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Introduction

Our Interest

How to verify specific properties about program executions before
execution:

absence of run-time errors i.e., no crashes
preservation of invariants

Verification
Make sure that JP K ⊆ S where

the semantics JP K = the set of all behaviors of P
the specification S = the set of acceptable behaviors
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Introduction

Semantics JP K and Semantic Properties S

Semantics JP K:
compositional style (“denotational”)

I JABK = · · · JAK · · · JBK · · ·
transitional style (“operational”)

I JABK = {s0 ↪→ s1 ↪→ · · · , · · · }

Semantic properties S:
safety

I some behavior observable in finite time will never occur.
liveness

I some behavior observable after infinite time will never occur.
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Introduction

Safety Properties

Some behavior observable in finite time will never occur.

Examples:
absence of crashing error
e.g., no uncaught exceptions in ML, no memory errors in C
preservation of a general invariant
e.g., some data structure should never get broken
assertion on variable values
e.g., the values of a variable always in a given range
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Introduction

Liveness Properties

Some behavior observable after infinite time will never occur.

Examples:
no unbounded repetition of a given behavior
no starvation
no non-termination
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Introduction

Soundness and Completeness

“Analysis is sound.” “Analysis is complete.”
Soundness: analysis(P ) = yes =⇒ P satisfies the specification
Completeness: analysis(P ) = yes ⇐= P satisfies the specification
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Introduction

Spectrum of Program Analysis Techniques

testing
machine-assisted proving
finite-state model checking
conservative static analysis
bug-finding
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Introduction

Testing

Approach
1 Consider finitely many, finite executions
2 For each of them, check whether it violates the specification

If the finite executions find no bug, then accept.
Unsound: can accept programs that violate the specification
Complete: does not reject programs that satisfy the specification
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Introduction

Machine-Assisted Proving

Approach
1 Use a specific language to formalize verification goals
2 Manually supply proof arguments
3 Let the proofs be automatically verified

tools: Coq, Isabelle/HOL, PVS, ...
Applications: CompCert (certified compiler), seL4 (secure
micro-kernel), ...
Not automatic: key proof arguments need to be found by users
Sound, if the formalization is correct
Quasi-complete (only limited by the expressiveness of the logics)
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Introduction

Finite-State Model Checking

Approach
1 Focus on finite state models of programs
2 Perform exhaustive exploration of program states

Automatic
Sound or complete, only with respect to the finite models
But, software has ∼ ∞ states: need finite approximation or
non-termination
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Introduction

Conservative Static Analysis

Principle
1 Perform automatic verification, yet which may fail
2 Compute a conservative approximation of the program semantics

Either sound or complete, not both
Sound & incomplete static analysis is common:

I ML type systems, Astrée, Sparrow, Facebook Infer, ...
I optimizing compilers relies on it

Automatic
Incompleteness: may reject safe programs
or may raise false alarms
Analysis algorithms reason over program semantics
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Introduction

Bug Finding

Approach
Automatic, unsound and incomplete algorithms

Coverity, CodeSonar, SparrowFasoo, ...
Automatic and generally fast
No mathematical guarantee about the results

I may reject a correct program, and accept an incorrect one
I may raise false alarm and fail to report true violations

Used to increase software quality without any guarantee
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Introduction

High-level Comparison

automatic sound complete
testing yes no yes
machine-assisted proving no yes yes/no
finite-state model checking yes yes yes/no
conservative static analysis yes yes no
bug-finding yes no no

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 16 / 130



Introduction

Focus of This Lecture: Conservative Static Analysis

A general technique, for any programming language L and safety property
S, that

checks, for input program P in L, if JP K ⊆ S,
automatic (algorithm)
finite (terminating)
sound (guarantee)
malleable for arbitrary precision

A forthcoming framework
Will guide us how to design such static analysis.
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Introduction

Problem: How to Finitely Compute JP K Beforehand

Finite & exact computation Exact(P ) of JP K is impossible, in
general.

For a Turing-complete language L,
6 ∃algorithm Exact : Exact(P ) = JP K for all P in L.

Otherwise, we can solve the Halting Problem.
I Given P , see if Exact(P ; 1/0) has divide-by-zero.
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Introduction

Answers: Conservative Static Analysis

Technique for finite sound estimation JP K] of JP K
“finite”, hence

I automatic (algorithm) &
I static (without executing P )

“sound”
I over-approximation of JP K

Hence, ushers us to sound anaysis:

(analysis(P ) = check JP K] ⊆ S) =⇒ (P satisfies property S)
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Introduction

Need Formal Frameworks of Static Analysis (1/2)

Suppose that
We are interested in the value ranges of variables.
How to finitely estimate JP K for the property?

You may, intuitively:
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Introduction

Need Formal Frameworks of Static Analysis (2/2)
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Static Analysis: a Gentle Introduction
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Static Analysis: a Gentle Introduction

Example Language

p ::= init(R) initialization, with a state in R
| translation(u, v) translation by vector (u, v)
| rotation(u, v, θ) rotation by center (u, v) and angle θ
| p ; p sequence of operations
| {p}or{p} non-deterministic choice
| iter{p} non-deterministic iterations
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Static Analysis: a Gentle Introduction

Example (Semantics)

init([0, 1]× [0, 1]);
translation(1, 0);
iter{
{

translation(1, 0)
}or{

rotation(0, 0, 90◦)
}

}

x

y

x

y

x

y
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Static Analysis: a Gentle Introduction

Analysis Goal Is Safety Property: Reachability

Analyze the set of reachable points, to check if the set intersects with a
no-fly zone. Suppose that the no-fly zone is:

x

y
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Static Analysis: a Gentle Introduction

Correct or Incorrect Executions

x

y

(a) An incorrect execution

x

y

(b) Correct executions
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Static Analysis: a Gentle Introduction

An Example Safe Program

Example

init([0, 1]× [0, 1]);
iter{
{

translation(1, 0);
}or{

translation(0.5, 0.5);
}

}

x

y
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Static Analysis: a Gentle Introduction

How to Finitely Over-Approximate the Set of Reachable
Points?

Definition (Abstraction)

We call abstraction a set A of logical properties of program states, which
are called abstract properties or abstract elements. A set of abstract
properties is called an abstract domain.

