Static Analysis: an Abstract Interpretation Perspective

Kwangkeun Yi

Seoul National University

5/2019@The 9th SSFT
This lecture is based on the following forthcoming book

Static Analysis: an Abstract Interpretation Perspective, Yi and Rival, MIT Press
1 Introduction

2 Static Analysis: a Gentle Introduction

3 A General Framework in Transitional Style

4 A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks
Outline

1 Introduction

2 Static Analysis: a Gentle Introduction

3 A General Framework in Transitional Style

4 A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks
Our Interest

How to verify specific properties about program executions before execution:

- absence of run-time errors i.e., no crashes
- preservation of invariants

Verification

Make sure that $[P] \subseteq S$ where

- the semantics $[P]$ = the set of all behaviors of P
- the specification S = the set of acceptable behaviors
Semantics $[P]$ and Semantic Properties S

Semantics $[P]$:
- compositional style (“denotational”)
 $[AB] = \cdots [A] \cdots [B] \cdots$
- transitional style (“operational”)
 $[AB] = \{s_0 \leftrightarrow s_1 \leftrightarrow \cdots, \cdots\}$

Semantic properties S:
- safety
 - some behavior observable in finite time will never occur.
- liveness
 - some behavior observable after infinite time will never occur.
Safety Properties

Some behavior observable in \textit{finite} time will never occur.

Examples:

- absence of crashing error
 e.g., no uncaught exceptions in ML, no memory errors in C

- preservation of a general invariant
 e.g., some data structure should never get broken

- assertion on variable values
 e.g., the values of a variable always in a given range
Liveness Properties

Some behavior observable after *infinite* time will never occur.

Examples:

- no unbounded repetition of a given behavior
- no starvation
- no non-termination
“Analysis is sound.” “Analysis is complete.”

- **Soundness**: \(\text{analysis}(P) = \text{yes} \implies P \text{ satisfies the specification} \)
- **Completeness**: \(\text{analysis}(P) = \text{yes} \iff P \text{ satisfies the specification} \)
Spectrum of Program Analysis Techniques

- testing
- machine-assisted proving
- finite-state model checking
- conservative static analysis
- bug-finding
Testing

Approach

1. Consider finitely many, finite executions
2. For each of them, check whether it violates the specification

- If the finite executions find no bug, then accept.
- **Unsound**: can accept programs that violate the specification
- **Complete**: does not reject programs that satisfy the specification
Introduction

Machine-Assisted Proving

Approach

1. Use a specific language to formalize verification goals
2. Manually supply proof arguments
3. Let the proofs be automatically verified

- tools: Coq, Isabelle/HOL, PVS, ...
- **Applications**: CompCert (certified compiler), seL4 (secure micro-kernel), ...
- **Not automatic**: key proof arguments need to be found by users
- **Sound**: if the formalization is correct
- **Quasi-complete** (only limited by the expressiveness of the logics)
Finite-State Model Checking

Introduction

Focus on **finite state models** of programs

Perform **exhaustive exploration** of program states

- **Automatic**
- **Sound or complete**, only with respect to the finite models
- But, software has $\sim \infty$ states: need finite approximation or non-termination
Conservative Static Analysis

Principle

1. Perform automatic verification, yet which may fail
2. Compute a conservative approximation of the program semantics

- Either sound or complete, not both
- Sound & incomplete static analysis is common:
 - ML type systems, Astrée, Sparrow, Facebook Infer, ...
 - optimizing compilers relies on it
- Automatic
- Incompleteness: may reject safe programs
 or may raise false alarms
- Analysis algorithms reason over program semantics
Bug Finding

Approach

Automatic, unsound and incomplete algorithms

- Coverity, CodeSonar, SparrowFasoo, ...
- **Automatic and generally fast**
- **No mathematical guarantee about the results**
 - may reject a correct program, and accept an incorrect one
 - may raise false alarm and fail to report true violations
- Used to increase software quality without any guarantee
High-level Comparison

<table>
<thead>
<tr>
<th></th>
<th>automatic</th>
<th>sound</th>
<th>complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>testing</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>machine-assisted proving</td>
<td>no</td>
<td>yes</td>
<td>yes/no</td>
</tr>
<tr>
<td>finite-state model checking</td>
<td>yes</td>
<td>yes</td>
<td>yes/no</td>
</tr>
<tr>
<td>conservative static analysis</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>bug-finding</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Focus of This Lecture: Conservative Static Analysis

A general technique, for any programming language \mathbb{L} and safety property S, that

- **checks**, for input program P in \mathbb{L}, if $[P] \subseteq S$,
- **automatic** (algorithm)
- **finite** (terminating)
- **sound** (guarantee)
- **malleable** for arbitrary precision

A forthcoming framework
Will guide us how to design such static analysis.
Problem: How to Finitely Compute $[P]$ Beforehand

- Finite & exact computation $\text{Exact}(P)$ of $[P]$ is impossible, in general.

 For a Turing-complete language \mathbb{L},

 $\not\exists$ algorithm $\text{Exact} : \text{Exact}(P) = [P]$ for all P in \mathbb{L}.

- Otherwise, we can solve the Halting Problem.
 - Given P, see if $\text{Exact}(P; 1/0)$ has divide-by-zero.
Answers: Conservative Static Analysis

Technique for **finite sound estimation** $[P]^\#$ of $[P]$

- “finite”, hence
 - automatic (algorithm) &
 - static (without executing P)

- “sound”
 - over-approximation of $[P]$

Hence, ushers us to sound analysis:

$$(\text{analysis}(P) = \text{check } [P]^\# \subseteq S) \implies (P \text{ satisfies property } S)$$
Introduction

Need Formal Frameworks of Static Analysis (1/2)

Suppose that

- We are interested in the value ranges of variables.
- How to finitely estimate $[P]$ for the property?

You may, intuitively:

```c
x = readInt;
1:
   while (x <= 99)
2:
      x++;
3:
   end
4:

Capture the dynamics by abstract equations; solve; reason.

$x_1 = [-\infty, +\infty]$ or $x_3$
$x_2 = x_1 \text{ and } [-\infty, 99]$
$x_3 = x_2 + 1$
$x_4 = x_1 \text{ and } [100, +\infty]$
```
Abstract Interpretation [CousotCousot]: a powerful design theory

- How to derive correct yet arbitrarily precise equations?
 - Non-obvious: ptrs, heap, exns, high-order ftns, etc.

```plaintext
x = readInt;
while (x ≤ 99) {
  x++;
}
```

- Define an abstract semantics function \hat{F} s.t.

- How to solve the equations in a finite time?

```plaintext
x_1 = [-∞, +∞] or x_3
x_2 = x_1 and [-∞, 99]
x_3 = x_2 + 1
x_4 = x_1 and [100, +∞]
```

- Fixpoint iterations for an upperbound of $\text{fix}\hat{F}$
Outline

1. Introduction

2. Static Analysis: a Gentle Introduction

3. A General Framework in Transitional Style

4. A Technique for Scalability: Sparse Analysis

5. Specialized Frameworks
Example Language

\[
p ::= \init(\mathcal{R}) \quad \text{initialization, with a state in } \mathcal{R} \\
| \ \text{translation}(u, v) \quad \text{translation by vector } (u, v) \\
| \ \text{rotation}(u, v, \theta) \quad \text{rotation by center } (u, v) \text{ and angle } \theta \\
| \ p ; p \quad \text{sequence of operations} \\
| \ \{p\} \text{or}\{p\} \quad \text{non-deterministic choice} \\
| \ \text{iter}\{p\} \quad \text{non-deterministic iterations}
\]
Example (Semantics)

\[
\begin{align*}
\text{init}([0, 1] \times [0, 1]); \\
\text{translation}(1, 0); \\
\text{iter} \{ \\
\quad \text{translation}(1, 0) \\
\} \text{ or } \{ \\
\quad \text{rotation}(0, 0, 90^\circ) \\
\}
\end{align*}
\]
Analysis Goal Is Safety Property: Reachability

Analyze the set of reachable points, to check if the set intersects with a no-fly zone. Suppose that the no-fly zone is:
Correct or Incorrect Executions

(a) An incorrect execution

(b) Correct executions
An Example Safe Program

Example

```plaintext
init([0, 1] × [0, 1]);
iter{
    translation(1, 0);
} or {
    translation(0.5, 0.5);
}
```

Graph showing the progression of the translation operations.
How to Finitely Over-Approximate the Set of Reachable Points?

Definition (Abstraction)

We call abstraction a set \mathcal{A} of logical properties of program states, which are called abstract properties or abstract elements. A set of abstract properties is called an abstract domain.

