execution tool for 

Java bytecode; open-
sourced

❖ Lazy initialization for input 
data structures and arrays

❖ Handles multi-threading 
and string operations

❖ Supports quantitative 
reasoning

❖ Comes with library models 

Java PathFinder tool-set

https://github.com/SymbolicPathFinder/jpf-symbc

https://github.com/SymbolicPathFinder/jpf-symbc


Test Generation and Bug Finding

❖ NASA control software: onboard abort 
executive ( OAE) [ISSTA’08]

❖ manual testing: time consuming ~ 1 week

❖ guided random testing could not obtain 
full coverage

❖ SPF generated ~200 tests to obtain full 
coverage <1min

❖ Flight rules covered 27/27

❖ Aborts covered 7/7

❖ Size of input: 27 values/test case

❖ Found major bug in new version

OAE structure
NASA Applications



Test Generation and Bug Finding

❖ Polyglot [ISSTA’11, NFM’12]

❖ analysis and test generation for UML, 
Stateflow and Rhapsody models

❖ pluggable semantics for different state chart 
formalisms

❖ analyzed MER arbiter, Ares-Orion 
communication

❖ current work: CoCoSim — extensible 
verification framework for Simulink/
Stateflow

❖ Tactical Separation Assisted Flight Environment 
(T-SAFE) [NFM’11, ICST’12]

❖ integration with Coral heuristic solver for 
complex mathematical constraints

NASA Applications



Handling Data Structures
❖ Lazy initialization [TACAS’03,ISSTA’04] — nondeterminism 

handles aliasing



Lazy Initialization



Dynamic Symbolic Execution/Concolic Testing

❖ collect symbolic constraints during concrete executions

❖ DART = Directed Automated Random Testing

❖ Concolic = Concrete/symbolic testing

❖ P. Godefroid, K. Sen and many many others …

❖ very popular, simple to implement



Dynamic Symbolic Execution/Concolic Testing
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Complexity Analysis

❖ Problem
❖ Estimate the worst-case 

complexity of programs

❖ Applications
❖ Finding vulnerabilities related 

to denial-of-service attacks
❖ Guiding compiler optimizations 
❖ Finding and fixing performance 

bottlenecks in software

DARPA STAC



Symbolic Complexity Analysis
❖ Computes inputs that expose worst-case behavior 

❖ Computes bounds on worst-case complexity

❖ Simple approach

❖ Perform symbolic execution over the program — compute cost of each path

❖ Return the path with largest cost

❖ Scalability issues

❖ Symbolic execution guided by path policies [ICST’17]

❖ Encode choices along worst-case path 

❖ Intuition: worst-case behavior for small input can predict worst-case behavior 
for larger input



Guided Symbolic Execution
❖ Policy Generation 

❖ Exhaustive symbolic 
execution at small input 
size(s)

❖ Compute path with largest 
cost

❖ Build policy based on 
decisions taken along that 
path

❖ Policy Guided Execution
❖ Symbolic execution for 

increasing  input sizes
❖ Explore only paths that 

conform with policy
❖ For each input size compute 

path (and input) with largest 
cost

❖ Function fitting
❖ Computes estimate of worst-case behavior as a function of 

input size
❖ Gives lower bounds on worst-case complexity for any size



Path Policies
❖ Decide which branch to execute for the conditions in the program

❖ Similar to e.g. [Burnim et al. ICSE’09, Zhang et al. ASE’11]

❖ New 

❖ History aware: take into account the history of choices made along a path to decide which 
branch to execute next  

❖ Context preserving: the decision for each condition depends on the history computed with 
respect to the enclosing method 

❖ Symbolic execution, guided by policies, can reduce to exploring a single path regardless of input size 

❖ Scales far beyond non-guided symbolic execution and outperforms previous techniques

❖ Theoretical guarantee: when policies are “unified”, worst-case path policy is eventually found

❖ Unification over policies obtained for successive small inputs

❖ For each condition: take union over decisions specified by each policy



....
7 Entry findEntry(String o, ....) {
8    for(Entry e = l; e!=null; e=e.next) {
9       if (e.key.equals(o)) {
10         return e;
11      }
12   }
....   
16   return null;
17 }

18 class String {
19 char[] value;
20 // ...
21  public boolean equals(Object oObj) {
22    // ...
23    String o = (String) oObj;
24    if (val.length == o.val.length) {
25       for(int i=0; i<val.length; i++) {
26         if (val[i]!=o.val[i])
27            return false;
28       }
29       return true;
30    }
31    return false;
32  }
33 }

Example



Example Application: TextCruncher Sort
❖ Text processing application with various filters, e.g. WordCount, NGramScore

❖ Found vulnerability in sorting algorithm

❖ Triggered by files with 3 x n different words: 6000 words: 5 min; 6001 words: few secs.