Definition (Concretization)

Given an abstract element a of A, we call concretization the set of program
states that satisfy it. We denote it by γ(a).
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Static Analysis: a Gentle Introduction

Abstraction Example 1: Signs Abstraction

x

y

(c) Concretization of [x ≤ 0, y ≥ 0]

x

y

(d) Concretization of [x ≥ 0]

Figure: Signs abstraction
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Static Analysis: a Gentle Introduction

Abstraction Example 2: Interval Abstraction

The abstract elements: conjunctions of non-relational inequality
constraints: c1 ≤ x ≤ c2, c′1 ≤ y ≤ c′2

x

y

(a) Concretization of
[1 ≤ x ≤ 3, 1 ≤ y ≤ 2]

x

y

(b) Concretization of
[1 ≤ x ≤ 2]

x

y

(c) Concretization of
[1 ≤ x, 1 ≤ y]

Figure: Intervals abstraction
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Static Analysis: a Gentle Introduction

Abstraction Example 3: Convex Polyhedra Abstraction

The abstract elements: conjunctions of linear inequality constraints:
c1x + c2y ≤ c3

x

y

(a) Concretization of
a0

x

y

(b) Concretization of
a1

x

y

(c) Concretization of
a2

Figure: Convex polyhedra abstraction
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Static Analysis: a Gentle Introduction

An Example Program, Again

Example

init([0, 1]× [0, 1]);
iter{
{

translation(1, 0);
}or{

translation(0.5, 0.5);
}

}

x

y

Figure: Reachable states
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Static Analysis: a Gentle Introduction

Abstractions of the Semantics of the Example Program

x

y

(a) Reachable states

x

y

(b) Intervals abstraction

x

y

(c) Convex polyhedra ab-
straction

Figure: Program’s reachable states and abstraction
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Static Analysis: a Gentle Introduction

Sound Analysis Function for the Example Language

Input: a program p and an abstract area a (pre-state)
Output: an abstract area a′ (post-state)

Definition (Sound analysis)
An analysis is sound if and only if it captures the real execuctions of
the input program.

If an execution of p moves a point (x, y) to point (x′, y′),
then for all abstract element a such that (x, y) ∈ γ(a),

(x′, y′) ∈ γ(analysis(p, a))
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Static Analysis: a Gentle Introduction

Sound Analysis Function as a Diagram

If

apre

(x, y) (x′, y′)

ab
st
ra
ct
io
n

run p

then

apre

(x, y) (x′, y′)

apost = analysis(p, apre)

ab
st
ra
ct
io
n

run p

ab
st
ra
ct
io
n

analyze p

Figure: Sound analysis of a program p
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Static Analysis: a Gentle Introduction

Abstract Semantics Computation

Recall the example language

p ::= init(R) initialization, with a state in R
| translation(u, v) translation by vector (u, v)
| rotation(u, v, θ) rotation defined by center (u, v) and angle θ
| p ; p sequence of operations
| {p}or{p} non-deterministic choice
| iter{p} non-deterministic iterations

Approach
A sound analysis for a program is constructed by computing sound abstract
semantics of the program’s components.
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Static Analysis: a Gentle Introduction

Abstract Semantics Computation: init(R)

Select, if any, the best abstraction of the region R.
For the example program with the intervals or convex polyhedra
abstract domains, analysis of init([0, 1]× [0, 1]) is

x

y

analysis(init(R), a) = best abstraction of the regionR
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Static Analysis: a Gentle Introduction

Abstract Semantics Computation: translation(u, v)

x

y

(a) Concrete seman-
tics

x

y

apre

apost

(b) Intervals

x

y

apre

apost

(c) Convex polyhedra

analysis(translation(u, v), a) =

{
return an abstract state that contains
the translation of a
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Static Analysis: a Gentle Introduction

Abstract Semantics Computation: rotation(u, v, θ)

x

y

(d) Concrete seman-
tics

x

y

apre

apost

(e) Intervals

x

y

apre

apost

(f) Convex polyhedra

analysis(rotation(u, v, θ), a) =

{
return an abstract state that contains
the rotation of a
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Static Analysis: a Gentle Introduction

Abstract Semantics Computation: {p}or{p}

x

y

(g) Concrete seman-
tics

apre

apost

x

y

(h) Intervals

apre

apost

x

y

(i) Convex polyhedra

analysis({p0}or{p1}, a) = union(analysis(p1, a), analysis(p0, a))
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Static Analysis: a Gentle Introduction

Abstract Semantics Computation: p0 ; p1

analysis(p0; p1, a) = analysis(p1, analysis(p0, a))
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Static Analysis: a Gentle Introduction

Abstract Semantics Computation: iter{p} (1/5)
iter{p} is equivalent to

{}
or{p}
or{p; p}
or{p; p; p}
or{p; p; p; p}
...
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Static Analysis: a Gentle Introduction

Abstract Semantics Computation: iter{p} (2/5)
Example (Abstract iteration)

init({(x, y) | 0 ≤ y ≤ 2x and x ≤ 0.5});
iter{

translation(1, 0.5)
}

x

y

(j) Concrete seman-
tics

x

y

(k) Analysis of p0 (0
iteration)

x

y

(l) Analysis of p1
(up to 1 iteration)

x

y

(m) Analysis of p2
(up to 2 iterations)

x

y

(n) Analysis of p3
(up to 3 iterations)

x

y

(o) Expected result

Figure: Abstract iteration
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Static Analysis: a Gentle Introduction

Abstract Semantics Computation: iter{p} (3/5)
Recall

iter{p} = {} or {p} or {p; p} or · · ·
= limi pi

where
p0 = {} pk+1 = pk or {pk; p}

Hence,

analysis(iter{p}, a) =



R← a;
repeat

T← R;
R← widen(R, analysis(p, R));

until inclusion(R, T)
return T;

operator widen
{

over approximates unions
enforces finite convergence
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Static Analysis: a Gentle Introduction

Abstract Semantics Computation: iter{p} (4/5)

Example (Abstract iteration with widening)

init({(x, y) | 0 ≤ y ≤ 2x and x ≤ 0.5});
iter{

translation(1, 0.5)
}

The constraints 0 ≤ y and y ≤ 2x are stable after iteration 1; thus,
they are preserved.
The constraint x ≤ 0.5 is not preserved; thus, it is discarded.

x

y

(a) Iteration 0

x

y

(b) Iteration 1

x

y

(c) Iteration 2 and
limit

Figure: Abstract iteration with widening
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Static Analysis: a Gentle Introduction

Abstract Semantics Computation: iter{p} (5/5)

Example (Loop unrolling)

init({(x, y) | 0 ≤ y ≤ 2x and x ≤ 0.5});
{} or { translation(1, 0.5) };
iter{ translation(1, 0.5) }

x

y

(a) Iteration 0

x

y

(b) Iteration 1, union

x

y

(c) Iteration 2, widen, limit

Figure: Abstract iteration with widening and unrolling
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Static Analysis: a Gentle Introduction

Abstract Semantics Function analysis at a Glance
The analysis(p, a) is finitely computable and sound.

analysis(init(R), a) = best abstraction of the regionR

analysis(translation(u, v), a) =

{
return an abstract state that contains
the translation of a

analysis(rotation(u, v, θ), a) =

{
return an abstract state that contains
the rotation of a

analysis({p0}or{p1}, a) = union(analysis(p1, a), analysis(p0, a))
analysis(p0; p1, a) = analysis(p1, analysis(p0, a))

analysis(iter{p}, a) =



R← a;
repeat

T← R;
R← widen(R, analysis(p, R));

until inclusion(R, T)
return T;

Sound analysis

If an execution of p from a state (x, y) generates the state (x′, y′),
then for all abstract element a such that (x, y) ∈ γ(a),

(x′, y′) ∈ γ(analysis(p, a))
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Static Analysis: a Gentle Introduction

Verification of the Property of Interest

Does program compute a point inside no-fly zone D?
Need to collect the set of reachable points.
Run analysis(p,−) and collect all points R from every call to
analysis.
Since analysis is sound, the result is an over approx. of the
reachable points.
If R ∩D = ∅, then p is verified. Otherwise, we don’t know.

x

y

(a) A R

x

y

(b) A more precise R
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Static Analysis: a Gentle Introduction

Semantics Style: Compositional Versus Transitional

Compositional semantics function analysis:
I Semantics of p is defined by the semantics of the sub-parts of p.

