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Proofs and Things

Perhaps I can best describe my experience of doing mathematics
in terms of a journey through a dark unexplored mansion. You
enter the first room of the mansion and it’s completely dark. You
stumble around bumping into the furniture, but gradually you learn
where each piece of furniture is. Finally, after six months or so, you
find the light switch, you turn it on, and suddenly it’s all
illuminated. You can see exactly where you were. Then you move
into the next room and spend another six months in the dark. So
each of these breakthroughs, while sometimes they’re momentary,
sometimes over a period of a day or two, they are the culmination
of and couldn’t exist without the many months of stumbling
around in the dark that precede them. Andrew Wiles1

1http://www.pbs.org/wgbh/nova/physics/andrew-wiles-fermat.html
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Why Logic?

Computing, like mathematics, is the study of reusable
abstractions.

Abstractions in computing include numbers, lists, channels,
processes, protocols, and programming languages.

These abstractions have algorithmic value in designing,
representing, and reasoning about computational processes.

Properties of abstractions are captured by precisely stated
laws through formalization using axioms, definitions,
theorems, and proofs.

Logic is the medium for expressing these abstract laws and the
method for deriving consequences of these laws using sound
reasoning principles.

Computing is abstraction engineering.

Logic is the calculus of computing.
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The Unreasonable Effectiveness of Logic in Computing

The world is increasingly an interplay of abstractions.

Caches, files, IP addresses, avatars, friends, likes, hyperlinks,
packets, network protocols, and cyber-physical systems are all
examples of abstractions in daily use.

Such abstract entities and the relationships can be expresses
clearly and precisely in logic.

In computing, and elsewhere, we are increasingly dependent
on formalization as a way of managing the abstract universe.
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Where Logic has Been Effective

Logic has been unreasonably effective in computing, with an
impact that spans

Theoretical computer science: Algorithms, Complexity,
Descriptive Complexity

Hardware design and verification: Logic design, minimization,
synthesis, model checking

Software verification: Specification languages, Assertional
verification, Verification tools

Computer security: Information flow, Cryptographic protocols

Programming languages: Logic/functional programming, Type
systems, Semantics

Artificial intelligence: Knowledge representation, Planning

Databases: Data models, Query languages

Systems biology: Process models

Our course is about the effective use of logic in computing.
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Speaking Logic

In mathematics, logic is studied as a source of interesting
(meta-)theorems, but the reasoning is typically informal.

In philosophy, logic is studied as a minimal set of foundational
principles from which knowledge can be derived.

In computing, the challenge is to solve large and complex
problems through abstraction and decomposition.

Formal, logical reasoning is needed to achieve scale and
correctness.

We examine how logic is used to formulate problems, find
solutions, and build proofs.

We also examine useful metalogical properties of logics, as
well as algorithmic methods for effective inference.
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Course Schedule

The course is spread over four lectures:

Lecture 1: Proofs and Things
Lecture 2: Propositional Logics
Lecture 3: First-Order and Higher-Order Logic
Lecture 4: Advanced topics

The goal is to learn how to speak logic fluently through the
use of propositional, modal, equational, first-order, and
higher-order logic.

This will serve as a background for the more sophisticated
ideas in the main lectures in the school.

To get the most out of the course, please do the exercise and
try to use the PVS interactive proof assistant to formalize
your solutions.
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A Small Puzzle [Wason]

Given four cards laid out on a table as: D , 3 , F , 7 , where
each card has a letter on one side and a number on the other.

Which cards should you flip over to determine if every card
with a D on one side has a 7 on the other side?
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A Small Problem

Given a bag containing some black balls and white balls, and a
stash of black/white balls. Repeatedly

1 Remove a random pair of balls from the bag

2 If they are the same color, insert a white ball into the bag

3 If they are of different colors, insert a black ball into the bag

What is the color of the last ball?
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Truthtellers and Liars [Smullyan]

You are confronted with two gates.

One gate leads to the castle, and the other leads to a trap

There are two guards, one at each gate: one always tells the
truth, and the other always lies, but you can’t tell which is
which.

You are allowed to ask one of the guards one question with a
yes/no answer.

What question should you ask in order to find out which gate
leads to the castle?
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When is Cheryl’s Birthday?

Albert and Bernard have just become friends with Cheryl, and
they want to know her date of birth. Cheryl gives them 10
possible dates:

May 15 May 16 May 19
June 17 June 18
July 14 July 16

August 14 August 15 August 17

Cheryl then tells Albert and Bernard separately the month and
the day of her birthday, respectively.

Albert: I don’t know when Cheryl’s birthday is, but I know
that Bernhard does not know too.
Bernard: At first I didn’t know Cheryl’s birthday, but now I
do.
Albert: Then I also know Cheryl’s birthday.

