
Symbolic Execution and Probabilistic Reasoning
Corina Pasareanu, CMU CyLab/NASA Ames

Software Safety and Security

❖ Software systems become more pervasive and complex

❖ Increased need for techniques and tools that ensure
safety and security of software systems

❖ Research directions:

❖ automated verification techniques

❖ application at all phases of software development

❖ theoretical foundations and practical tools

Symbolic Execution
❖ Systematic program analysis technique — King [Comm. ACM 1976], Clarke

[IEEE TSE 1976]

❖ Executes programs on symbolic inputs — represent multiple concrete inputs

❖ Path conditions — conditions on inputs following same program path

❖ Check satisfiability using off-the-shelf solvers (Z3) – explore only feasible paths

❖ Solve path conditions: obtain test inputs

❖ Bounded execution

❖ Many applications: test-case generation, error detection, …

❖ Many tools: SAGE, DART, KLEE, Pex, BitBlaze …

❖ Symbolic PathFinder

Example Concrete Execution

Example Symbolic Execution

Loops

Symbolic PathFinder
❖ Symbolic execution tool for

Java bytecode; open-
sourced

❖ Lazy initialization for input
data structures and arrays

❖ Handles multi-threading
and string operations

❖ Supports quantitative
reasoning

❖ Comes with library models

Java PathFinder tool-set

https://github.com/SymbolicPathFinder/jpf-symbc

https://github.com/SymbolicPathFinder/jpf-symbc

Test Generation and Bug Finding

❖ NASA control software: onboard abort
executive (OAE) [ISSTA’08]

❖ manual testing: time consuming ~ 1 week

❖ guided random testing could not obtain
full coverage

❖ SPF generated ~200 tests to obtain full
coverage <1min

❖ Flight rules covered 27/27

❖ Aborts covered 7/7

❖ Size of input: 27 values/test case

❖ Found major bug in new version

OAE structure
NASA Applications

Test Generation and Bug Finding

❖ Polyglot [ISSTA’11, NFM’12]

❖ analysis and test generation for UML,
Stateflow and Rhapsody models

❖ pluggable semantics for different state chart
formalisms

❖ analyzed MER arbiter, Ares-Orion
communication

❖ current work: CoCoSim — extensible
verification framework for Simulink/
Stateflow

❖ Tactical Separation Assisted Flight Environment
(T-SAFE) [NFM’11, ICST’12]

❖ integration with Coral heuristic solver for
complex mathematical constraints

NASA Applications

Handling Data Structures
❖ Lazy initialization [TACAS’03,ISSTA’04] — nondeterminism

handles aliasing

Lazy Initialization

Dynamic Symbolic Execution/Concolic Testing

❖ collect symbolic constraints during concrete executions

❖ DART = Directed Automated Random Testing

❖ Concolic = Concrete/symbolic testing

❖ P. Godefroid, K. Sen and many many others …

❖ very popular, simple to implement

Dynamic Symbolic Execution/Concolic Testing

Dynamic Symbolic Execution/Concolic Testing

Dynamic Symbolic Execution/Concolic Testing

Dynamic Symbolic Execution/Concolic Testing

Dynamic Symbolic Execution/Concolic Testing

Dynamic Symbolic Execution/Concolic Testing

Dynamic Symbolic Execution/Concolic Testing

Dynamic Symbolic Execution/Concolic Testing

Complexity Analysis

❖ Problem
❖ Estimate the worst-case

complexity of programs

❖ Applications
❖ Finding vulnerabilities related

to denial-of-service attacks
❖ Guiding compiler optimizations
❖ Finding and fixing performance

bottlenecks in software

DARPA STAC

Symbolic Complexity Analysis
❖ Computes inputs that expose worst-case behavior

❖ Computes bounds on worst-case complexity

❖ Simple approach

❖ Perform symbolic execution over the program — compute cost of each path

❖ Return the path with largest cost

❖ Scalability issues

❖ Symbolic execution guided by path policies [ICST’17]

❖ Encode choices along worst-case path

❖ Intuition: worst-case behavior for small input can predict worst-case behavior
for larger input

Guided Symbolic Execution
❖ Policy Generation

❖ Exhaustive symbolic
execution at small input
size(s)