JABK = · · · JAK · · · JBK · · ·

I Proving its soundness is thus by structural induction on p.
For some realistic programming languages, even defining their
compositional (“denotational”) semantics is a hurdle.

I gotos, exceptions, function calls

Transitional-style (“operational”) semantics avoids the hurdle

JABK = {s0 ↪→ s1 ↪→ · · · , · · · }
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Static Analysis: a Gentle Introduction

Example Language, Again

p ::= init(R) initialization, with a state in R
| translation(u, v) translation by vector (u, v)
| rotation(u, v, θ) rotation by center (u, v) and angle θ
| p ; p sequence of operations
| {p}or{p} non-deterministic choice
| iter{p} non-deterministic iterations

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 50 / 130



Static Analysis: a Gentle Introduction

Semantics as State Transitions

Definition (Transitional semantics)
An execution of a program is a sequence of transitions between states.

a state is a pair (l, p) of statement label l and an (x,y) point p.
a single transition

(l, p) ↪→ (l′, p′)

whenever the program statement at l moves the point p to p′.

s1 ↪→ s2 ↪→ s5 ↪→ s3 ↪→ s8 ↪→ · · ·
s6 ↪→ s7 ↪→ s8 ↪→ s3 ↪→ s4
s9 ↪→ s10 ↪→ s8 ↪→ s11 ↪→ s8 ↪→ s11 ↪→ s13
s12 ↪→ s7 ↪→ s2 ↪→ s3 ↪→ s4 ↪→ s14

States s1, s6, s9, and s12 are initial states.

s1 s2
s3 s4 s5 s6
s7 s8 s9 s10
s11 s12 s13 s14

. . .

Figure: Transition sequences and the set of occurring states
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Static Analysis: a Gentle Introduction

Statement Labels

0

1

2

3

4

5

init([0, 1]× [0, 1]);

iter{

{

translation(1, 0);

}or{

translation(0.5, 0.5);

}

}

(a) Text view, with labels

init([0, 1]× [0, 1])

iter

or

translation(1, 0) translation(0.5, 0.5)

0

1

2

3 4

5

(b) Graph view, with labels

Figure: Example program with statement labels
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Static Analysis: a Gentle Introduction

States in a Transition Sequence

x

y

init(. . .)

iter

or

translation(. . .) translation(. . .)

0

1

2

3 4

5

(a) State (1, p1)

x

y

init(. . .)

iter

or

translation(. . .) translation(. . .)

0

1

2

3 4

5

(b) State (2, p1)

x

y

init(. . .)

iter

or

translation(. . .) translation(. . .)

0

1

2

3 4

5

(c) State (4, p1)

x

y

init(. . .)

iter

or

translation(. . .) translation(. . .)

0

1

2

3 4

5

(d) State (1, p3)

x

y

init(. . .)

iter

or

translation(. . .) translation(. . .)

0

1

2

3 4

5

(e) State (5, p3)
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Static Analysis: a Gentle Introduction

Reachability Problem and Abstraction of States
Reachability problem: compute the set of all states that can occur
during all transition sequences of the input program.
An abstract state is a set of pairs of statement labels and abstract pre
conditions.

Collection of all states

l

x

y

x

y

x

y

Statement-wise collection:

l

x

y

x

y

x

y

Statement-wise abstraction:

l

x

y
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Static Analysis: a Gentle Introduction

Abstract State Transition

Step] : a set of pairs of labels and abstract pre conditions
7→
a set of pairs of labels and abstract post conditions

is
Step](X) = {x′ | x ∈ X,x↪→]x′}

where
(orl, apre) ↪→] (next(l), apre)

(iterl, apre) ↪→] (next(l), apre)
(pl, apre) ↪→] (next(l), analysis(pl, apre))

or

l

l′ l′′

iter

l

l′l′′

init, translation, or rotation

l

l′
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Static Analysis: a Gentle Introduction

Analysis by Global Iterations
The analysis goal is to accumulate from the initial abstract state I:

Step]
0
(I) ∪ Step]

1
(I) ∪ Step]

2
(I) ∪ · · ·

which is the limit C∞ of Ci = Step]
0
(I)∪Step]1(I)∪ · · · ∪Step]i(I) where

Ck+1 = Ck ∪ Step](Ck).

Thus the analysis algorithm should iterate the operation

C← C ∪ Step](C)

from I until stable:

analysisT (p, I) =



C← I
repeat

R← C

C← widenT (C, Step](C))
until inclusionT (C, R)
return R

where widenT over-approximates unions and enforces finite convergence.
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Static Analysis: a Gentle Introduction

Analysis in Action

x

y

init(. . .)

iter

or

translation(. . .) translation(. . .)

0

1

2

3 4

5

(f) State (1, a1)

x

y

x

y

init(. . .)

iter

or

translation(. . .) translation(. . .)

0

1

2

3 4

5

(g) States (2, a1)and(5, a1)

x

y

x

y

init(. . .)

iter

or

translation(. . .) translation(. . .)

0

1

2

3 4

5

(h) States (3, a1)and(4, a1)

x

y

x

y

init(. . .)

iter

or

translation(. . .) translation(. . .)

0

1

2

3 4

5

(i) States (1, a2)and(1, a3)

x

y

init(. . .)

iter

or

translation(. . .) translation(. . .)

0

1

2

3 4

5

(j) State (1, union({a2, a3)})

x

y

init(. . .)

iter

or

translation(. . .) translation(. . .)

