Speaking Logic

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

May 18, 2019

Proofs and Things

Perhaps | can best describe my experience of doing mathematics
in terms of a journey through a dark unexplored mansion. You
enter the first room of the mansion and it's completely dark. You
stumble around bumping into the furniture, but gradually you learn
where each piece of furniture is. Finally, after six months or so, you
find the light switch, you turn it on, and suddenly it's all
illuminated. You can see exactly where you were. Then you move
into the next room and spend another six months in the dark. So
each of these breakthroughs, while sometimes they’re momentary,
sometimes over a period of a day or two, they are the culmination
of and couldn't exist without the many months of stumbling
around in the dark that precede them. Andrew Wiles?

http:/ /www.pbs.org/wgbh /nova/physics/andrew-wiles-fermat.html
N. Shankar Speaking Logic 2019 2/179

Why Logic?

e Computing, like mathematics, is the study of reusable
abstractions.

@ Abstractions in computing include numbers, lists, channels,
processes, protocols, and programming languages.

@ These abstractions have algorithmic value in designing,
representing, and reasoning about computational processes.

@ Properties of abstractions are captured by precisely stated
laws through formalization using axioms, definitions,
theorems, and proofs.

o Logic is the medium for expressing these abstract laws and the
method for deriving consequences of these laws using sound
reasoning principles.

e Computing is abstraction engineering.

@ Logic is the calculus of computing.

N. Shankar Speaking Logic 2019 3/179

The Unreasonable Effectiveness of Logic in Computing

@ The world is increasingly an interplay of abstractions.

@ Caches, files, IP addresses, avatars, friends, likes, hyperlinks,
packets, network protocols, and cyber-physical systems are all
examples of abstractions in daily use.

@ Such abstract entities and the relationships can be expresses
clearly and precisely in logic.

@ In computing, and elsewhere, we are increasingly dependent
on formalization as a way of managing the abstract universe.

N. Shankar Speaking Logic 2019 4/179

Where Logic has Been Effective

Logic has been unreasonably effective in computing, with an
impact that spans

@ Theoretical computer science: Algorithms, Complexity,
Descriptive Complexity

@ Hardware design and verification: Logic design, minimization,
synthesis, model checking

@ Software verification: Specification languages, Assertional
verification, Verification tools

@ Computer security: Information flow, Cryptographic protocols

e Programming languages: Logic/functional programming, Type
systems, Semantics

@ Artificial intelligence: Knowledge representation, Planning
@ Databases: Data models, Query languages

@ Systems biology: Process models

Our course is about the effective use of logic in computing.

N. Shankar Speaking Logic 2019 5/179

Speaking Logic

@ In mathematics, logic is studied as a source of interesting
(meta-)theorems, but the reasoning is typically informal.

@ In philosophy, logic is studied as a minimal set of foundational
principles from which knowledge can be derived.

@ In computing, the challenge is to solve large and complex
problems through abstraction and decomposition.

@ Formal, logical reasoning is needed to achieve scale and
correctness.

@ We examine how logic is used to formulate problems, find
solutions, and build proofs.

@ We also examine useful metalogical properties of logics, as
well as algorithmic methods for effective inference.

N. Shankar Speaking Logic 2019 6/179

Course Schedule

@ The course is spread over four lectures:

Lecture 1: Proofs and Things

Lecture 2: Propositional Logics

Lecture 3: First-Order and Higher-Order Logic
Lecture 4: Advanced topics

@ The goal is to learn how to speak logic fluently through the
use of propositional, modal, equational, first-order, and
higher-order logic.

@ This will serve as a background for the more sophisticated
ideas in the main lectures in the school.

@ To get the most out of the course, please do the exercise and
try to use the PVS interactive proof assistant to formalize
your solutions.

N. Shankar Speaking Logic 2019 7/179

A Small Puzzle [Wason|

@ Given four cards laid out on a table as: @ , , , where

each card has a letter on one side and a number on the other.

@ Which cards should you flip over to determine if every card
with a @ on one side has a on the other side?

N. Shankar Speaking Logic 2019 8/179

A Small Problem

Given a bag containing some black balls and white balls, and a
stash of black/white balls. Repeatedly

@ Remove a random pair of balls from the bag

@ |If they are the same color, insert a white ball into the bag

© |If they are of different colors, insert a black ball into the bag
What is the color of the last ball?

N. Shankar Speaking Logic 2019 9/179

Truthtellers and Liars [Smullyan]

@ You are confronted with two gates.
@ One gate leads to the castle, and the other leads to a trap

@ There are two guards, one at each gate: one always tells the
truth, and the other always lies, but you can’t tell which is
which.

@ You are allowed to ask one of the guards one question with a
yes/no answer.

@ What question should you ask in order to find out which gate
leads to the castle?

N. Shankar Speaking Logic 2019 10/179

When is Cheryl's Birthday?

@ Albert and Bernard have just become friends with Cheryl, and
they want to know her date of birth. Cheryl gives them 10
possible dates:

May 15 May 16 May 19
June 17 June 18
July 14 July 16

August 14 August 15 August 17

@ Cheryl then tells Albert and Bernard separately the month and
the day of her birthday, respectively.

@ Albert: | don’t know when Cheryl’s birthday is, but | know
that Bernhard does not know too.

Bernard: At first | didn't know Cheryl's birthday, but now |
do.
Albert: Then | also know Cheryl's birthday.

@ When is Cheryl's birthday?

N. Shankar Speaking Logic 2019 11/179

Mr. S and Mr. P

e Two integers m and n are picked from the interval [2,99].

@ Mr. Sis given the sum m+ n. and Mr. P is given the product
mn.
@ They then have the following dialogue:
S: I don’t know m and n.
P: Me neither.
S: | know that you don't.
P: In that case, | do know m and n.
S: Then, I do too.

@ Write a program to determine the numbers m and n.

N. Shankar Speaking Logic 2019 12/179

Pigeonhole Principle & Cantor's Theorem

@ Why can’t you park n-+ 1 cars in n parking spaces, if each car
needs its own space?

@ Let m..n represent the subrange of integers from m to, but
not including, n.

@ An injection from set A to set B is a map f such that
f(x) = f(y) implies x = y, for any x, y in A.

@ The Pigeonole principle can be restated as asserting that
there is no injection from 0..n + 1 to 0..n. Prove it.

@ The Infinite Pigeonhole principle states that any finite
partition of an infinite set must contain an infinite partition.
Prove it.

@ Let N be the set of natural numbers 0,1,2,..., and let p(N)
be the set of subsets of N.

@ Show that there is no injection from p(N) to N.

N. Shankar Speaking Logic 2019 13/179

Ramsey Theorem

@ In any group of six people, there are always three mutual
acquaintances or three mutual strangers. Why?

@ In a complete graph of six vertices, there are 10+6+3+1
triangles and at most 18 corners (x,y), (x, z) such that x
knows y but not z.

@ Hence, there must be at least 2 triangles that are mutual
strangers or mutual acquaintances.

@ For any k, and cy, ..., ck, there is some N such that any
k-coloring of the edges of a graph of N vertices yields a graph
with a ¢; clique of color i for some /.

@ The infinite Ramsey theorem states that if X is an infinite set
such that the elements of X are assigned one of k colors,
then there is an infinite subset Y of X such that all elements
of Y™ are assigned the same color.