Definition (Concretization)

Given an abstract element a of \mathcal{A}, we call concretization the set of program states that satisfy it. We denote it by $\gamma(a)$.
Abstraction Example 1: Signs Abstraction

(c) Concretization of $[x \leq 0, y \geq 0]$
(d) Concretization of $[x \geq 0]$

Figure: Signs abstraction
Abstraction Example 2: Interval Abstraction

The abstract elements: conjunctions of non-relational inequality constraints: $c_1 \leq x \leq c_2, c'_1 \leq y \leq c'_2$

(a) Concretization of $[1 \leq x \leq 3, 1 \leq y \leq 2]$

(b) Concretization of $[1 \leq x \leq 2]$

(c) Concretization of $[1 \leq x, 1 \leq y]$

Figure: Intervals abstraction
Abstraction Example 3: Convex Polyhedra Abstraction

The abstract elements: conjunctions of linear inequality constraints:
\[c_1x + c_2y \leq c_3 \]

Figure: Convex polyhedra abstraction
An Example Program, Again

Example

```plaintext
init([0, 1] \times [0, 1]);
iter{
    {translation(1, 0);
    } or {
        translation(0.5, 0.5);
    }
}
```

Figure: Reachable states
Abstractions of the Semantics of the Example Program

Figure: Program’s reachable states and abstraction
Sound Analysis Function for the Example Language

- Input: a program \(p \) and an abstract area \(a \) (pre-state)
- Output: an abstract area \(a' \) (post-state)

Definition (Sound analysis)

An analysis is sound if and only if it captures the real executions of the input program.

If an execution of \(p \) moves a point \((x, y)\) to point \((x', y')\), then for all abstract element \(a \) such that \((x, y) \in \gamma(a), (x', y') \in \gamma(\text{analysis}(p, a))\)
Sound Analysis Function as a Diagram

\[
\text{If } \quad a_{\text{pre}} \quad \text{abstraction} \quad (x, y) \xrightarrow{\text{run } p} (x', y') \quad \text{then} \quad \text{abstraction} \quad a_{\text{post}} = \text{analysis}(p, a_{\text{pre}}) \\
\]

Figure: Sound analysis of a program p
Abstract Semantics Computation

Recall the example language

\[
p ::= \text{init}(R) \quad \text{initialization, with a state in } R \\
 | \text{translation}(u, v) \quad \text{translation by vector } (u, v) \\
 | \text{rotation}(u, v, \theta) \quad \text{rotation defined by center } (u, v) \text{ and angle } \theta \\
 | p; p \quad \text{sequence of operations} \\
 | \{p\}\text{or}\{p\} \quad \text{non-deterministic choice} \\
 | \text{iter}\{p\} \quad \text{non-deterministic iterations}
\]

Approach

A sound analysis for a program is constructed by computing sound abstract semantics of the program’s components.
Select, if any, the best abstraction of the region R.

For the example program with the intervals or convex polyhedra abstract domains, analysis of $\text{init}([0, 1] \times [0, 1])$ is

$$\text{analysis}(\text{init}(R), a) = \text{best abstraction of the region } R$$
Abstract Semantics Computation: \(\text{translation}(u, v) \)

(a) Concrete semantics
(b) Intervals
(c) Convex polyhedra

\[
\text{analysis}(\text{translation}(u, v), a) = \begin{cases}
\text{return an abstract state that contains} \\
\text{the translation of } a
\end{cases}
\]
Abstract Semantics Computation: rotation\((u, v, \theta)\)

\[
\text{analysis}(\text{rotation}(u, v, \theta), a) = \begin{cases}
\text{return an abstract state that contains} \\
\text{the rotation of } a
\end{cases}
\]
Abstract Semantics Computation: \{p\} or \{p\}

\begin{align*}
\text{analysis(}\{p_0\} \text{ or } \{p_1\}, a) &= \text{union}\left(\text{analysis}(p_1, a), \text{analysis}(p_0, a)\right)
\end{align*}
Abstract Semantics Computation: \(p_0 ; p_1 \)

\[
\text{analysis}(p_0; p_1, a) = \text{analysis}(p_1, \text{analysis}(p_0, a))
\]
Abstract Semantics Computation: $\text{iter}\{p\}$ (1/5)

$\text{iter}\{p\}$ is equivalent to

\[
\begin{align*}
&\{\} \\
\text{or}\{p\} \\
\text{or}\{p; p\} \\
\text{or}\{p; p; p\} \\
\text{or}\{p; p; p; p\} \\
\vdots
\end{align*}
\]
Abstract Semantics Computation: \texttt{iter}\{p\} (2/5)

Example (Abstract iteration)

\begin{verbatim}
init({(x,y) | 0 \leq y \leq 2x and x \leq 0.5});
iter{
 translation(1,0.5)
}
\end{verbatim}

Figure: Abstract iteration
Abstract Semantics Computation: \(\text{iter}\{p\} \) (3/5)

Recall

\[
\text{iter}\{p\} = \{\} \text{ or } \{p\} \text{ or } \{p; p\} \text{ or } \cdots = \lim_i p_i
\]

where

\[
p_0 = \{\} \quad p_{k+1} = p_k \text{ or } \{p_k; p\}
\]

Hence,

\[
\text{analysis}(\text{iter}\{p\}, a) = \begin{cases}
R \leftarrow a; \\
\text{repeat} \\
\quad T \leftarrow R; \\
\quad R \leftarrow \text{widen}(R, \text{analysis}(p, R)); \\
\text{until inclusion}(R, T) \\
\text{return } T;
\end{cases}
\]

operator \text{widen} \quad \begin{cases}
\text{over approximates unions} \\
\text{enforces finite convergence}
\end{cases}
Example (Abstract iteration with widening)

\[
\begin{align*}
\text{init}(\{(x, y) \mid 0 \leq y \leq 2x \text{ and } x \leq 0.5\}); \\
\text{iter}\{ \\
\quad \text{translation}(1, 0.5) \\
\}
\end{align*}
\]

- The constraints \(0 \leq y\) and \(y \leq 2x\) are stable after iteration 1; thus, they are preserved.
- The constraint \(x \leq 0.5\) is not preserved; thus, it is discarded.

Figure: Abstract iteration with widening
Example (Loop unrolling)

\[
\text{init}(\{(x, y) \mid 0 \leq y \leq 2x \text{ and } x \leq 0.5\}); \\
\{\} \text{ or } \{ \text{translation}(1, 0.5) \}; \\
\text{iter}\{ \text{translation}(1, 0.5) \}
\]

Figure: Abstract iteration with widening and unrolling

(a) Iteration 0
(b) Iteration 1, union
(c) Iteration 2, widen, limit
Abstract Semantics Function analysis at a Glance

The $\text{analysis}(p, a)$ is finitely computable and sound.

\[
\begin{align*}
\text{analysis}(\text{init}(R), a) & = \text{best abstraction of the region } R \\
\text{analysis}(\text{translation}(u, v), a) & = \begin{cases} \\
\text{return an abstract state that contains} & \\
\text{the translation of } a & \\
\text{analysis}(\text{rotation}(u, v, \theta), a) & = \begin{cases} \\
\text{return an abstract state that contains} & \\
\text{the rotation of } a & \\
\text{analysis}\{p_0\} \cup \{p_1\}, a) & = \text{union(analysis}(p_1, a), \text{analysis}(p_0, a)) \\
\text{analysis}(p_0; p_1, a) & = \text{analysis}(p_1, \text{analysis}(p_0, a)) \\
\text{analysis}(\text{iter}\{p\}, a) & = \begin{cases} \\
R \leftarrow a; & \\
\text{repeat} & \\
T \leftarrow R; & \\
R \leftarrow \text{widen}(R, \text{analysis}(p, R)); & \\
\text{until inclusion}(R, T) & \\
\text{return } T; & \\
\end{cases}
\end{cases}
\end{align*}
\]

Sound analysis

If an execution of p from a state (x, y) generates the state (x', y'), then for all abstract element a such that $(x, y) \in \gamma(a)$,

\[(x', y') \in \gamma(\text{analysis}(p, a))\]
Verification of the Property of Interest

- Does program compute a point inside no-fly zone \mathcal{D}?
- Need to collect the set of reachable points.
- Run $\text{analysis}(p, -)$ and collect all points \mathcal{R} from every call to analysis.
- Since analysis is sound, the result is an overapproximation of the reachable points.
- If $\mathcal{R} \cap \mathcal{D} = \emptyset$, then p is verified. Otherwise, we don't know.

(a) A \mathcal{R}
(b) A more precise \mathcal{R}
Semantics Style: Compositional Versus Transitional

- Compositional semantics function analysis:
 - Semantics of p is defined by the semantics of the sub-parts of p.
 \[
 [AB] = \cdots [A] \cdots [B] \cdots
 \]
 - Proving its soundness is thus by structural induction on p.

