Static Analysis: an Abstract Interpretation Perspective

Kwangkeun Yi

Seoul National University

5/2019@The 9th SSFT

This lecture is based on the following forthcoming book

Static Analysis: an Abstract Interpretation Perspective, Yi and Rival, MIT Press

1 Introduction

2 Static Analysis: a Gentle Introduction

3 A General Framework in Transitional Style

4 A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks

Outline

Static Analysis: a Gentle Introduction

3 A General Framework in Transitional Style

4 A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks

Our Interest

How to verify specific properties about program executions before execution:

- absence of run-time errors i.e., no crashes
- preservation of invariants

Verification

Make sure that $\llbracket P \rrbracket \subseteq \mathcal{S}$ where

- the semantics $\llbracket P \rrbracket$ = the set of all behaviors of P
- the specification S = the set of acceptable behaviors

Semantics $[\![P]\!]$ and Semantic Properties ${\mathcal S}$

Semantics [[P]]:

- compositional style ("denotational")
 - $\bullet \ \llbracket AB \rrbracket = \cdots \llbracket A \rrbracket \cdots \llbracket B \rrbracket \cdots$
- transitional style ("operational")
 - $\blacksquare [\![AB]\!] = \{s_0 \hookrightarrow s_1 \hookrightarrow \cdots, \cdots\}$

Semantic properties S:

- safety
 - some behavior observable in *finite* time will never occur.
- liveness
 - ▶ some behavior observable after *infinite* time will never occur.

Safety Properties

Some behavior observable in *finite* time will never occur.

Examples:

• absence of crashing error

e.g., no uncaught exceptions in ML, no memory errors in C

- preservation of a general invariant
 e.g., some data structure should never get broken
- assertion on variable values
 - e.g., the values of a variable always in a given range

Liveness Properties

Some behavior observable after *infinite* time will never occur.

Examples:

- no unbounded repetition of a given behavior
- no starvation
- no non-termination

Soundness and Completeness

"Analysis is sound." "Analysis is complete."

- Soundness: analysis(P) = yes $\implies P$ satisfies the specification
- Completeness: analysis $(P) = yes \iff P$ satisfies the specification

Spectrum of Program Analysis Techniques

- testing
- machine-assisted proving
- finite-state model checking
- conservative static analysis
- bug-finding

Testing

Approach

- Consider finitely many, finite executions
- ② For each of them, check whether it violates the specification
 - If the finite executions find no bug, then accept.
 - Unsound: can accept programs that violate the specification
 - Complete: does not reject programs that satisfy the specification

Machine-Assisted Proving

Approach

- **1** Use a specific language to formalize verification goals
- Manually supply proof arguments
- S Let the proofs be automatically verified
 - tools: Coq, Isabelle/HOL, PVS, ...
 - Applications: CompCert (certified compiler), seL4 (secure micro-kernel), ...
 - Not automatic: key proof arguments need to be found by users
 - Sound, if the formalization is correct
 - Quasi-complete (only limited by the expressiveness of the logics)

Finite-State Model Checking

Approach

- Focus on finite state models of programs
- Perform exhaustive exploration of program states

Automatic

- Sound or complete, only with respect to the finite models
- $\bullet\,$ But, software has $\sim\infty$ states: need finite approximation or non-termination

Conservative Static Analysis

Principle

- Perform automatic verification, yet which may fail
- **②** Compute a conservative approximation of the program semantics
 - Either sound or complete, not both
 - Sound & incomplete static analysis is common:
 - ML type systems, Astrée, Sparrow, Facebook Infer, ...
 - optimizing compilers relies on it

Automatic

- Incompleteness: may reject safe programs or may raise false alarms
- Analysis algorithms reason over program semantics

Bug Finding

Approach

Automatic, unsound and incomplete algorithms

- Coverity, CodeSonar, SparrowFasoo, ...
- Automatic and generally fast
- No mathematical guarantee about the results
 - may reject a correct program, and accept an incorrect one
 - may raise false alarm and fail to report true violations
- Used to increase software quality without any guarantee

High-level Comparison

	automatic	sound	complete
testing	yes	no	yes
machine-assisted proving	no	yes	yes/no
finite-state model checking	yes	yes	yes/no
conservative static analysis	yes	yes	no
bug-finding	yes	no	no

Focus of This Lecture: Conservative Static Analysis

A general technique, for any programming language $\mathbb L$ and safety property $\mathcal S,$ that

- checks, for input program P in \mathbb{L} , if $\llbracket P \rrbracket \subseteq S$,
- automatic (algorithm)
- finite (terminating)
- sound (guarantee)
- malleable for arbitrary precision

A forthcoming framework

Will guide us how to design such static analysis.

Problem: How to Finitely Compute $\llbracket P \rrbracket$ Beforehand

• Finite & exact computation Exact(P) of $\llbracket P \rrbracket$ is impossible, in general.

For a Turing-complete language \mathbb{L} , $\exists algorithm \ Exact : \ Exact(P) = \llbracket P \rrbracket$ for all P in \mathbb{L} .

- Otherwise, we can solve the Halting Problem.
 - Given P, see if Exact(P; 1/0) has divide-by-zero.

Answers: Conservative Static Analysis

Technique for finite sound estimation $\llbracket P \rrbracket^{\sharp}$ of $\llbracket P \rrbracket$

- "finite", hence
 - automatic (algorithm) &
 - static (without executing P)
- "sound"
 - over-approximation of $\llbracket P \rrbracket$

Hence, ushers us to sound anaysis:

 $(\mathsf{analysis}(P) = \mathsf{check}\,\llbracket P \rrbracket^{\sharp} \subseteq \mathcal{S}) \Longrightarrow (P \text{ satisfies property } \mathcal{S})$

Introduction

Need Formal Frameworks of Static Analysis (1/2)

Suppose that

Kwangkeun Yi

- We are interested in the value ranges of variables.
- How to finitely estimate $[\![P]\!]$ for the property?

You may, intuitively:

```
x = readInt;

1:

while (x \leq 99)

2:

x++;

3:

end

4:
```

Capture the dynamics by abstract equations; solve; reason.

$$\begin{array}{rcl} x_1 &=& [-\infty,+\infty] \ or \ x_3 \\ x_2 &=& x_1 \ and \ [-\infty,99] \\ x_3 &=& x_2 \ \dot{+} \ 1 \\ x_4 &=& x_1 \ and \ [100,+\infty] \end{array}$$
(Secul National U) Static Analysis 5/2019@The 9th SSFT 20 / 130

Need Formal Frameworks of Static Analysis (2/2)

Abstract Interpretation [CousotCousot]: a powerful design theory

- How to derive correct yet arbitrarily precise equations?
 - Non-obvious: ptrs, heap, exns, high-order ftns, etc.

- Define an abstract semantics function \hat{F} s.t. \cdots
- How to solve the equations in a finite time?

• Fixpoint iterations for an upperbound of fixF

Outline

2 Static Analysis: a Gentle Introduction

- 3 A General Framework in Transitional Style
- 4 A Technique for Scalability: Sparse Analysis
- 5 Specialized Frameworks

Example Language

initialization, with a state in \Re translation by vector (u, v)rotation by center (u, v) and angle θ sequence of operations non-deterministic choice non-deterministic iterations

Analysis Goal Is Safety Property: Reachability

Analyze the set of reachable points, to check if the set intersects with a no-fly zone. Suppose that the no-fly zone is:

Correct or Incorrect Executions

(a) An incorrect execution

(b) Correct executions

Kwangkeun Yi (Seoul National U)

Static Analysis

5/2019@The 9th SSFT 26 / 130

An Example Safe Program

How to Finitely Over-Approximate the Set of Reachable Points?

Definition (Abstraction)

We call *abstraction* a set A of logical properties of program states, which are called *abstract properties* or *abstract elements*. A set of abstract properties is called an *abstract domain*.

Definition (Concretization)

Given an abstract element a of A, we call *concretization* the set of program states that satisfy it. We denote it by $\gamma(a)$.