When is Cheryl’s birthday?
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Mr. S and Mr. P

Two integers m and n are picked from the interval [2, 99].

Mr. S is given the sum m + n. and Mr. P is given the product
mn.

They then have the following dialogue:

S: I don’t know m and n.
P: Me neither.
S: I know that you don’t.
P: In that case, I do know m and n.
S: Then, I do too.

Write a program to determine the numbers m and n.
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Pigeonhole Principle & Cantor’s Theorem

Why can’t you park n + 1 cars in n parking spaces, if each car
needs its own space?

Let m..n represent the subrange of integers from m to, but
not including, n.

An injection from set A to set B is a map f such that
f (x) = f (y) implies x = y , for any x , y in A.

The Pigeonole principle can be restated as asserting that
there is no injection from 0..n + 1 to 0..n. Prove it.

The Infinite Pigeonhole principle states that any finite
partition of an infinite set must contain an infinite partition.
Prove it.

Let N be the set of natural numbers 0, 1, 2, . . ., and let ℘(N)
be the set of subsets of N.

Show that there is no injection from ℘(N) to N.
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Ramsey Theorem

In any group of six people, there are always three mutual
acquaintances or three mutual strangers. Why?

In a complete graph of six vertices, there are 10 + 6 + 3 + 1
triangles and at most 18 corners (x , y), (x , z) such that x
knows y but not z .

Hence, there must be at least 2 triangles that are mutual
strangers or mutual acquaintances.

For any k , and c1, . . . , ck , there is some N such that any
k-coloring of the edges of a graph of N vertices yields a graph
with a ci clique of color i for some i .

The infinite Ramsey theorem states that if X is an infinite set
such that the elements of Xm are assigned one of k colors,
then there is an infinite subset Y of X such that all elements
of Y m are assigned the same color.
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Hard Sudoku [Wikipedia/Algorithmics of Sudoku]
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Gilbreath’s Card Trick

Start with a deck consisting of a stack of quartets, where the
cards in each quartet appear in suit order ♠,♥,♣,♦:

〈5♠〉, 〈3♥〉, 〈Q♣〉, 〈8♦〉,
〈K♠〉, 〈2♥〉, 〈7♣〉, 〈4♦〉,
〈8♠〉, 〈J♥〉, 〈9♣〉, 〈A♦〉

Cut the deck, say as 〈5♠〉, 〈3♥〉, 〈Q♣〉, 〈8♦〉, 〈K♠〉 and
〈2♥〉, 〈7♣〉, 〈4♦〉, 〈8♠〉, 〈J♥〉, 〈9♣〉, 〈A♦〉.
Reverse one of the decks as 〈K♠〉, 〈8♦〉, 〈Q♣〉, 〈3♥〉, 〈5♠〉.
Now shuffling, for example, as

〈2♥〉, 〈7♣〉, 〈K♠〉, 〈8♦〉,
〈4♦〉, 〈8♠〉, 〈Q♣〉, 〈J♥〉,
〈3♥〉, 〈9♣〉, 〈5♠〉, 〈A♦〉

Each quartet contains a card from each suit. Why?
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A Sorting Card Trick

Arrange 25 cards from a deck of cards in a 5x5 grid.

First, sort each of the rows individually.

Then, sort each of the columns individually.

Now both the rows and columns are sorted. How come?
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Length of the Longest Increasing Subsequence

You have a sequence of numbers, e.g.,
9, 7, 10, 9, 5, 4, 10.

The task is to find the length of the longest increasing
subsequence.

Here the longest subsequence is 7, 9, 10, and its length is 3.

Patience solitaire is a card game where cards are placed, one
by one, into a sequence of columns.

Each card is placed at the bottom of the leftmost column
where it is no bigger than the current bottom card in the
column.

If there is no such column, we start a new column at the right.

Show that the number of columns left at the end yields the
length of the longest increasing subsequence.
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Computing Majority

An election has five candidates: Alice, Bob, Cathy, Don, and
Ella.

The votes have come in as:
E, D, C, B, C, C, A, C, E, C, A, C, C.

You are told that some candidate has won the majority (over
half) of the votes.

You successively remove pairs of dissimilar votes, until there
are no more such pairs.

That is, the remaining votes, if any, are all for the same
candidate.

Show that this candidate has the majority.
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Maximum Segment Sum

Given an array a[0..N − 1] of integers, a segment sum over
the segment a[l ..h] is Σh

j=la[j ] for 0 ≤ l , h < N.

The maximum segment sum is max l ,hΣh
j=la[j ].