- For some realistic programming languages, even defining their compositional ("denotational") semantics is a hurdle.
 - gotos, exceptions, function calls

Transitional-style ("operational") semantics avoids the hurdle

\[
[AB] = \{ s_0 \leftrightarrow s_1 \leftrightarrow \cdots , \cdots \}
\]
Example Language, Again

\[
p ::= \text{init}(\mathcal{R}) \quad \text{initialization, with a state in } \mathcal{R}
\]
\[
| \quad \text{translation}(u,v) \quad \text{translation by vector } (u,v)
\]
\[
| \quad \text{rotation}(u,v,\theta) \quad \text{rotation by center } (u,v) \text{ and angle } \theta
\]
\[
| \quad p ; p \quad \text{sequence of operations}
\]
\[
| \quad \{p\} \text{or}\{p\} \quad \text{non-deterministic choice}
\]
\[
| \quad \text{iter}\{p\} \quad \text{non-deterministic iterations}
\]
Semantics as State Transitions

Definition (Transitional semantics)

An execution of a program is a sequence of transitions between states.

- a state is a pair \((l, p)\) of statement label \(l\) and an \((x, y)\) point \(p\).
- a single transition
 \[
 (l, p) \leftrightarrow (l', p')
 \]
 whenever the program statement at \(l\) moves the point \(p\) to \(p'\).

States \(s_1, s_6, s_9, \text{ and } s_{12}\) are initial states.

Figure: Transition sequences and the set of occurring states
Statement Labels

(a) Text view, with labels

(b) Graph view, with labels

Figure: Example program with statement labels
States in a Transition Sequence

(a) State \((1, p_1)\)

(b) State \((2, p_1)\)

(c) State \((4, p_1)\)

(d) State \((1, p_3)\)

(e) State \((5, p_3)\)
Reachability Problem and Abstraction of States

- Reachability problem: compute the set of all states that can occur during all transition sequences of the input program.
- An abstract state is a set of pairs of statement labels and abstract preconditions.

Collection of all states:

Statement-wise collection:

Statement-wise abstraction:
Abstract State Transition

\[\text{Step}^{\#}: \text{ a set of pairs of labels and abstract pre conditions } \]
\[\mapsto \]
\[\text{a set of pairs of labels and abstract post conditions} \]

is

\[\text{Step}^{\#}(X) = \{ x' \mid x \in X, x \rightarrow^{\#} x' \} \]

where

\[
\begin{align*}
(\text{or}_l, a_{\text{pre}}) & \rightarrow^{\#} (\text{next}(l), a_{\text{pre}}) \\
(\text{iter}_l, a_{\text{pre}}) & \rightarrow^{\#} (\text{next}(l), a_{\text{pre}}) \\
(p_l, a_{\text{pre}}) & \rightarrow^{\#} (\text{next}(l), \text{analysis}(p_l, a_{\text{pre}}))
\end{align*}
\]
Analysis by Global Iterations

The analysis goal is to accumulate from the initial abstract state I:

$$\text{Step}^{\#0}(I) \cup \text{Step}^{\#1}(I) \cup \text{Step}^{\#2}(I) \cup \ldots$$

which is the limit C_∞ of $C_i = \text{Step}^{\#0}(I) \cup \text{Step}^{\#1}(I) \cup \cdots \cup \text{Step}^{\#i}(I)$ where

$$C_{k+1} = C_k \cup \text{Step}^{\#}(C_k).$$

Thus the analysis algorithm should iterate the operation

$$C \leftarrow C \cup \text{Step}^{\#}(C)$$

from I until stable:

$$\text{analysis}_T(p, I) = \begin{cases}
 C \leftarrow I \\
 \text{repeat} \\
 \quad R \leftarrow C \\
 \quad C \leftarrow \text{widen}_T(C, \text{Step}^{\#}(C)) \\
 \text{until } \text{inclusion}_T(C, R) \\
 \text{return } R
\end{cases}$$

where widen_T over-approximates unions and enforces finite convergence.
Analysis in Action

(f) State $(1, a_1)$

(g) States $(2, a_1)$ and $(5, a_1)$

(h) States $(3, a_1)$ and $(4, a_1)$

(i) States $(1, a_2)$ and $(1, a_3)$

(j) State $(1, \text{union} \{(a_2, a_3)\})$

(k) State $(1, \text{union} \{(a_1, a_2, a_3)\})$
Principles of a Static Analysis, Sketchy

- **Selection of the semantics and properties of interest:**
 - define the behaviors of programs
 - define the properties that need to be verified
 - formal definitions

- **Choice of the abstraction:**
 - define the space of abstract elements over which the abstract semantics is defined
 - define what the abstract elements mean
 - define abstract semantics and prove its soundness

- **Derivation of the analysis algorithms from the semantics and from the abstraction:**
 - algorithm follows the semantic formalism in use
 - e.g., compositional algorithm in the style of program interpreter
 - e.g., transitional algorithm by a monolithic, global iterations
Outline

1. Introduction
2. Static Analysis: a Gentle Introduction
3. A General Framework in Transitional Style
4. A Technique for Scalability: Sparse Analysis
5. Specialized Frameworks
Transitional Semantics

State transition sequence

\[s_0 \xrightarrow{\cdot} s_1 \xrightarrow{\cdot} s_2 \xrightarrow{\cdot} \cdots \]

where $\xrightarrow{\cdot}$ is a transition relation between states \mathcal{S}

\[\xrightarrow{\cdot} \subseteq \mathcal{S} \times \mathcal{S} \]

A state $s \in \mathcal{S}$ of the program is a pair (l, m) of a program label l and the machine state m at that program label during execution.
Concrete Transition Sequence

Example
Consider the following program

```
input(x);
while (x ≤ 99)
{x := x + 1}
```

Let labels be “program points”. Such labeled representations of this program in graph is

Let the initial state be the empty memory \emptyset. Some transition sequences are:

For input 100: $(0, \emptyset) \rightarrow (1, x \mapsto 100) \rightarrow (3, x \mapsto 100)$.
For input 99: $(0, \emptyset) \rightarrow (1, x \mapsto 99) \rightarrow (2, x \mapsto 99) \rightarrow (1, x \mapsto 100) \rightarrow (3, x \mapsto 100)$.
For input 0: $(0, \emptyset) \rightarrow (1, x \mapsto 0) \rightarrow (2, x \mapsto 0) \rightarrow (1, x \mapsto 1) \rightarrow \cdots \rightarrow (3, x \mapsto 100)$.
A General Framework in Transitional Style

Reachable States

\[
\begin{align*}
0 & \quad \text{input(x)} \\
1 & \quad \text{while } (x \leq 99) \\
2 & \quad x := x + 1
\end{align*}
\]

Assume that the possible inputs are 0, 99, and 100. Then, the set of all reachable states are the set of states occurring in the three transition sequences:

\[
\begin{align*}
&\{(0, \emptyset), (1, x \mapsto 100), (3, x \mapsto 100)\} \\
\cup &\{(0, \emptyset), (1, x \mapsto 99), (2, x \mapsto 99), (1, x \mapsto 100), (3, x \mapsto 100)\} \\
\cup &\{(0, \emptyset), (1, x \mapsto 0), (2, x \mapsto 0), (1, x \mapsto 1), \ldots, (2, x \mapsto 99), (1, x \mapsto 100), (3, x \mapsto 100)\} \\
= &\{(0, \emptyset), (1, x \mapsto 0), \ldots, (1, x \mapsto 100), (2, x \mapsto 0), \ldots, (2, x \mapsto 99), (3, x \mapsto 100)\}
\]
Concrete Semantics: the Set of Reachable States (1/3)

Given a program, let I be the set of its initial states and $Step$ be the powerset-lifted version of \rightarrow:

$$Step : \mathcal{P}(S) \rightarrow \mathcal{P}(S)$$

$$Step(X) = \{ s' \mid s \hookrightarrow s', s \in X \}$$

The set of reachable states is

$$I \cup Step^1(I) \cup Step^2(I) \cup \cdots .$$

which is, equivalently, the limit of C_is

$$C_0 = I$$

$$C_{i+1} = I \cup Step(C_i)$$

which is, the least solution of

$$X = I \cup Step(X).$$
Concrete Semantics: the Set of Reachable States (2/3)

The least solution of

\[X = I \cup \text{Step}(X) \]

is also called the least fixpoint of \(F \)

\[F : \wp(S) \to \wp(S) \]
\[F(X) = I \cup \text{Step}(X) \]

written as

\[\text{lfp}F. \]

Theorem (Least fixpoint)

The least fixpoint \(\text{lfp}F \) of \(F(X) = I \cup \text{Step}(X) \) is

\[\bigcup_{i \geq 0} F^i(\emptyset) \]

where \(F^0(X) = X \) and \(F^{n+1}(X) = F(F^n(X)) \).
Concrete Semantics: the Set of Reachable States (3/3)

Definition (Concrete semantics, the set of reachable states)

Given a program, let S be the set of states and \rightarrow be the one-step transition relation $\subseteq S \times S$. Let I be the set of its initial states and Step be the powerset-lifted version of \rightarrow:

$$\text{Step} : \wp(S) \to \wp(S)$$

$$\text{Step}(X) = \{ s' \mid s \xrightarrow{} s', s \in X \}.$$

Then the concrete semantics of the program, the set of all reachable states from I, is defined as the least fixpoint $\text{lfp}F$ of F

$$F(X) = I \cup \text{Step}(X).$$
Analysis Goal

Program-label-wise reachability

For each program label we want to know the set of memories that can occur at that label during executions of the input program.