N. Shankar Speaking Logic 2019 14/179

Hard Sudoku [Wikipedia/Algorithmics_of Sudokul]

N. Shankar Speaking Logic 2019 15/179

Gilbreath’'s Card Trick

@ Start with a deck consisting of a stack of quartets, where the
cards in each quartet appear in suit order &, O, &, {:

(5#), (37), (Qd), (80),
(K#), (20), (Th), (40),
(8M), (JO), (9%), (AQ)

o Cut the deck, say as (5#), (30), (Qé), (80), (K#) and
(20), (7). (40), (8M), (JO), (9), (AD).
@ Reverse one of the decks as (K#), (80)), (Qd), (3V), (5).

@ Now shuffling, for example, as

(20), (Th), (K®), (80),
(40), (8M), (Qb), (JV),
(39); (9%), (54), (AC)

@ FEach quartet contains a card from each suit. Why?

N. Shankar Speaking Logic 2019 16/179

A Sorting Card Trick

@ Arrange 25 cards from a deck of cards in a 5x5 grid.
@ First, sort each of the rows individually.
@ Then, sort each of the columns individually.

@ Now both the rows and columns are sorted. How come?

N. Shankar Speaking Logic 2019 17/179

Length of the Longest Increasing Subsequence

@ You have a sequence of numbers, e.g.,
9,7, 10,095, 4, 10.

@ The task is to find the length of the longest increasing
subsequence.

@ Here the longest subsequence is 7, 9, 10, and its length is 3.

@ Patience solitaire is a card game where cards are placed, one
by one, into a sequence of columns.

@ Each card is placed at the bottom of the leftmost column
where it is no bigger than the current bottom card in the
column.

@ If there is no such column, we start a new column at the right.

@ Show that the number of columns left at the end yields the
length of the longest increasing subsequence.

N. Shankar Speaking Logic 2019 18/179

Computing Majority

@ An election has five candidates: Alice, Bob, Cathy, Don, and
Ella.

@ The votes have come in as:
E,D,C, B C C A CECA,C,C

@ You are told that some candidate has won the majority (over
half) of the votes.

@ You successively remove pairs of dissimilar votes, until there
are no more such pairs.

@ That is, the remaining votes, if any, are all for the same
candidate.

@ Show that this candidate has the majority.

N. Shankar Speaking Logic 2019 19/179

Maximum Segment Sum

e Given an array a[0..N — 1] of integers, a segment sum over
the segment a[/..h] is =7_a[j] for 0 < /,h < N.

@ The maximum segment sum is max,,hZJ'-’:,a[j].

@ Since segments can be empty, the minimum segment sum is 0.

@ For example, if the array elements are
al0] = —3, a[1] =4, a[2] = —2, a[3] = 6, a[4] = —5, then the
maximum segment sum is 8, which is the sum over a[1..3].
@ Write and verify an algorithm for computing the maximum
segment sum of a given array.

N. Shankar Speaking Logic 2019 20/179

Proofs, informally

e For n € N, prove that X ; = n(n+1)/2. Why is the
right-hand side always a natural number.

e With n,kENWithn2k>0,(Z):W,showthat

n. .
(P) is a natural number.

@ Define N as the smallest set containing 0 and closed under the
successor operation S, where S(x) # x.

@ Define addition recursively as

O+y = vy
S(x)+y = x+S()

Prove that + is associative.

N. Shankar Speaking Logic 2019 21/179

What is Logic?

Logic is the art and science of effective reasoning.

@ How can we draw general and reliable conclusions from a
collection of facts?

Formal logic: Precise, syntactic characterizations of
well-formed expressions and valid deductions.

Formal logic makes it possible to calculate consequences so
that each step is verifiable by means of proof.

Computers can be used to automate such symbolic
calculations.

N. Shankar Speaking Logic 2019 22/179

Naive Set Theory

We will be using sets informally when talking about logic.
Sets have members x € X (x is an element of X), and can be
related through equality X = Y (X and Y have the same
elements), and subset X C Y or X C Y (every element of X
is an element of Y).
Sets include the emptyset (), the singleton set {a} containing
just a as an element, the two-element set 2 = {0, 1}, the set
N of natural numbers {0,1,2,...}.
Other examples include the set of integers, odd integers, even
integers, prime numbers, rational numbers, algebraic numbers,
real numbers, etc.
The set of elements satisfying a property P is represented as
{x|P(x)}, e.g., {i|0 < i <5}
Let F be a map, e.g., x — x2, then F[X] represents the image
of X with respect to X.
The {F(x)|P(x)} contains all and only the elements F(a) for
each element a satisfying P(a), e.g., {x2|0 < x < 5}.

N. Shankar Speaking Logic 2019 23/179

Naive Set Theory

The set {a, b} represents the set that is the pair of elements a
and b, which can themselves be sets.
Ordered pairing (x, y) can be represented as {{x,y},{y}}.
The union J X is the set {x|x € y,y € X}. XU Y is just
Ui v
The intersection [X is the set {x|x € y, for each y € X}.
XNYisjust ({X,Y}.
Define projections w1 and 7, such that 7m1(({x,y)) = x and
m((x,y)) =y.
The relative complement X — Y of two sets is the set
{x|x e X, x & Y}.
The Cartesian product X x Y is the set
{{x,y}x € X,y € Y} of ordered pairs (x,y) for x € X and
YEeY.
Two sets are equal if they have exactly the same elements.
Prove (XUY)UZ=XU(YUZ), XUY =YUX,
X UX = X, and similarly for intersection.

N. Shankar Speaking Logic 2019 24/179

Naive Set Theory

@ The set of integers Z is {...,—3,-2,-1,0,1,2,3,...}.

@ A map F between X and Y is injective if whenever
F(x) = F(x) for x,x" in X, we have x = x'.

@ A map F between X and Y is surjective if for each y € Y,
there is an x € X, such that F(x) =y.

@ A map F between X and Y is bijective if F is both injective
and surjective.

@ The graph of a map F between X and Y can be represented
as a subset of X x Y as {(x,y)|F(x) = y}.

@ A subset G of X x Y is a graph if for any x € X, there is
exactly one y such that (x,y) € G.

@ Define the operation of applying a graph G to an argument x.

@ Define YX represent the set of graphs with X as domain and
Y as range.

@ Show that there is a bijection between X x (Y x Z) and
(X x Y) x Z and 2% and the power set of X: {Y|Y C X}.

N. Shankar Speaking Logic 2019 25/179

Naive Set Theory Exercises

@ Show that each integer can be represented (non-uniquely) by
a pair of natural numbers.

@ Define an equivalence relation ~ on this representation of
integers.

@ Show that this representation of the integers is
order-isomorphic to the set Z of integers.

@ For any set X, define the set of infinite sequences over X.

@ Define the set of Cauchy sequences of rational numbers, where
a sequence o is Cauchy if for any rational number € > 0, there
is some i such that for every m,n > i, |om — 0p| < €.

@ Exhibit a Cauchy sequence that converges to /2.

N. Shankar Speaking Logic 2019 26/179

Naive Set Theory Exercises

@ One set is equinumerous with another if there is a bijection
between them.

@ Is the set Z equinumerous with N.
@ Can a set X be equinumerous with its powerset 2X?

@ Is the set of ordered pairs of natural numbers N x N
equinumerous with N.

@ Is the set of rational numbers Q equinumerous with N?

@ Is the set of real numbers in the interval [0, 1] equinumerous
with N?

N. Shankar Speaking Logic 2019 27/179

@ A binary relation < on a set U (a poset) is a partial ordering
if it is
o Reflexive: x < x for all x € U
e Transitive: x < zif x <y and y < x, for all x,yz € U
e Anti-Symmetric: x =y if x <y and y < x.
@ A partial ordering is total (or linear) if for all x,y € U: x <y
or y < X.
@ For a subset X of U, element x € X is
e Minimal, if for y € X, y =xor y £ x.
o Least, if x <y fory € X.
e Maximal, if fory e X, y =xorx £ y.
o Greatest, if y < x for y € X.
@ A filter is a nonempty subset of U that is upward closed and
and contains x whenever x < y and x < z for y,z in U.