Since segments can be empty, the minimum segment sum is 0.

For example, if the array elements are
a[0] = −3, a[1] = 4, a[2] = −2, a[3] = 6, a[4] = −5, then the
maximum segment sum is 8, which is the sum over a[1..3].

Write and verify an algorithm for computing the maximum
segment sum of a given array.
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Proofs, informally

For n ∈ N, prove that Σn
i=0 = n(n + 1)/2. Why is the

right-hand side always a natural number.

With n, k ∈ N with n ≥ k > 0,
( n

k

)
= n!

(n−k)!k! , show that( n
k

)
is a natural number.

Define N as the smallest set containing 0 and closed under the
successor operation S , where S(x) 6= x .

Define addition recursively as

0 + y = y

S(x) + y = x + S(y)

Prove that + is associative.
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What is Logic?

Logic is the art and science of effective reasoning.

How can we draw general and reliable conclusions from a
collection of facts?

Formal logic: Precise, syntactic characterizations of
well-formed expressions and valid deductions.

Formal logic makes it possible to calculate consequences so
that each step is verifiable by means of proof.

Computers can be used to automate such symbolic
calculations.
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Näıve Set Theory

We will be using sets informally when talking about logic.
Sets have members x ∈ X (x is an element of X ), and can be
related through equality X = Y (X and Y have the same
elements), and subset X ⊂ Y or X ⊆ Y (every element of X
is an element of Y ).
Sets include the emptyset ∅, the singleton set {a} containing
just a as an element, the two-element set 2 = {0, 1}, the set
N of natural numbers {0, 1, 2, . . .}.
Other examples include the set of integers, odd integers, even
integers, prime numbers, rational numbers, algebraic numbers,
real numbers, etc.
The set of elements satisfying a property P is represented as
{x |P(x)}, e.g., {i |0 ≤ i ≤ 5}.
Let F be a map, e.g., x 7→ x2, then F [X ] represents the image
of X with respect to X .
The {F (x)|P(x)} contains all and only the elements F (a) for
each element a satisfying P(a), e.g., {x2|0 ≤ x ≤ 5}.
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Näıve Set Theory

The set {a, b} represents the set that is the pair of elements a
and b, which can themselves be sets.
Ordered pairing 〈x , y〉 can be represented as {{x , y}, {y}}.
The union

⋃
X is the set {x |x ∈ y , y ∈ X}. X ∪ Y is just⋃

{X ,Y }.
The intersection

⋂
X is the set {x |x ∈ y , for each y ∈ X}.

X ∩ Y is just
⋂
{X ,Y }.

Define projections π1 and π2 such that π1(〈x , y〉) = x and
π2(〈x , y〉) = y .
The relative complement X − Y of two sets is the set
{x |x ∈ X , x 6∈ Y }.
The Cartesian product X × Y is the set
{{x , y}|x ∈ X , y ∈ Y } of ordered pairs 〈x , y〉 for x ∈ X and
y ∈ Y .
Two sets are equal if they have exactly the same elements.
Prove (X ∪ Y ) ∪ Z = X ∪ (Y ∪ Z ), X ∪ Y = Y ∪ X ,
X ∪ X = X , and similarly for intersection.
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Näıve Set Theory

The set of integers Z is {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
A map F between X and Y is injective if whenever
F (x) = F (x ′) for x , x ′ in X , we have x = x ′.

A map F between X and Y is surjective if for each y ∈ Y ,
there is an x ∈ X , such that F (x) = y .

A map F between X and Y is bijective if F is both injective
and surjective.

The graph of a map F between X and Y can be represented
as a subset of X × Y as {〈x , y〉|F (x) = y}.
A subset G of X × Y is a graph if for any x ∈ X , there is
exactly one y such that 〈x , y〉 ∈ G .

Define the operation of applying a graph G to an argument x .

Define Y X represent the set of graphs with X as domain and
Y as range.

Show that there is a bijection between X × (Y × Z ) and
(X × Y )× Z and 2X and the power set of X : {Y |Y ⊆ X}.
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Näıve Set Theory Exercises

Show that each integer can be represented (non-uniquely) by
a pair of natural numbers.

Define an equivalence relation ' on this representation of
integers.

Show that this representation of the integers is
order-isomorphic to the set Z of integers.

For any set X , define the set of infinite sequences over X .

Define the set of Cauchy sequences of rational numbers, where
a sequence σ is Cauchy if for any rational number ε > 0, there
is some i such that for every m, n > i , |σm − σn| < ε.

Exhibit a Cauchy sequence that converges to
√

2.
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Näıve Set Theory Exercises

One set is equinumerous with another if there is a bijection
between them.

