Symbolic Execution and Probabilistic Reasoning

Corina Pasareanu, CMU CyLab/NASA Ames

+ Research directions:

Software Safety and Security .

* Software systems become more pervasive and complex

* Increased need for techniques and tools that ensure
safety and security of software systems

“ automated verification techniques
“ application at all phases of software development

* theoretical foundations and practical tools

Symbolic Execution

* Systematic program analysis technique — King [Comm. ACM 1976], Clarke
[IEEE TSE 1976]

“ Executes programs on symbolic inputs — represent multiple concrete inputs

* Path conditions — conditions on inputs following same program path
+ Check satisfiability using off-the-shelf solvers (Z3) — explore only feasible paths

+ Solve path conditions: obtain test inputs

+ Bounded execution

* Many applications: test-case generation, error detection, ...
* Many tools: SAGE, DART, KLEE, Pex, BitBlaze ...
Symbolic PathFinder

Example Concrete Execution

Code that swaps 2 integers Concrete Execution Path
int X, y; x=1,y=0
. ¢
if x>vy){ 1 >0 ?true

'jt v
X=X+Y; - x=1+0=1
| ﬁjjj I
y=X-Y; y=1-0=1
. —
X=X-Y; - x=1-1=0
: \;
if (X>vy) ~ 0>1?false
assert false; |
b

Example Symbolic Execution

Code that swaps 2 integers

int X, vy;

if x>y){
X=X+Y;
y=x-Y%,
X=X-Y;
if (x>vy)

assert false:

[PC:X<YJEND

Symbolic Execution Tree
(path condition

[PC:true]x = X,y = Y
¥

[PC true] X > Y "
fz.lsc) truc 2N |
\\[PC:X>Y]x= X+Y]
\
,[PC:X>Y]PI = X+Y-Y=X

[PC:X>Y]f - X+Y-X=Y

[PC: X>Y]Y>X ?
falée gue

[PC: X>YAY_X]END! [PC:X>YAY>X]END
False!

Solve PCs: obtain test inputs

example code

void test(int n) {
int x = 0;
while(x < n)
Xi=x 1

Loops

infinite symbolic execution tree

n:S
PC:true
n:S,x:0
PC:true
n:S,x:0 n:S,x:0
PC:0<S PC.0>=S
n:S,x: |
PC:0<S
n:S,x:| n:S,x: |
PC:0<S A I<S PC:0<S A 1>=S

|

R/
2 X4

Symbolic PathFinder

[PC: true] x=Xy=Y

Symbolic execution tool for
Java bytecode; open-
sourced

Lazy initialization for input
data structures and arrays
Handles multi-threading
and string operations
Supports quantitative
reasoning

Comes with library models

int X,y,2;

If (x<y)

else

-

Z=Y)

[PC: true] X<Y?

true
............. > [PC: X<Y] z=Y false

Z2=X 7

M

darascheduling

heunstics ooso d Ao

Wrary choce
venification targe! | abstraction generator I:sle ar
(Java bytecode
program)

- [PC: X>=Y]z = X

Java PathFinder tool-set

verificabion report

*class
* jar

Vi nual Machine

a¥

v
Sureh Strategy 4.0/

Core JPF

heead stacks

Theaac: Treeasd
o rva lang Ooect wadjava W'Ob«tﬁ 429

pfooeny saarch
checker listener

Sy&m

obsarvahon

search

https://github.com/SymbolicPathFinder/jpf-symbc

o Everlwmt 1o _evertioiddasss &

lmw Tresas-t
o e g OB ect wadjava hnoObodx 29
a Evertwat or eversioldcassc aa 37)

https://github.com/SymbolicPathFinder/jpf-symbc

T'est Generation and Bug Finding
NASA Applications

+ NASA control software: onboard abort

OAE structure

executive (OAE) [ISSTA’08]
Inputs
* manual testing: time consuming ~ 1 week |
: : . Checks Flight Rul
guided random testing could not obtain to see ife ;nsab :;grt m:sisoc cur
full coverage I
« SPF generated ~200 tests to obtain full Select Feasible Aborts
coverage <lmin J,
Pick Highest Ranked Abort