- labels: “partitioning indices”
- e.g., statement labels as in programs, statement labels after loop unrolling, statement labels after function inlining
Abstract Semantics

Define the abstract semantics “homomorphically”:

\[F : \wp(S) \rightarrow \wp(S) \]
\[F(X) = I \cup \text{Step}(X) \]
\[F^\# : S^\# \rightarrow S^\# \]
\[F^\#(X^\#) = I^\# \cup ^\# \text{Step}^\#(X^\#) \]

The forthcoming framework will guide us

- conditions for \(S^\# \) and \(F^\# \)
- so that the abstract semantics is finitely computable and is an upper-approximation of concrete semantics \(\text{lfp}F \).
Abstraction of the Semantic Domain $\phi(S)$ (1/2)

$\phi(S)$ where $S = L \times M$

Label-wise (two-step) abstraction of states:

$$
\phi(L \times M) \xrightarrow{\text{abstraction}} L \rightarrow \phi(M) \xrightarrow{\text{abstraction}} L \rightarrow M^\sharp.
$$
Abstraction of the Semantic Domain $\varphi(\mathbb{S})$ (2/2)

A General Framework in Transitional Style

| $\varphi(\mathbb{L} \times \mathbb{M}) \ni$ | collection of all states | \[
(0, m_0), (0, m'_0), \ldots, \text{ at 0} \\
(1, m_1), (1, m'_1), \ldots, \text{ at 1} \\
\vdots \\
(n, m_n), (n, m'_n), \ldots \text{ at } n
\]
| $\mathbb{L} \rightarrow \varphi(\mathbb{M}) \ni$ | label-wise collection | \[
(0, \{m_0, m'_0, \ldots\}) \\
(1, \{m_1, m'_1, \ldots\}) \\
\vdots \\
(n, \{m_n, m'_n, \ldots\})
\]
| $\mathbb{L} \rightarrow \mathbb{M}^\# \ni$ | label-wise abstraction | \[
(0, M_0^\#) \\
(1, M_1^\#) \\
\vdots \\
(n, M_n^\#)
\]

Each $M_l^\#$ over-approximates the set $\{m_l, m'_l, \ldots\}$ collected at label l.

Kwangkeun Yi (Seoul National University) Static Analysis 5/2019@The 9th SSFT 69 / 130
Define an abstract domain as a *CPO*
 ▶ a partial order set
 ▶ has a least element \(\bot \)
 ▶ has a least-upper bound for every *chain*

An abstract domain as \(\sqcup \)-semilattices also work.
Preliminary for Abstract Domains (2/3)

Abstract and concrete domains are structured “consistently”.

Definition (Galois connection)

A *Galois connection* is a pair made of a concretization function γ and an abstraction function α such that:

$$\forall c \in C, \forall a \in A, \quad \alpha(c) \sqsubseteq a \iff c \subseteq \gamma(a)$$

We write such a pair as follows:

$$(C, \subseteq) \xymatrix{\approx\ar @{-} @<0.5em> [r]^\gamma && (A, \sqsubseteq) \ar @{-} @<-0.5em> [l]_\alpha}$$
Galois-connection properties we rely on:
For

\[(\mathcal{C}, \subseteq) \xleftrightarrow{\gamma}{\alpha} (\mathcal{A}, \sqsubseteq)\]

- \(\alpha\) and \(\gamma\) are monotone functions
- \(\forall c \in \mathcal{C}, \ c \subseteq \gamma(\alpha(c))\)
- \(\forall a \in \mathcal{A}, \ \alpha(\gamma(a)) \sqsubseteq a\)
- If both \(\mathcal{C}\) and \(\mathcal{A}\) are CPOs, then \(\alpha\) is continuous.

(Proofs are in the supplementary note.)
Abstract Domains (1/2)

Design an abstract domain as a CPO that is Galois-connected with the concrete domain:

\[(\wp(L \times M), \subseteq) \xrightarrow{\alpha} (L \to M^\#, \subseteq).\]

- Abstraction \(\alpha\) defines how each concrete elmt (set of concrete states) is abstracted into an abstract elmt.
- Concretization \(\gamma\) defines the set of concrete states implied by each abstract state.
- Partial order \(\subseteq\) is the label-wise order:

\[a^\# \subseteq b^\# \iff \forall l \in L : a^\#(l) \subseteq_M b^\#(l)\]

where \(\subseteq_M\) is the partial order of \(M^\#\).
Abstract Domains (2/2)

The above Galois connection (abstraction)

\[(\varnothing(\mathbb{L} \times \mathbb{M}), \subseteq) \overset{\gamma}{\leftarrow} \overset{\alpha}{\rightarrow} (\mathbb{L} \rightarrow \mathbb{M}^\sharp, \subseteq).\]

composes two Galois connections:

\[
\begin{align*}
(\varnothing(\mathbb{L} \times \mathbb{M}), \subseteq) & \overset{\gamma_0}{\leftarrow} \overset{\alpha_0}{\rightarrow} (\mathbb{L} \rightarrow \varnothing(\mathbb{M}), \subseteq) \quad (\subseteq \text{ is the label-wise } \subseteq) \\
& \overset{\gamma_1}{\leftarrow} \overset{\alpha_1}{\rightarrow} (\mathbb{L} \rightarrow \mathbb{M}^\sharp, \subseteq) \quad (\subseteq \text{ is the label-wise } \subseteq_M)
\end{align*}
\]

Thus, boils down to

\[
(\varnothing(\mathbb{M}), \subseteq) \overset{\gamma_M}{\leftarrow} \overset{\alpha_M}{\rightarrow} (\mathbb{M}^\sharp, \subseteq_M).
\]
Abstract Semantic Functions

Let

\[(\wp(\mathbb{L} \times \mathbb{M}), \subseteq) \xleftarrow{\gamma} (\mathbb{L} \rightarrow \mathbb{M}^\#, \subseteq).\]

A concrete semantic function \(F\)

\[\begin{align*}
S &= \mathbb{L} \times \mathbb{M} \\
F &: \wp(S) \rightarrow \wp(S) \\
F(X) &= I \cup \text{Step}(X) \\
\text{Step} &= \wp(\rightarrow) \\
\rightarrow \subseteq (\mathbb{L} \times \mathbb{M}) \times (\mathbb{L} \times \mathbb{M})
\end{align*}\]

An abstract semantic function \(F^\#\)

\[\begin{align*}
S^\# &= \mathbb{L} \rightarrow \mathbb{M}^\# \\
F^\# &: S^\# \rightarrow S^\# \\
F^\#(X^\#) &= \alpha(I) \cup^\# \text{Step}^\#(X^\#) \\
\text{Step}^\# &= \wp(\text{id}, \sqcup_M) \circ \pi \circ \wp(\rightarrow^\#) \\
\rightarrow^\# \subseteq (\mathbb{L} \times \mathbb{M}^\#) \times (\mathbb{L} \times \mathbb{M}^\#)
\end{align*}\]

with relations \(\rightarrow\) and \(\rightarrow^\#\) being functions
As of $\text{Step}^\# = \varnothing(\text{id}, \sqcup_M) \circ \pi \circ \tilde{\varnothing}(\hookrightarrow^\#)$

$\text{Step}^\# : (\mathbb{L} \rightarrow \mathbb{M}^\#) \rightarrow (\mathbb{L} \rightarrow \mathbb{M}^\#)$

- Abstract transition $\tilde{\varnothing}(\hookrightarrow^\#)$:
 - a set $\subseteq \mathbb{L} \times \mathbb{M}^\# \mapsto$ a set $\subseteq \mathbb{L} \times \mathbb{M}^\#$