Abstraction Example 1: Signs Abstraction

Figure: Signs abstraction

Abstraction Example 2: Interval Abstraction

The abstract elements: conjunctions of non-relational inequality constraints: $c_1 \le x \le c_2$, $c_1' \le y \le c_2'$

Figure: Intervals abstraction

Abstraction Example 3: Convex Polyhedra Abstraction

The abstract elements: conjunctions of linear inequality constraints: $c_1 {\tt x} + c_2 {\tt y} \leq c_3$

Figure: Convex polyhedra abstraction

An Example Program, Again

Figure: Reachable states

Kwangkeun Yi (Seoul National U)

Static Analysis

5/2019@The 9th SSFT 32 / 130

Abstractions of the Semantics of the Example Program

(a) Reachable states (b) Intervals abstraction (c) Convex polyhedra abstraction

Figure: Program's reachable states and abstraction

Sound Analysis Function for the Example Language

- Input: a program p and an abstract area a (pre-state)
- Output: an abstract area a' (post-state)

Definition (Sound analysis)

An analysis is sound if and only if it captures the real execuctions of the input program.

If an execution of p moves a point (\mathbf{x},\mathbf{y}) to point $(\mathbf{x}',\mathbf{y}')$, then for all abstract element a such that $(\mathbf{x},\mathbf{y})\in\gamma(a)$, $(\mathbf{x}',\mathbf{y}')\in\gamma(\texttt{analysis}(\mathsf{p},a))$

Sound Analysis Function as a Diagram

Figure: Sound analysis of a program p

Abstract Semantics Computation

Recall the example language

$$p ::= init(\Re)$$

$$| translation(u, v)$$

$$| rotation(u, v, \theta)$$

$$| p; p$$

$$| \{p\}or\{p\}$$

$$| iter\{p\}$$

initialization, with a state in \Re translation by vector (u, v)rotation defined by center (u, v) and angle θ sequence of operations non-deterministic choice non-deterministic iterations

Approach

A sound analysis for a program is constructed by computing sound abstract semantics of the program's components.
Abstract Semantics Computation: $init(\mathfrak{R})$

- Select, if any, the best abstraction of the region \mathfrak{R} .
- For the example program with the intervals or convex polyhedra abstract domains, analysis of $\texttt{init}([0,1]\times[0,1])$ is

 $\texttt{analysis}(\texttt{init}(\mathfrak{R}),a) = \texttt{best}$ abstraction of the region \mathfrak{R}

Abstract Semantics Computation: translation(u, v)

 $\texttt{analysis}(\texttt{translation}(u,v),a) = \left\{ \begin{array}{l} \texttt{return an abstract state that contains} \\ \texttt{the translation of } a \end{array} \right.$

Abstract Semantics Computation: $rotation(u, v, \theta)$

 $\texttt{analysis}(\texttt{rotation}(u,v,\theta),a) = \left\{ \begin{array}{l} \texttt{return an abstract state that contains} \\ \texttt{the rotation of } a \end{array} \right.$

Abstract Semantics Computation: {p}or{p}

 $\texttt{analysis}(\{\texttt{p}_0\}\texttt{or}\{\texttt{p}_1\},a) = \texttt{union}(\texttt{analysis}(\texttt{p}_1,a),\texttt{analysis}(\texttt{p}_0,a))$

Abstract Semantics Computation: p_0 ; p_1

$\texttt{analysis}(\texttt{p}_0;\texttt{p}_1,a) = \texttt{analysis}(\texttt{p}_1,\texttt{analysis}(\texttt{p}_0,a))$

Abstract Semantics Computation: $iter{p} (1/5)$

iter{p} is equivalent to

```
{}
or{p}
or{p;p}
or{p;p;p}
or{p;p;p;p}
```

Abstract Semantics Computation: $iter{p} (2/5)$

Abstract Semantics Computation: $iter{p} (3/5)$

Recall

where

$$\mathtt{p}_0 = \{\} \qquad \mathtt{p}_{k+1} = \mathtt{p}_k \text{ or } \{\mathtt{p}_k; \mathtt{p}\}$$

Hence,

$$analysis(iter\{p\}, a) = \begin{cases} R \leftarrow a; \\ repeat \\ T \leftarrow R; \\ R \leftarrow widen(R, analysis(p, R)); \\ until inclusion(R, T) \\ return T; \end{cases}$$

$$operator widen \qquad \begin{cases} over approximates unions \\ enforces finite convergence \end{cases}$$
Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT

44 / 130

Abstract Semantics Computation: $iter{p} (4/5)$

```
Example (Abstract iteration with widening)
```

```
\begin{array}{l} \texttt{init}(\{(\texttt{x},\texttt{y}) \mid 0 \leq \texttt{y} \leq 2\texttt{x} \text{ and } \texttt{x} \leq 0.5\}); \\ \texttt{iter}\{ \\ \texttt{translation}(1,0.5) \\ \} \end{array}
```

- $\bullet~$ The constraints $0 \leq y$ and $y \leq 2x$ are stable after iteration 1; thus, they are preserved.
- $\bullet\,$ The constraint x ≤ 0.5 is not preserved; thus, it is discarded.

Abstract Semantics Computation: $iter{p} (5/5)$

Example (Loop unrolling)

$$\begin{array}{l} \texttt{init}(\{(\texttt{x},\texttt{y}) \mid 0 \leq \texttt{y} \leq 2\texttt{x} \text{ and } \texttt{x} \leq 0.5\}); \\ \{\} \texttt{ or } \{\texttt{ translation}(1, 0.5) \}; \\ \texttt{iter}\{\texttt{ translation}(1, 0.5) \} \end{array}$$

Figure: Abstract iteration with widening and unrolling

Abstract Semantics Function analysis at a Glance

The analysis(p, a) is finitely computable and sound.

Sound analysis

If an execution of p from a state (x, y) generates the state (x', y'), then for all abstract element a such that $(x, y) \in \gamma(a)$, $(x', y') \in \gamma(\texttt{analysis}(p, a))$

Kwangkeun Yi (Seoul National U)

Verification of the Property of Interest

- Does program compute a point inside no-fly zone \mathfrak{D} ?
- Need to collect the set of reachable points.
- Run analysis(p, -) and collect all points $\mathfrak R$ from every call to analysis.
- Since analysis is sound, the result is an over approx. of the reachable points.
- If $\mathfrak{R} \cap \mathfrak{D} = \emptyset$, then p is verified. Otherwise, we don't know.

Semantics Style: Compositional Versus Transitional

• Compositional semantics function analysis:

Semantics of p is defined by the semantics of the sub-parts of p.

 $\llbracket AB \rrbracket = \cdots \llbracket A \rrbracket \cdots \llbracket B \rrbracket \cdots$

Proving its soundness is thus by structural induction on p.

- For some realistic programming languages, even defining their compositional ("denotational") semantics is a hurdle.
 - gotos, exceptions, function calls

Transitional-style ("operational") semantics avoids the hurdle

$$\llbracket AB \rrbracket = \{ s_0 \hookrightarrow s_1 \hookrightarrow \cdots, \cdots \}$$

Example Language, Again

initialization, with a state in \mathfrak{R} translation by vector (u,v) rotation by center (u,v) and angle θ sequence of operations non-deterministic choice non-deterministic iterations

Semantics as State Transitions

Definition (Transitional semantics)

An execution of a program is a sequence of transitions between states.

- a state is a pair (l, p) of statement label l and an (x,y) point p.
- a single transition

$$(l,p) \hookrightarrow (l',p')$$

whenever the program statement at l moves the point p to p'.

States s_1, s_6, s_9 , and s_{12} are initial states.

Figure: Transition sequences and the set of occurring states

Statement Labels

(a) Text view, with labels

(b) Graph view, with labels

Figure: Example program with statement labels

States in a Transition Sequence

(e) State $(5, p_3)$

Reachability Problem and Abstraction of States

- Reachability problem: compute the set of all states that can occur during all transition sequences of the input program.
- An abstract state is a set of pairs of statement labels and abstract pre conditions.