« Flight rules covered 27/27

+ Aborts covered 7/7

* Size of input: 27 values/ test case

* Found major bug in new version

T'est Generation and Bug Finding
NASA Applications

Polyglot [ISSTA’11, NEM’12]

analysis and test generation for UML,
Stateflow and Rhapsody models

pluggable semantics for different state chart
formalisms

analyzed MER arbiter, Ares-Orion
communication

current work: CoCoSim — extensible
verification framework for Simulink/
Stateflow

Tactical Separation Assisted Flight Environment
(T-SAFE) [NFM'11, ICST’12]

integration with Coral heuristic solver for
complex mathematical constraints

Handling Data Structures

* Lazy initialization [TACAS’03,ISSTA’04] — nondeterminism
handles aliasing

‘ NullPointerException \

class Node { o Input list + Constraint OuTpuT IS .
int elem:; :

Node next;

Node swapNode() { true = ,

if (elem>nextelem){ E0«El = EO—ED—3L
NOGE T = NEXE, e rsierrsrassssssssssasessssesssesserssassssssssessasassnsssssssssssens

next = t.next: : :
: EO—ED— null ED—XEQ—> null |
t.neXt thls’ §000.t.0QQQQOOOOOOOOOOOOOOOOOIOQQQOOOEQO > Ef‘.Oﬁ.l.tﬁl.M@“... ?‘0“00.0'0.!000!00000000§

return t:
} : E0—@D E0>El =

return this;

) | 0,61 = @0

lll

Lazy Ininalization

consider executing
next = t.next;

- tnext . next *
B

nex n; nex nex nex ne : next
.i—'t E1) Lo t t " i ext

l
ni@ﬂ null

Dynamic Symbolic Execution/Concolic Testing

collect symbolic constraints during concrete executions
* DART = Directed Automated Random Testing

* Concolic = Concrete /symbolic testing

« P. Godefroid, K. Sen and many many others ...

“ very popular, simple to implement

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; — xatiﬁ:ysn:;,b;ﬁc
if x>vy){
D= L y;
Y= XN
X =X—Y;
if (x>vy)

assert false;

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; create symbolic
variables x, y
if x>y){ x<y
=g Solve: !(x<y)
y=27Y Solution: x=1, y=0
X=X-Y;
if (x>vy)

assert false;

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; — :;gat;kssyib;uc
if x>vy){
y =, & o y;
= S
X=X-Y;
if (x>vy)

assert false;

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; create symbolic
variables x, y
if (x>y){ x>y
iyt u—
X=X+4Y;
Y= Ky
X =X=Y;
if (x>vy)

assert false;

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; create symbolic
variables x, y
if (x>y){ x>y
X=X+Yy;
—— x=1, ¥ = 0 X =xty
y=xX-Y;
X—X-Y,
if (x>vy)

assert false;

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; create symbolic
variables x, y
if (x>y){ x>y
X=X+4Yy;
y=X-Y; i
C—— x=1, ¥= 1 y=X
X =X =¥
if (x>vy)

assert false;

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; create symbolic
variables x, y
if (x>y) { x>y
X=X+Y;
Y=X-Y;
N=x
X —X=Y;
<t x=0,y=1 X=y
if x>vy)

assert false:

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; create symbolic
variables x, y
if (x>y) { x>y
X—x1Lly: Solve: x>y AND !(y=x)
V=X Impossible: DONE!
=
X =X—V:
X=y
if (x>vy)

assert false;
f— — O’ y — l

Complexity Analysis

+ Problem

+ Estimate the worst-case
complexity of programs

A
25 G\

DARPA STAC

« Applications

* Finding vulnerabilities related
to denial-of-service attacks

* Guiding compiler optimizations

* Finding and fixing performance
bottlenecks in software

Symbolic Complexity Analysis

« Computes inputs that expose worst-case behavior

+ Computes bounds on worst-case complexity

« Simple approach

Perform symbolic execution over the program — compute cost of each path
Return the path with largest cost