0

1

2

3 4

5

(k) State (1, union({a1, a2, a3)})
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Static Analysis: a Gentle Introduction

Principles of a Static Analysis, Sketchy

Selection of the semantics and properties of interest:
I define the behaviors of programs
I define the properties that need to be verified
I formal definitions

Choice of the abstraction:
I define the space of abstract elements over which the abstract

semantics is defined
I define what the abstract elements mean
I define abstract semantics and prove its soundness

Derivation of the analysis algorithms from the semantics and from the
abstraction:

I algorithm follows the semantic formalism in use
I e.g., compositional algorithm in the style of program interpreter
I e.g., transitional algorithm by a monolithic, global iterations
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A General Framework in Transitional Style

Outline

1 Introduction

2 Static Analysis: a Gentle Introduction

3 A General Framework in Transitional Style

4 A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks
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A General Framework in Transitional Style

Transitional Semantics

State transition sequence

s0 ↪→ s1 ↪→ s2 ↪→ · · ·

where ↪→ is a transition relation between states S

↪→⊆ S× S

A state s ∈ S of the program is a pair (l,m) of a program label l and the
machine state m at that program label during execution.
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A General Framework in Transitional Style

Concrete Transition Sequence
Example
Consider the following program

input(x);
while (x ≤ 99)

{x := x + 1}

Let labels be “program points”. Such labeled representations of this
program in graph is

input(x)

while (x ≤ 99)

x := x + 1

0

1

2

3

Let the initial state be the empty memory ∅. Some transition sequences are:

For input 100: (0, ∅) ↪→ (1, x 7→ 100) ↪→ (3, x 7→ 100).
For input 99: (0, ∅) ↪→ (1, x 7→ 99) ↪→ (2, x 7→ 99) ↪→ (1, x 7→ 100) ↪→ (3, x 7→ 100).
For input 0: (0, ∅) ↪→ (1, x 7→ 0) ↪→ (2, x 7→ 0) ↪→ (1, x 7→ 1) ↪→ · · · ↪→ (3, x 7→ 100).
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A General Framework in Transitional Style

Reachable States

input(x)

while (x ≤ 99)

x := x + 1

0

1

2

3

Assume that the possible inputs are 0, 99, and 100. Then, the set of all
reachable states are the set of states occurring in the three transition
sequences:

{(0, ∅), (1, x 7→ 100), (3, x 7→ 100)}
∪ {(0, ∅), (1, x 7→ 99), (2, x 7→ 99), (1, x 7→ 100), (3, x 7→ 100)}
∪ {(0, ∅), (1, x 7→ 0), (2, x 7→ 0), (1, x 7→ 1), · · · , (2, x 7→ 99), (1, x 7→ 100), (3, x 7→ 100)}
= {(0, ∅), (1, x 7→ 0), · · · , (1, x 7→ 100), (2, x 7→ 0), · · · , (2, x 7→ 99), (3, x 7→ 100)}
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A General Framework in Transitional Style

Concrete Semantics: the Set of Reachable States (1/3)

Given a program, let I be the set of its initial states and Step be the
powerset-lifted version of ↪→:

Step : ℘(S)→ ℘(S)
Step(X) = {s′ | s ↪→ s′, s ∈ X}

The set of reachable states is

I ∪ Step1(I) ∪ Step2(I) ∪ · · · .

which is, equivalently, the limit of Cis

C0 = I
Ci+1 = I ∪ Step(Ci)

which is, the least solution of

X = I ∪ Step(X).
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A General Framework in Transitional Style

Concrete Semantics: the Set of Reachable States (2/3)

The least solution of
X = I ∪ Step(X)

is also called the least fixpoint of F

F : ℘(S)→ ℘(S)
F (X) = I ∪ Step(X)

written as
lfpF.

Theorem (Least fixpoint)
The least fixpoint lfpF of F (X) = I ∪ Step(X) is⋃

i≥0
F i(∅)

where F 0(X) = X and Fn+1(X) = F (Fn(X)).
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A General Framework in Transitional Style

Concrete Semantics: the Set of Reachable States (3/3)

Definition (Concrete semantics, the set of reachable states)
Given a program, let S be the set of states and ↪→ be the one-step
transition relation ⊆ S× S. Let I be the set of its initial states and Step be
the powerset-lifted version of ↪→:

Step : ℘(S)→ ℘(S)
Step(X) = {s′ | s ↪→ s′, s ∈ X}.

Then the concrete semantics of the program, the set of all reachable states
from I, is defined as the least fixpoint lfpF of F

F (X) = I ∪ Step(X).
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A General Framework in Transitional Style

Analysis Goal

Program-label-wise reachability
For each program label we want to know the set of memories that can
occur at that label during executions of the input program.

labels: “partitioning indices”
e.g., statement labels as in programs, statement labels after loop
unrolling, statement labels after function inlining
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A General Framework in Transitional Style

Abstract Semantics

Define the abstract semantics “homomorphically”:

F : ℘(S)→ ℘(S) F ] : S] → S]

F (X) = I ∪ Step(X) F ](X]) = I] ∪] Step](X])

The forthcoming framework will guide us

conditions for S] and F ]
so that the abstract semantics is finitely computable and is an
upper-approximation of concrete semantics lfpF .

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 67 / 130



A General Framework in Transitional Style

Abstraction of the Semantic Domain ℘(S) (1/2)

℘(S) where S = L×M

Label-wise (two-step) abstraction of states:

set of states to label-wise collect to label-wise abstraction
℘(L×M)

abstraction−→ L→ ℘(M)
abstraction−→ L→M].
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A General Framework in Transitional Style

Abstraction of the Semantic Domain ℘(S) (2/2)

℘(L×M) 3 collection of
all states


(0,m0), (0,m

′
0), · · · , at 0

(1,m1), (1,m
′
1), · · · , at 1

...
(n,mn), (n,m′n), · · · . at n

L→ ℘(M) 3 label-wise
collection


(0, {m0,m

′
0, · · · })

(1, {m1,m
′
1, · · · })

...
(n, {mn,m

′
n, · · · })

L→M] 3 label-wise
abstraction


(0,M ]

0)

(1,M ]
1)

...
(n,M ]

n)

Each M ]
l over-approximates the set {ml,m

′
l, · · · } collected at label l.
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A General Framework in Transitional Style

Preliminary for Abstract Domains (1/3)

Define an abstract domain as a CPO
I a partial order set
I has a least element ⊥
I has a least-upper bound for every chain

An abstract domain as t-semilattices also work.
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A General Framework in Transitional Style

Preliminary for Abstract Domains (2/3)

Abstract and concrete domains are structured “consistently”.

Definition (Galois connection)
A Galois connection is a pair made of a concretization function γ and an
abstraction function α such that:

∀c ∈ C, ∀a ∈ A, α(c) v a ⇐⇒ c ⊆ γ(a)

We write such a pair as follows:

(C,⊆) −−−→←−−−α
γ

(A,v)
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A General Framework in Transitional Style

Preliminary for Abstract Doamins (3/3)

Galois-connection properties we rely on:
For

(C,⊆) −−−→←−−−α
γ

(A,v)

α and γ are monotone functions
∀c ∈ C, c ⊆ γ(α(c))
∀a ∈ A, α(γ(a)) v a
If both C and A are CPOs, then α is continuous.

(Proofs are in the supplementary note.)
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A General Framework in Transitional Style

Abstract Domains (1/2)

Design an abstract domain as a CPO that is Galois-connected with the
concrete domain:

(℘(L×M),⊆) −−−→←−−−α
γ

(L→M],v).