@ An ultrafilter on U is a proper filter (i.e., not U itself) that is
maximal. Formally define the concepts of filter and ultrafilter.

N. Shankar Speaking Logic 2019 28/179

A strict partial ordering is irreflexive, transitive, and
anti-symmetric.

An antichain is a subset X of U such that x £ y, for x,y € X.

A partial order is well-founded if every nonempty subset X of
U has a minimal element.

@ A linear order is well-ordered if every nonempty subset X of U
has a least element.

Every well-ordering is well-founded.

N. Shankar Speaking Logic 2019 29/179

Ordinal Numbers

@ The ordinal numbers can be constructed as: 0 is an ordinal
number, and the next ordinal number is the set of all
preceding ordinal numbers.

@ The ordinals are well-ordered, and any well-ordered set is
order-isomorphic, i.e., has an order-preserving bijection, to
some ordinal.

@ Is the set N under the usual < ordering of natural numbers
well ordered?

@ Is the set Z under the usual < ordering of integers well
ordered? Is there a well-ordering for Z?

@ Is the set QQ under the usual < ordering of rationals well
ordered? Is there a well-ordering for Q7

N. Shankar Speaking Logic 2019 30/179

Ordinal Numbers

@ Let w represent the ordinal number for Nwith 0 <1 <2....

@ N can be ordered so that i < j for any even number / and odd
number jtoget 0 <2<4...1<3<5....

@ This has the order type w + w.

@ A lexicographic ordering on N x N has (x,y) < (X', y’) if
x<x,orx=x"andy <y eg., (53) < (54).

o What is the ordinal corresponding to the above lexicographic
ordering?

e Can you define an ordering on N that is order isomorphic to
the lexicographic ordering on N x N?

N. Shankar Speaking Logic 2019 31/179

Lambda Calculus

@ Church introduced the lambda calculus as a foundation where
everything was a function, instead of a set.

e We informally say the function mapping x to x2, but Church
observed that the proper way to write this involves using x as
a bound variable as in \x.x?.

@ Lambda terms A are formed as follows:

A= X | (NA2) | (Ax.A).

@ Some examples: (Ax.x), (AMf.(Ax.x)), (Af.(Ax.(f x))).
(M. (Ax.(f x)))(Ax.x)), (MF.(Ax.(F (f x)))),

(M- (Ax.(f (f x))))AF.(Ax.(F (f x)))))-

@ Define the set of free variables vars(()a) as
vars(x) = x
vars((e b)) = vars(a) U vars(b)
vars((Ax.e)) = vars(e) — {x}

N. Shankar Speaking Logic 2019 32/179

Lambda Calculus

@ Substitutione[a/x] is defined as

xla/x] = a
(e b)[a/x] (ela/x]bla/x])
(Ax.e)[a/x] (Ax.e))
Orella/xl = (weelafx), ify #x,y & vars(e)

@ What goes wrong without the side-condition on substitution?

e Equational rules for A are
@ o-conversion: (Ax.e) = (\y.e[y/x]), y & vars(e)
@ [-conversion: ((Ax.e) a) = e[a/x]
© n-conversion: (Ax.(e x)) = e, if x & vars(e).
@ |Instantiation: ﬁg[e/x]
@ Construct a A\-term that -converts to itself.

N. Shankar Speaking Logic 2019 33/179

Paradoxes

There's a barber in a village who shaves all and only those
people who do not shave themselves. Does the barber shave
himself?

The Liar paradox has Epimenides, a Cretan, asserting that A/l
Cretans are liars.? Could Epimenides be telling the truth?
Could he be lying?

e What if Epimenides is the only Cretan?
@ Berry’'s paradox: What is “the smallest natural number not

definable in fewer than twelve words”?

Richards paradox: Let pg, p1, ..., be an enumeration of the
properties of natural numbers. We say that i is Richardian if
—p;(i). Is there a property p, in the enumeration that
captures the property of being Richardian?

@ Let R be the set {x|x & x}. Is R € R?

@ [s there a universal set V' given by {x|x = x}7
@ The set of ordinals ON s itself well-ordered. Is ON € ON?

N. Shankar Speaking Logic 2019 34/179

@ Logic studies the trinity between language, interpretation, and
proof.

o Language: What are you allowed to say?
@ Interpretation: What is the intended meaning?

e Meaning is usually compositional: Follows the syntax

e Some symbols have fixed meaning: connectives, equality,
quantifiers
Other symbols are allowed to vary variables, functions, and
predicates
Assertions either hold or fail to hold in a given interpretation
A valid assertion holds in every interpretation

@ Proofs are used to demonstrate validity

N. Shankar Speaking Logic 2019 35/179

Propositional Logic

@ Propositional logic can be more accurately described as a
logic of conditions — propositions are always true or always
false. [Couturat, Algebra of Logic]

@ A condition can be represented by a propositional variable,
e.g., p, g, etc., so that distinct propositional variables can
range over possibly different conditions.

@ The conjunction, disjunction, and negation of conditions are
also conditions.

@ The syntactic representation of conditions is using
propositional formulas:

¢ =Pl =p|p1V 2| P1Ad2

@ P is a class of propositional variables: pg, p1,

e Examples of formulas are p, p A —p, pV =p, (p A —q) V —p.

N. Shankar Speaking Logic 2019 36/179

@ In logic, the meaning of an expression is constructed
compositionally from the meanings of its subexpressions.

@ The meanings of the symbols are either fixed, as with —, A,
and V, or allowed to vary, as with the propositional variables.
@ An interpretation (truth assignment) M assigns truth values
{T,L} to propositional variables: M(p) =T <= M = p.
e M[A] is the meaning of A in M and is computed using truth
tables:
[9]

|

plpVa|lpAq]

\%
1
T
T
T

S
AA§A
=]|
| ||]|«

| |-

H |

N. Shankar Speaking Logic 2019 37/179

Truth Tables

We can use truth tables to evaluate formulas for
validity/satisfiability.

(=pVq) | (=(=pVq)Vp) | ~(=(=pVqg)Vp)Vp

		+

How many rows are there in the truth table for a formula with n
distinct propositional variables?

How many distinct truth tables are there in n distinct propositional
variables?

N. Shankar Speaking Logic 2019 38/179

@ Define the operation of substituting a formula A for a variable
p in a formula B, i.e., B[p — A].

@ Is the result always a well-formed formula?
e Can the variable p occur in B[p — A]?

e What is the truth-table meaning of B[p — A] in terms of the
meaning of B and A?

N. Shankar Speaking Logic 2019 39/179

Defining New Connectives

@ How do you define A in terms of = and V?

@ Give the truth table for A = B and define it in terms of —
and V.

@ Define bi-implication A <= B in terms of = and A and
show its truth table.

@ An n-ary Boolean function maps {T, L}" to {T, L}
@ Show that every n-ary Boolean function can be defined using
= and V.

@ Using — and V define an n-ary parity function which evaluates
to T iff the parity is odd.

@ Define an n-ary function which determines that the unsigned
value of the little-endian input pg, ..., ps_1 is even?

e Define the NAND operation, where NAND(p, q) is =(p A q)
using — and V. Conversely, define — and Vv using NAND.

N. Shankar Speaking Logic 2019 40/179

Satisfiability and Validity

An interpretation M is a model of a formula ¢ if M |= ¢.
If M = —¢, then M is a countermodel for ¢.
When ¢ has a model, it is said to be satisfiable.