Vulnerability: exponential for lists of length n × 3

From ISSTAC project

DARPA STAC



Probabilistic Reasoning
❖ Extension of symbolic 

execution with probabilistic 
reasoning [ICSE’13,PLDI’14]
❖ Computes the probability of a 

target event, under an input 
distribution 

❖ Model counting over 
symbolic constraints
❖ Latte, Barvinok -- integer linear 

constraints, finite domain



Probabilistic Reasoning
❖ E.g. assuming uniform distribution, 

❖ Compute path conditions that lead to target event

❖ Count the number of input values that satisfy the corresponding 
path conditions

❖ Divide it by the size of the input domain (D)



Example

discountedPressure <=80 discountedPressure >80

spinSpeed<=70 spinSpeed>70

PC: spinSpeed>70 &
discountedPressure >80

80%

14% 6%

input domain 100 x 100 

Pr(Fail) = #(PC)/#D
= #(spinSpeed>70 & discountedPressure >80)/D
= 30 x 20/10000 = 6%



Software Reliability
❖ Probability of successful termination under stochastic environment assumptions
❖ Perform bounded symbolic execution: results in three sets of paths

❖ Success PC
s: lead to successful termination

❖ Fail PC
f: lead to failure

❖ Grey PC
g
: “don’t know”

❖ For given usage profile UP: Pr(Fail|UP) = Pr(PC
f
s|UP), e.g. for uniform UP: 

Pr(Fail)= #(PC
f
)/D= #(spinSpeed>70 & discountedPressure >80)/D= 30 x 20/10000=6 %.

❖ Pr(Success|UP) and Pr(Grey|UP) are computed similarly

❖ Pr(Fail|UP)+Pr(Success|UP)+Pr(Grey|UP)=1

❖ Rel = Pr(Success|UP)

❖ Confidence = 1 - Pr(Grey|UP) (“1” means that analysis is complete)



Usage Profiles

❖ Summarize succinctly hundreds of hours of operation/simulation
❖ UPs can be seen as “pre-conditions”
❖ Arbitrary UPs – handled through discretization
❖ Continuous input distributions [FSE’15]



Computing with usage profiles

❖ Usage profile: set of pairs <ci, pi>

❖ ci — usage scenario, constraint on inputs

❖ pi — probability that the input is in ci 



Model Counting

❖ Latte, Barvinok: integer linear constraints, finite domain — 
Polynomial in number of variables and constraints
❖ Omega Lib used for algebraic simplifications
❖ Optimizations: independence, caching

❖ Research on 
❖ model counting for data structures [SPIN’15], 
❖ strings [FSE’16] — ABC Solver (UC Santa Barbara)
❖ non-linear constraints [NFM’17]



Model Counting for Data Structures
❖ SPF performs lazy initialization

❖ Computes Heap PC

❖ Explicit enumeration using Korat (MIT)

❖ Complex predicates

❖ E.g. “acyclic lists of integers with size smaller than the 
largest contained value”

❖ Computationally expensive



Multi-threading
❖ Enumerate all possible schedules (using model 

checking, partial order reduction)
❖ Compute best/worst “reliability”
❖ Report best/worst schedule
❖ Useful for debugging

❖ Tree-like schedules [ASE’15]
❖ Monte-Carlo sampling of symbolic paths
❖ Reinforcement learning used to iteratively compute 

schedules



Application: Onboard Abort Executive

❖ NASA control software

❖ Mission aborts

❖ 3754 paths, 36 input sensors

❖ 30 usage scenarios

❖ Execution time: 20.5 sec

❖ Checking for “no aborts”