Abstraction α defines how each concrete elmt (set of concrete states)
is abstracted into an abstract elmt.
Concretization γ defines the set of concrete states implied by each
abstract state.
Partial order v is the label-wise order:

a] v b] iff ∀l ∈ L : a](l) vM b](l)

where vM is the partial order of M].

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 73 / 130



A General Framework in Transitional Style

Abstract Domains (2/2)
The above Galois connection (abstraction)

(℘(L×M),⊆) −−−→←−−−α
γ

(L→M],v).

composes two Galois connections:

(℘(L×M),⊆)

−−−→←−−−
α0

γ0
(L→ ℘(M),v) (v is the label-wise ⊆)

−−−→←−−−
α1

γ1
(L→M],v) (v is the label-wise vM )

α0


(0,m0), (0,m

′
0), · · · ,

...
(n,mn), (n,m′n), · · ·

 =


(0, {m0,m

′
0, · · · }),

...
(n, {mn,m

′
n, · · · })


α1


(0, {m0,m

′
0, · · · }),

...
(n, {mn,m

′
n, · · · })

 =


(0,M ]

0),
...

(n,M ]
n)


Thus, boils down to

(℘(M),⊆) −−−−→←−−−−
αM

γM
(M],vM ).
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A General Framework in Transitional Style

Abstract Semantic Functions

Let
(℘(L×M),⊆) −−−→←−−−α

γ
(L→M],v).

A concrete semantic function F An abstract semantic function F ]

S = L×M S] = L→M]

F : ℘(S)→ ℘(S) F ] : S] → S]

F (X) = I ∪ Step(X) F ](X]) = α(I) ∪] Step](X])

Step = ℘̆(↪→) Step] = ℘(id,tM ) ◦ π ◦ ℘̆(↪→])

↪→⊆ (L×M)× (L×M) ↪→] ⊆ (L×M])× (L×M])

with relations ↪→ and ↪→] being functions
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A General Framework in Transitional Style

As of Step] = ℘(id,tM) ◦ π ◦ ℘̆(↪→])

Step] : (L→M])→ (L→M])

Abstract transition ℘̆(↪→]):
I a set ⊆ L×M] 7→ a set ⊆ L×M]

Paritioning π:
I a set ⊆ L×M] 7→ a set ⊆ L× ℘(M])

Joining ℘(id,tM ):
I a set ⊆ L× ℘(M]) 7→ an abstract state ∈ L→M]
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A General Framework in Transitional Style

Example
Suppose the program has two labels l1 and l2. That is, L = {l1, l2}. Given
an abstract state {(l1,M ]

1), (l2,M
]
2)}, Step] first applies ℘̆(↪→]) to it:

↪→](l1,M
]
1) ∪ ↪→](l2,M

]
2).

Suppose ↪→](l1,M
]
1) returns {(l1,M ′]1), (l2,M ′′

]
1)} and ↪→](l2,M

]
2)

returns {(l1,M ′]2)}. Then the result is

{(l1,M ′]1), (l2,M ′′
]
1), (l1,M

′]
2)}.

The subsequent application of the operator π partitions the result by labels
into

{(l1, {M ′]1,M ′
]
2}), (l2, {M ′′

]
1})}.

The final organization operation ℘(id,tM ) returns the post abstract state
∈ L→M]:

{(l1,M ′]1 tM M ′
]
2), (l2,M

′′]
1)}.
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A General Framework in Transitional Style

Conditions for Sound ↪→] and ∪]

sound condition for ↪→]:

℘̆(↪→) ◦ γ ⊆ γ ◦ ℘̆(↪→])

sound condition for ∪]:

∪ ◦ (γ, γ) ⊆ γ ◦ ∪]

X Y

X] Y ]

⊆
γ

℘̆(↪→)

℘̆(↪→])

γ

Pattern for the sound condition for each semantic operator
f ] : A] → B]

f ◦ γA vB γB ◦ f ].
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A General Framework in Transitional Style

Then, Follows Sound Static Analysis

In case S] is of finite-height and F ] is monotone or extensive, then⊔
i≥0

F ]
i
(⊥)

is finitely computable and over-approximates the concrete semantics
lfpF .
Otherwise, find a widening operator

`
, then the following chain

X0 v X1 v · · ·

X0 = ⊥ Xi+1 = Xi

h
F ](Xi)

is finite and its last element over-approximates the concrete semantics
lfpF .
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A General Framework in Transitional Style

Underlying Theorems (1/2)

Theorem (Sound static analysis by F ])

Given a program, let F and F ] be defined as in the framework. If S] is of
finite-height (every chain S] is finite) and F ] is monotone or extensive, then⊔

i≥0
F ]

i
(⊥)

is finitely computable and over-approximates lfpF :

lfpF ⊆ γ(
⊔
i≥0

F ]
i
(⊥)) or equivalently α(lfpF ) v

⊔
i≥0

F ]
i
(⊥).

(Proof is in the supplementary note.)
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A General Framework in Transitional Style

Underlying Theorems (2/2)

Theorem (Sound static analysis by F ] and widening operator
`
)

Given a program, let F and F ] be defined as in the framework. Let
`

be a
widening operator. Then the following chain Y0 v Y1 v · · ·

Y0 = ⊥ Yi+1 = Yi
h
F ](Yi)

is finite and its last element Ylim over-approximates lfpF :

lfpF ⊆ γ(Ylim) or equivalently α(lfpF ) v Ylim.

(Proof is in the supplementary note.)
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A General Framework in Transitional Style

Definition (Widening operator)
A widening operator over an abstract domain A is a binary operator O,
such that:

1 For all abstract elements a0, a1, we have

γ(a0) ∪ γ(a1) ⊆ γ(a0 O a1)

2 For all sequence (an)n∈N of abstract elements, the sequence (a′n)n∈N
defined below is ultimately stationary:{

a′0 = a0
a′n+1 = a′n O an
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A General Framework in Transitional Style

Analysis Algorithm Based on Global Iterations: Basic
Version (1/2)

Case: S] is of finite-height and F ] is monotone or extensive
Note the increasing chain

⊥ v (F ])
1
(⊥) v (F ])

2
(⊥) v · · ·

is finite and its biggest element is equal to⊔
i≥0

F ]
i
(⊥).