+ Scalability issues

+ Symbolic execution guided by path policies [ICST"17]

+ Encode choices along worst-case path

+ Intuition: worst-case behavior for small input can predict worst-case behavior
for larger input

Guided Symbolic Execution

* Policy Generation

; : Java Policy Generation
* Exhaustive symbolic bytecode .
k 5 n=3 ~, | Guidance Policy
execution at small input N
size(s) v L

Worst Case
Estimated bounds

I~| Worst Case
|_L/ Inputs

+ Compute path with largest Policy Guided Exploration

cost

* Build policy based on
decisions taken along that

path

* Policy Guided Execution

* Symbolic execution for

increasing input sizes * Function fitting

» Explore only paths that * Computes estimate of worst-case behavior as a function of
conform with policy input size

+ Por each input size compute * Gives lower bounds on worst-case complexity for any size

path (and input) with largest
cost

Path Policies

* Decide which branch to execute for the conditions in the program

* Similar to e.g. [Burnim et al. ICSE’09, Zhang et al. ASE"11]

* New

» History aware: take into account the history of choices made along a path to decide which
branch to execute next

* Context preserving: the decision for each condition depends on the history computed with
respect to the enclosing method

* Symbolic execution, guided by policies, can reduce to exploring a single path regardless of input size
* Scales far beyond non-guided symbolic execution and outperforms previous techniques

» Theoretical guarantee: when policies are “unified”, worst-case path policy is eventually found

* Unification over policies obtained for successive small inputs

* For each condition: take union over decisions specified by each policy

:[EJ(E[III 1(3 18 class String ({
I) 19 char[] value;
20 //
21 public boolean equals(Object o0Obj) {
22 /] <.
23 String o = (String) oObj;
cec . _ 24 if (val.length == o.val.length) {
7 Entry findEntry(String o,) { 25 for (int i=0; i<val.length; i++) {
8 for(Entry e = 1; e!=null; e=e.next) { 26 if (val[i]!=o.val[i])
9 if (e.key.equals(o)) { 27 return false;
10 return e; 28 }
11 } 29 return true;
12} 30 }
e 31 return false;
16 return null; 32}
17 } 33 }
ra N P -
o 1 Ql 1 1 1 [:2]-23 - \\
(c, false) (c, false) (c, false) (<, false) S N ot
false R il
" (e, false) | (c.faise) |~ (c,false) |] I I T T
Jalse \ 1:24 (val.length == o.val.lengrh) o Memorylessi—1s
: (c, false) (e, false) L 900 || * History-Based,—1s
- - true alse —ci=15(n) = 15n
(c, false) |, (<, false)
Policy p e ; w |1:25 (i < val.lengih) 1:31 150 -
(¢, false) -
= . S100 |
\ . ' alse
*. return decision ,' 50 -
consult g'~ _ _ _ _
1:26 | c : valli] # o.val[i]] 1:29
0 -
” %]]]]
oy Jals 0 5 10 15
[:27 Input Size

Example Application: TextCruncher Sort

= Text processing application with various filters, e.g. WordCount, NGramScore
+ Found vulnerability in sorting algorithm

« Triggered by files with 3 x n different words: 6000 words: 5 min; 6001 words: few secs.

Worst Case Prediction Model
BT | —o— Fow
900
800
700
. 600
 soo From ISSTAC project
400
200 DARPA STAC
200
100 -
0
2 a 6 8 10 12 14 16 18 20
Input Size

Vulnerability: exponential for lists of lengtﬁ nx3

Probabilistic Reasoning

“ Extension of symbolic

execution with probabilistic
reasoning [I[CSE"13,PLDI'14]

+ Computes the probability of a
target event, under an input
distribution

* Model counting over
symbolic constraints

* Latte, Barvinok -- integer linear
constraints, finite domain

Probabilistic Reasoning

+ EH.g. assuming uniform distribution,

+ Compute path conditions that lead to target event

+ Count the number of input values that satisfy the corresponding
path conditions

+ Divide it by the size of the input domain (D)

Probability of event e:

1
ple) = jDZjPCi

PC; leads to e.