- Paritioning π:
 - a set $\subseteq \mathbb{L} \times \mathbb{M}^\# \mapsto$ a set $\subseteq \mathbb{L} \times \varnothing(\mathbb{M}^\#)$

- Joining $\varnothing(\text{id}, \sqcup_M)$:
 - a set $\subseteq \mathbb{L} \times \varnothing(\mathbb{M}^\#) \mapsto$ an abstract state $\in \mathbb{L} \rightarrow \mathbb{M}^\#$
Example

Suppose the program has two labels l_1 and l_2. That is, $\mathbb{L} = \{l_1, l_2\}$. Given an abstract state $\{(l_1, M_1^\#), (l_2, M_2^\#)\}$, Step$^\#$ first applies $\varnothing(\hookrightarrow^\#)$ to it:

$$\hookrightarrow^\#(l_1, M_1^\#) \cup \hookrightarrow^\#(l_2, M_2^\#).$$

Suppose $\hookrightarrow^\#(l_1, M_1^\#)$ returns $\{(l_1, M_1'^\#), (l_2, M_2''^\#)\}$ and $\hookrightarrow^\#(l_2, M_2^\#)$ returns $\{(l_1, M_2'^\#)\}$. Then the result is

$$\{(l_1, M_1'^\#), (l_2, M_2''^\#), (l_1, M_2'^\#)\}.$$

The subsequent application of the operator π partitions the result by labels into

$$\{(l_1, \{M_1'^\#, M_2'^\#\}), (l_2, \{M_2''^\#\})\}.$$

The final organization operation $\varnothing(id, \sqcup_M)$ returns the post abstract state $\in \mathbb{L} \rightarrow M^\#$:

$$\{(l_1, M_1'^\# \sqcup_M M_2'^\#), (l_2, M_2''^\#)\}.$$

Kwangkeun Yi (Seoul National U) Static Analysis 5/2019@The 9th SSFT 77 / 130
Conditions for Sound $\hookrightarrow^\#$ and $\cup^\#$

- Sound condition for $\hookrightarrow^\#$:
 \[\circ (\hookrightarrow) \circ \gamma \subseteq \gamma \circ \circ (\hookrightarrow^\#) \]

- Sound condition for $\cup^\#$:
 \[\cup \circ (\gamma, \gamma) \subseteq \gamma \circ \cup^\# \]

Pattern for the sound condition for each semantic operator $f^\# : A^\# \rightarrow B^\#$

\[f \circ \gamma_A \subseteq_B \gamma_B \circ f^\# . \]
Then, Follows Sound Static Analysis

- In case $S^\#$ is of finite-height and $F^\#$ is monotone or extensive, then
 \[
 \bigsqcup_{i \geq 0} F^\#_i(\bot)
 \]
 is finitely computable and over-approximates the concrete semantics $\text{lfp} F$.

- Otherwise, find a widening operator \triangledown, then the following chain
 $X_0 \sqsubseteq X_1 \sqsubseteq \cdots$
 \[
 X_0 = \bot, \quad X_{i+1} = X_i \triangledown F^\#(X_i)
 \]
 is finite and its last element over-approximates the concrete semantics $\text{lfp} F$.

Kwangkeun Yi (Seoul National U)
Static Analysis
5/2019®The 9th SSFT 79 / 130
Underlying Theorems (1/2)

Theorem (Sound static analysis by $F^\#$)

Given a program, let F and $F^\#$ be defined as in the framework. If $S^\#$ is of finite-height (every chain $S^\#$ is finite) and $F^\#$ is monotone or extensive, then

$$\bigsqcup_{i \geq 0} F^{\#i}(\bot)$$

is finitely computable and over-approximates $\text{lfp}F$:

$$\text{lfp}F \subseteq \gamma(\bigsqcup_{i \geq 0} F^{\#i}(\bot)) \quad \text{or equivalently} \quad \alpha(\text{lfp}F) \subseteq \bigsqcup_{i \geq 0} F^{\#i}(\bot).$$

(Proof is in the supplementary note.)
Underlying Theorems (2/2)

Theorem (Sound static analysis by $F^\#$ and widening operator \triangledown)

Given a program, let F and $F^\#$ be defined as in the framework. Let \triangledown be a widening operator. Then the following chain $Y_0 \sqsubseteq Y_1 \sqsubseteq \cdots$

$$Y_0 = \perp \quad Y_{i+1} = Y_i \triangledown F^\#(Y_i)$$

is finite and its last element Y_{lim} over-approximates $\text{lfp}F$:

$$\text{lfp}F \subseteq \gamma(Y_{\text{lim}}) \quad \text{or equivalently} \quad \alpha(\text{lfp}F) \sqsubseteq Y_{\text{lim}}.$$

(Proof is in the supplementary note.)
Definition (Widening operator)

A \textit{widening} operator over an abstract domain \mathbb{A} is a binary operator \triangledown, such that:

1. For all abstract elements a_0, a_1, we have
 \[\gamma(a_0) \cup \gamma(a_1) \subseteq \gamma(a_0 \triangledown a_1) \]

2. For all sequence $(a_n)_{n \in \mathbb{N}}$ of abstract elements, the sequence $(a'_n)_{n \in \mathbb{N}}$ defined below is ultimately stationary:
 \[
 \begin{align*}
 a'_0 &= a_0 \\
 a'_{n+1} &= a'_n \triangledown a_n
 \end{align*}
 \]
Analysis Algorithm Based on Global Iterations: Basic Version (1/2)

- Case: $S^\#$ is of finite-height and $F^\#$ is monotone or extensive
- Note the increasing chain

\[
\bot \sqsubseteq (F^\#)^1(\bot) \sqsubseteq (F^\#)^2(\bot) \sqsubseteq \cdots
\]

is finite and its biggest element is equal to

\[
\bigcup_{i \geq 0} F^\#^i(\bot).
\]

```plaintext
C ← ⊥
repeat
    R ← C
    C ← F^\#(C)
until C ⊑ R
return R
```
Case: $S^#$ is of infinite-height or $F^#$ is neither monotonic nor extensive

Use a widening operator ∇

```plaintext
C ← ⊥
repeat
   R ← C
   C ← C $\nabla$ $F^#(C)$
until C ⊑ R
return R
```
Inefficiency of the Basic Algorithms

Recall the algorithm with $F^\#(C)$ being inlined:

\[
\begin{align*}
C & \leftarrow \bot \\
\text{repeat} & \\
R & \leftarrow C \\
C & \leftarrow C \triangledown (\varphi(id, \sqcup) \circ \pi \circ \tilde{\varphi}(\rightarrow^\#))(C) \\
\text{until } C \sqsubseteq R & \\
\text{return } R
\end{align*}
\]

- $|C| \sim$ the number of labels in the input program!
- Better apply

\[
\tilde{\varphi}(\rightarrow^#)(C)
\]

only to necessary labels
Analysis Algorithm Based on Global Iterations: Worklist Version

- worklist: the set of labels whose input memories are changed in the previous iteration

\[
C : \mathbb{L} \to \mathbb{M}^\#
\]

\[
F^# : (\mathbb{L} \to \mathbb{M}^#) \to (\mathbb{L} \to \mathbb{M}^#)
\]

\[
\text{WorkList}: \emptyset(\mathbb{L})
\]

\[
\text{WorkList} \leftarrow \mathbb{L}
\]

\[
C \leftarrow \bot
\]

repeat

\[
R \leftarrow C
\]

\[
C \leftarrow C \triangledown F^#(C|\text{WorkList})
\]

\[
\text{WorkList} \leftarrow \{l \mid C(l) \not\subseteq R(l), l \in \mathbb{L}\}
\]

until \(\text{WorkList} = \emptyset\)

return \(R\)
Improvement of the Worklist Algorithm

- Inefficient: \(\text{WorkList} \leftarrow \{ l \mid C(l) \not< R(l), l \in L \} \) re-scans all the labels.
 - Better: At application \(\mapsto \# \) to \((l, C(l))\), if its result \((l', M\#)\) is changed \((M\# \not< C(l'))\), add \(l'\) to the worklist.

- Inefficient: \(C \bigtriangleup F\#(C|_{\text{WorkList}}) \) widens at all the labels.
 - Better: Apply \(\bigtriangleup \) only at the target of a loop. Use \(\cup\# \) at other labels.
1. Define \mathbb{M} to be the set of memory states that can occur during program executions. Let \mathbb{L} be the finite and fixed set of labels of a given program.