Collection of all states

Statement-wise collection:

Statement-wise abstraction:

Abstract State Transition

 $Step^{\sharp}$: a set of pairs of labels and abstract pre conditions \mapsto a set of pairs of labels and abstract post conditions

$$Step^{\sharp}(X) = \{ x' \mid x \in X, x \hookrightarrow^{\sharp} x' \}$$

where

$$\begin{array}{ll} (\texttt{or}_l, a_{\text{pre}}) & \hookrightarrow^{\sharp} & (\texttt{next}(l), a_{\text{pre}}) \\ (\texttt{iter}_l, a_{\text{pre}}) & \hookrightarrow^{\sharp} & (\texttt{next}(l), a_{\text{pre}}) \\ (\texttt{p}_l, a_{\text{pre}}) & \hookrightarrow^{\sharp} & (\texttt{next}(l), \texttt{analysis}(\texttt{p}_l, a_{\text{pre}})) \end{array}$$

Analysis by Global Iterations

The analysis goal is to accumulate from the initial abstract state I:

$$\mathit{Step}^{\sharp^0}(I) \cup \mathit{Step}^{\sharp^1}(I) \cup \mathit{Step}^{\sharp^2}(I) \cup \cdots$$

which is the limit C_{∞} of $C_i = Step^{\sharp^0}(I) \cup Step^{\sharp^1}(I) \cup \cdots \cup Step^{\sharp^i}(I)$ where

$$C_{k+1} = C_k \cup Step^{\sharp}(C_k).$$

Thus the analysis algorithm should iterate the operation

$$C \leftarrow C \cup Step^{\sharp}(C)$$

from I until stable:

$$\texttt{analysis}_{T}(\texttt{p}, I) = \begin{cases} \texttt{C} \leftarrow I \\ \texttt{repeat} \\ \texttt{R} \leftarrow \texttt{C} \\ \texttt{C} \leftarrow \texttt{widen}_{T}(\texttt{C}, \textit{Step}^{\sharp}(\texttt{C})) \\ \texttt{until inclusion}_{T}(\texttt{C}, \texttt{R}) \\ \texttt{return R} \end{cases}$$

where $widen_T$ over-approximates unions and enforces finite convergence.

Analysis in Action

Principles of a Static Analysis, Sketchy

- Selection of the semantics and properties of interest:
 - define the behaviors of programs
 - define the properties that need to be verified
 - formal definitions
- Choice of the abstraction:
 - define the space of abstract elements over which the abstract semantics is defined
 - define what the abstract elements mean
 - define abstract semantics and prove its soundness
- Derivation of the analysis algorithms from the semantics and from the abstraction:
 - algorithm follows the semantic formalism in use
 - e.g., compositional algorithm in the style of program interpreter
 - e.g., transitional algorithm by a monolithic, global iterations

Outline

Static Analysis: a Gentle Introduction

3 A General Framework in Transitional Style

4) A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks

Transitional Semantics

State transition sequence

$$s_0 \hookrightarrow s_1 \hookrightarrow s_2 \hookrightarrow \cdots$$

where \hookrightarrow is a transition relation between states $\mathbb S$

 $\hookrightarrow \subseteq \mathbb{S} \times \mathbb{S}$

A state $s \in S$ of the program is a pair (l, m) of a program label l and the machine state m at that program label during execution.

Concrete Transition Sequence

Example

Consider the following program

 $\begin{array}{l} \texttt{input}(\mathtt{x});\\ \texttt{while} \ (\mathtt{x} \leq 99)\\ \{\mathtt{x} := \mathtt{x} + 1\} \end{array}$

Let labels be "program points". Such labeled representations of this program in graph is

Let the initial state be the empty memory \emptyset . Some transition sequences are:

 $\begin{array}{lll} \mbox{For input 100:} & (0, \emptyset) \hookrightarrow (1, x \mapsto 100) \hookrightarrow (3, x \mapsto 100). \\ \mbox{For input 99:} & (0, \emptyset) \hookrightarrow (1, x \mapsto 99) \hookrightarrow (2, x \mapsto 99) \hookrightarrow (1, x \mapsto 100) \hookrightarrow (3, x \mapsto 100). \\ \mbox{For input 0:} & (0, \emptyset) \hookrightarrow (1, x \mapsto 0) \hookrightarrow (2, x \mapsto 0) \hookrightarrow (1, x \mapsto 1) \hookrightarrow \dots \hookrightarrow (3, x \mapsto 100). \end{array}$

Kwangkeun Yi (Seoul National U)

Reachable States

Assume that the possible inputs are 0, 99, and 100. Then, the set of all reachable states are the set of states occurring in the three transition sequences:

$$\begin{array}{ll} \{(0,\emptyset),(1,x\mapsto 100),(3,x\mapsto 100)\}\\ \cup & \{(0,\emptyset),(1,x\mapsto 99),(2,x\mapsto 99),(1,x\mapsto 100),(3,x\mapsto 100)\}\\ \cup & \{(0,\emptyset),(1,x\mapsto 0),(2,x\mapsto 0),(1,x\mapsto 1),\cdots,(2,x\mapsto 99),(1,x\mapsto 100),(3,x\mapsto 100)\}\\ = & \{(0,\emptyset),(1,x\mapsto 0),\cdots,(1,x\mapsto 100),(2,x\mapsto 0),\cdots,(2,x\mapsto 99),(3,x\mapsto 100)\}\end{array}$$

Concrete Semantics: the Set of Reachable States (1/3)

Given a program, let I be the set of its initial states and *Step* be the powerset-lifted version of \hookrightarrow :

$$\begin{aligned} & \textit{Step} : \wp(\mathbb{S}) \to \wp(\mathbb{S}) \\ & \textit{Step}(X) = \{s' \mid s \hookrightarrow s', s \in X\} \end{aligned}$$

The set of reachable states is

$$I \cup Step^1(I) \cup Step^2(I) \cup \cdots$$
.

which is, equivalently, the limit of $C_i s$

$$\begin{array}{rcl} C_0 &=& I \\ C_{i+1} &=& I \ \cup \ \textit{Step}(C_i) \end{array}$$

which is, the least solution of

$$X = I \cup Step(X).$$

Concrete Semantics: the Set of Reachable States (2/3)

The least solution of

$$X = I \cup Step(X)$$

is also called the least fixpoint of F

$$F: \wp(\mathbb{S}) \to \wp(\mathbb{S})$$
$$F(X) = I \cup Step(X)$$

written as

lfpF.

Theorem (Least fixpoint) The least fixpoint lfpF of $F(X) = I \cup Step(X)$ is $\bigcup_{i \ge 0} F^i(\emptyset)$ where $F^0(X) = X$ and $F^{n+1}(X) = F(F^n(X))$.

Kwangkeun Yi (Seoul National U)

Concrete Semantics: the Set of Reachable States (3/3)

Definition (Concrete semantics, the set of reachable states)

Given a program, let S be the set of states and \hookrightarrow be the one-step transition relation $\subseteq S \times S$. Let *I* be the set of its initial states and *Step* be the powerset-lifted version of \hookrightarrow :

$$\begin{aligned} & \textit{Step} : \wp(\mathbb{S}) \to \wp(\mathbb{S}) \\ & \textit{Step}(X) = \{s' \mid s \hookrightarrow s', s \in X\}. \end{aligned}$$

Then the concrete semantics of the program, the set of all reachable states from I, is defined as the least fixpoint $\mathbf{lfp}F$ of F

$$F(X) = I \cup Step(X).$$

Analysis Goal

Program-label-wise reachability

For each program label we want to know the set of memories that can occur at that label during executions of the input program.

- labels: "partitioning indices"
- e.g., statement labels as in programs, statement labels after loop unrolling, statement labels after function inlining

Abstract Semantics

Define the abstract semantics "homomorphically":

$$F: \wp(\mathbb{S}) \to \wp(\mathbb{S})$$
$$F(X) = I \cup Step(X)$$

 $F^{\sharp}: \mathbb{S}^{\sharp} \to \mathbb{S}^{\sharp}$ $F^{\sharp}(X^{\sharp}) = I^{\sharp} \cup^{\sharp} Step^{\sharp}(X^{\sharp})$

The forthcoming framework will guide us

- conditions for \mathbb{S}^{\sharp} and F^{\sharp}
- so that the abstract semantics is finitely computable and is an upper-approximation of concrete semantics **lfp***F*.