If it has no model, then it is unsatisfiable.

If =¢ is unsatisfiable, then ¢ is valid, i.e., alway evaluates to
T.

We write ¢ |= v if every model of ¢ is a model of .
If @ A =) is unsatisfiable, then ¢ = 9.

N. Shankar Speaking Logic 2019 41/179

Satisfiable, Unsatisfiable, or Valid?

@ Classify these formulas as satisfiable, unsatisfiable, or valid?

pV-p

pA-p

“p=p

(p=q)=p)=p

@ Make up some examples of formulas that are satisfiable
(unsatisfiable, valid)?

o If A and B are satisfiable, is A A B satisfiable? What about
AV B.

@ Can A and —A both be satisfiable (unsatisfiable, valid)?

N. Shankar Speaking Logic 2019 42/179

Some Valid Laws

@ A bi-implication A <= B is valid (and hence A and B are
equivalent) iff every model of A is a model of B and
vice-versa.

@ Check that following formulas are valid for any assignment to
A and B?
(1) ﬁ(A/\B) ~— -AV-B
@ (AVB) < -AA-B
© (AvB)VC(C) < Av(BV ()
Q@ (A= B) < (-AVB)
@ (A= -B) < (B=A)
e -—A — A
@ A=B < -AVB
Q@ (AAB) — —-AV-B
Q@ ~(AVB) — -AA-B
@ A=B <<= -B=A

N. Shankar Speaking Logic 2019 43/179

What Can Propositional Logic Express?

@ Constraints over bounded domains can be expressed as
satisfiability problems in propositional logic (SAT).
@ Define a 1-bit full adder in propositional logic.

@ The Pigeonhole Principle states that if n 4 1 pigeons are
assigned to n holes, then some hole must contain more than
one pigeon. Formalize the pigeonhole principle for four
pigeons and three holes.

@ Formalize the statement that a graph of n elements is
k-colorable for given k and n such that k < n.

e Formalize and prove the statement that given a symmetric
and transitive graph over 3 elements, either the graph is
complete or contains an isolated point.

e Formalize Sudoku and Latin Squares in propositional logic.

N. Shankar Speaking Logic 2019 44/179

Using Propositional Logic

e Write a propositional formula for checking that a given finite
automaton (Q, X, q, F,d) with
e Alphabet %,
Set of states S
Initial state q,
Set of final states F, and
Transition function ¢ from (Q,X) to Q

accepts some string of length 5.

@ Describe an N-bit ripple carry adder with a carry-in and
carry-out bits as a formula.

N. Shankar Speaking Logic 2019 45/179

Cook’s Theorem

@ A Turing machine consists of a finite automaton reading (and
writing) symbols from a finite set ¥ (including a blank symbol
‘') from a tape ..., T(—1), T(0), T(1),....

@ Initially, the tape is blank except at the input
T(0),..., T(n—1).

@ The finite automaton has a finite set of states @, a subset F
of which are accepting states.

@ In each step, if the automaton is at a non-accepting state, the

machine reads the symbol at the current position of the head,
and nondeterministically executes a step consisting of
@ A new symbol to write at the head position

@ A move (left or right) of the head from the current position
© A next automaton state

N. Shankar Speaking Logic 2019 46/179

Cook’s Theorem

@ For some bound N on the number of machine steps, show
that the it is possible to represent the following using a
polynomial number (in n) of Boolean variables

@ The k'th symbol is on the i'th cell in the j'th state of the
computation.

@ The head is at the i'th cell in the j'th state of the computation.

© The automaton is in the m'th state in the j'th state of the
computation.

@ Show that SAT is solvable in polynomial time (in the size n of
the input) by a nondeterministic Turing machine.

@ Show that for any nondeterministic Turing machine and
polynomial bound p(n) for input of size n, one can (in
polynomial time) construct a propositional formula which is
satisfiable iff there is the Turing machine accepts the input in
at most p(n).

N. Shankar Speaking Logic 2019 47/179

Reductions to SAT

@ Encode the following problems as SAT problems

@ 3-colorability of an undirected graph.

© The k-colorability for a given k.

© The existence of a Hamiltonian path in a graph, one that visits
each vertex exactly once.

© The existence of a k-clique in a graph: a set of k vertices that
are pairwise connected by edges.

@ What is the size of your encoding?

@ A problem is NP-hard if there is a polynomial-time
(many-to-one, Turing, truth-table) reduction from SAT (or
another NP-hard) problem to it.

N. Shankar Speaking Logic 2019 48/179

Proof Systems

@ There are three basic styles of proof systems.
@ These are distinguished by their basic judgement.
@ Hilbert systems: = A means the formula A is provable.
@ Natural deduction: T+ A means the formula A is provable
from a set of assumption formulas I'.

© Sequent Calculus: T = A means the consequence of \/ A from
AT is derivable.

N. Shankar Speaking Logic 2019 49/179

Hilbert System (H) for Propositional Logic

The basic judgement here is - A asserting that a formula is
provable.

We can pick = as the basic connectives
@ The axioms are

® FA=A

® FA=(B=A)

* F(A=(B=0))=((A=B)=(A=0))

@ A single rule of inference (Modus Ponens) is given
FA FA=B
FB

e Can you prove ((p = q) = p) = p using the above system?

N. Shankar Speaking Logic 2019 50/179

Hilbert System (H)

@ Are any of the axioms redundant? [Hint: See if you can prove
the first axiom from the other two.]
e Can you prove
Q@ A= (B=B)
Q@ A=B)=((B=C)= (A= (0)).
o Write Hilbert-style axioms for =, A and V.

N. Shankar Speaking Logic 2019 51/179

Deduction Theorem

@ We write ' - A for a set of formulas I, if = A can be proved
given - B for each B € T.

@ Deduction theorem: Show that if A+ B, then T A= B,
where ', Ais ' U {A}. [Hint: Use induction on proofs.]

@ A derived rule of inference has the form

where there is a derivation in the base logic from the premises
Pi,..., P, to the conclusion C.

@ An admissible rule of inference is one where the conclusion C
is provable if the premises Py, ..., P, are provable.

@ Every derived rule is admissible, but what is an example of an
admissible rule that is not a derived one?

N. Shankar Speaking Logic 2019 52/179

Natural Deduction for Propositional Logic

@ In natural deduction (ND), the basic judgement is I - A.
@ The rules are classified according to the introduction or
elimination of connectives from A in I - A.

@ The axiom, introduction, and elimination rules of natural
deduction are

° TAFA
M FA P FA=B
° rUr,-B
rA-FB
° TFA=B

@ Use ND to prove the axioms of the Hilbert system.

@ A proof is in normal form if no introduction rule appears
above an elimination rule. Can you ensure that your proofs
are always in normal form? Can you write an algorithm to
convert non-normal proofs to normal ones?

N. Shankar Speaking Logic 2019 53/179

Minimal Logic

Add a propositional constant L to the implicational logic
above.

Define negation —Aas A= 1.
Can you prove
Q@ A= (A= B)
Q@ A= (A= -B)
e A= A
Q@ A=A
Q@ L=A
@ If you take Formula 1 as an axiom, can you prove the others?
e Conjunction AA B can be encoded as (A= (B= 1)) = L.

e Show that A= (B = (AAB)), (ANB)= A, and
(AAB) = B.