∣∣∣∣∣∣∣∣∣∣∣∣

C← ⊥
repeat

R← C

C← F ](C)
until C v R

return R
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A General Framework in Transitional Style

Analysis Algorithm Based on Global Iterations: Basic
Version (2/2)

Case: S] is of infinite-height or F ] is neither monotonic nor extensive
Use a widening operator

`

∣∣∣∣∣∣∣∣∣∣∣∣

C← ⊥
repeat

R← C

C← C
`
F ](C)

until C v R

return R
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A General Framework in Transitional Style

Inefficiency of the Basic Algorithms

Recall the algirthm with F ](C) being inlined:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C← ⊥
repeat

R← C

C← C
`

(℘(id,t) ◦ π ◦ ℘̆(↪→]))︸ ︷︷ ︸
F ]

(C)

until C v R

return R

|C| ∼ the number of labels in the input program!
Better apply

℘̆(↪→])(C)

only to necessary labels
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A General Framework in Transitional Style

Analysis Algorithm Based on Global Iterations: Worklist
Version

worklist: the set of labels whose input memories are changed in the
previous iteration∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C : L→M]

F ] : (L→M])→ (L→M])
WorkList : ℘(L)

WorkList← L
C← ⊥
repeat

R← C

C← C
`
F ](C|WorkList)

WorkList← {l | C(l) 6v R(l), l ∈ L}
until WorkList = ∅
return R
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A General Framework in Transitional Style

Improvement of the Worklist Algorithm

Inefficient: WorkList← {l | C(l) 6v R(l), l ∈ L} re-scans all the labels.

I Better: At application ↪→] to (l, C(l)), if its result (l′,M ]) is changed
(M ] 6v C(l′)), add l′ to the worklist.

Inefficient: C
`
F ](C|WorkList) widens at all the labels.

I Better: Apply
`

only at the target of a loop. Use ∪] at other labels.
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A General Framework in Transitional Style

Summary: Recipe for Defining Sound Static Analysis(1/4)

1 Define M to be the set of memory states that can occur during
program executions. Let L be the finite and fixed set of labels of a
given program.

2 Define a concrete semantics as the lfpF where

concrete domain ℘(S) = ℘(L×M)
concrete semantic function F : ℘(S)→ ℘(S)

F (X) = I ∪ Step(X)
Step = ℘̆(↪→)
↪→ ⊆ (L×M)× (L×M)

The ↪→ is the one-step transition relation over L×M.

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 88 / 130



A General Framework in Transitional Style

Summary: Recipe for Defining Sound Static Analysis(2/4)

4 Define its abstract domain and abstract semantic function as

abstract domain S] = L→M]

abstract semantic function F ] : S] → S]

F ](X]) = α(I) ∪] Step](X])

Step] = ℘(id,tM ) ◦ π ◦ ℘̆(↪→])

↪→] ⊆ (L×M])× (L×M])

The ↪→] is the one-step abstract transition relation over L×M].
Function π partitions a set ⊆ L×M] by the labels in L returning an
element in L→ ℘(M]) represented as a set ⊆ L× ℘(M]).
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A General Framework in Transitional Style

Summary: Recipe for Defining Sound Static Analysis(3/4)

5 Check the abstract domains S] and M] are CPOs, and forms a
Galois-connection respectively with ℘(S) and ℘(M):

(℘(S),⊆) −−−→←−−−α
γ

(S],v) and (℘(M),⊆) −−−−→←−−−−
αM

γM
(M],vM )

where the partial order v of S] is label-wise vM :

a] v b] iff ∀l ∈ L : a](l) vM b](l).

6 Check the abstract one-step transition ↪→] and abstract union ∪]
satisfy:

℘̆(↪→) ◦ γ ⊆ γ ◦ ℘̆(↪→])
∪ ◦ (γ, γ) ⊆ γ ◦ ∪]
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A General Framework in Transitional Style

Summary: Recipe for Defining Sound Static Analysis(4/4)

7 Then, sound static analysis is defined as follows:
I In case S] is of finite-height (every its chain is finite) and F ] is

monotone or extensive, then ⊔
i≥0

F ]i(⊥)

is finitely computable and over-approximates the concrete semantics
lfpF .

I Otherwise, find a widening operator
`
, then the following chain

X0 v X1 v · · ·

X0 = ⊥ Xi+1 = Xi

h
F ](Xi)

is finite and its last element over-approximates the concrete semantics
lfpF .
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A General Framework in Transitional Style

Use Example: Target Language

x ∈ X program variables
C ::= statements

| skip nop statement
| C ; C sequence of statements
| x := E assignment
| input(x) read an integer input
| if(B ){C }else{C } condition statement
| while(B ){C } loop statement
| goto E goto with dynamically computed label

E ::= expression
| n integer
| x variable
| E + E addition

B ::= boolean expression
| true | false
| E < E comparison
| E = E equality

P ::= C program

Figure: Syntax of a simple imperative language
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A General Framework in Transitional Style

Use Example: Concrete State Transition Semantics

lfpF

of the continuous function

F : ℘(S)→ ℘(S)
F (X) = I ∪ Step(X)
Step(X) = ℘̆(↪→).

where
S = L×M

and
memories M = X→ V
values V = Z ∪ L.

The state transition relation (l,m) ↪→ (l′,m′) is defined as follows.

skip : (l,m) ↪→ (next(l), m)
input(x) : (l,m) ↪→ (next(l), updatex(m, z)) for an input integer z

x := E : (l,m) ↪→ (next(l), updatex(m, evalE (m)))
C 1; C 2 : (l,m) ↪→ (next(l), m)

if(B ){C 1}else{C 2} : (l,m) ↪→ (nextTrue(l), filterB (m))
: (l,m) ↪→ (nextFalse(l), filter¬B (m))

while(B ){C } : (l,m) ↪→ (nextTrue(l), filterB (m))
: (l,m) ↪→ (nextFalse(l), filter¬B (m))

goto E : (l,m) ↪→ (evalE (m), m)
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A General Framework in Transitional Style

Use Example: Abstract State

An abstract domain M] is a CPO such that

(℘(M),⊆) −−−−→←−−−−
αM

γM
(M],vM )

defined as
M ] ∈M] = X→ V]

where V] is an abstract domain that is a CPO such that

(℘(V),⊆) −−−−→←−−−−
αV

γV
(V],vV ).

We design V] as
V] = Z] × L]

where Z] is a CPO that is Galois connected with ℘(Z), and L] is the
powerset ℘(L) of labels.
All abstract domains are Galois-connected CPOs, homomorphic to their
concrete correspondents.
Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 94 / 130



A General Framework in Transitional Style

Use Example: Abstract State Transition Semantics

Case the l-labeled statement of
skip : (l,M ]) ↪→] (next(l),M ])

input(x) : (l,M ]) ↪→] (next(l), update]x(M
], α(Z)))

x := E : (l,M ]) ↪→] (next(l), update]x(M
], eval ]E (M ])))

C 1; C 2 : (l,M ]) ↪→] (next(l),M ])

if(B ){C 1}else{C 2} : (l,M ]) ↪→] (nextTrue(l), filter ]B (M ]))

: (l,M ]) ↪→] (nextFalse(l), filter ]¬B (M ]))

while(B ){C } : (l,M ]) ↪→] (nextTrue(l), filter ]B (M ]))

: (l,M ]) ↪→] (nextFalse(l), filter ]¬B (M ]))

goto E : (l,M ]) ↪→] (l′,M ]) for l′ ∈ L of (z], L) = eval ]E (M ])

Let F ] be defined as the framework:

F ] : S] → S]

F ](S]) = α(I) ∪] Step](S])
Step] = ℘(id,tM ) ◦ π ◦ ℘̆(↪→]).