Abstraction of the Semantic Domain $\wp(\mathbb{S})$ (1/2)

 $\wp(\mathbb{S})$ where $\mathbb{S} = \mathbb{L} \times \mathbb{M}$

Label-wise (two-step) abstraction of states:

 $\begin{array}{ccc} \text{set of states} & \text{to} & \text{label-wise collect} & \text{to} & \text{label-wise abstraction} \\ \wp(\mathbb{L}\times\mathbb{M}) & \stackrel{\text{abstraction}}{\longrightarrow} & \mathbb{L} \to \wp(\mathbb{M}) & \stackrel{\text{abstraction}}{\longrightarrow} & \mathbb{L} \to \mathbb{M}^{\sharp}. \end{array}$

Abstraction of the Semantic Domain $\wp(\mathbb{S})$ (2/2)

$$\begin{split} \wp(\mathbb{L} \times \mathbb{M}) \ni & \begin{array}{c} \text{collection of} \\ \text{all states} \end{array} \begin{cases} & (0, m_0), (0, m'_0), \cdots, & \text{at } 0 \\ & (1, m_1), (1, m'_1), \cdots, & \text{at } 1 \\ & \vdots \\ & (n, m_n), (n, m'_1), \cdots, & \text{at } n \\ \end{array} \\ & \mathbb{L} \to \wp(\mathbb{M}) \ni & \begin{array}{c} \text{label-wise} \\ \text{collection} \end{array} \begin{cases} & (0, \{m_0, m'_0, \cdots\}) \\ & (1, \{m_1, m'_1, \cdots\}) \\ & \vdots \\ & (n, \{m_n, m'_n, \cdots\}) \\ \end{array} \\ & \mathbb{L} \to \mathbb{M}^{\sharp} \ni & \begin{array}{c} \text{label-wise} \\ \text{abstraction} \end{array} \end{cases} \begin{cases} & (0, M_0^{\sharp}) \\ & (1, M_1^{\sharp}) \\ & \vdots \\ & (n, M_n^{\sharp}) \end{array} \end{split}$$

Each M_l^{\sharp} over-approximates the set $\{m_l, m_l', \cdots\}$ collected at label l.

 Kwangkeun Yi (Seoul National U)
 Static Analysis
 5/2019@The 9th SSFT
 69 / 130

Preliminary for Abstract Domains (1/3)

- Define an abstract domain as a CPO
 - a partial order set
 - \blacktriangleright has a least element ot
 - has a least-upper bound for every chain
- An abstract domain as *□*-semilattices also work.

Preliminary for Abstract Domains (2/3)

Abstract and concrete domains are structured "consistently".

Definition (Galois connection)

A Galois connection is a pair made of a concretization function γ and an abstraction function α such that:

$$\forall c \in \mathbb{C}, \ \forall a \in \mathbb{A}, \qquad \alpha(c) \sqsubseteq a \qquad \Longleftrightarrow \qquad c \subseteq \gamma(a)$$

We write such a pair as follows:

$$(\mathbb{C},\subseteq) \xleftarrow{\gamma}{\alpha} (\mathbb{A},\sqsubseteq)$$

Preliminary for Abstract Doamins (3/3)

Galois-connection properties we rely on: For

$$(\mathbb{C},\subseteq) \xleftarrow{\gamma}{\alpha} (\mathbb{A},\sqsubseteq)$$

- α and γ are monotone functions
- $\forall c \in \mathbb{C}, \ c \subseteq \gamma(\alpha(c))$
- $\forall a \in \mathbb{A}, \ \alpha(\gamma(a)) \sqsubseteq a$
- If both $\mathbb C$ and $\mathbb A$ are CPOs, then α is continuous.

(Proofs are in the supplementary note.)
Abstract Domains (1/2)

Design an abstract domain as a CPO that is Galois-connected with the concrete domain:

$$(\wp(\mathbb{L} \times \mathbb{M}), \subseteq) \xrightarrow{\gamma} (\mathbb{L} \to \mathbb{M}^{\sharp}, \sqsubseteq).$$

- Abstraction α defines how each concrete elmt (set of concrete states) is abstracted into an abstract elmt.
- $\bullet\,$ Concretization γ defines the set of concrete states implied by each abstract state.
- Partial order \sqsubseteq is the label-wise order:

$$a^{\sharp} \sqsubseteq b^{\sharp} \quad \text{iff} \quad \forall l \in \mathbb{L} : a^{\sharp}(l) \sqsubseteq_M b^{\sharp}(l)$$

where \sqsubseteq_M is the partial order of \mathbb{M}^{\sharp} .

Abstract Domains (2/2)

The above Galois connection (abstraction)

$$(\wp(\mathbb{L}\times\mathbb{M}),\subseteq)\xleftarrow{\gamma}{\alpha}(\mathbb{L}\to\mathbb{M}^{\sharp},\sqsubseteq)$$

composes two Galois connections:

$$\begin{array}{l} (\wp(\mathbb{L}\times\mathbb{M}),\subseteq) \\ \underbrace{\stackrel{\gamma_0}{\longleftarrow}} (\mathbb{L}\to\wp(\mathbb{M}),\sqsubseteq) \quad (\sqsubseteq \text{ is the label-wise } \subseteq) \\ \underbrace{\stackrel{\gamma_1}{\longleftarrow}} (\mathbb{L}\to\wp(\mathbb{M}),\sqsubseteq) \quad (\sqsubseteq \text{ is the label-wise } \sqsubseteq_M) \\ \alpha_0 \left\{ \begin{array}{c} (0,m_0),(0,m'_0),\cdots, \\ \vdots \\ (n,m_n),(n,m'_n),\cdots \end{array} \right\} = \left\{ \begin{array}{c} (0,\{m_0,m'_0,\cdots\}), \\ \vdots \\ (n,\{m_n,m'_n,\cdots\}) \end{array} \right\} \\ \alpha_1 \left\{ \begin{array}{c} (0,\{m_0,m'_0,\cdots\}), \\ \vdots \\ (n,\{m_n,m'_n,\cdots\}) \end{array} \right\} = \left\{ \begin{array}{c} (0,M_0^{\sharp}), \\ \vdots \\ (n,M_n^{\sharp}) \end{array} \right\} \end{array}$$

Thus, boils down to

$$(\wp(\mathbb{M}),\subseteq) \xrightarrow{\gamma_M} (\mathbb{M}^{\sharp},\sqsubseteq_M).$$

Abstract Semantic Functions

Let

$$(\wp(\mathbb{L}\times\mathbb{M}),\subseteq)\xleftarrow{\gamma}{\alpha}(\mathbb{L}\to\mathbb{M}^{\sharp},\sqsubseteq).$$

A concrete semantic function ${\boldsymbol{F}}$

An abstract semantic function F^{\sharp}

 $S = \mathbb{L} \times \mathbb{M}$ $F : \wp(S) \to \wp(S)$ $F(X) = I \cup Step(X)$ $Step = \widecheck{\wp}(\hookrightarrow)$ $\hookrightarrow \subseteq (\mathbb{L} \times \mathbb{M}) \times (\mathbb{L} \times \mathbb{M})$

$$S^{\sharp} = \mathbb{L} \to \mathbb{M}^{\sharp}$$

$$F^{\sharp} : S^{\sharp} \to S^{\sharp}$$

$$F^{\sharp}(X^{\sharp}) = \alpha(I) \cup^{\sharp} Step^{\sharp}(X^{\sharp})$$

$$Step^{\sharp} = \wp(\mathrm{id}, \sqcup_{M}) \circ \pi \circ \breve{\wp}(\hookrightarrow^{\sharp})$$

$$\hookrightarrow^{\sharp} \subseteq (\mathbb{L} \times \mathbb{M}^{\sharp}) \times (\mathbb{L} \times \mathbb{M}^{\sharp})$$

with relations \hookrightarrow and \hookrightarrow^{\sharp} being functions

As of $Step^{\sharp} = \wp(\mathrm{id}, \sqcup_M) \circ \pi \circ \breve{\wp}(\hookrightarrow^{\sharp})$

 $Step^{\sharp} : (\mathbb{L} \to \mathbb{M}^{\sharp}) \to (\mathbb{L} \to \mathbb{M}^{\sharp})$

- Abstract transition $\breve{\wp}(\hookrightarrow^{\sharp})$:
 - $\blacktriangleright \text{ a set} \subseteq \mathbb{L} \times \mathbb{M}^{\sharp} \quad \mapsto \quad \text{a set} \subseteq \mathbb{L} \times \mathbb{M}^{\sharp}$
- Paritioning π :
 - ▶ a set $\subseteq \mathbb{L} \times \mathbb{M}^{\sharp} \quad \mapsto \quad \text{a set} \subseteq \mathbb{L} \times \wp(\mathbb{M}^{\sharp})$
- Joining $\wp(\mathrm{id}, \sqcup_M)$:
 - ▶ a set $\subseteq \mathbb{L} \times \wp(\mathbb{M}^{\sharp}) \quad \mapsto \quad \text{an abstract state} \in \mathbb{L} \to \mathbb{M}^{\sharp}$