Example

input domain 100 x 100
discountedPressure <=80 discountedPressure >80
80%
spinSpeed<=70 spinSpeed>70
o ® PC: spinSpeed>70 &

14% 67 discountedPressure >80

Pr(Fail) = #(PC)/#D
= #(spinSpeed>70 & discountedPressure >80)/D
=30 x 20/10000 = 6%

Software Reliability

+ Probability of successful termination under stochastic environment assumptions

+ Perform bounded symbolic execution: results in three sets of paths

* Success PCS: lead to successful termination
¢ Fail PCf : lead to failure
+ Grey PCg: “don’t know”

+ Por given usage profile UP: Pr(Fail | UP) = Pr(PCs | UP), e.g. for uniform UP:
Pr(Fail)= #(PC)/D= #(spinSpeed>70 & discountedPressure >80)/D= 30 x 20/10000=6 % .

Pr(Success | UP) and Pr(Grey | UP) are computed similarly

Pr(Fail | UP)+Pr(Success | UP)+Pr(Grey | UP)=1

+ Rel = Pr(Success | UP)

« Confidence =1 - Pr(Grey | UP) (“1” means that analysis is complete)

Usage Profiles

J
-
S8
| L

Probability

\

0%////&\\\%

N\ Weak

% Strong |

7

[-15.-10) [-10.-5] (-5.5)
Wind effect

[5.10]

(10,15]

* Summarize succinctly hundreds of hours of operation/simulation

« UPs can be seen as “pre-conditions”

* Arbitrary UPs — handled through discretization

+ Continuous input distributions [FSE’15]

Computing with usage profiles

« Usage profile: set of pairs <c;, pi>

* ¢j— usage scenario, constraint on inputs

* p;— probability that the input is in ¢;

Rel = Pr(P) = ZPr(Pc; | UP) =

=LLPr(PC | ej) pi=E Y
i

(PCS/\C])

#(cj)

Model Counting

Latte, Barvinok: integer linear constraints, finite domain —

Polynomial in number of variables and constraints
* Omega Lib used for algebraic simplifications

« Optimizations: independence, caching

+ Research on

+ model counting for data structures [SPIN"15],
+ strings [FSE'16] — ABC Solver (UC Santa Barbara)

+ non-linear constraints [NFM'17]

Model Counting for Data Structures

“ SPF performs lazy initialization

* Computes Heap PC

« Explicit enumeration using Korat (MIT)
“ Complex predicates

« E.g. “acyclic lists of integers with size smaller than the
largest contained value”

« Computationally expensive

Mult-threading

* Enumerate all possible schedules (using model
checking, partial order reduction)

+ Compute best/worst “reliability”
+ Report best/worst schedule

+ Usetul for debugging

« Tree-like schedules [ASE’15]

+ Monte-Carlo sampling of symbolic paths

+ Reinforcement learning used to iteratively compute
schedules

Application: Onboard Abort Executive

NASA control software

Mission aborts

30 usage scenarios

Execution time: 20.5 sec

Checking for “no aborts”

Rel'=0.9999999

Side-Channel Analysis

* Side-channel attacks
* recover secret inputs to programs from
non-functional characteristics of
computations
“ time or power consumption, number of
memory accesses or size of output files

* An attack on “main” channel: exponential
* On “side channel”: linear

boolean verifyPassword(byte [] input,

byte [] password) /3

for (int i = 0; i < SIZE; i++) {

if (password[i] != input[i])
return false ;

Thread.sleep(25L);

}

return true;

}

=60 L
e - | | | "1(\ N, >
| | L | | NN YR
| -~ =] e (/) \ - - Vv
— - St &7)

Side-Channel Analysis

Non-interference — too strict
Quantitative Information-Flow Analysis (QIF) to determine information leakage

Perform symbolic execution (high and low symbolic)
Collect all symbolic paths — each path leads to an observable

Side channels produce a set of “observables” that partition the secret
Cost model for observables: execution time, number of packets sent/received over network, etc.