N. Shankar Speaking Logic 2019 54/179

Sequent Calculus (LK) for Propositional Logic

The basic judgement is [- A asserting that AT = \/ A, where I
and A are sets (or bags) of formulas.

l [Left [Right ‘
Ax TAFAA
_ TFAA TAFA
F—AFA TF—AA
, | LAFA TLBFA TFABA
TAVBFA FFAVB,A
. TABFA TFAA TFBA
TANBFA FFAAB,A
_ | LBFA TFAA LAF B,A
A= BFA TFA=B,A
ut TFAA T,AFA
rFA

N. Shankar Speaking Logic 2019 55/179

Peirce's Formula

@ A sequent calculus proof of Peirce’s formula
((p=q) = p) = pis given by

Ax
ptp.q
= Ax
Fp,p=q ptp
=t
(p=q)=ptp
b=

F((p=a)=p) =pr

@ The sequent formula that is introduced in the conclusion is
the principal formula, and its components in the premise(s)
are side formulas.

N. Shankar Speaking Logic 2019 56/179

@ Metatheorems about proof systems are useful in providing
reasoning short-cuts.

@ The deduction theorem for H and the normalization theorem
for ND are examples.

@ Prove that the Cut rule is admissible for the LK. (Difficult!)
@ A bi-implication is a formula of the form A < B, and it is
an equivalence when it is valid. Show that the following is a

derived inference rule.

A< B
Clp— Al <= Clp+— B]

@ State a similar rule for implication where

A= B
Clp— Al = Clp— B]

N. Shankar Speaking Logic 2019 57/179

Normal Forms for Formulas

A formula where negation is applied only to propositional
atoms is said to be in negation normal form (NNF).

For example, —=(p V =q) can be represented as —p A q.

@ Show that every propositional formula built using —, V, and A
is equivalent to one in NNF.

A literal | is either a propositional atom p or its negation —p.

A clause is a multiary disjunction of a set of literals
hv...Vvi,

A multiary conjunction of n formulas Ay, ..., A, is Ai_; A;.

N. Shankar Speaking Logic 2019 58/179

Conjunctive and Disjunctive Normal Forms

@ A formula that is a multiary conjunction of multiary
disjunctions of literals is in conjunctive normal form (CNF).
e CNF Example: (mpVaqV-r)
A (pVr)
A (=pV=qVr)
@ Define an algorithm for converting any propositional formula
to CNF.

@ A formula is in k-CNF if it uses at most k literals per clause.
Define an algorithm for converting any formula to 3-CNF.

A formula that is a multiary disjunction of multiary
conjunctions of literals is in disjunctive normal form (DNF).

Define an algorithm for converting any formula to DNF.

N. Shankar Speaking Logic 2019 59/179

Soundness

@ A proof system is sound if all provable formulas are valid, i.e.,
F A implies E A, i.e., M = A for all M.

@ To prove soundness, show that for any inference rule of the

form
FPi,.... Py
FC ’
any model of all of the premises is also a model of the
conclusion.

@ Since the axioms are valid, and each step preserves validity,
we have that the conclusion of a proof is also valid.
@ Demonstrate the soundness of the proof systems shown so far,
ie.,
@ Hilbert system H

© Natural deduction ND
© Sequent Calculus LK

N. Shankar Speaking Logic 2019 60/179

Completeness

@ A proof system is complete if all valid formulas are provable,
e., = A implies - A.

@ A countermodel M of I = A is one where either M |= A for
all AinT, and M |= =B for all B € A.

@ In LK, any countermodel of some premise of a rule is also a
countermodel for the conclusion. What is the countermodel
forpvVagqlkpAq?

@ We can then show that a non-provable sequent ' H A has a
countermodel.

@ Each non-Cut rule has premises that are simpler than its
conclusion.

@ By applying the rules starting from I' = A to completion, you
end up with a set of premise sequents {1 - Ay,..., [, F Ap}
that are atomic, i.e., that contain no connectives.

o If an atomic sequent I'; = A; is unprovable, then it has a
countermodel, i.e., one in which each formula in I'; holds but ﬁ;g

no formula in A; holds.
N. Shankar Speaking Logic 2019 61/179

Completeness, More Generally

@ A set of formulas I is consistent, i.e., Con(I") iff there is no
formula A in T such that I = —A is provable.

e If I is consistent, then ' U {A} is consistent iff [- —A is not
provable.

e If I' is consistent, then at least one of ' U {A} or ' U {—-A}
must be consistent.

@ A set of formulas I is complete if for each formula A, it
contains A or —A.

N. Shankar Speaking Logic 2019 62/179

Completeness

@ Any consistent set of formulas I' can be made complete as [

@ Let A; be the i'th formula in some enumeration of PL
formulas. Define

o = T
My = iU {A,‘}, if Con(r,- U {A,})
= T[;U{-A}, otherwise.

f= rw:Ur,-
i

@ Ex: Check that f yields an interpretation M satisfying I

o If [+ A is unprovable, then ' U A is consistent, and has a
model.

N. Shankar Speaking Logic 2019 63/179

@ A logic is compact if any set of sentences [is satisfiable iff all
finite subsets of it are, i.e., if it is finitely satisfiable.

@ Propositional logic is compact — hard direction is showing
that every finitely satisfiable set is satisfiable.

@ Zorn's lemma states that if in a partially ordered set A, every
chain L has an upper bound L in A, then A has a maximal
element.

@ Given a finitely satisfiable set I', the set Ar of finitely
satisfiable supersets of [satisfies the conditions of Zorn’s
lemma.

o Hence there is a maximal extension T that is finitely
satisfiable.

@ For any atom p, either p € T or -p E F but not both. Why?

@ We can similarly define the model Mg to show that Tis
satisfiable.

N. Shankar Speaking Logic 2019 64/179

Interpolation

Craig's interpolation property for one-sided sequents: If - I'; A,
then there is an / in the variables common to I' and A such that
T, and -/, A.

g [LFT.P.P.A
Axe [TTFT;P,P.A
b [PIFT,P.P.A
[[FT,P,A
B [[FT.--P.A
[[FT.AB,A
V
[[FT,AVB,A
v [Il] FIL-AA [IQ] FI,-B;A
' LV k] T,~(AVB); A
v [h]F T, A A [L]FT;-B,A
2 [L AL]FT;=(AVB), A

N. Shankar Speaking Logic 2019 65/179

Resolution

@ We have already seen that any propositional formula can be
written in CNF as a conjunction of clauses.

@ Input K is a set of clauses.

e Tautologies, i.e., clauses containing both / and /, are deleted
from initial input.

K,/\/rl,Y\/rg rl\/r2¢K
Res = ! .
K,IVT1,IVT,y, 1V, T1VIaisnot tautological
K, I, 1
Contrad n

N. Shankar Speaking Logic 2019 66/179

Resolution: Example

(Ko=) -pV—qVr, =pVaq, pVr, =r

Res
(Kl :) -q \ r, KO R
es
(K2 :) q \ r, Kl R
es
(K3=)r, Ko
I Contrad

Show that resolution is a sound and complete procedure for
checking satisfiability.

N. Shankar Speaking Logic 2019 67/179

CDCL Informally

@ Goal: Does a given set of clauses K have a satisfying
assignment?

e If M is a total assignment such that M =T for each I' € K,
then M = K.

e If M is a partial assignment at level h, then propagation
extends M at level h with the implied literals | such that
IVl e KUC and M = T.

@ If M detects a conflict, i.e., a clause ' € K U C such that
M [= T, then the conflict is analyzed to construct a conflict
clause that allows the search to be continued from a prior
level.

@ If M cannot be extended at level h and no conflict is detected,
then an unassigned literal | is selected and assigned at level
h + 1 where the search is continued.

N. Shankar Speaking Logic 2019 68/179

Conflict-Driven Clause Learning (CDCL) SAT

Check satisfiability of given set of clauses K, with decision level h,
partial assignment M, and learned (lemma) clauses J.