Example

Suppose the program has two labels l_1 and l_2 . That is, $\mathbb{L} = \{l_1, l_2\}$. Given an abstract state $\{(l_1, M_1^{\sharp}), (l_2, M_2^{\sharp})\}$, $Step^{\sharp}$ first applies $\breve{\wp}(\hookrightarrow^{\sharp})$ to it:

$$\hookrightarrow^{\sharp}(l_1, M_1^{\sharp}) \cup \hookrightarrow^{\sharp}(l_2, M_2^{\sharp}).$$

Suppose $\hookrightarrow^{\sharp}(l_1, M_1^{\sharp})$ returns $\{(l_1, M'_1^{\sharp}), (l_2, M''_1^{\sharp})\}$ and $\hookrightarrow^{\sharp}(l_2, M_2^{\sharp})$ returns $\{(l_1, M'_2^{\sharp})\}$. Then the result is

$$\{(l_1, M'_1^{\sharp}), (l_2, M''_1^{\sharp}), (l_1, M'_2^{\sharp})\}.$$

The subsequent application of the operator π partitions the result by labels into

$$\{(l_1, \{M'_1^{\sharp}, M'_2^{\sharp}\}), (l_2, \{M''_1^{\sharp}\})\}.$$

The final organization operation $\wp(\mathrm{id}, \sqcup_M)$ returns the post abstract state $\in \mathbb{L} \to \mathbb{M}^{\sharp}$:

$$\{(l_1, M'_1^{\sharp} \sqcup_M M'_2^{\sharp}), (l_2, M''_1^{\sharp})\}.$$

Conditions for Sound \hookrightarrow^{\sharp} and \cup^{\sharp}

 \bullet sound condition for $\hookrightarrow^{\sharp}:$

$$\breve{\wp}(\hookrightarrow) \circ \gamma \subseteq \gamma \circ \breve{\wp}(\hookrightarrow^{\sharp})$$

• sound condition for \cup^{\sharp} :

$$\cup \circ (\gamma, \gamma) \subseteq \gamma \circ \cup^{\sharp}$$

Pattern for the sound condition for each semantic operator $f^{\sharp}:A^{\sharp}\to B^{\sharp}$

$$f \circ \gamma_A \sqsubseteq_B \gamma_B \circ f^{\sharp}.$$

Kwangkeun Yi (Seoul National U)

Static Analysis

5/2019@The 9th SSFT 78 / 130

Then, Follows Sound Static Analysis

 $\bullet\,$ In case \mathbb{S}^{\sharp} is of finite-height and F^{\sharp} is monotone or extensive, then

is finitely computable and over-approximates the concrete semantics $\mathbf{lfp}F$.

 $\bigsqcup_{i\geq 0} F^{\sharp^i}(\bot)$

• Otherwise, find a widening operator ∇ , then the following chain $X_0 \sqsubseteq X_1 \sqsubseteq \cdots$

$$X_0 = \bot$$
 $X_{i+1} = X_i \bigvee F^{\sharp}(X_i)$

is finite and its last element over-approximates the concrete semantics $\mathbf{lfp}F$.

Underlying Theorems (1/2)

Theorem (Sound static analysis by F^{\sharp})

Given a program, let F and F^{\sharp} be defined as in the framework. If S^{\sharp} is of finite-height (every chain S^{\sharp} is finite) and F^{\sharp} is monotone or extensive, then

$$\bigsqcup_{i\geq 0} F^{\sharp^i}(\bot)$$

is finitely computable and over-approximates **lfp***F*:

$$\mathsf{lfp} F \subseteq \gamma(\bigsqcup_{i \ge 0} F^{\sharp^i}(\bot)) \quad \textit{or equivalently} \quad \alpha(\mathsf{lfp} F) \sqsubseteq \bigsqcup_{i \ge 0} F^{\sharp^i}(\bot).$$

(Proof is in the supplementary note.)

Underlying Theorems (2/2)

Theorem (Sound static analysis by F^{\sharp} and widening operator ∇)

Given a program, let F and F^{\sharp} be defined as in the framework. Let ∇ be a widening operator. Then the following chain $Y_0 \sqsubseteq Y_1 \sqsubseteq \cdots$

$$Y_0 = \bot \qquad Y_{i+1} = Y_i \bigvee F^{\sharp}(Y_i)$$

is finite and its last element Y_{lim} over-approximates lfpF:

lfp
$$F \subseteq \gamma(Y_{\text{lim}})$$
 or equivalently $\alpha(\text{lfp}F) \sqsubseteq Y_{\text{lim}}$.

(Proof is in the supplementary note.)

Definition (Widening operator)

A *widening* operator over an abstract domain \mathbb{A} is a binary operator ∇ , such that:

① For all abstract elements a_0, a_1 , we have

$$\gamma(a_0) \cup \gamma(a_1) \subseteq \gamma(a_0 \lor a_1)$$

② For all sequence $(a_n)_{n \in \mathbb{N}}$ of abstract elements, the sequence $(a'_n)_{n \in \mathbb{N}}$ defined below is ultimately stationary:

$$\left\{\begin{array}{rrrr} a_0' &=& a_0\\ a_{n+1}' &=& a_n' \lor a_n \end{array}\right.$$

Analysis Algorithm Based on Global Iterations: Basic Version (1/2)

- Case: \mathbb{S}^{\sharp} is of finite-height and F^{\sharp} is monotone or extensive
- Note the increasing chain

$$\bot \sqsubseteq (F^{\sharp})^{1}(\bot) \sqsubseteq (F^{\sharp})^{2}(\bot) \sqsubseteq \cdots$$

is finite and its biggest element is equal to

$$\bigsqcup_{i\geq 0} F^{\sharp^i}(\bot).$$

$$C \leftarrow \bot$$

repeat
 $R \leftarrow C$
 $C \leftarrow F^{\sharp}(C)$
until $C \sqsubseteq R$
return R

Analysis Algorithm Based on Global Iterations: Basic Version (2/2)

- \bullet Case: \mathbb{S}^{\sharp} is of infinite-height or F^{\sharp} is neither monotonic nor extensive
- Use a widening operator ∇

$$\begin{array}{c} \mathsf{C} \leftarrow \bot \\ \mathsf{repeat} \\ & \mathsf{R} \leftarrow \mathsf{C} \\ & \mathsf{C} \leftarrow \mathsf{C} \bigtriangledown F^{\sharp}(\mathsf{C}) \\ \mathsf{until } \mathsf{C} \sqsubseteq \mathsf{R} \\ \mathsf{return } \mathsf{R} \end{array}$$

Inefficiency of the Basic Algorithms

Recall the algirthm with $F^{\sharp}(C)$ being inlined:

$$\begin{array}{c} \mathsf{C} \leftarrow \bot \\ \mathsf{repeat} \\ \mathsf{R} \leftarrow \mathsf{C} \\ \mathsf{C} \leftarrow \mathsf{C} \bigvee \underbrace{(\wp(\mathrm{id}, \sqcup) \circ \pi \circ \breve{\wp}(\hookrightarrow^{\sharp}))}_{F^{\sharp}}(\mathsf{C}) \\ \mathsf{until} \ \mathsf{C} \sqsubseteq \mathsf{R} \\ \mathsf{return} \ \mathsf{R} \end{array}$$

• $|\mathsf{C}| \sim$ the number of labels in the input program!