If the Step] and ∪] are sound abstractions of, respectively, Step and ∪, as
required by the framework:

℘̆(↪→) ◦ γ ⊆ γ ◦ ℘̆(↪→])
∪ ◦ (γ, γ) ⊆ γ ◦ ∪]

then we can use F ] to soundly approximates the concrete semantics lfpF
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A General Framework in Transitional Style

Use Example: Defining Sound ↪→]

If each of the abstract semantic operators is a sound abstraction of its
concrete correspondent, then ↪→] is a sound abstraction of ↪→:

Theorem (Soundness of ↪→])
If the semantic operators satisfy the following soundness properties:

℘(evalE ) ◦ γM ⊆ γV ◦ eval ]E
℘(updatex) ◦ × ◦ (γM , γV ) ⊆ γM ◦ update]x

℘(filterB ) ◦ γM ⊆ γM ◦ filter ]B
℘(filter¬B ) ◦ γM ⊆ γM ◦ filter ]¬B

then ℘̆(↪→) ◦ γ v γ ◦ ℘̆(↪→]). (The × is the Cartesian product operator of
two sets.)
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A General Framework in Transitional Style

Use Example: Defining Sound ∪]

As of a sound ∪], one candidate is the least upper bound operator t if S]
is closed by t, because

(γ ◦ t)(a], b]) = γ(a] t b]) w γ(a]) ∪ γ(b]) by the monotonicity of γ
= (∪ ◦ (γ, γ))(a], b]).
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A Technique for Scalability: Sparse Analysis
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A Technique for Scalability: Sparse Analysis

Scalability Challenge

Figure: Call graph of less-382 (23,822 lines of code)
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A Technique for Scalability: Sparse Analysis

Sparse Analysis

Exploit the semantic sparsity of the input program to analyze
Spatial sparsity & temporal sparsity

Right part at right moment
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A Technique for Scalability: Sparse Analysis

Example Performance Gain by Sparse Analysis

Sparrow: a “sound”, global C analyzer for the memory safety property
(no overrun, no null-pointer dereference, etc.)

http://github.com/ropas/sparrow

∼ 10 hours in analyzing million lines of C
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A Technique for Scalability: Sparse Analysis

Spatial Sparcity

Each program portion accesses only a small part of the memory.
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A Technique for Scalability: Sparse Analysis

Temporal Sparcity

After the def of a memory, its use is far.
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A Technique for Scalability: Sparse Analysis

Example (Code fragment)

x = x + 1;
y = y - 1;
z = x;
v = y;
ret *a + *b

Assume that a points to v and b to z.
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A Technique for Scalability: Sparse Analysis

Spatial and Temporal Sparsity of the Example Code

x = x + 1

y = y− 1

z = x

v = y

ret ∗ a + ∗b b
a
v
z
y
x

b
a
v
z
y
x

b
a
v
z
y
x

b
a
v
z
y
x

b
a
v
z
y
x

(a) Without exploiting
the sparsities

x = x + 1

y = y− 1

z = x

v = y

ret ∗ a + ∗b

x

y

z
x

v
y

z
v
b
a

(b) Spatial sparsity

x = x + 1

y = y− 1

z = x

v = y

ret ∗ a + ∗b

x

y

z
x

v
y

z
v
b
a

(c) Spatial & temporal spar-
sity
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A Technique for Scalability: Sparse Analysis

Exploiting Spatial Sparsity: Need Access](l)

“abstract garbage collecition”, “frame rule”

F ] : (L→M])→ (L→M])

becomes
F ]sparse : (L→M]

sparse)→ (L→M]
sparse)

where

M]
sparse = {M ] ∈M] | dom(M ]) = Access](l), l ∈ L} ∪ {⊥}.
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A Technique for Scalability: Sparse Analysis

Exploiting Temporal Sparsity: Need Def-Use Chain

Need the def-use chain information as follows.
we streamline the abstract one-step relation

(l,M ]) ↪→] (l′,M ′
]
) for l′ ∈ next](l,M ]).

so that the link ↪→] should follow the def-use chain:
I from (def) a label where a location is defined
I to (use) a label where the defined location is read
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A Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis Framework

Goal

F ] : D] → D] sparsify
=⇒ F ]sparse : D] → D]

lfpF ] still
= lfpF ]sparse
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A Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis: for Spatial Sparsity
(1/3)

Need to safely estimate
Access](l).

Use yet another sound static analysis, a futher abstraction:

(L→M],v) −−−→←−−−α
γ

(M],vM )

(a “flow-insensitive” version of the “flow-sensitive” analysis design)
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A Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis: for Temporal Sparsity
(2/3)

Let
D] : L→ ℘(X) and U ] : L→ ℘(X)

be the def and use sets from the original analysis.
Need to safely estimate D] and U ].
Use yet another sound static analysis to compute

D]
pre and U

]
pre

such that
I ∀l ∈ L : D]

pre(l) ⊇ D](l) and U ]
pre(l) ⊇ U ](l).

I ∀l ∈ L : U ]
pre(l) ⊇ D]

pre(l) \D](l).
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A Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis: for Temporal Sparsity
(3/3)

Let D]
pre and U

]
pre be, respectively, safe def and use sets from a

pre-analysis as defined before.

Definition (Precision preserving def-use chain)

Label a to label b is a def-use chain for an abstract location η whenever
η ∈ D]

pre(a), η ∈ U ]pre(b), and η may not be re-defined inbetween the two
labels.

Precision preservation
Then, the resulting sparse analysis version has the same precision as the
original non-sparse analysis.
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A Technique for Scalability: Sparse Analysis

Need for the Second Condition for D]
pre and U

]
pre

η ∈ D](a) η 6∈ D](c) η ∈ U ](b)

a c b

(d) Original analysis def-use edge for η

η ∈ D]
pre(a) η ∈ D]

pre(c) η ∈ U ]pre(b)

a c b

(e) Missing def-use edge (a to b) for η because of over-
approximate D]

pre(c)

η ∈ D]
pre(a) η ∈ D]

pre(c)

η ∈ U ]pre(c)
η ∈ U ]pre(b)

a c b

(f) Recovered def-use edge (a to b via c) for η by safe U ]
pre(c)
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Specialized Frameworks

Specialized Frameworks

Practical altenatives to the aforementioned general, abstract interpretation
framework

for simple languages and properties,
∃frameworks that are simple yet powerful enough
review of their limitations

Three specialized frameworks:
static analysis by equations
static analysis by monotonic closure
static analysis by proof construction
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Specialized Frameworks

Static Analysis by Equations

Static analysis = equation setup and resolution
I equations capture all the executions of the program
I a solution of the equations is the analysis result

Represent programs by control-flow graphs
I nodes for semantic functions (statements)
I edges for control flow

Straightforward to set up sound equations

For each node

f

x1 x2

y1 y2

we set up equations

y1 = f(x1 t x2)
y2 = f(x1 t x2)
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Specialized Frameworks

Example: Data-Flow Analysis for Integer Intervals
Example (Data-flow analysis)

input (x);
while (x <= 99)

x := x+1

input x

x <= 99

x++

x > 99

2

1

3 0 1

4

Figure: Control-flow graph

x0 = [−∞,+∞]

x1 = x0 t x3

x2 = x1 u [−∞, 99]

x3 = x2 ⊕ 1

x4 = x1 u [100,+∞]

Figure: A set of equations for the program
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Specialized Frameworks

Limitations

Not powerful enough for arbitrary languages
control-flow before analysis?