2. Define a concrete semantics as the $\text{lfp} F$ where

\begin{align*}
\text{concrete domain} & \quad \wp(\mathbb{S}) = \wp(\mathbb{L} \times \mathbb{M}) \\
\text{concrete semantic function} & \quad F : \wp(\mathbb{S}) \to \wp(\mathbb{S}) \\
F(X) & = I \cup \text{Step}(X) \\
\text{Step} & = \wp(\hookrightarrow) \\
\hookrightarrow & \subseteq (\mathbb{L} \times \mathbb{M}) \times (\mathbb{L} \times \mathbb{M})
\end{align*}

The \hookrightarrow is the one-step transition relation over $\mathbb{L} \times \mathbb{M}$.
Define its abstract domain and abstract semantic function as:

\[
\begin{align*}
\text{abstract domain} & \quad S^# = L \rightarrow M^# \\
\text{abstract semantic function} & \quad F^# : S^# \rightarrow S^# \\
F^#(X^#) & \quad = \quad \alpha(I) \cup^# \text{Step}^#(X^#) \\
\text{Step}^# & \quad = \quad \varnothing(id, \sqcup_M) \circ \pi \circ \varnothing(\leftarrow^#) \\
\leftarrow^# & \quad \subseteq \quad (L \times M^#) \times (L \times M^#)
\end{align*}
\]

The \(\leftarrow^#\) is the one-step abstract transition relation over \(L \times M^#\).

Function \(\pi\) partitions a set \(\subseteq L \times M^#\) by the labels in \(L\) returning an element in \(L \rightarrow \varnothing(M^#)\) represented as a set \(\subseteq L \times \varnothing(M^#)\).
Check the abstract domains $\mathcal{S}^\#$ and $\mathcal{M}^\#$ are CPOs, and forms a Galois-connection respectively with $\wp(\mathcal{S})$ and $\wp(\mathcal{M})$:

\[
(\wp(\mathcal{S}), \subseteq) \xleftrightarrow{\gamma} (\mathcal{S}^\#, \sqsubseteq) \quad \text{and} \quad (\wp(\mathcal{M}), \subseteq) \xleftrightarrow{\gamma_M} (\mathcal{M}^\#, \sqsubseteq_M)
\]

where the partial order \sqsubseteq of $\mathcal{S}^\#$ is label-wise \sqsubseteq_M:

\[
a^\# \sqsubseteq b^\# \iff \forall l \in \mathcal{L} : a^\#(l) \sqsubseteq_M b^\#(l).
\]

Check the abstract one-step transition $\hookrightarrow^\#$ and abstract union $\bigcup^\#$ satisfy:

\[
\wp(\hookrightarrow) \circ \gamma \sqsubseteq \gamma \circ \wp(\hookrightarrow^\#)
\]

\[
\bigcup \circ (\gamma, \gamma) \sqsubseteq \gamma \circ \bigcup^\#
\]
Then, sound static analysis is defined as follows:

- In case $S^\#$ is of finite-height (every its chain is finite) and $F^\#$ is monotone or extensive, then

$$\bigcup_{i \geq 0} F^\#^i (\bot)$$

is finitely computable and over-approximates the concrete semantics $\text{lfp} F$.

- Otherwise, find a widening operator \triangledown, then the following chain

$$X_0 \sqsubseteq X_1 \sqsubseteq \cdots$$

$$X_0 = \bot \quad X_{i+1} = X_i \triangledown F^\#(X_i)$$

is finite and its last element over-approximates the concrete semantics $\text{lfp} F$.
Use Example: Target Language

\[x \in X \] \quad \text{program variables}

\[
C ::= \\
| \text{skip} \quad \text{nop statement} \\
| C; C \quad \text{sequence of statements} \\
| x := E \quad \text{assignment} \\
| \text{input}(x) \quad \text{read an integer input} \\
| \text{if}(B)\{C\}\text{else}\{C\} \quad \text{condition statement} \\
| \text{while}(B)\{C\} \quad \text{loop statement} \\
| \text{goto } E \quad \text{goto with dynamically computed label}
\]

\[
E ::= \\
| n \quad \text{integer} \\
| x \quad \text{variable} \\
| E + E \quad \text{addition}
\]

\[
B ::= \\
| \text{true} | \text{false} \\
| E < E \quad \text{comparison} \\
| E = E \quad \text{equality}
\]

\[
P ::= C \quad \text{program}
\]

Figure: Syntax of a simple imperative language
Use Example: Concrete State Transition Semantics

\[\text{lf} p F \]

of the continuous function

\[
F : \wp(S) \to \wp(S) \\
F(X) = I \cup \text{Step}(X) \\
\text{Step}(X) = \wp(\rightarrow).
\]

where

\[
S = L \times M
\]

and

memories \quad \mathbb{M} = X \to V \\
values \quad \mathbb{V} = Z \cup L.

The state transition relation \((l, m) \rightarrow (l', m')\) is defined as follows.

- **skip** : \((l, m) \rightarrow (\text{next}(l), m)\)
- **input(x)** : \((l, m) \rightarrow (\text{next}(l), \text{update}_x(m, z))\) for an input integer \(z\)
- **x := E** : \((l, m) \rightarrow (\text{next}(l), \text{update}_x(m, \text{eval}_E(m)))\)
- **\(C_1; C_2\)** : \((l, m) \rightarrow (\text{next}(l), m)\)
- **if(B){C_1} else{C_2}** : \((l, m) \rightarrow (\text{next}\text{True}(l), \text{filter}_B(m))\)
 - : \((l, m) \rightarrow (\text{next}\text{False}(l), \text{filter}_{\neg B}(m))\)
- **while(B){C}** : \((l, m) \rightarrow (\text{next}\text{True}(l), \text{filter}_B(m))\)
 - : \((l, m) \rightarrow (\text{next}\text{False}(l), \text{filter}_{\neg B}(m))\)
- **goto E** : \((l, m) \rightarrow (\text{eval}_E(m), m)\)
Use Example: Abstract State

An abstract domain $\mathbb{M}^\#$ is a CPO such that

$$
\left(\wp(\mathbb{M}), \subseteq\right) \xleftarrow{\gamma_M} \xrightarrow{\alpha_M} \left(\mathbb{M}^\#, \subseteq_M\right)
$$

defined as

$$
\mathbb{M}^\# \in \mathbb{M}^\# = X \rightarrow \mathbb{V}^#
$$

where $\mathbb{V}^#$ is an abstract domain that is a CPO such that

$$
\left(\wp(\mathbb{V}), \subseteq\right) \xleftarrow{\gamma_V} \xrightarrow{\alpha_V} \left(\mathbb{V}^#, \subseteq_V\right).
$$

We design $\mathbb{V}^#$ as

$$
\mathbb{V}^# = \mathbb{Z}^# \times \mathbb{L}^#
$$

where $\mathbb{Z}^#$ is a CPO that is Galois connected with $\wp(\mathbb{Z})$, and $\mathbb{L}^#$ is the powerset $\wp(\mathbb{L})$ of labels.

All abstract domains are Galois-connected CPOs, homomorphic to their concrete correspondents.
Use Example: Abstract State Transition Semantics

Case the l-labeled statement of

- **skip**: $(l, M^\#) \hookrightarrow^\# (\text{next}(l), M^\#)$
- **input(x)**: $(l, M^\#) \hookrightarrow^\# (\text{next}(l), \text{update}_x^\#(M^\#, \alpha(Z)))$
- **$x := E$**: $(l, M^\#) \hookrightarrow^\# (\text{next}(l), \text{update}_x^\#(M^\#, \text{eval}_E^\#(M^\#)))$
- **$C_1; C_2$**: $(l, M^\#) \hookrightarrow^\# (\text{next}(l), M^\#)$
- **if(B){ C_1} else{ C_2}**: $(l, M^\#) \hookrightarrow^\# (\text{nextTrue}(l), \text{filter}_B^\#(M^\#))$
- **while(B){ C}**: $(l, M^\#) \hookrightarrow^\# (\text{nextFalse}(l), \text{filter}_{\neg B}^\#(M^\#))$
- **goto E**: $(l, M^\#) \hookrightarrow^\# (l', M^\#)$ for $l' \in L$ of $(z^\#, L) = \text{eval}_E^\#(M^\#)$

Let $F^\#$ be defined as the framework:

$$F^\#: \mathbb{S}^\# \rightarrow \mathbb{S}^\#$$
$$F^\#(S^\#) = \alpha(I) \cup^\# \text{Step}^\#(S^\#)$$
$$\text{Step}^\# = \varphi(\text{id}, \cup_M) \circ \pi \circ \tilde{\gamma}(\hookrightarrow^\#).$$