• Better apply

$$\breve{\wp}(\hookrightarrow^{\sharp})(\mathtt{C})$$

only to necessary labels

Analysis Algorithm Based on Global Iterations: Worklist Version

• worklist: the set of labels whose input memories are changed in the previous iteration

```
\begin{vmatrix} \mathsf{C} : \mathbb{L} \to \mathbb{M}^{\sharp} \\ F^{\sharp} : (\mathbb{L} \to \mathbb{M}^{\sharp}) \to (\mathbb{L} \to \mathbb{M}^{\sharp}) \\ \text{WorkList} : \wp(\mathbb{L}) \end{vmatrix}
     \texttt{WorkList} \gets \mathbb{L}
      C \leftarrow \bot
repeat
         . \mathtt{R} \leftarrow \mathtt{C}
                      \begin{split} \mathbf{C} &\leftarrow \mathbf{C} \bigvee F^{\sharp}(\mathbf{C}|_{\texttt{WorkList}}) \\ \texttt{WorkList} &\leftarrow \{l \mid \mathbf{C}(l) \not\sqsubseteq \mathbf{R}(l), l \in \mathbb{L} \} \end{split}
      until WorkList = \emptyset
        return R.
```

Improvement of the Worklist Algorithm

- Inefficient: WorkList $\leftarrow \{l \mid C(l) \not\sqsubseteq R(l), l \in \mathbb{L}\}$ re-scans all the labels.
- Inefficient: $C \nabla F^{\sharp}(C|_{WorkList})$ widens at all the labels.
 - ▶ Better: Apply ∇ only at the target of a loop. Use \cup^{\sharp} at other labels.

Summary: Recipe for Defining Sound Static Analysis(1/4)

- Obfine M to be the set of memory states that can occur during program executions. Let L be the finite and fixed set of labels of a given program.
- 2 Define a concrete semantics as the $\mathbf{lfp}F$ where

concrete domain concrete semantic function

$$\begin{array}{lll} \wp(\mathbb{S}) &= & \wp(\mathbb{L} \times \mathbb{M}) \\ F : \wp(\mathbb{S}) \to \wp(\mathbb{S}) \\ F(X) &= & I \cup Step(X) \\ Step &= & \breve{\wp}(\hookrightarrow) \\ \hookrightarrow &\subseteq & (\mathbb{L} \times \mathbb{M}) \times (\mathbb{L} \times \mathbb{M}) \end{array}$$

The \hookrightarrow is the one-step transition relation over $\mathbb{L}\times\mathbb{M}.$

Summary: Recipe for Defining Sound Static Analysis(2/4)

Oefine its abstract domain and abstract semantic function as

The \hookrightarrow^{\sharp} is the one-step abstract transition relation over $\mathbb{L} \times \mathbb{M}^{\sharp}$. Function π partitions a set $\subseteq \mathbb{L} \times \mathbb{M}^{\sharp}$ by the labels in \mathbb{L} returning an element in $\mathbb{L} \to \wp(\mathbb{M}^{\sharp})$ represented as a set $\subseteq \mathbb{L} \times \wp(\mathbb{M}^{\sharp})$.

Summary: Recipe for Defining Sound Static Analysis(3/4)

So Check the abstract domains S[#] and M[#] are CPOs, and forms a Galois-connection respectively with ℘(S) and ℘(M):

$$(\wp(\mathbb{S}),\subseteq) \xrightarrow{\gamma} (\mathbb{S}^{\sharp},\sqsubseteq) \quad \text{and} \quad (\wp(\mathbb{M}),\subseteq) \xrightarrow{\gamma_M} (\mathbb{M}^{\sharp},\sqsubseteq_M)$$

where the partial order \sqsubseteq of \mathbb{S}^{\sharp} is label-wise \sqsubseteq_M :

$$a^{\sharp} \sqsubseteq b^{\sharp} \quad \text{iff} \quad \forall l \in \mathbb{L} : a^{\sharp}(l) \sqsubseteq_{M} b^{\sharp}(l).$$

O Check the abstract one-step transition →[#] and abstract union ∪[#] satisfy:

$$\vec{\wp}(\hookrightarrow) \circ \gamma \subseteq \gamma \circ \vec{\wp}(\hookrightarrow^{\sharp}) \\ \cup \circ (\gamma, \gamma) \subseteq \gamma \circ \cup^{\sharp}$$

Summary: Recipe for Defining Sound Static Analysis(4/4)

Then, sound static analysis is defined as follows:

In case S[♯] is of finite-height (every its chain is finite) and F[♯] is monotone or extensive, then

$$\bigsqcup_{i\geq 0} F^{\sharp^i}(\bot)$$

is finitely computable and over-approximates the concrete semantics ${\rm lfp} F.$

• Otherwise, find a widening operator ∇ , then the following chain $X_0 \sqsubseteq X_1 \sqsubseteq \cdots$

$$X_0 = \bot \qquad X_{i+1} = X_i \bigvee F^{\sharp}(X_i)$$

is finite and its last element over-approximates the concrete semantics $\mathbf{lfp}F$.

Use Example: Target Language

Figure: Syntax of a simple imperative language

Use Example: Concrete State Transition Semantics

lfpF

of the continuous function

$$F : \wp(\mathbb{S}) \to \wp(\mathbb{S})$$

$$F(X) = I \cup Step(X)$$

$$Step(X) = \widecheck{\wp}(\hookrightarrow).$$

where

$$\mathbb{S}=\mathbb{L}\times\mathbb{M}$$

and

The state transition relation $(l,m) \hookrightarrow (l',m')$ is defined as follows.

$$\begin{array}{rcl} {\rm skip} & : & (l,m) \hookrightarrow ({\rm next}(l),\ m) \\ {\rm input}({\rm x}) & : & (l,m) \hookrightarrow ({\rm next}(l),\ update_{\rm x}(m,z)) & {\rm for \ an \ input \ integer \ z} \\ {\rm x} := E & : & (l,m) \hookrightarrow ({\rm next}(l),\ update_{\rm x}(m, {\rm eval}_E(m))) \\ {\rm \mathcal C}_1; {\rm \mathcal C}_2 & : & (l,m) \hookrightarrow ({\rm next}(l),\ m) \\ {\rm if}(B)\{{\rm C}_1\} {\rm else}\{{\rm C}_2\} & : & (l,m) \hookrightarrow ({\rm next}{\rm Fulse}(l),\ filter_B(m)) \\ & : & (l,m) \hookrightarrow ({\rm next}{\rm Fulse}(l),\ filter_B(m)) \\ {\rm while}(B)\{{\rm C}\} & : & (l,m) \hookrightarrow ({\rm next}{\rm False}(l),\ filter_{-{\rm B}}(m)) \\ & : & (l,m) \hookrightarrow ({\rm next}{\rm False}(l),\ filter_{-{\rm B}}(m)) \\ {\rm goto}\ E & : & (l,m) \hookrightarrow ({\rm eval}_E(m),\ m) \end{array}$$

Use Example: Abstract State

An abstract domain \mathbb{M}^{\sharp} is a CPO such that

$$(\wp(\mathbb{M}),\subseteq) \xrightarrow{\gamma_M}_{\alpha_M} (\mathbb{M}^{\sharp},\sqsubseteq_M)$$

defined as

$$M^{\sharp} \in \mathbb{M}^{\sharp} = \mathbb{X} \to \mathbb{V}^{\sharp}$$

where \mathbb{V}^{\sharp} is an abstract domain that is a CPO such that

$$(\wp(\mathbb{V}),\subseteq) \xleftarrow{\gamma_V}{\alpha_V} (\mathbb{V}^{\sharp},\sqsubseteq_V).$$

We design \mathbb{V}^{\sharp} as

$$\mathbb{V}^{\sharp} = \mathbb{Z}^{\sharp} \times \mathbb{L}^{\sharp}$$

where \mathbb{Z}^{\sharp} is a CPO that is Galois connected with $\wp(\mathbb{Z})$, and \mathbb{L}^{\sharp} is the powerset $\wp(\mathbb{L})$ of labels.

All abstract domains are Galois-connected CPOs, homomorphic to their concrete correspondents.

