
Bootcamp Problems

Natarajan Shankar

May 2022

The goal of the Bootcamp is to put the knowledge gained during the summer
school to use in solving a big verification problem. Randy Bryant has already
prepared a challenge for verifying bit-twiddling operations using CBMC.

Here’s a list of problems that should be solvable in five hours or less with
teams of two or three students. Pick the tool of your choice. Some recommen-
dations include:

1. Dafny (https://github.com/dafny-lang/dafny)

2. Viper (https://www.pm.inf.ethz.ch/research/viper.html)

3. Why3 (https://why3.lri.fr/)

4. CBMC (https://www.cprover.org/cbmc/)

5. Creusot (https://github.com/xldenis/creusot)

6. SeaHorn (https://seahorn.github.io/)

7. Frama-C (https://frama-c.com/)

8. Symbolic Pathfinder (https://github.com/SymbolicPathFinder/jpf-symbc)

9. Coq (https://coq.inria.fr/)

10. Isabelle/HOL (https://isabelle.in.tum.de/overview.html)

11. LEAN (https://leanprover.github.io/)

12. SAL/SALLY (http://sal.csl.sri.com, https://sri-csl.github.io/
sally/)

13. PVS (http://pvs.csl.sri.com, get VSCode-PVS from VSCode Market-
place)

14. UCLID5 (https://github.com/uclid-org/uclid)

15. Scallop (https://scallop-lang.github.io/ssft22/index.html)

16. CVC5 (https://cvc5.github.io/)

1

17. Yices (http://yices.csl.sri.com)

18. Z3 (https://github.com/Z3Prover/z3)

You can be as abstract or concrete as you wish, but you get more points
if you have efficiently executable code. Feel free to attempt more than one
problem.

1 VERIFYING BIT TWIDDLING HACKS [Ran-
dal E. Bryant (Randy.Bryant@cs.cmu.edu)]

The CBMC project developed a verifier for C programs based on Bounded Model
Checking. The idea is to symbolically simulate the program, using only bounded
unrollings of loops and bounded recursions. The program converts C code into
a low-level bit representation by “bit blasting.” It then calls a SAT solver to
check whether the desired property (typically specified as an assertion in the
program) holds by showing that the Boolean formula encoding its negation is
unsatisfiable.

CBMC can be obtained at: https://www.cprover.org/cbmc/.
Here’s an example of a simple C program that verifies that a tricky way of

implementing absolute value, matches a “reference version” i.e., a version that
can serve as the specification:

int abs_ref(int x) {

return x < 0 ? -x : x;

}

int abs_bits(int x) {

int m = x>>31;

return (x^m) + ~m + 1;

}

int main() {

int t = rand();

int ar = abs_ref(t);

int ab = abs_bits(t);

int err = ar != ab;

2

assert(!err);

}

Here’s an interesting application of CBMC: In the early 2000s, Sean Ander-
son, a Stanford PhD student, published a website with “bit twiddling hacks”
It’s still available at: https://graphics.stanford.edu/~seander/bithacks.
html

This website gathered a collection of clever tricks people had devised over the
years to implement standard operations using low-level bit manipulation tricks.
Back in 2005, Bryant checked out the entire collection by translating Anderson’s
code into a series of functions, writing reference versions of them, and then using
his own bit-blasting verifier based on BDDs. The following file contains both
Anderson’s code and the reference functions: https://github.com/rebryant/
unsat-tutorial/blob/main/project/bryant-bit-hack-2005.c

It would be interesting to try verifying these functions with CBMC. There
will be cases where SAT solvers work very well, but others where they scale
exponentially. Also, it would be good to verify the functions that Anderson
added after 2005.

2 Normal Forms

Define a representation for Boolean formulas constructed from Boolean variables
using negation, implication, disjunction, and conjunction. Transform Boolean
formulas to Conjunctive Normal Form. Prove that the transformation preserves
satisfiability. See if you can do this as an inference system so that you go from a
single formula to a set of clauses. For example, if the formula you are checking
for satisfiability is say (p∧q)∨ (¬q∧r) becomes u = v∨w,w = p∧q, x = ¬q∧r,
which can be expanded as ¬u∨ v ∨w, u∨¬v, u∨¬w,¬w ∨ p,¬w ∨ q,¬p∨¬q ∨
w,¬x ∨ ¬q,¬x ∨ r, q ∨ ¬r ∨ x. Your code should be verified and executable.

3 Boolean constraint propagation with two-watched
literals

BCP is a step in the CDCL SAT solving algorithm. Variables V are positive
integers up to 220− 1. The state consists of a partial assignment M mapping V
to pairs of truth values and together with the decision level. For each variable,
we also maintain two lists of watched clauses, i.e., clauses where a literal in the
variable occurs as a watched literal. There is one list where the positive literal
is watched, and another where the negative literal is watched. The goal is to
propagate a new assignment to these watched literals to either:

1. Find a conflict clause if the watched literal is the only watched literal in
the clause, i.e., the other watched literal has already been falsified.