If the $\text{Step}^\#$ and $\cup^\#$ are sound abstractions of, respectively, Step and \cup, as required by the framework:

$$\tilde{\gamma}(\hookrightarrow) \circ \gamma \subseteq \gamma \circ \tilde{\gamma}(\hookrightarrow^\#)$$
$$\cup \circ (\gamma, \gamma) \subseteq \gamma \circ \cup^\#$$

then we can use $F^\#$ to soundly approximates the concrete semantics $\text{lfp}\, F^\#$.
Use Example: Defining Sound $\leftarrow \#$

If each of the abstract semantic operators is a sound abstraction of its concrete correspondent, then $\leftarrow \#$ is a sound abstraction of \leftarrow:

Theorem (Soundness of $\leftarrow \#$)

If the semantic operators satisfy the following soundness properties:

\[
\varnothing (\text{eval}_E) \circ \gamma_M \subseteq \gamma_V \circ \text{eval}_E^\# \\
\varnothing (\text{update}_x) \circ \times \circ (\gamma_M, \gamma_V) \subseteq \gamma_M \circ \text{update}_x^\# \\
\varnothing (\text{filter}_B) \circ \gamma_M \subseteq \gamma_M \circ \text{filter}_B^\# \\
\varnothing (\text{filter}_{\neg B}) \circ \gamma_M \subseteq \gamma_M \circ \text{filter}_{\neg B}^\#
\]

then $\varnothing (\leftarrow) \circ \gamma \subseteq \gamma \circ \varnothing (\leftarrow \#)$. (*The* \times *is the Cartesian product operator of two sets.*)
Use Example: Defining Sound $\cup^\#$

As of a sound $\cup^\#$, one candidate is the least upper bound operator \sqcup if $\mathcal{S}^\#$ is closed by \sqcup, because

$$(\gamma \circ \sqcup)(a^\#, b^\#) = \gamma(a^\# \sqcup b^\#) \sqsubseteq \gamma(a^\#) \cup \gamma(b^\#) \quad \text{by the monotonicity}$$

$$= (\sqcup \circ (\gamma, \gamma))(a^\#, b^\#).$$
Outline

1 Introduction
2 Static Analysis: a Gentle Introduction
3 A General Framework in Transitional Style
4 A Technique for Scalability: Sparse Analysis
5 Specialized Frameworks
Scalability Challenge

Figure: Call graph of `less-382` (23,822 lines of code)
Sparse Analysis

- Exploit the semantic sparsity of the input program to analyze
- Spatial sparsity & temporal sparsity

Right part at right moment
Example Performance Gain by Sparse Analysis

- Sparrow: a “sound”, global C analyzer for the memory safety property (no overrun, no null-pointer dereference, etc.)

 http://github.com/ropas/sparrow

- ~10 hours in analyzing million lines of C
Spatial Sparcity

Each program portion accesses only a small part of the memory.
Temporal Sparcity

After the def of a memory, its use is far.
Example (Code fragment)

```c
x = x + 1;
y = y - 1;
z = x;
v = y;
ret *a + *b
```

Assume that \(a \) points to \(v \) and \(b \) to \(z \).
Spatial and Temporal Sparsity of the Example Code

(a) Without exploiting the sparsities

(b) Spatial sparsity

(c) Spatial & temporal sparsity
Exploiting Spatial Sparsity: Need $Access^\#(l)$

“abstract garbage collection”, “frame rule”

$$F^\# : (\mathbb{L} \rightarrow \mathbb{M}^\#) \rightarrow (\mathbb{L} \rightarrow \mathbb{M}^\#)$$

becomes

$$F^\#_{sparse} : (\mathbb{L} \rightarrow \mathbb{M}^\#_{sparse}) \rightarrow (\mathbb{L} \rightarrow \mathbb{M}^\#_{sparse})$$

where

$$\mathbb{M}^\#_{sparse} = \{ M^\# \in \mathbb{M}^\# | \text{dom}(M^\#) = Access^\#(l), l \in \mathbb{L} \} \cup \{ \perp \}.$$
Exploiting Temporal Sparsity: Need Def-Use Chain

Need the def-use chain information as follows.

- we streamline the abstract one-step relation

\[(l, M^\#) \xrightarrow{\#} (l', M'^\#) \quad \text{for } l' \in \text{next}^\#(l, M^\#).\]

so that the link \(\xrightarrow{\#} \) should follow the **def-use chain**:

- from (def) a label where a location is defined
- to (use) a label where the defined location is read
A Technique for Scalability: Sparse Analysis

Precision Preserving Sparse Analysis Framework

Goal

\[F^\# : D^\# \rightarrow D^\# \xrightarrow{\text{sparsify}} F^\#_{\text{sparse}} : D^\# \rightarrow D^\# \]

\[\text{lfp} F^\# = \text{lfp} F^\#_{\text{sparse}} \]
Precision Preserving Sparse Analysis: for Spatial Sparsity (1/3)

Need to safely estimate

\[Access^\#(l). \]

Use yet another sound static analysis, a further abstraction:

\[
(\mathbb{L} \rightarrow M^\#, \subseteq) \xleftrightarrow{\gamma} (M^\#, \subseteq_M)
\]

(a “flow-insensitive” version of the “flow-sensitive” analysis design)
Precision Preserving Sparse Analysis: for Temporal Sparsity (2/3)

- Let
 \[D^\# : \mathbb{L} \rightarrow \wp(\mathbb{X}) \text{ and } U^\# : \mathbb{L} \rightarrow \wp(\mathbb{X}) \]
 be the def and use sets from the original analysis.
- Need to safely estimate \(D^\# \) and \(U^\# \).
- Use yet another sound static analysis to compute
 \[D^\#_{pre} \text{ and } U^\#_{pre} \]
 such that
 - \(\forall l \in \mathbb{L} : D^\#_{pre}(l) \supseteq D^\#(l) \) and \(U^\#_{pre}(l) \supseteq U^\#(l) \).
 - \(\forall l \in \mathbb{L} : U^\#_{pre}(l) \supseteq D^\#_{pre}(l) \setminus D^\#(l) \).
Precision Preserving Sparse Analysis: for Temporal Sparsity (3/3)

Let $D^\#_{pre}$ and $U^\#_{pre}$ be, respectively, safe def and use sets from a pre-analysis as defined before.

Definition (Precision preserving def-use chain)

Label a to label b is a def-use chain for an abstract location η whenever $\eta \in D^\#_{pre}(a)$, $\eta \in U^\#_{pre}(b)$, and η may not be re-defined inbetween the two labels.

Precision preservation

Then, the resulting sparse analysis version has the same precision as the original non-sparse analysis.
Need for the Second Condition for $D_{pre}^\#$ and $U_{pre}^\#$

(d) Original analysis def-use edge for η

\[\eta \in D^\#(a) \quad \eta \notin D^\#(c) \quad \eta \in U^\#(b) \]

(e) Missing def-use edge (a to b) for η because of over-approximate $D_{pre}^\#(c)$

\[\eta \in D_{pre}^\#(a) \quad \eta \in D_{pre}^\#(c) \quad \eta \in U_{pre}^\#(b) \]

(f) Recovered def-use edge (a to b via c) for η by safe $U_{pre}^\#(c)$

\[\eta \in D_{pre}^\#(a) \quad \eta \in D_{pre}^\#(c) \quad \eta \in U_{pre}^\#(c) \quad \eta \in U_{pre}^\#(b) \]
Outline

1. Introduction
2. Static Analysis: a Gentle Introduction
3. A General Framework in Transitional Style
4. A Technique for Scalability: Sparse Analysis
5. Specialized Frameworks
Specialized Frameworks

Practical alternatives to the aforementioned general, abstract interpretation framework

- for simple languages and properties,
- frameworks that are simple yet powerful enough
- review of their limitations

Three specialized frameworks:

- static analysis by equations
- static analysis by monotonic closure
- static analysis by proof construction
Static Analysis by Equations

- Static analysis = equation setup and resolution
 - equations capture all the executions of the program
 - a solution of the equations is the analysis result
- Represent programs by control-flow graphs
 - nodes for semantic functions (statements)
 - edges for control flow
- Straightforward to set up sound equations

For each node

\[
\begin{align*}
y_1 &= f(x_1 \sqcup x_2) \\
y_2 &= f(x_1 \sqcup x_2)
\end{align*}
\]
Example: Data-Flow Analysis for Integer Intervals

Example (Data-flow analysis)

input (x);
while (x <= 99)
 x := x+1

Figure: Control-flow graph

Figure: A set of equations for the program

\[
\begin{align*}
x_0 &= [-\infty, +\infty] \\
x_1 &= x_0 \sqcup x_3 \\
x_2 &= x_1 \sqcap [-\infty, 99] \\
x_3 &= x_2 \oplus 1 \\
x_4 &= x_1 \sqcap [100, +\infty]
\end{align*}
\]
Limitations

Not powerful enough for arbitrary languages

- control-flow before analysis?
 - control is also computed in modern languages
 - no: the dichotomy of control being fixed and data being dynamic

- sound transformation function?
 - error prone for complicated features of modern languages
 - e.g. function call/return, function as a data, dynamic method dispatch, exception, pointer manipulation, dynamic memory allocation, ...