Name Rule Condition
p ; h, (MY, K, J r=ivile KuUuJ
ropagate M K J M), K, J M = -l
h, (M), K, J M
Select P 1, (M 1), K, J M I
) 0,(M),K,J M-l
Conflict 1 forsome e KU J
M= -l
Backjump h+1,(M), K, J ?3; ﬁfi;“e Ry
! ! ! b)
b, (M<w, I[T']), K, JUA{T"} = analyze(:)(T)
for v = h, (M), K, J
< h.

analyze(h, (M), K, J)(IV T) = (level(T'), I v T), if Ievel(r)
analyze(h, (M), K, J)(I v T') = analyze(h, (M), K, J)(I" v T), for
I[I'] € M, otherwise.

N. Shankar Speaking Logic 2019

69/179

CDCL Example

@ Let K be
{pVq,-pVaqg,pV—-q,sV-pVgqg,-sVpV-q,-pVr,-qV-r}.
o
step h M K|C r
select s 1 'S K| 0 _
select r 2 (S r K| 0 _
propagate | 2 | ;s;r,—g[-qV —r] | K | 0 _
propagate | 2 | ;s;r,—q,plpVq] | K| 0 _
conflict 2 s r,q, p K|0|-pVg

N. Shankar Speaking Logic 2019 70/179

CDCL Example (contd.)

step h M K|C r
conflict 2| ;s;r,mq,p |K| 0| -pVg
backjump | 0 U K| gq _
propagate | 0 qlq] K|gqg _
propagate | 0 | g,p[pV —q] | K| q -
propagate | 0 | g,p,r[-pVr] | K| g _
conflict 0 q,p, r K|qg|—qV-r

Show that CDCL is sound and complete.

N. Shankar Speaking Logic 2019 71/179

ROBDD

@ Boolean functions map {0,1}" to {0,1}.

@ We have already seen how n-ary Boolean functions can be
represented by propositional formulas of n variables.
@ ROBDDs are a canonical representation of boolean functions
as a decision diagram where
@ Literals are uniformly ordered along every branch:
(X1, .oy xn) = IF(x1, F(T, X5« oy Xn)s F(Ly X2, 0oy X))
@ Common subterms are identified
© Redundant branches are removed: IF(x;,A,A) = A
e Efficient implementation of boolean operations: f1.f, fi + 1,
—f, including quantification.

e Canonical form yields free equivalence checks (for convergence
of fixed points).

N. Shankar Speaking Logic 2019 72/179

ROBDD for Even Parity

ROBDD for even parity boolean function of a, b, c.

Construct an algorithm to compute 1 ® f, where ® is A or V.
Construct an algorithm to compute 3x.f.

N. Shankar Speaking Logic 2019 73/179

First and Higher-Order Logic

N. Shankar Speaking Logic 2019 74/179

Equality Logic (EL)

In the process of creeping toward first-order logic, we introduce a
modest but interesting extension of propositional logic.

In addition to propositional atoms, we add a set of constants 7
given by ¢p, c1, ... and equalities ¢ = d for constants ¢ and d.

¢ = Pl=¢[1Va|drNd2| 1=
The structure M now has a domain |M| and maps propositional

variables to {T, L} and constants to |M|.

Me = d] { T, if M[c] = M[d]

1, otherwise

N. Shankar Speaking Logic 2019 75/179

Proof Rules for Equality Logic

°
Reflexivity lFa=a A
lN-a=5bA
Symmetry m
Transitivity | — 2= 028 kb=ca
Na=cA

@ Show that the above proof rules (on top of propositional
logic) are sound and complete.

@ Show that Equality Logic is decidable.

@ Adapt the above logic to reason about a partial ordering
relation <, i.e., one that is reflexive, transitive, and
anti-symmetric (x <y Ay < x = x=y).

N. Shankar Speaking Logic 2019 76/179

Term Equality Logic (TEL)

@ One further extension is to add function symbols from a
signature X that assigns an arity to each symbol.

@ Function symbols are used to form terms 7, so that constants
are just O-ary function symbols.

T = f(n,...,m), forn>0
¢ = Pl-¢|grVa|drNd2|m=1
e For an n-ary function f, M(f) maps |M|" to |M]|.
Mla=b] = MJa] = M[b]
M[f(a1,...,an)] = M[)(M[ai],-.., M[an])

@ We need one additional proof rule.

FFai=b,A...TFa,=b,A

C
ongruence M f(ar,...,an) = f(b1,...,bn), A

N. Shankar Speaking Logic 2019 77/179

Term Equality Proof Examples

Let 1"(a) represent f (...f(a)...).
~——

n

A

3(a) = f(a) F 3(a) = f(a)

f3(a) =f(a)F f*a) = f2(a) A

f3(a) = f(a) F f5(a) = f3(a) f3(a) = f(a) F f3(a) = f(a) T
3(a) = f(a) F f2(a) = f(a)

Show soundness and completeness of TEL.
Show that TEL is decidable.

N. Shankar Speaking Logic 2019 78/179

Equational Logic

@ Equational Logic is a heavily used fragment of first-order logic.
@ It consists of term equalities s = t, with proof rules
© Reflexivity: —

© Symmetry: f
© Transitivity: %ts:t

nn
0 [~

. S1=t1,....5,=1t,
@ Congruence: (51, r5n)=F (1, tn)

.. s=t .
@ Instantiation: 7(5)=0(0)’ for substitution o.

@ We say [- s = t when the equality s = t can be derived from
the equalities in T.
@ Show that equational logic is sound and complete.

N. Shankar Speaking Logic 2019 79/179

Equational Logic

Use equational logic to formalize

Semigroups: A set G with an associative binary operator .
Monoids: A set M with associative binary operator . and unit 1
Groups: A monoid with a right-inverse operator x 1

Commutative groups and semigroups

00000

Rings: A set R with commutative group (R, +, ~,0), semigroup
(R,.), and distributive laws x.(y + z) = x.y + x.z and
(y+2)x=yx+zx

@ Semilattice: A commutative semigroup (S, A) with idempotence
XAX=Xx

@ Lattice: (L, A, V) where (L,A) and (L, V) are semilattices, and
xV(xAy)=xand xA(xVy)=x.

© Distributive lattice: A lattice with x A (y V z) = (x Ay) V (x A 2).

© Boolean algebra: Distributive lattice with constants 0 and 1 and

unary operation — such that x A0 =0, xV1=1 xA—-x=0, and
xV—x=1.

N. Shankar Speaking Logic 2019 80/179

Equational Logic

@ Prove that every group element has a left inverse.

@ For a lattice, define x < y as x A y = x. Show that < is a
partial order (reflexive, transitive, and antisymmetric).

@ Show that a distributive lattice satisfies
xV(yNz)=(xVy)A(xVz).

@ Prove the de Morgan laws, —(x Vy) = —x A —y and
—(x AN y) = —xV —y for Boolean algebras.

@ Prove that the set of integers Z form a commutative ring
under addition and multiplication.

@ A field is a ring where nonzero elements have a multiplicative
inverse. Prove that the rationals and reals form a field under
addition and multiplication.

N. Shankar Speaking Logic 2019 81/179

First-Order Logic

We can now complete the transition to first-order logic by adding
T = X
| f(r1,...,7n), forn>0

¢ = 9|V [dr A | L=
| Vx.¢ | 3x.¢ | q(71,...,7n), for n >0

Terms contain variables, and formulas contain atomic and
quantified formulas.

N. Shankar Speaking Logic 2019 82/179

Semantics for Variables and Quantifiers

M[gq] is a map from D" to {T, L}, where n is the arity of
predicate g.