❖ Rel > 0.9999999



Side-Channel Analysis

❖ Side-channel attacks
❖ recover secret inputs to programs from 

non-functional characteristics of 
computations

❖  time or power consumption, number of 
memory accesses or size of output files

❖ An attack on “main” channel: exponential
❖ On “side channel”: linear

boolean verifyPassword(byte [] input, 
                       byte [] password) {
  for ( int i = 0; i < SIZE; i++) {
   if (password[ i ] != input[ i ])
     return false ;
   Thread.sleep(25L);
  }
  return true;
}

low
high



Side-Channel Analysis
❖ Non-interference — too strict
❖ Quantitative Information-Flow Analysis (QIF) to determine information leakage

❖ Perform symbolic execution (high and low symbolic)
❖ Collect all symbolic paths — each path leads to an observable

❖ Side channels produce a set of “observables” that partition the secret
❖ Cost model for observables: execution time, number of packets sent/received over network, etc.

Channel Capacity

Shannon Entropy

Quantifying Information Leakage



Computing Shannon Entropy

❖ Use symbolic execution and model counting



Password Example
❖ 5 paths

❖ h[0]!=l[0] returns false: 128 values
❖ h[0]=l[0] & h[1]!=l[1] returns false: 

64 values
❖ h[0]=l[0] & h[1]=l[1] & h[2]!=l[2] 

returns false: 32 values
❖ h[0]=l[0] & h[1]=l[1] & h[2]=l[2] & 

h[3]!=l[3] returns false: 16 values
❖ h[0]=l[0] & h[1]=l[1] & h[2]=l[2] & 

h[3]=l[3] returns true: 16 values

Observable is time: H=1.875
Observable is output: H=0.33729

// 4-bit input and password; D=256 
boolean verifyPassword(byte [] input, 
                  byte [] password){ 
  for(int i = 0; i < SIZE; i++){ 
   if (password[i]!=input[i]) 
     return false ; 
   Thread.sleep(25L); 
  } 
  return true; 
}

// 4-bit input and password; D=256 
boolean verifyPassword(byte [] input, 
                  byte [] password){ 
  boolean matched=true; 
  for(int i = 0; i < SIZE; i++){ 
   if (password[i]!=input[i]) 
     matched=false ; 
   else 
     matched=matched; 
   Thread.sleep(25L); 
  } return matched; }

Corrected!



Maximizing Leakage

❖ using symbolic low value over-
approximates leakage

❖ example: 5 possible observables; lo<0: 
3 observables, lo≥0: 2 observables

void example(int lo, int hi) { 
 if(lo<0){ 
  if(hi<0) cost=1; 
  else if(hi<5) cost=2; 
  else cost=3; 
 } 
 else { 
  if(hi>1) cost=4; 
  else cost=5; 
 } 
}

❖ Goal: find low input that maximizes number of observables 
(channel capacity)

❖ Shows most powerful “attack” in one step
❖ Shows most vulnerable program behavior



Maximizing Leakage using MaxSMT
❖ MaxSMT solving — generalization of SMT to 

optimization

❖ given a set of weighted clauses

❖ find solution that maximizes the sum of the 
weights of the satisfied clauses

❖ Assemble PCs that lead to same observable into 
“clauses” of weight “1”

❖ MaxSMT solution gives maximal assignment ⇒ 
largest number of observables

❖ Any other assignments lead to fewer observables

MaxSMT solution: Lo=-1 satisfies first 3 clauses

Leakage log2 (3)=1.58 bits

void example(int lo, int hi) { 
 if(lo<0){ 
  if(hi<0) cost=1; 
  else if(hi<5) cost=2; 
  else cost=3; 
 } 
 else { 
  if(hi>1) cost=4; 
  else cost=5; 
 } 
}



Multi-run Analysis
❖ The attacker learns the secret by observing multiple program runs

❖ Generalization to multiple-run side-channel analysis

❖ An “observable” is a sequence of costs 

❖ MaxSMT used to synthesize a sequence of public inputs that maximize leakage; non-
adaptive attacks; greedy approach [CSF’16]

❖ Maximize Shannon leakage: parameterized model counting+ numerical optimization; 
adaptive attacks [CSF’17]