3

2. Pick another unassigned literal in the clause to watch.

3. Propagate the other watched literal if there is no unwatched, unassigned
literal in the clause.

Show that

1. BCP only introduces literals into the partial assignment that are implied
by the existing assignments and the original set of clauses.

2. BCP does not change the set of satisfying assignments for the input set
of clauses.

3. BCP ensures that the watched literals are both unassigned, or contains
the only unassigned literal in the clause, if any.

4 Database Join

A database consists of a set of tables. Each table consists of rows that assign
fields to values. Define a join operation and verify it. To keep things simple,
assume that you have an array P of records with type [#a : uint32, b : uint32#]
and another array Q of type [#b : uint32, c : uint32#], return an array PQ with
element type [#a, b, c : uint32#] containing all and only those elements (#a :=
x, b := y, c := z#) where (#a := x, b := y#) is in P and (#b := y, c := z#) is
in Q.

5 Shortest Path Algorithm

Dijkstra’s shortest path algorithm considers a directed graph with non-negative
edge-weights and computes the shortest path from a source vertex to all of the
vertices. Write and verify Dijkstra’s algorithm. To make things a little more
explicit, you are given a graph with N vertices (numbered 0 to N − 1) and an
N×N edge matrix with non-negative (possibly∞) weights), and a source vertex
is s. You are to construct an array P of the smallest path weight from s to each
vertex t. Each entry in P includes the index of a vertex, say t, and the smallest
path weight from s to t. The P array is partitioned into a prefix with the dead
vertices D and a suffix L of live vertices organized in a heap. An index i labels
the location of the cursor separating D from L. As noted in the Speaking Logic
slides (117 and 118), the shortest path from s to any t is given by a vector P
such that P (s) = 0 and for any v 6= s, P (v) = minu(P (u) +W (u, v)). For each
vertex v in D, P (v) is the shortest path. For each vertex v in L, P (v) is the
shortest path to v through an edge from D. For the minimal vertex v ∈ L, no
path through an edge from a vertex u in L is going to be smaller than P (v).
Hence v can be moved to D and the weights of the remaining vertices in L can
be updated to maintain the invariant.

4

6 Soundness of Separation Hoare Logic

The lectures from Prof. Ruzica Piskac contain the proof rules and semantics for
Separation Logic. Formalize the semantics of separation logic and prove that
the rules are sound. If you are using a proof assistant, you have the choice of
capturing the state of the computation as a mapping S of variables to (integer
and reference) values, and the heap (store) M as mapping references to arrays
containing (integer or reference) values. A heap fragment is just a (possibly
empty) subset of references in the domain of the heap. To model separating
conjunction P ∗ Q over a heap fragment H, you need to partition H into H1

and H2 so that P is an assertion over heap fragment H1 and Q is over heap
fragment H2. Recall that the assertions are of the form acc(r), P ∗ Q, P ∧ Q,
and logical assertions (implicitly over empty heaps). The semantics is given by
S,M,H |= A for stack S, store M , heap fragment H, and assertion H. The
Hoare rules specific to separation logic constructs are:

1. ` {acc(x)}x[i] := y; {x[i] 7→ y}

2. ` {x[i] 7→ z}y := x[i]; {x[i] 7→ z ∗ y == z}

3. ` {emp}x := newT ; {acc(x)}

4. ` {acc(x)}free(x); {emp}

Prove these rules sound with respect to semantics. One tricky aspect of the
formalization is the state. The easiest way to do this is to employ the de Bruijn
representation so that each variable is numbered by its position from the top of
the stack. The value type is a disjoint union between integers and references.
The type of references is also just the natural numbers (just so we have an
unbounded supply of references). Modeling the right-hand side expression of an
assignment is another challenge. It is best to view this as some function of the
state. The left-hand side of an assignment is either a variable or a dereference.

7 MaxSeg Sum

The Speaking Logic lectures contain a treatment of the maximum segment sum
problem. Do your own definition of the algorithm and construct a proof for it.

8 IF-Normalization

IF-expressions can be defined by a datatype that has a constructor for IF-
expressions with three accessors: condition, thenBranch, and elseBranch, and
the truth values: True and False, and variables. An IF-expression is in normal
form if the condition part of any IF-expression is always a variable, and there
are no redundant IF-expressions of the form IF (x,A,A). Show that any IF-
expression can be converted into normal form. Write a simplifier for normal-form
IF-expressions so that no variable is repeated along any branch.