Mlxlp = p(x)
Mﬂq(alv"' ,a,,)]]p I\/I[[q]](l\/l[[al]]p,...,l\/l[[a,,]]p)

B T, if M[A]p[x :=d] foralld € D
Mlvx-Alp = { L, otherwise

T, if M[A]p[x := d] for some d € D

M[Ex-Alp = {J_, otherwise

Atomic formulas are either equalities or of the form g(a1,..., an).

N. Shankar Speaking Logic 2019 83/179

First-Order Logic

’ ‘ Left ‘ Right ‘
v At/ x] F A e Ale/x], A
° Mvx.AF A M= Vx.A A
3 M Ac/x]FA M= A[t/x], A
IMx.AFA M- 3x.A A

e Constant ¢ must be chosen to be new so that it does not
appear in the conclusion sequent.

@ Demonstrate the soundness of first-order logic.

@ A theory consists of a signature X for the function and
predicate symbols and non-logical axioms.

o If a T is obtained from S by extending the signature and
adding axioms, then T is conservative with respect to S, if all
the formulas in S provable in T are also provable in S.

N. Shankar Speaking Logic 2019 84/179

Using First-Order Logic

e Prove 3x.(p(x) = Vy.p(y)).

@ Give at least two satisfying interpretations for the statement
(Fx.p(x)) = (vx.p(x)).

@ A sentence is a formula with no free variables. Find a
sentence A such that both A and —A are satisfiable.

@ Write a formula asserting the unique existence of an x such
that p(x).

e Define operations for collecting the free variables vars(A) in a
given formula A, and substituting a term a for a free variable
x in a formula A to get A{x — a}.

e Is M[A{x — a}]p = M[A]p[x := M[a]p]? If not, show an
example where it fails. Under what condition does the
equality hold?

@ Show that any quantified formula is equivalent to one in
prenex normal form, i.e., where the only quantifiers appear at
the head of the formula and the body is purely a propositional ﬁ;g

combination of atomic formulas.
N. Shankar Speaking Logic 2019 85/179

More Exercises

@ Prove
Q Vx.A — dx.—-A
Q (Vx.AAB) < (Vx.A) A (Vx.B)
© (3x.AVvB) < (3x.A) Vv (3x.B)
Q ((Vx.A)V (Vx.B)) = (Vx.AV B)

Write the axioms for a partially ordered relation <.

Write the axioms for a bijective (1-to-1, onto) function f.

Write a formula asserting that for any x, there is a unique y
such that p(x, y).
@ Can you write first-order formulas whose models
© Have exactly (at most, at least) three elements?
@ Are infinite
© Are finite but unbounded
@ Can you write a first-order formula asserting that

© A relation is transitively closed
@ A relation is the transitive closure of another relation.

N. Shankar Speaking Logic 2019 86/179

SMT Overview

@ In SMT solving, the Boolean atoms represent constraints over
individual variables ranging over integers, reals, datatypes, and
arrays.

@ The constraints can involve theory operations, equality, and
inequality.
@ The SAT solver has to interact with a theory constraint solver
which propagates truth assignments and adds new clauses.
@ The theory solver can detect conflicts involving theory
reasoning, e.g.,
@ f(x)=fly)Vx#y
Q f(x—2)#f(y+3)Vx—y<bVy—z<-2Vz—x<-3
© x XOR y # 060000000 V select(store(A, x,v),y) = v
@ The theory solver must produce efficient explanations,
incremental assertions, and efficient backtracking.

N. Shankar Speaking Logic 2019 87/179

Example Constraint Solvers

@ Core theory: Equalities between variables x = y, offset
equalities x =y 4 c.

@ Term equality: Congruence closure for uninterpreted
function symbols

o Difference constraints: Incremental negative cycle
detection for inequality constraints of the form x — y < k.

@ Linear arithmetic constraints: Fourier's method, Simplex.

N. Shankar Speaking Logic 2019 88/179

What is an Inference Algorithm?

@ An X -inference structure (W, +, A\, M) consists of
WV, a set of logical states

F, the reduction relation between states

A, a map from states to X-formulas

M, which extracts models from canonical states

@ An inference system is an inference structure that is
o Conservative: If ¢ = 1)’, then A(¢)) and A(¢)’) are
equisatisfiable.
e Progressive: F is well-founded.
o Canonizing: If ¢ 1/ ¢’ for any 1/, then either ¢ is L (i.e.,
unsatisfiable) or ¢ is in a canonical form so that M(%)) is a
model for A()).
e It is strongly conservative if whenever 1) 1)/, then ¢ and v’
are equisatisfiable and any model of ¢’ is also a model of .

@ We focus here on basic inference systems, but there are
interesting variants.

N. Shankar Speaking Logic 2019 89/179

What is an Inference Algorithm?

@ An inference algorithm is an inference system where the
reduction relation is presented as a collection of effective
inference rules that transform an inference state v to an
inference state 1)/ such that ¢ - 1)/. Example: Ordered
resolution is an algorithm for CNF satisfiability.

@ Input K is a set of ordered clauses where the literals appear in
decreasing order w.r.t. some order e.g., g < =g < p < —p.

@ Tautologies, i.e., clauses containing both p and —p, are
deleted from initial input.

Res Kap\/rlaﬁp\/r2 rlvr2¢K
K,pVTly1,-pVTIs VI, I1VIyisnot tautological
K,p,—p
Contrad — 1

@ A set of clauses is canonical if it is closed under applications
of Res and the Contrad rule is inapplicable.

N. Shankar Speaking Logic 2019 90/179

Resolution: Example

(Ko=) -pV—qVr, -pVgq, pVr, —r

Res
(Kl :) —qVr, KO R
es
(Ka=)qVr, Ki o
es
(K3 :) r, K2
T Contrad

@ Drop the clause —r, and we reach an irreducible state from
which a truth assignment {r— T,q+— L, p— L} can be
constructed.

N. Shankar Speaking Logic 2019 91/179

Resolution as an Inference Algorithm

@ The resolution inference system is strongly conservative:
1 v Iy is satisfiable if pV 1 and =pV I, are.
@ It is progressive: Bounded number of new clauses in the input
variables.
@ It is canonizing: Build a model M by assigning to atoms p; to
pn within a series of partial assignments My, ..., M,:
e My is the empty truth assignment.
o M1 = Mi|pit1 — v], where v = T iff there is some clause
pi+1 VT in the irreducible state K such that M; E —T.
e If M; |= T, then for any clause —p; V A, M; |= A since
NvAcekK.
e Invariant: M; =T for all clauses I' in K in the atoms
p1;...,Pi.
@ Unordered resolution is also conservative, progressive, and

canonizing, but it does not have the same set of canonical
states.

N. Shankar Speaking Logic 2019 92/179

Maintaining Equivalence with Union-Find

The logical state is a triple (G, F) with the input equalities and
disequalities G and the find structure F which is a set of oriented
equalities, i.e., orient y = x as x =y if y < x.

Delete

x=y,G;F

CF if F(x)=F(y)

Merge

x=y,GF i F(x)# F(y)
G;F'oF F' = {orient(F(x) = F(y))}

Contrad

SELEL i R = FO)

@ The above inference system is (strongly) conservative,
progressive, and canonizing.

@ Example: x =y, x = z,u = v; () reduces to
bix=z,y=z,u=v.

N. Shankar Speaking Logic 2019

93/179

Satisfiability Modulo Theories

SMT deals with formulas with theory atoms like x =y,
x #y, x —y <3, and select(store(A,i,v),j) = w.