O = {01,09,...0n},

Quantifying Information Leakage

Channel Capacity CC(P) = log2(|0O))

Shannon Entropy H(P) = - Z p(0:)log,(p(0:))

i=1l.m

Computing Shannon Entropy

H(P)=—) p(o:)logy(p(0:))

i=1l.m

“ Use symbolic execution and model counting

the probability of observing o; is:

2. #PC;(h,1))

cost(my) =04

p(oi) — ﬁD

Password Example

// 4-bit input and password; D=256

boolean verifyPassword(byte [] input,
byte [] password) {

for(int 1 = 0; 1 < SIZE; i++) {

if (password[i] !'=input[i])

return false ;
Thread.sleep (25L) ;
}

return true;

}

// 4-bit input and password; D=256
boolean verifyPassword(byte [] input,
byte [] password) {
boolean matched=true;
for(int i = 0; 1 < SIZE; i++){
if (password[i]!'=input[i])
matched=false ;
else
matched=matched;
Thread.sleep (25L) ;
} return matched; }

* 5 paths
+ h[0]!=I[0] returns false: 128 values
= h[0]=I[0] & h[1]!=I[1] returns false:
64 values

e S hiO]=TOES L=l G2 =]
returns false: 32 values

+ h[O]=I[0] & h[1]=I[1] & h[2]=1[2] &
h[3]!=I[3] returns false: 16 values

+ h[OJ=I[0] & h[1]=I[1] & h[2]=1[2] &
h[3]=I[3] returns true: 16 values

Observable is time: H=1.875
Observable is output: H=0.33729

Maximizing lL.eakage

void example (int lo, int hi) {

if (10<0) {
if(hi<0) cost=1; * using symbolic low value over-
else if (hi<5) cost=2; :
else cost=3; approximates leakage
}
else { .

LF(hi>l) cost=d; * example: 5 possible observables; 10<0:

}else cost=5; 3 observables, 10=0: 2 observables

}

K/

* Goal: find low input that maximizes number of observables
(channel capacity)

K/

* Shows most powerful “attack” in one step

K/

* Shows most vulnerable program behavior

Maximizing Leakage using MaxSM'T

void example(int lo, int hi) { | * MaxSMT solving — generalization of SMT to

if (1o<0) { optimization

if (hi<0) cost=1l;

else if (hi<5) cost=2; « given a set of weighted clauses

else cost=3;

} + find solution that maximizes the sum of the
else {

oo weights of the satisfied clauses
if (hi>1l) cost=4;

else cost=5; + Assemble PCs that lead to same observable into

} } “clauses” of weight “1”
+ MaxSMT solution gives maximal assignment =
Cy:(1<0AhRy <0) largest number of observables
Co::(l<OANhy >0Ahg <5)
C3:: (1 <O0Ahg>5) * Any other assignments lead to fewer observables
Cy - (l >0Ahyg > 1)

Cs::(l>0Ahs <1)

MaxSMT solution: Lo=-1 satisfies first 3 clauses

Leakage log, (3)=1.58 bits

Mult-run Analysis

The attacker learns the secret by observing multiple program runs

* Generalization to multiple-run side-channel analysis

P(h,1y): P(h,ly): ..P(h, I) l

* An “observable” is a sequence of costs

* MaxSMT used to synthesize a sequence of public inputs that maximize leakage; non-
adaptive attacks; greedy approach [CSF'16]

* Maximize Shannon leakage: parameterized model counting+ numerical optimization;
adaptive attacks [CSF'17]

* Analysis of password examples and cryptographic functions

* Shown experimentally to perform better than previous approaches based on self
composition or brute-force enumeration

+ More work on side-channel analysis [ISSTA’18]

Results tor Password Check

Results for 4 elements with 4 values (8 bits of information)

8 Total Leakage vs. Number of Guesses

s w o ~J

Information Leakage (bits)

w

0 2 4 6 8 10 12 14
Number of Guesses

Timing Side Channel

Monte Carlo Tree Search For SW Analysis

+ Monte Carlo Tree Search [SEFM’18]

* Heuristic search algorithm; Iterative expansion of search tree to find optimal decisions
* State-of-the art results in solving Go, board games, poker
* Good for domains modeled as a tree
» Sampling along symbolic paths for increased scalability
* Symbolic paths represent multiple concrete paths; Organized in tree
* Optimize with respect to the longest path (highest reward)
* Aggressive pruning of state space

* Speeds up analysis and guarantees convergence

Nz=4a
N=2 Nz
0= % (root) 0- 3 (root] e=m (¢

UCT=12.