❖ Compute path with largest
cost

❖ Build policy based on
decisions taken along that
path

❖ Policy Guided Execution
❖ Symbolic execution for

increasing input sizes
❖ Explore only paths that

conform with policy
❖ For each input size compute

path (and input) with largest
cost

❖ Function fitting
❖ Computes estimate of worst-case behavior as a function of

input size
❖ Gives lower bounds on worst-case complexity for any size

Path Policies
❖ Decide which branch to execute for the conditions in the program

❖ Similar to e.g. [Burnim et al. ICSE’09, Zhang et al. ASE’11]

❖ New

❖ History aware: take into account the history of choices made along a path to decide which
branch to execute next

❖ Context preserving: the decision for each condition depends on the history computed with
respect to the enclosing method

❖ Symbolic execution, guided by policies, can reduce to exploring a single path regardless of input size

❖ Scales far beyond non-guided symbolic execution and outperforms previous techniques

❖ Theoretical guarantee: when policies are “unified”, worst-case path policy is eventually found

❖ Unification over policies obtained for successive small inputs

❖ For each condition: take union over decisions specified by each policy

....
7 Entry findEntry(String o,) {
8 for(Entry e = l; e!=null; e=e.next) {
9 if (e.key.equals(o)) {
10 return e;
11 }
12 }
....
16 return null;
17 }

18 class String {
19 char[] value;
20 // ...
21 public boolean equals(Object oObj) {
22 // ...
23 String o = (String) oObj;
24 if (val.length == o.val.length) {
25 for(int i=0; i<val.length; i++) {
26 if (val[i]!=o.val[i])
27 return false;
28 }
29 return true;
30 }
31 return false;
32 }
33 }

Example

Example Application: TextCruncher Sort
❖ Text processing application with various filters, e.g. WordCount, NGramScore

❖ Found vulnerability in sorting algorithm

❖ Triggered by files with 3 x n different words: 6000 words: 5 min; 6001 words: few secs.

Vulnerability: exponential for lists of length n × 3

From ISSTAC project

DARPA STAC

Probabilistic Reasoning
❖ Extension of symbolic

execution with probabilistic
reasoning [ICSE’13,PLDI’14]
❖ Computes the probability of a

target event, under an input
distribution

❖ Model counting over
symbolic constraints
❖ Latte, Barvinok -- integer linear

constraints, finite domain

Probabilistic Reasoning
❖ E.g. assuming uniform distribution,

❖ Compute path conditions that lead to target event

❖ Count the number of input values that satisfy the corresponding
path conditions

❖ Divide it by the size of the input domain (D)

Example

discountedPressure <=80 discountedPressure >80

spinSpeed<=70 spinSpeed>70

PC: spinSpeed>70 &
discountedPressure >80

80%

14% 6%

input domain 100 x 100

Pr(Fail) = #(PC)/#D
= #(spinSpeed>70 & discountedPressure >80)/D
= 30 x 20/10000 = 6%

Software Reliability
❖ Probability of successful termination under stochastic environment assumptions
❖ Perform bounded symbolic execution: results in three sets of paths

❖ Success PC
s: lead to successful termination

❖ Fail PC
f: lead to failure

❖ Grey PC
g
: “don’t know”

❖ For given usage profile UP: Pr(Fail|UP) = Pr(PC
f
s|UP), e.g. for uniform UP:

Pr(Fail)= #(PC
f
)/D= #(spinSpeed>70 & discountedPressure >80)/D= 30 x 20/10000=6 %.

❖ Pr(Success|UP) and Pr(Grey|UP) are computed similarly

❖ Pr(Fail|UP)+Pr(Success|UP)+Pr(Grey|UP)=1

❖ Rel = Pr(Success|UP)

❖ Confidence = 1 - Pr(Grey|UP) (“1” means that analysis is complete)

Usage Profiles

❖ Summarize succinctly hundreds of hours of operation/simulation
❖ UPs can be seen as “pre-conditions”
❖ Arbitrary UPs – handled through discretization
❖ Continuous input distributions [FSE’15]

Computing with usage profiles

❖ Usage profile: set of pairs <ci, pi>

❖ ci — usage scenario, constraint on inputs

❖ pi — probability that the input is in ci

Model Counting

❖ Latte, Barvinok: integer linear constraints, finite domain —
Polynomial in number of variables and constraints
❖ Omega Lib used for algebraic simplifications
❖ Optimizations: independence, caching

❖ Research on
❖ model counting for data structures [SPIN’15],
❖ strings [FSE’16] — ABC Solver (UC Santa Barbara)
❖ non-linear constraints [NFM’17]

Model Counting for Data Structures
❖ SPF performs lazy initialization

❖ Computes Heap PC

❖ Explicit enumeration using Korat (MIT)