5

9 BDD Construction

Write a function that implements the Apply operation on BDDs. We have a
table of V variables that returns an ordering on the variables, i.e., an injection
from V to |V |, and a BDD table T that maps each node N to vars(N), left(N)
and right(N). Show that any satisfying assignment for the equalities in the new
table T ′ is a satisfying assignment for the original table and the result of the
Apply operation. Recall that the Apply operation applies ∨ or ∧ to two BDDs.
To compute M � N , where M = ITE(x,M1,M2) and N = ITE(y,N1, N2)
where x > y, we compute MN = ITE(x,M1�N,M2�N). Otherwise, we just
compute the � operations on the constants 0 and 1.

10 Checker for RUP proofs

The LRAT proof format for Reverse Unit Propagating (RUP) proofs requires
lemma clauses C that are obtained from the input clauses and prior lemma
clauses by Reverse Unit Propagation. This requires negating the literals in
C and propagating the conjunction of these literals through the given clauses
in order to derive new literals until the final clause is falsified. A RUP proof
consists of a sequence of clause additions and deletions (which we ignore). The
final lemma should be the empty clause which follows. Prove that RUP inference
is sound.

11 Checking Stratification

The problem of stratification came up in the lectures on Datalog. Negation
and aggregation can only be applied to predicates in a prior stratum. For this
to work, the dependencies between predicates have to be stratified. Given a
dependency matrix, can you check that the graph is stratified. The dependency
matrix shows whether a predicate depends positively or negatively on another
predicate so that Dij is 0 if the predicate i depends on predicate j positively, and
1 if it depends negatively, and −1, otherwise. Check that a dependency matrix
is stratified. This could be done by generating inequalities xj + Dij ≤ xj , if
Dij ≥ 0. Any solution for this system of inequalities would yield a stratification
of the predicates so that no predicate depends on itself through one or more
negations.

12 Simple Concurrency Problem

This problem comes from Andreas Podelski (who got it from a student). You
have a fixed but unspecified number of threads numthreads. Each thread exe-
cutes the following steps in an unbounded loop:

while * do

6

if global + numthreads > maxint

then skip

else local = global; global++;

assert global > local

Check if the above program has a race condition. Fix the problems if any by
adding atomicity annotations. Prove that the assertion is maintained and that
never triggers an arithmetic overflow. Be careful, this problem might not be as
simple as it appears.

13 Brzozowski Derivatives

Look at the Generalized Regular Expression (GRE) formalism described in
https://en.wikipedia.org/wiki/Brzozowski_derivative. Define the syn-
tax and semantics of GREs. Define a function that takes the derivative σ−1R
of a GRE R relative to a token. Define the iterated version that operates over
a string, and show that a string ρ is accepted by a regular expression exactly
when ε ∈ ρ−1R.

14 Two-Process Bakery Algorithm using Pred-
icate Abstraction

The algorithm consists of two processes P and Q with control variables pcp
and pcq, respectively, and shared variables x and y. The control states of these
processes are either sleeping, trying, or critical. Initially, pcp and pcq
are both set to sleeping and the control variables satisfy x = y = 0. The
transitions for P are

pcp = sleeping −→ x′ = y + 1; pcp′ = trying

[] pcp = trying ∧ (y = 0 ∨ x < y) −→ pcp′ = critical

[] pcp = critical −→ x′ = 0; pcp′ = sleeping

Similarly, the transitions for Q are

pcq = sleeping −→ y′ = x+ 1; pcq′ = trying

[] pcq = trying ∧ (x = 0 ∨ y ≤ x) −→ pc′ = critical

[] pcq = critical −→ y′ = 0; pcq′ = sleeping

Establish for P []Q, the interleaving composition of P and Q, the invariant
¬(pcp = critical ∧ pcq = critical.

15 Interval Analysis by Abstract Interpretation

The interval domain consists of intervals of the form [l, u], where l and u range
over the extended integers. Given a program that operates on integer variables

7

x, y, etc., your analysis should return a sound approximation of the interval
ranges for each variable at each program point. You can assume that you have
a program defined on the integer variables:

1. Using addition and subtraction

2. assume b, where condition b is an equality or inequality comparisons
between variables or between variables and constants

3. Iteration S∗, where the exit condition is an equality/inequality comparison

4. Choice S1[]S2

5. Sequencing S1;S2

• Construct a transfer function from intervals to intervals for the operators
+ and −.

• Construct a transfer function for statements from an abstract state to an
abstract state.

• Define a widening operation ∇, where I1∇I2 returns an interval such
that I1 v I and I2 v I so that there are no infinite increasing chains
of widenings.

• Implement an abstract interpreter.

• Bonus: Prove that the abstract intepreter is sound.

8