T alse

¥ =1 N=2 N=3 N=2 N=12

-l = 1% O== 0= % 0=% [0ca-10

0=7(reet] - o ucr:uL w:r:u.our:r:n.o -

Tru T alse True

N=z1 N=2 N=2 Nz Nz

= Q=7 =W o= W o=2 Q= lza-10

O:I UCT:?.II L‘CT:!!J L‘CT:ll.:UCY:’lA UCTr=13 .‘kw

—:‘.

Symbolic Execution and Fuzzing

* Fuzzing: random testing with some guidance
+ cheap

* not good at finding “deep paths” that depend on complicated
constraints

“ Symbolic execution

* expensive

* good at finding deep paths

* Better together!

+ See Badger talk at ISSTA’18 on Wednesday

Probabilistic Analysis for Autonomous Vehicles

SafeTugs

= Currently aircraft either needs to use their engines or be towed during
departure/arrival ground operations

+ Engines off is more efficient
« This project will focus on autonomous tugs for towing

Analysis
= Predictive analysis for safe surface and air operation [HLDVT’16]
= Involves model inference from telemetry/simulation data

= “Simulation” environment using Symbolic PathFinder and probabilistic
reasoning [PHS'16]

» Planning phase generates a plan of tug movement on a grid
(abstraction of the airport)

= The plan is given as input to SPF; calculate how robust the plan is
when the probabilities are changed

= The output of our tool can be used to trigger dynamic re-planning
during operation

Progress: see workshop talk on Thursday at TAV-CPS/IoT !

Checking Robustness of Deep Neural Nets

* Deep Learning
Machine learning that enables representation and modeling of complex non-linear relationships
« Neural Networks (feed-forward, convolutional), Deep Belief Networks

» Application domains:

« Pattern analysis, image classification, speech/audio recognition, perception modules in self-driving
cars

» High-dimensional, Classifiers are non-linear and potentially discontinuous

- Deep Neural networks are vulnerable to adversarial inputs:

- given input x, find new input x’ that is “similar” to x but is assigned a class different from x by the
network [Szegedy et. al. 2013]?

+ Current research: use symbolic execution and k-means clustering for robustness check
| x-x" | < d => F(x)= F(x’); a counterexample is an adversarial input
« w/ D. Gopinath (CMU)
» see ATVA’18 talk!

L T s
T S T
: A

Street siagn Birdhouse ship truck

(Quantification of Software Changes

+ Programs evolve during development and maintenance

There is a need for detection and characterization of software changes
« Current techniques

+ Syntactic: diff, imprecise, leads to unnecessary maintenance work

« Behavioral: check logical implication between behavioral abstractions:
yes/no answers

» Quantitative representation of program change [ASE’15]

« Probability of reaching program events — how that evolves in time

» rank program versions based on probability of failure
« after bug fixing probability of failure should decrease
» Percentage of inputs affected by change
+ measurable delta between program versions
+ measurable effort to re-test
» Automated program repair:

rank repairs based on probability of success/failure

Conclusion

* Symbolic execution and its extension to probabilistic reasoning

» Applications in program analysis for safety and security

« Future directions ...

* Leakage computation for noisy side channels [CSF'18]
“ Distributed analysis— lots of opportunities for symbolic execution

* Combinations with fuzzing

» Challenges
* scalability; handling loops

* non-linear numeric constraints, string constraints: constraint solving,
(parametrized) model counting, MaxSMT

Thank you

Contact information: corina.s.pasareanu@nasa.gov,

pcorina@cmu.edu

mailto:corina.s.pasareanu@nasa.gov
Corina Pasareanu

Corina Pasareanu
pcorina@cmu.edu