@ The CDCL search state is augmented with a theory state S in
addition to the partial assignment.

@ Total assignments are checked for theory satisfiability.

@ When a literal is added to M by unit propagation, it is also
asserted to S.

@ When a literal is implied by S, it is propagated to M.

@ When backjumping, the literals deleted from M are also
retracted from S.

N. Shankar Speaking Logic 2019 94/179

SMT example

The state extends CDCL with a find structure F and disquality set

D.
Inputisy =2z, x=yVx=2z, x#yVx#z
Step M F D C
Assert y=1z {y — z} 0 0
Select y=zx#y {y— z} {x#y} 0
ci X FEZ
Pop | U ey | b A0
Conflict {y — z} {x#y} 0
Analyze {y— z} x££y} | {y#z
Vx =y}
Bkjump y=z,x=y {y — z} 0
Assert y=z,x=y {x—=y,y—z})
X =
Prop X 2V x£yVy £7] {x—y,y—z} 0
Conflict

N. Shankar Speaking Logic 2019 95/179

Generalizing Inference Algorithms: Dijkstra

e Given a weighted directed graph G = (V, W), with
non-negative (or co) edge weights, find the smallest-weight
path from a given source vertex s to each vertex, i.e., a map
Ps on V: Pg(s) =0, and for v # s,

Ps(v) =[{Ps(u) + W(u,v) | ue V}.

o Let

0, ifv=s

post(X)(v) = { [{X(u) + W(u,v) | u € dom(X)}, otherwise.

@ We therefore want to compute Ps such that Ps = post(Ps).

N. Shankar Speaking Logic 2019 96/179

Generalizing Inference Algorithms: Dijkstra

@ The logical state has two partial maps D and Q:

@ Each v € V is either in dom(D) or dom(Q@), but not both,
@ D(v) = post(D)(v) for v € dom(D),

© Q(v) = post(D)(v) for v € dom(Q), and

Q D(u) < Q(v) for u € dom(D) and v € dom(Q).

e Initially, D =[s— 0], and Q = [v— W(s,v) | v #s].

@ Each inference step has the form

(D, Q)
(D, Q)

, Where

u = argmin,Q(u)
D' Dlu — Q(u)]
Q" = [v= Q)N (Qu) + W(u,v)) | v € dom(Q) — {

N. Shankar Speaking Logic 2019 97/179

Higher-Order Logic

@ Thus far, variables ranged over ordinary datatypes such as
numbers, and the functions and predicates were fixed
(constants).

@ Second-order logic allows free and bound variables to range
over the functions and predicates of first-order logic.

@ In n'th-order logic, the arguments (and results) of functions
and predicates are the functions and predicates of m'th-order
logic for m < n.

@ This kind of strong typing is required for consistency,
otherwise, we could define R(x) = —x(x), and derive
R(R) = =R(R).

@ Higher-order logic, which includes n’th-order logic for any
n > 0, can express a number of interesting concepts and
datatypes that are not expressible within first-order logic:
transitive closure, fixpoints, finiteness, etc.

N. Shankar Speaking Logic 2019 98/179

Types in Higher-Order Logic

Base types: e.g., bool, nat, real

Tuple types: [T1,..., Tp] for types T1, ..., Tp.

Tuple terms: (a1,...,an)

Projections: 7;(a)

Function types: [T1— T>| for domain type T; and range type

Ts.
Lambda abstraction: A(x: T1) : a

Function application: f a.

N. Shankar Speaking Logic 2019 99/179

Semantics of Higher Order Types

[bool] = {0,1}
[real] = R
T, Ta]]l = [Ta] x... x[T.]
[T—=T]] = [T

N. Shankar Speaking Logic 2019 100/179

Higher-Order Proof Rules

B-reduction M= (A(x:T):a)(b)=alb/x],A

FE(v(x:T):f(x)=g(x)),A

Extensionality

rF-f=gA4A
Projection = Fw ey
Tuple Ext. | (@) =m(b ?‘7673 brzwn(2 A

N. Shankar Speaking Logic 2019 101/179

Sets in Higher-Order Logic

e For a type T, the type of predicates over T is [T—bool].

@ Predicates can be viewed as sets of elements from T.

@ Define the empty set, the full set, the complement of a set,
the union, intersection, and difference of two sets, the subset
relation between two sets.

@ Define a type that is a set of sets over T, and define the
operation of taking the union and intersection over these set
of sets.

N. Shankar Speaking Logic 2019 102/179

Sequences in Higher-Order Logic

@ Given the type N of natural numbers, a sequence o over type
T can be represented as [N— T].

o If T is the type of R of real numbers, define the concept of a
convergent series, i.e., there is some limit x such that for any
€ > 0, there is an N such that for any n > N, |o, — x| < e.

@ Write a formal definition for the convergence of a series.
@ Write a formal definition that x is the limit of a series o.

@ A Cauchy sequence o is one where for any € > 0, there is an
N such that for all i,j > N, |om — op] < €.

@ Write a formal definition of a Cauchy sequence.

@ Define a predicate that checks if one sequence o is a
subsequence of another sequence p.

@ Show that every bounded sequence of reals has a convergent
subsequence.

N. Shankar Speaking Logic 2019 103/179

Functions in Higher-Order Logic

@ Let f be a function from domain D to range R, i.e., in type
[D—R].

@ If D is some subtype of R and R is R, then f is monotonically
nondecreasing if f(x) < f(y) whenever x < y.

@ Define a predicate that checks that f is monotonically
nondecreasing.

@ A function is continuous in an interval I if for any x € | and
€ > 0, there is a 0 > 0 such that for any y € | if |[x — y| <4,
then |f(x) — f(y)| < e. Formalize.

e A function is uniformly continuous in | if for any € > 0 there
is a > 0 such that for any x,y € [, if [x — y| < 0, then
|f(x) — f(y)| < e. Formalize.

e Formalize Lipschitz continuity: for any x, y in /,
[F(x) = f(y)] < Klx1 — xal.

N. Shankar Speaking Logic 2019 104/179

Using Higher-Order Logic

Define universal quantification using equality in higher-order
logic.

Express and prove Cantor’s theorem (there is no injection
from a type T to a [T—bool]) in higher-order logic.

@ Write the induction principle for Peano arithmetic in
higher-order logic.

@ Write a definition for the transitive closure of a relation in
higher-order logic.

Describe the modal logic CTL in higher-order logic.

State and prove the Knaster-Tarski theorem.

N. Shankar Speaking Logic 2019 105/179

Metric Spaces (from Wikipedia)

@ A metric space is given by an ordered pair (M, d), where
d: Mx M — R, where

@ d(x,y) > 0 non-negativity or separation axiom
@ d(x,y) =0« x =y identity of indiscernibles
O d(x,y) =d(y,x) symmetry
Q d(x,z) <d(x,y)+ d(y,z) subadditivity or triangle inequality
@ Define a complete metric space as a metric space that
contains all limits of Cauchy sequences.

@ Define compact metric spaces where every infinite set contains
a sequence that converges to a limit point in the space.

@ Define sequentially compact metric spaces where every infinite
sequence has a convergent subsequence.

N. Shankar Speaking Logic 2019 106/179

Continuity at a Point

e A function f from (Mj, d1) to (M, dy) is continuous at c if
for any € > 0, there is a § > 0 such that for all x,
di(x,c) <9, we have do(f(x), f(c)) <e.

e Show that a function f from (My, di) to (Mo, db) is
continuous at c iff whenever a sequence (x;);en,
lim; oo f(x;) = f(c) if limi0ox; = c.

@ Define uniform continuity and Lipschitz continuity at a point.

e Formalize the notion of A topological