- lacks a systematic approach
 - to prove the correctness of the analysis
 - to vary the accuracy of the analysis
Static Analysis by Monotonic Closure (1/2)

- Static analysis = setting up initial facts then collecting new facts by a kind of chain reaction
 - has rules for collecting initial facts
 - has rules for generating new facts from existing facts
- the initial facts immediate from the program text
- the chain reaction steps simulate the program semantics
- the universe of facts are finite for each program
- analysis accumulates facts until no more possible
Specialized Frameworks

Static Analysis by Monotonic Closure (2/2)

- let R be the set of the chain-reaction rules
- let X_0 be the initial fact set
- let Facts be the set of all possible facts

Then, the analysis result is

$$\bigcup_{i \geq 0} Y_i,$$

where

$$Y_0 = X_0,$$

$$Y_{i+1} = Y \text{ such that } Y_i \vdash_R Y.$$

Or, equivalently, the analysis result is the least fixpoint

$$\bigcup_{i \geq 0} \phi^i(\emptyset)$$

of monotonic function $\phi : \wp(\text{Facts}) \to \wp(\text{Facts}) :$

$$\phi(X) = X_0 \cup (Y \text{ such that } X \vdash_R Y).$$
Example: Pointer Analysis (1/3)

- **Goal:** estimate all “points-to” relations between variables that can occur during executions
- **a → b:** variable a can point to (can have the address of) variable b

\[
P ::= C \quad \text{program} \\
C ::= L := R \quad \text{assignment} \\
| \quad C ; C \quad \text{sequence} \\
| \quad \text{while } B C \quad \text{while-loop} \\
L ::= x \mid *x \quad \text{target to assign to} \\
R ::= n \mid x \mid *x \mid &x \quad \text{value to assign} \\
B \quad \text{Boolean expression}
\]
Example: Pointer Analysis (2/3)

The initial facts that are obvious from the program text are collected by this rule:

\[
\frac{x := &y}{x \rightarrow y}
\]

The chain-reaction rules are as follows for other cases of assignments:

\[
\frac{x := y \quad y \rightarrow z}{x \rightarrow z}
\]

\[
\frac{x := *y \quad y \rightarrow z \quad z \rightarrow w}{x \rightarrow w}
\]

\[
\frac{*x := y \quad x \rightarrow w \quad y \rightarrow z}{w \rightarrow z}
\]

\[
\frac{*x := *y \quad x \rightarrow w \quad y \rightarrow z \quad z \rightarrow v}{w \rightarrow v}
\]

\[
\frac{*x := &y \quad x \rightarrow w}{w \rightarrow y}
\]
Example: Pointer Analysis (3/3)

Example (Pointer analysis steps)

\[
\begin{align*}
\text{x} & := \&a; \quad \text{y} := \&x; \\
\text{while } B \\
\quad \text{*y} & := \&b; \\
\quad \text{*x} & := \text{*y}
\end{align*}
\]

• Initial facts are from the first two assignments:

\[
\text{x} \rightarrow a, \quad \text{y} \rightarrow x
\]

• From \(y \rightarrow x \) and the while-loop body, add

\[
\text{x} \rightarrow b
\]

• From the last assignment:

 ▶ from \(\text{x} \rightarrow a \) and \(\text{y} \rightarrow x \), add \(a \rightarrow a \)

 ▶ from \(\text{x} \rightarrow b \) and \(\text{y} \rightarrow x \), add \(b \rightarrow b \)

 ▶ from \(\text{x} \rightarrow a \), \(\text{y} \rightarrow x \), and \(\text{x} \rightarrow b \), add \(a \rightarrow b \)

 ▶ from \(\text{x} \rightarrow b \), \(\text{y} \rightarrow x \), and \(\text{x} \rightarrow a \), add \(b \rightarrow a \)
Limitations

Not powerful enough for arbitrary language
- sound rules?
 - error prone for complicated features of modern languages
 - e.g. function call/return, function as a data, dynamic method dispatch, exception, pointer manipulation, dynamic memory allocation, ...

- accuracy problem
 - consider program a set of statements, with no order between them
 - rules do not consider the control flow
 - the analysis blindly collects every possible facts when rules hold
 - accuracy improvement by more elaborate rules, but no systematic way for soundness proof
Static Analysis by Proof Construction

- Static analysis = proof construction in a finite proof system
- finite proof system = a finite set of inference rules for a predefined set of judgments
- The soundness corresponds to the soundness of the proof system.
 - the input program is provable \Rightarrow the program satisfies the proven judgment.
Example: Type Inference (1/4)

\[P ::= \begin{array}{l}
E & \text{program} \\
E ::= \begin{array}{l}
E \mid n & \text{integer} \\
x & \text{variable} \\
\lambda x.E & \text{function} \\
e E & \text{function application}
\end{array}
\]

- judgment that says expression \(E \) has type \(\tau \) is written as
 \[\Gamma \vdash E : \tau \]
 - \(\Gamma \) is a set of type assumptions for the free variables in \(E \).
Example: Type Inference (2/4)

Consider *simple types*

\[\tau ::= \text{int} \mid \tau \rightarrow \tau \]

Figure: Proof rules of simple types

\[\frac{\Gamma \vdash n : \text{int}}{\Gamma \vdash x : \tau} \quad \frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau} \]

\[\frac{\Gamma + x : \tau_1 \vdash E : \tau_2}{\Gamma \vdash \lambda x. E : \tau_1 \rightarrow \tau_2} \quad \frac{\Gamma \vdash E_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash E_2 : \tau_1}{\Gamma \vdash E_1 E_2 : \tau_2} \]

Theorem (Soundness of the proof rules)

Let \(E \) be a program, an expression without free variables. If \(\emptyset \vdash E : \tau \), then the program runs without a type error and returns a value of type \(\tau \) if it terminates.
Example: Type Inference (3/4)

Program

\((\lambda x. x \ 1)(\lambda y. y)\)

is typed \(\text{int}\) because we can prove

\[\emptyset \vdash (\lambda x. x \ 1)(\lambda y. y) : \text{int}\]

as follows:

\[
\begin{align*}
\{ x : \text{int} \rightarrow \text{int} \} & \vdash x : \text{int} \rightarrow \text{int} \\
\{ x : \text{int} \rightarrow \text{int} \} & \vdash 1 : \text{int} \\
\{ y : \text{int} \} & \vdash y : \text{int} \\
\emptyset & \vdash \lambda x. x \ 1 : (\text{int} \rightarrow \text{int}) \rightarrow \text{int} \\
\emptyset & \vdash \lambda y. y : \text{int} \rightarrow \text{int} \\
\emptyset & \vdash (\lambda x. x \ 1)(\lambda y. y) : \text{int}
\end{align*}
\]
Example: Type Inference (4/4)

Algorithm

- given a program \(E \), \(V(\emptyset, E, \alpha) \) returns type equations.

\[
\begin{align*}
V(\Gamma, n, \tau) &= \{\tau \doteq int\} \\
V(\Gamma, x, \tau) &= \{\tau \doteq \Gamma(x)\} \\
V(\Gamma, \lambda x. E, \tau) &= \{\tau \doteq \alpha_1 \rightarrow \alpha_2\} \cup V(\Gamma + x : \alpha_1, E, \alpha_2) \quad \text{(new } \alpha_i) \\
V(\Gamma, E_1 E_2, \tau) &= V(\Gamma, E_1, \alpha \rightarrow \tau) \cup V(\Gamma, E_2, \alpha) \quad \text{(new } \alpha) \\
\end{align*}
\]

- solving the equations is done by the unification procedure

Theorem (Correctness of the algorithm)

Solving the equations \(\equiv\) proving in the simple type system

More precise analysis?

- need new sound proof rules (e.g., polymorphic type systems)
Limitations

- For target languages that lack a sound static type system, we have to invent it.
 - design a finite proof system
 - prove the soundness of the proof system
 - design its algorithm that automates proving
 - prove the correctness of the algorithm
- What if the unification procedure is not enough?
 - for some properties, the algorithm can generate constraints that are unsolvable by the unification procedure
- For some conventional imperative languages, sound and precise-enough static type systems are elusive.
Introduction

2 Static Analysis: a Gentle Introduction

3 A General Framework in Transitional Style

4 A Technique for Scalability: Sparse Analysis

5 Specialized Frameworks

Thank you!