Use Example: Abstract State Transition Semantics

Let F^{\sharp} be defined as the framework:

$$\begin{split} F^{\sharp} &: \mathbb{S}^{\sharp} \to \mathbb{S}^{\sharp} \\ F^{\sharp}(S^{\sharp}) &= \alpha(I) \cup^{\sharp} \operatorname{Step}^{\sharp}(S^{\sharp}) \\ \operatorname{Step}^{\sharp} &= \wp(\operatorname{id}, \sqcup_{M}) \circ \pi \circ \breve{\wp}(\hookrightarrow^{\sharp}). \end{split}$$

If the Step[#] and \cup^{\sharp} are sound abstractions of, respectively, Step and \cup , as required by the framework:

$$\vec{\wp}(\hookrightarrow) \circ \gamma \subseteq \gamma \circ \vec{\wp}(\hookrightarrow^{\sharp}) \\ \cup \circ (\gamma, \gamma) \subseteq \gamma \circ \cup^{\sharp}$$

then we can use F^{\sharp} to soundly approximates the concrete semantics $\mathbf{lfp}F$

Kwangkeun Yi (Seoul National U)

Static Analysis

5/2019@The 9th SSFT 95 / 130

Use Example: Defining Sound \hookrightarrow^{\sharp}

If each of the abstract semantic operators is a sound abstraction of its concrete correspondent, then \hookrightarrow^{\sharp} is a sound abstraction of \hookrightarrow :

Theorem (Soundness of \hookrightarrow^{\sharp})

If the semantic operators satisfy the following soundness properties:

$$\begin{array}{rcl} \wp(\mathsf{eval}_E) \circ \gamma_M &\subseteq & \gamma_V \circ \mathsf{eval}_E^{\sharp} \\ \wp(\mathsf{update}_{\mathsf{x}}) \circ \times \circ (\gamma_M, \gamma_V) &\subseteq & \gamma_M \circ \mathsf{update}_{\mathsf{x}}^{\sharp} \\ \wp(\mathsf{filter}_B) \circ \gamma_M &\subseteq & \gamma_M \circ \mathsf{filter}_B^{\sharp} \\ \wp(\mathsf{filter}_{\neg B}) \circ \gamma_M &\subseteq & \gamma_M \circ \mathsf{filter}_{\neg B}^{\sharp} \end{array}$$

then $\breve{\wp}(\hookrightarrow) \circ \gamma \sqsubseteq \gamma \circ \breve{\wp}(\hookrightarrow^{\sharp})$. (The \times is the Cartesian product operator of two sets.)

Use Example: Defining Sound ∪[♯]

As of a sound \cup^{\sharp} , one candidate is the least upper bound operator \sqcup if \mathbb{S}^{\sharp} is closed by \sqcup , because

$$\begin{array}{ll} (\gamma \circ \sqcup)(a^{\sharp}, b^{\sharp}) \ = \ \gamma(a^{\sharp} \sqcup b^{\sharp}) \ \ \supseteq \ \ \gamma(a^{\sharp}) \cup \gamma(b^{\sharp}) & \text{by the monotonicity} \\ = \ (\cup \circ (\gamma, \gamma))(a^{\sharp}, b^{\sharp}). \end{array}$$

Outline

Introduction

- 2 Static Analysis: a Gentle Introduction
- 3 A General Framework in Transitional Style
- 4 A Technique for Scalability: Sparse Analysis
- 5 Specialized Frameworks

Scalability Challenge

Figure: Call graph of less-382 (23,822 lines of code)

Sparse Analysis

- Exploit the semantic sparsity of the input program to analyze
- Spatial sparsity & temporal sparsity

Right part at right moment

Example Performance Gain by Sparse Analysis

• Sparrow: a "sound", global C analyzer for the memory safety property (no overrun, no null-pointer dereference, etc.)

http://github.com/ropas/sparrow

 $\bullet ~\sim 10$ hours in analyzing million lines of C

sound-&-global version

Spatial Sparcity

Each program portion accesses only a small part of the memory.

Temporal Sparcity

After the def of a memory, its use is far.

Example (Code fragment)

```
x = x + 1;

y = y - 1;

z = x;

v = y;

ret *a + *b
```

Assume that a points to v and b to z.

Spatial and Temporal Sparsity of the Example Code

Exploiting Spatial Sparsity: Need $Access^{\sharp}(l)$

"abstract garbage collecition", "frame rule"

$$F^{\sharp}: (\mathbb{L} \to \mathbb{M}^{\sharp}) \to (\mathbb{L} \to \mathbb{M}^{\sharp})$$

becomes

$$F_{sparse}^{\sharp}: (\mathbb{L} \to \mathbb{M}_{sparse}^{\sharp}) \to (\mathbb{L} \to \mathbb{M}_{sparse}^{\sharp})$$

where

$$\mathbb{M}^{\sharp}_{sparse} = \{ M^{\sharp} \in \mathbb{M}^{\sharp} \mid dom(M^{\sharp}) = Access^{\sharp}(l), l \in \mathbb{L} \} \cup \{ \bot \}.$$

Exploiting Temporal Sparsity: Need Def-Use Chain

Need the def-use chain information as follows.

• we streamline the abstract one-step relation

 $(l, M^{\sharp}) \hookrightarrow^{\sharp} (l', {M'}^{\sharp}) \text{ for } l' \in \mathtt{next}^{\sharp}(l, M^{\sharp}).$

so that the link \hookrightarrow^{\sharp} should follow the **def-use chain**:

- from (def) a label where a location is defined
- ▶ to (use) a label where the defined location is read

Precision Preserving Sparse Analysis Framework

Precision Preserving Sparse Analysis: for Spatial Sparsity (1/3)

Need to safely estimate

 $Access^{\sharp}(l).$

Use yet another sound static analysis, a futher abstraction:

$$(\mathbb{L} \to \mathbb{M}^{\sharp}, \sqsubseteq) \xleftarrow{\gamma}{\alpha} (\mathbb{M}^{\sharp}, \sqsubseteq_M)$$

(a "flow-insensitive" version of the "flow-sensitive" analysis design)

Precision Preserving Sparse Analysis: for Temporal Sparsity (2/3)

Let

$$D^{\sharp}:\mathbb{L}\to\wp(\mathbb{X})$$
 and $U^{\sharp}:\mathbb{L}\to\wp(\mathbb{X})$

be the def and use sets from the original analysis.

- Need to safely estimate D^{\sharp} and U^{\sharp} .
- Use yet another sound static analysis to compute

$$D_{pre}^{\sharp}$$
 and U_{pre}^{\sharp}

such that

$$\forall l \in \mathbb{L} : D_{pre}^{\sharp}(l) \supseteq D^{\sharp}(l) \text{ and } U_{pre}^{\sharp}(l) \supseteq U^{\sharp}(l).$$

$$\forall l \in \mathbb{L} : U_{pre}^{\sharp}(l) \supseteq D_{pre}^{\sharp}(l) \setminus D^{\sharp}(l).$$

Precision Preserving Sparse Analysis: for Temporal Sparsity (3/3)

Let D_{pre}^{\sharp} and U_{pre}^{\sharp} be, respectively, safe def and use sets from a pre-analysis as defined before.

Definition (Precision preserving def-use chain)

Label a to label b is a def-use chain for an abstract location η whenever $\eta \in D_{pre}^{\sharp}(a)$, $\eta \in U_{pre}^{\sharp}(b)$, and η may not be re-defined inbetween the two labels.

Precision preservation

Then, the resulting sparse analysis version has the same precision as the original non-sparse analysis.

Need for the Second Condition for D_{pre}^{\sharp} and U_{pre}^{\sharp}

(e) Missing def-use edge $(a \mbox{ to } b)$ for η because of over-approximate $D^{\sharp}_{pre}(c)$

(f) Recovered def-use edge (a to b via c) for η by safe $U_{pre}^{\sharp}(c)$

Kwangkeun Yi (Seoul National U)

Outline

Introduction

- 2 Static Analysis: a Gentle Introduction
- 3 A General Framework in Transitional Style
- 4 A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks

Practical altenatives to the aforementioned general, abstract interpretation framework

- for simple languages and properties,
- \exists frameworks that are simple yet powerful enough
- review of their limitations

Three specialized frameworks:

- static analysis by equations
- static analysis by monotonic closure
- static analysis by proof construction

Static Analysis by Equations

- Static analysis = equation setup and resolution
 - equations capture all the executions of the program
 - a solution of the equations is the analysis result
- Represent programs by control-flow graphs
 - nodes for semantic functions (statements)
 - edges for control flow
- Straightforward to set up sound equations

For each node

we set up equations

$$y_1 = f(x_1 \sqcup x_2)$$
$$y_2 = f(x_1 \sqcup x_2)$$

Example: Data-Flow Analysis for Integer Intervals

Example (Data-flow analysis)

input (x); while (x <= 99) x := x+1

Figure: Control-flow graph

 $\begin{array}{l} x_0 = [-\infty, +\infty] \\ x_1 = x_0 \ \sqcup \ x_3 \\ x_2 = x_1 \ \sqcap \ [-\infty, 99] \\ x_3 = x_2 \ \oplus \ 1 \\ x_4 = x_1 \ \sqcap \ [100, +\infty] \end{array}$