❖ Complex predicates

❖ E.g. “acyclic lists of integers with size smaller than the
largest contained value”

❖ Computationally expensive

Multi-threading
❖ Enumerate all possible schedules (using model

checking, partial order reduction)
❖ Compute best/worst “reliability”
❖ Report best/worst schedule
❖ Useful for debugging

❖ Tree-like schedules [ASE’15]
❖ Monte-Carlo sampling of symbolic paths
❖ Reinforcement learning used to iteratively compute

schedules

Application: Onboard Abort Executive

❖ NASA control software

❖ Mission aborts

❖ 3754 paths, 36 input sensors

❖ 30 usage scenarios

❖ Execution time: 20.5 sec

❖ Checking for “no aborts”

❖ Rel > 0.9999999

Side-Channel Analysis

❖ Side-channel attacks
❖ recover secret inputs to programs from

non-functional characteristics of
computations

❖ time or power consumption, number of
memory accesses or size of output files

❖ An attack on “main” channel: exponential
❖ On “side channel”: linear

boolean verifyPassword(byte [] input,
 byte [] password) {
 for (int i = 0; i < SIZE; i++) {
 if (password[i] != input[i])
 return false ;
 Thread.sleep(25L);
 }
 return true;
}

low
high

Side-Channel Analysis
❖ Non-interference — too strict
❖ Quantitative Information-Flow Analysis (QIF) to determine information leakage

❖ Perform symbolic execution (high and low symbolic)
❖ Collect all symbolic paths — each path leads to an observable

❖ Side channels produce a set of “observables” that partition the secret
❖ Cost model for observables: execution time, number of packets sent/received over network, etc.

Channel Capacity

Shannon Entropy

Quantifying Information Leakage

Computing Shannon Entropy

❖ Use symbolic execution and model counting

Password Example
❖ 5 paths

❖ h[0]!=l[0] returns false: 128 values
❖ h[0]=l[0] & h[1]!=l[1] returns false:

64 values
❖ h[0]=l[0] & h[1]=l[1] & h[2]!=l[2]

returns false: 32 values
❖ h[0]=l[0] & h[1]=l[1] & h[2]=l[2] &

h[3]!=l[3] returns false: 16 values
❖ h[0]=l[0] & h[1]=l[1] & h[2]=l[2] &

h[3]=l[3] returns true: 16 values

Observable is time: H=1.875
Observable is output: H=0.33729

// 4-bit input and password; D=256
boolean verifyPassword(byte [] input,
 byte [] password){
 for(int i = 0; i < SIZE; i++){
 if (password[i]!=input[i])
 return false ;
 Thread.sleep(25L);
 }
 return true;
}

// 4-bit input and password; D=256
boolean verifyPassword(byte [] input,
 byte [] password){
 boolean matched=true;
 for(int i = 0; i < SIZE; i++){
 if (password[i]!=input[i])
 matched=false ;
 else
 matched=matched;
 Thread.sleep(25L);
 } return matched; }

Corrected!

Maximizing Leakage

❖ using symbolic low value over-
approximates leakage

❖ example: 5 possible observables; lo<0:
3 observables, lo≥0: 2 observables

void example(int lo, int hi) {
 if(lo<0){
 if(hi<0) cost=1;
 else if(hi<5) cost=2;
 else cost=3;
 }
 else {
 if(hi>1) cost=4;
 else cost=5;
 }
}

❖ Goal: find low input that maximizes number of observables
(channel capacity)

❖ Shows most powerful “attack” in one step
❖ Shows most vulnerable program behavior

Maximizing Leakage using MaxSMT
❖ MaxSMT solving — generalization of SMT to

optimization

❖ given a set of weighted clauses

❖ find solution that maximizes the sum of the
weights of the satisfied clauses

❖ Assemble PCs that lead to same observable into
“clauses” of weight “1”

❖ MaxSMT solution gives maximal assignment ⇒
largest number of observables

❖ Any other assignments lead to fewer observables

MaxSMT solution: Lo=-1 satisfies first 3 clauses

Leakage log2 (3)=1.58 bits

void example(int lo, int hi) {
 if(lo<0){
 if(hi<0) cost=1;
 else if(hi<5) cost=2;
 else cost=3;
 }
 else {
 if(hi>1) cost=4;
 else cost=5;
 }
}

Multi-run Analysis
❖ The attacker learns the secret by observing multiple program runs