I control is also computed in modern languages
I no: the dichotomy of control being fixed and data being dynamic

sound transformation function?
I error prone for complicated features of modern languages
I e.g. function call/return, function as a data, dynamic method dispatch,

exception, pointer manipulation, dynamic memory allocation, ...
lacks a systematic approach

I to prove the correctness of the analysis
I to vary the accuracy of the analysis
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Specialized Frameworks

Static Analysis by Monotonic Closure (1/2)

Static analysis = setting up initial facts then collecting new facts by a
kind of chain reaction

I has rules for collecting initial facts
I has rules for generating new facts from existing facts

the initial facts immediate from the program text
the chain reaction steps simulate the program semantics
the universe of facts are finite for each program
analysis accumulates facts until no more possible
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Specialized Frameworks

Static Analysis by Monotonic Closure (2/2)

let R be the set of the chain-reaction rules
let X0 be the initial fact set
let Facts be the set of all possible facts

Then, the analysis result is ⋃
i≥0

Yi,

where
Y0 = X0,

Yi+1 = Y such that Yi `R Y.

Or, equivalently, the analysis result is the least fixpoint⋃
i≥0

φi(∅)

of monotonic function φ : ℘(Facts)→ ℘(Facts) :

φ(X) = X0 ∪ (Y such that X `R Y ).
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Specialized Frameworks

Example: Pointer Analysis (1/3)

P ::= C program
C ::= statement

| L := R assignment
| C ; C sequence
| while B C while-loop

L ::= x | *x target to assign to
R ::= n | x | *x | &x value to assign
B Boolean expression

Goal: estimate all “points-to” relations between variables that can
occur during executions
a→ b: variable a can point to (can have the address of) variable b
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Specialized Frameworks

Example: Pointer Analysis (2/3)

The initial facts that are obvious from the program text are collected by
this rule:

x := &y
x→ y

The chain-reaction rules are as follows for other cases of assignments:

x := y y → z
x→ z

x := *y y → z z → w
x→ w

*x := y x→ w y → z
w → z

*x := *y x→ w y → z z → v
w → v

*x := &y x→ w
w → y
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Specialized Frameworks

Example: Pointer Analysis (3/3)

Example (Pointer analysis steps)

x := &a ; y := &x ;
while B

*y := &b ;
*x := *y

Initial facts are from the first two assignments:

x→ a, y→ x

From y→ x and the while-loop body, add

x→ b

From the last assignment:
I from x→ a and y→ x, add a→ a
I from x→ b and y→ x, add b→ b
I from x→ a, y→ x, and x→ b, add a→ b
I froom x→ b, y→ x, and x→ a, add b→ a

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 122 / 130



Specialized Frameworks

Limitations

Not powerful enough for arbitrary language
sound rules?

I error prone for complicated features of modern languages
I e.g. function call/return, function as a data, dynamic method dispatch,

exception, pointer manipulation, dynamic memory allocation, ...
accuracy problem

I consider program a set of statements, with no order between them
I rules do not consider the control flow
I the analysis blindly collects every possible facts when rules hold
I accuracy improvement by more elaborate rules, but no systematic way

for soundness proof

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 123 / 130



Specialized Frameworks

Static Analysis by Proof Construction

Static analysis = proof construction in a finite proof system
finite proof system = a finite set of inference rules for a predefined set
of judgments
The soundness corresponds to the soundness of the proof system.

I the input program is provable ⇒ the program satisfies the proven
judgment.
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Specialized Frameworks

Example: Type Inference (1/4)

P ::= E program
E ::= expression

| n integer
| x variable
| λx.E function
| E E function application

judgment that says expression E has type τ is written as

Γ ` E : τ

Γ is a set of type assumptions for the free variables in E.
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Specialized Frameworks

Example: Type Inference (2/4)

Consider simple types
τ ::= int | τ → τ

Γ ` n : int
x : τ ∈ Γ
Γ ` x : τ

Γ + x : τ1 ` E : τ2
Γ ` λx.E : τ1 → τ2

Γ ` E1 : τ1 → τ2 Γ ` E2 : τ1
Γ ` E1 E2 : τ2

Figure: Proof rules of simple types

Theorem (Soundness of the proof rules)
Let E be a program, an expression without free variables. If ∅ ` E : τ ,
then the program runs without a type error and returns a value of type τ if
it terminates.
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Specialized Frameworks

Example: Type Inference (3/4)

Program
(λx.x 1)(λy.y)

is typed int because we can prove

∅ ` (λx.x 1)(λy.y) : int

as follows:
x : int→ int ∈ {x : int→ int}
{x : int→ int} ` x : int→ int {x : int→ int} ` 1 : int

{x : int→ int} ` x 1 : int

∅ ` λx.x 1 : (int→ int)→ int

y : int ∈ {y : int}
{y : int} ` y : int

∅ ` λy.y : int→ int

∅ ` (λx.x 1)(λy.y) : int
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Specialized Frameworks

Example: Type Inference (4/4)

Algorithm
given a program E, V (∅, E, α) returns type equations.

V (Γ, n, τ) = {τ .
= int}

V (Γ, x, τ) = {τ .
= Γ(x)}

V (Γ, λx.E, τ) = {τ .
= α1 → α2} ∪ V (Γ + x : α1, E, α2) (new αi)

V (Γ, E1 E2, τ) = V (Γ, E1, α→ τ) ∪ V (Γ, E2, α) (new α)

solving the equations is done by the unification procedure

Theorem (Correctness of the algorithm)
Solving the equations ≡ proving in the simple type system

More precise analysis?
need new sound proof rules (e.g.,polymorphic type systems)
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Specialized Frameworks

Limitations

For target languages that lack a sound static type system, we have to
invent it.

I design a finite proof system
I prove the soundness of the proof system
I design its algorithm that automates proving
I prove the correctness of the algorithm

What if the unification procedure is not enough?
I for some properties, the algorithm can generate constraints that are

unsolvable by the unification procedure

For some conventional imperative languages, sound and
precise-enough static type systems are elusive.
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Specialized Frameworks

Static Analysis: an Abstract Interpretation Perspective

1 Introduction

2 Static Analysis: a Gentle Introduction

3 A General Framework in Transitional Style

4 A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks

Thank you!
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