Figure: A set of equations for the program

Limitations

Not powerful enough for arbitrary languages

- o control-flow before analysis?
 - control is also computed in modern languages
 - no: the dichotomy of control being fixed and data being dynamic
- sound transformation function?
 - error prone for complicated features of modern languages
 - e.g. function call/return, function as a data, dynamic method dispatch, exception, pointer manipulation, dynamic memory allocation, ...
- lacks a systematic approach
 - to prove the correctness of the analysis
 - to vary the accuracy of the analysis

Static Analysis by Monotonic Closure (1/2)

- Static analysis = setting up initial facts then collecting new facts by a kind of chain reaction
 - has rules for collecting initial facts
 - has rules for generating new facts from existing facts
- the initial facts immediate from the program text
- the chain reaction steps simulate the program semantics
- the universe of facts are finite for each program
- analysis accumulates facts until no more possible

Static Analysis by Monotonic Closure (2/2)

- let R be the set of the chain-reaction rules
- let X_0 be the initial fact set
- let Facts be the set of all possible facts

Then, the analysis result is

$$\bigcup_{i\geq 0}Y_i,$$

where

$$Y_0 = X_0,$$

$$Y_{i+1} = Y \text{ such that } Y_i \vdash_R Y.$$

Or, equivalently, the analysis result is the least fixpoint

$$\bigcup_{i\geq 0}\phi^i(\emptyset)$$

of monotonic function $\phi: \wp(\mathit{Facts}) \to \wp(\mathit{Facts}):$

$$\phi(X) = X_0 \ \cup \ (Y \text{ such that } X \vdash_R Y).$$

Kwangkeun Yi (Seoul National U)

Example: Pointer Analysis (1/3)

Р	::=	С	program
С	::=		statement
		L := R	assignment
		С;С	sequence
		while $B {\cal C}$	while-loop
L	::=	$x \mid *x$	target to assign to
R	::=	$n \mid x \mid *x \mid \&x$	value to assign
B			Boolean expression

- Goal: estimate all "points-to" relations between variables that can occur during executions
- $a \rightarrow b$: variable a can point to (can have the address of) variable b

Example: Pointer Analysis (2/3)

The initial facts that are obvious from the program text are collected by this rule:

$$\frac{x := \& y}{x \to y}$$

The chain-reaction rules are as follows for other cases of assignments:

$$\frac{x := y \quad y \to z}{x \to z} \qquad \frac{x := *y \quad y \to z \quad z \to w}{x \to w}$$
$$\frac{*x := y \quad x \to w \quad y \to z}{w \to z} \qquad \frac{*x := *y \quad x \to w \quad y \to z \quad z \to v}{w \to v}$$

$$\frac{*x := \& y \quad x \to w}{w \to y}$$

Example: Pointer Analysis (3/3)

Example (Pointer analysis steps)

• Initial facts are from the first two assignments:

 $\mathtt{x}
ightarrow \mathtt{a}, \ \mathtt{y}
ightarrow \mathtt{x}$

 $\bullet~\mbox{From}~y \rightarrow x$ and the while-loop body, add

 $\mathtt{x}\to \mathtt{b}$

• From the last assignment:

- from $x \rightarrow a$ and $y \rightarrow x$, add $a \rightarrow a$
- From $x \rightarrow b$ and $y \rightarrow x$, add $b \rightarrow b$
- For x ightarrow a, y ightarrow x, and x ightarrow b, add a ightarrow b
- Froom x ightarrow b, y ightarrow x, and x ightarrow a, add b ightarrow a

Kwangkeun Yi (Seoul National U)

Limitations

Not powerful enough for arbitrary language

- sound rules?
 - error prone for complicated features of modern languages
 - e.g. function call/return, function as a data, dynamic method dispatch, exception, pointer manipulation, dynamic memory allocation, ...
- accuracy problem
 - consider program a set of statements, with no order between them
 - rules do not consider the control flow
 - the analysis blindly collects every possible facts when rules hold
 - accuracy improvement by more elaborate rules, but no systematic way for soundness proof

Static Analysis by Proof Construction

- Static analysis = proof construction in a finite proof system
- finite proof system = a finite set of inference rules for a predefined set of judgments
- The soundness corresponds to the soundness of the proof system.
 - ► the input program is provable ⇒ the program satisfies the proven judgment.

Example: Type Inference (1/4)

::=	E	program
::=		expression
	n	integer
	x	variable
	$\lambda \mathbf{x}.E$	function
ĺ	E E	function application
	::= := 	$ \begin{array}{ll} \vdots = & E \\ \vdots = & \\ & \mid & n \\ & \mid & \mathbf{x} \\ & \mid & \lambda \mathbf{x} . E \\ & \mid & E \ E \end{array} $

 \bullet judgment that says expression E has type τ is written as

 $\Gamma \vdash E : \tau$

• Γ is a set of type assumptions for the free variables in E.

Example: Type Inference (2/4)

Consider simple types

$$\tau ::= int \mid \tau \to \tau$$

$$\frac{\mathbf{x}: \tau \in \mathbf{I}}{\Gamma \vdash n: int} \qquad \frac{\mathbf{x}: \tau \in \mathbf{I}}{\Gamma \vdash \mathbf{x}: \tau}$$
$$\frac{\Gamma + \mathbf{x}: \tau_1 \vdash E: \tau_2}{\Gamma \vdash \lambda \mathbf{x}. E: \tau_1 \to \tau_2} \qquad \frac{\Gamma \vdash E_1: \tau_1 \to \tau_2 \quad \Gamma \vdash E_2: \tau_1}{\Gamma \vdash E_1 E_2: \tau_2}$$

- D

Figure: Proof rules of simple types

Theorem (Soundness of the proof rules)

Let *E* be a program, an expression without free variables. If $\emptyset \vdash E : \tau$, then the program runs without a type error and returns a value of type τ if it terminates.

Kwangkeun Yi (Seoul National U)

Static Analysis

Example: Type Inference (3/4)

Program

$$(\lambda x. x \ 1)(\lambda y. y)$$

is typed int because we can prove

$$\emptyset \vdash (\lambda x. x \ 1)(\lambda y. y) : int$$

as follows:

Kwangkeun Yi (Seoul National U)

Example: Type Inference (4/4)

Algorithm

 \bullet given a program E , $V(\emptyset, E, \alpha)$ returns type equations.

$$\begin{array}{lll} V(\Gamma,n,\tau) &=& \{\tau \doteq int\} \\ V(\Gamma,\mathbf{x},\tau) &=& \{\tau \doteq \Gamma(\mathbf{x})\} \\ V(\Gamma,\lambda\mathbf{x}.E,\tau) &=& \{\tau \doteq \alpha_1 \rightarrow \alpha_2\} \cup V(\Gamma+\mathbf{x}:\alpha_1,E,\alpha_2) \quad (\mathsf{new} \ \alpha_i\} \\ V(\Gamma,E_1 \ E_2,\tau) &=& V(\Gamma,E_1,\alpha \rightarrow \tau) \cup V(\Gamma,E_2,\alpha) \quad (\mathsf{new} \ \alpha) \end{array}$$

• solving the equations is done by the unification procedure

Theorem (Correctness of the algorithm)

Solving the equations \equiv proving in the simple type system

More precise analysis?

• need new sound proof rules (e.g., *polymorphic type systems*)

Limitations

- For target languages that lack a sound static type system, we have to invent it.
 - design a finite proof system
 - prove the soundness of the proof system
 - design its algorithm that automates proving
 - prove the correctness of the algorithm
- What if the unification procedure is not enough?
 - for some properties, the algorithm can generate constraints that are unsolvable by the unification procedure
- For some conventional imperative languages, sound and precise-enough static type systems are elusive.

Static Analysis: an Abstract Interpretation Perspective

Introduction

- 2 Static Analysis: a Gentle Introduction
- 3 A General Framework in Transitional Style
- 4 A Technique for Scalability: Sparse Analysis
- 5 Specialized Frameworks

Thank you!