❖ Generalization to multiple-run side-channel analysis

❖ An “observable” is a sequence of costs

❖ MaxSMT used to synthesize a sequence of public inputs that maximize leakage; non-
adaptive attacks; greedy approach [CSF’16]

❖ Maximize Shannon leakage: parameterized model counting+ numerical optimization;
adaptive attacks [CSF’17]

❖ Analysis of password examples and cryptographic functions

❖ Shown experimentally to perform better than previous approaches based on self
composition or brute-force enumeration

❖ More work on side-channel analysis [ISSTA’18]

Results for Password Check
Results for 4 elements with 4 values (8 bits of information)

Timing Side Channel

Current/Future Work

Monte Carlo Tree Search For SW Analysis
❖ Monte Carlo Tree Search [SEFM’18]

❖ Heuristic search algorithm; Iterative expansion of search tree to find optimal decisions
❖ State-of-the art results in solving Go, board games, poker
❖ Good for domains modeled as a tree

❖ Sampling along symbolic paths for increased scalability
❖ Symbolic paths represent multiple concrete paths; Organized in tree
❖ Optimize with respect to the longest path (highest reward)

❖ Aggressive pruning of state space
❖ Speeds up analysis and guarantees convergence

Symbolic Execution and Fuzzing
❖ Fuzzing: random testing with some guidance

❖ cheap

❖ not good at finding “deep paths” that depend on complicated
constraints

❖ Symbolic execution

❖ expensive

❖ good at finding deep paths

❖ Better together!

❖ See Badger talk at ISSTA’18 on Wednesday

Probabilistic Analysis for Autonomous Vehicles

SafeTugs
❖ Currently aircraft either needs to use their engines or be towed during

departure/arrival ground operations
❖ Engines off is more efficient
❖ This project will focus on autonomous tugs for towing

Analysis
❖ Predictive analysis for safe surface and air operation [HLDVT’16]

❖ Involves model inference from telemetry/simulation data
❖ “Simulation” environment using Symbolic PathFinder and probabilistic

reasoning [PHS’16]
❖ Planning phase generates a plan of tug movement on a grid

(abstraction of the airport)
❖ The plan is given as input to SPF; calculate how robust the plan is

when the probabilities are changed
❖ The output of our tool can be used to trigger dynamic re-planning

during operation

Progress: see workshop talk on Thursday at TAV-CPS/IoT !

Checking Robustness of Deep Neural Nets
❖ Deep Learning

❖ Machine learning that enables representation and modeling of complex non-linear relationships
❖ Neural Networks (feed-forward, convolutional), Deep Belief Networks

❖ Application domains:
❖ Pattern analysis, image classification, speech/audio recognition, perception modules in self-driving

cars
❖ High-dimensional, Classifiers are non-linear and potentially discontinuous

❖ Deep Neural networks are vulnerable to adversarial inputs:
❖ given input x, find new input x’ that is “similar” to x but is assigned a class different from x by the

network [Szegedy et. al. 2013]?
❖ Current research: use symbolic execution and k-means clustering for robustness check

❖ |x-x’|< d => F(x)= F(x’); a counterexample is an adversarial input
❖ w/ D. Gopinath (CMU)
❖ see ATVA’18 talk!

Quantification of Software Changes
❖ Programs evolve during development and maintenance

❖ There is a need for detection and characterization of software changes
❖ Current techniques

❖ Syntactic: diff, imprecise, leads to unnecessary maintenance work
❖ Behavioral: check logical implication between behavioral abstractions:

yes/no answers
❖ Quantitative representation of program change [ASE’15]

❖ Probability of reaching program events — how that evolves in time
❖ rank program versions based on probability of failure
❖ after bug fixing probability of failure should decrease

❖ Percentage of inputs affected by change
❖ measurable delta between program versions
❖ measurable effort to re-test

❖ Automated program repair:
❖ rank repairs based on probability of success/failure

Conclusion
❖ Symbolic execution and its extension to probabilistic reasoning

❖ Applications in program analysis for safety and security

❖ Future directions …

❖ Leakage computation for noisy side channels [CSF’18]

❖ Distributed analysis— lots of opportunities for symbolic execution

❖ Combinations with fuzzing

❖ Challenges

❖ scalability; handling loops

❖ non-linear numeric constraints, string constraints: constraint solving,
(parametrized) model counting, MaxSMT

Thank you

Contact information: corina.s.pasareanu@nasa.gov,

mailto:corina.s.pasareanu@nasa.gov
Corina Pasareanu

Corina Pasareanu
pcorina@cmu.edu