❖ Analysis of password examples and cryptographic functions

❖ Shown experimentally to perform better than previous approaches based on self 
composition or brute-force enumeration

❖ More work on side-channel analysis [ISSTA’18]



Results for Password Check
Results for 4 elements with 4 values (8 bits of information)

Timing Side Channel



Current/Future Work



Monte Carlo Tree Search For SW Analysis
❖ Monte Carlo Tree Search [SEFM’18]

❖ Heuristic search algorithm; Iterative expansion of search tree to find optimal decisions
❖ State-of-the art results in solving Go, board games, poker
❖ Good for domains modeled as a tree

❖ Sampling along symbolic paths for increased scalability
❖ Symbolic paths represent multiple concrete paths; Organized in tree
❖ Optimize with respect to the longest path (highest reward)

❖ Aggressive pruning of state space
❖ Speeds up analysis and guarantees convergence



Symbolic Execution and Fuzzing
❖ Fuzzing: random testing with some guidance

❖ cheap

❖ not  good at finding “deep paths” that depend on complicated 
constraints

❖ Symbolic execution

❖ expensive

❖ good at finding deep paths

❖ Better together!

❖ See Badger talk at ISSTA’18 on Wednesday



Probabilistic Analysis for Autonomous Vehicles

SafeTugs
❖ Currently aircraft either needs to use their engines or be towed during 

departure/arrival ground operations
❖ Engines off is more efficient
❖ This project will focus on autonomous tugs for towing

Analysis
❖ Predictive analysis for safe surface and air operation [HLDVT’16]

❖ Involves model inference from telemetry/simulation data
❖ “Simulation” environment using Symbolic PathFinder and probabilistic 

reasoning [PHS’16]
❖ Planning phase generates a plan of tug movement on a grid 

(abstraction of the airport)
❖ The plan is given as input to SPF; calculate how robust the plan is 

when the probabilities are changed 
❖ The output of our tool can be used to trigger dynamic re-planning 

during operation  

Progress: see workshop talk on Thursday at TAV-CPS/IoT !



Checking Robustness of Deep Neural Nets
❖ Deep Learning 

❖ Machine learning that enables representation and modeling of complex non-linear relationships
❖ Neural Networks (feed-forward, convolutional), Deep Belief Networks 

❖ Application domains:
❖ Pattern analysis, image classification, speech/audio recognition, perception modules in self-driving 

cars
❖ High-dimensional, Classifiers are non-linear and potentially discontinuous

❖ Deep Neural networks are vulnerable to adversarial inputs: 
❖ given input x, find new input x’ that is “similar” to x but is assigned a class different from x by the 

network [Szegedy et. al.  2013]?
❖ Current research: use symbolic execution and k-means clustering for robustness check

❖ |x-x’|< d => F(x)= F(x’); a counterexample is an adversarial input
❖ w/ D. Gopinath (CMU)
❖ see ATVA’18 talk!



Quantification of Software Changes
❖ Programs evolve during development and maintenance

❖ There is a need for detection and characterization of software changes
❖ Current techniques

❖ Syntactic: diff, imprecise, leads to unnecessary maintenance work
❖ Behavioral: check logical implication between behavioral abstractions: 

yes/no answers
❖ Quantitative representation of program change [ASE’15] 

❖ Probability of reaching program events — how that evolves in time
❖ rank program versions based on probability of failure
❖ after bug fixing probability of failure should decrease

❖ Percentage of inputs affected by change
❖ measurable delta between program versions
❖ measurable effort to re-test

❖ Automated program repair: 
❖ rank repairs based on probability of success/failure



Conclusion
❖ Symbolic execution and its extension to probabilistic reasoning

❖ Applications in program analysis for safety and security

❖ Future directions …

❖ Leakage computation for noisy side channels [CSF’18]

❖ Distributed analysis— lots of opportunities for symbolic execution

❖ Combinations with fuzzing

❖ Challenges

❖ scalability; handling loops

❖ non-linear numeric constraints, string constraints: constraint solving, 
(parametrized) model counting, MaxSMT



Thank you

Contact information: corina.s.pasareanu@nasa.gov, 

mailto:corina.s.pasareanu@nasa.gov
Corina Pasareanu

Corina Pasareanu
pcorina@cmu.edu