Is the set Z equinumerous with N.

Can a set X be equinumerous with its powerset 2X ?

Is the set of ordered pairs of natural numbers N× N
equinumerous with N.

Is the set of rational numbers Q equinumerous with N?

Is the set of real numbers in the interval [0, 1] equinumerous
with N?
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Orderings

A binary relation < on a set U (a poset) is a partial ordering
if it is

Reflexive: x < x for all x ∈ U
Transitive: x < z if x < y and y < x , for all x , yz ∈ U
Anti-Symmetric: x = y if x < y and y < x .

A partial ordering is total (or linear) if for all x , y ∈ U: x < y
or y < x .

For a subset X of U, element x ∈ X is

Minimal, if for y ∈ X , y = x or y 6< x .
Least, if x < y for y ∈ X .
Maximal, if for y ∈ X , y = x or x 6< y .
Greatest, if y < x for y ∈ X .

A filter is a nonempty subset of U that is upward closed and
and contains x whenever x < y and x < z for y , z in U.

An ultrafilter on U is a proper filter (i.e., not U itself) that is
maximal. Formally define the concepts of filter and ultrafilter.
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Orderings

A strict partial ordering is irreflexive, transitive, and
anti-symmetric.

An antichain is a subset X of U such that x 6< y , for x , y ∈ X .

A partial order is well-founded if every nonempty subset X of
U has a minimal element.

A linear order is well-ordered if every nonempty subset X of U
has a least element.

Every well-ordering is well-founded.
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Ordinal Numbers

The ordinal numbers can be constructed as: 0 is an ordinal
number, and the next ordinal number is the set of all
preceding ordinal numbers.

The ordinals are well-ordered, and any well-ordered set is
order-isomorphic, i.e., has an order-preserving bijection, to
some ordinal.

Is the set N under the usual < ordering of natural numbers
well ordered?

Is the set Z under the usual < ordering of integers well
ordered? Is there a well-ordering for Z?

Is the set Q under the usual < ordering of rationals well
ordered? Is there a well-ordering for Q?
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Ordinal Numbers

Let ω represent the ordinal number for N with 0 < 1 < 2 . . ..

N can be ordered so that i < j for any even number i and odd
number j to get 0 < 2 < 4 . . . 1 < 3 < 5 . . ..

This has the order type ω + ω.

A lexicographic ordering on N× N has 〈x , y〉 < 〈x ′, y ′〉 if
x < x ′, or x = x ′ and y < y ′, e.g., 〈5, 3〉 < 〈5, 4〉.
What is the ordinal corresponding to the above lexicographic
ordering?

Can you define an ordering on N that is order isomorphic to
the lexicographic ordering on N× N?
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Lambda Calculus

Church introduced the lambda calculus as a foundation where
everything was a function, instead of a set.

We informally say the function mapping x to x2, but Church
observed that the proper way to write this involves using x as
a bound variable as in λx .x2.

Lambda terms Λ are formed as follows:

Λ := X | (Λ Λ2) | (λx .Λ).

Some examples: (λx .x), (λf .(λx .x)), (λf .(λx .(f x))).
((λf .(λx .(f x)))(λx .x)), (λf .(λx .(f (f x)))),
((λf .(λx .(f (f x))))(λf .(λx .(f (f x))))).

Define the set of free variables vars(()a) as

vars(x) = x

vars((e b)) = vars(a) ∪ vars(b)

vars((λx .e)) = vars(e)− {x}
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Lambda Calculus

Substitutione[a/x ] is defined as

x [a/x ] = a

(e b)[a/x ] = (e[a/x ]b[a/x ])

(λx .e)[a/x ] = (λx .e))

(λy .e)[a/x ] = (λy .e[a/x)), if y 6= x , y 6∈ vars(e)

What goes wrong without the side-condition on substitution?

Equational rules for Λ are
1 α-conversion: (λx .e) = (λy .e[y/x ]), y 6∈ vars(e)
2 β-conversion: ((λx .e) a) = e[a/x ]
3 η-conversion: (λx .(e x)) = e, if x 6∈ vars(e).
4 Instantiation: a=b

a[e/x]=b[e/x]

Construct a λ-term that β-converts to itself.
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Paradoxes

There’s a barber in a village who shaves all and only those
people who do not shave themselves. Does the barber shave
himself?

The Liar paradox has Epimenides, a Cretan, asserting that All
Cretans are liars.? Could Epimenides be telling the truth?
Could he be lying?

What if Epimenides is the only Cretan?

Berry’s paradox: What is “the smallest natural number not
definable in fewer than twelve words”?

Richards paradox: Let p0, p1, . . ., be an enumeration of the
properties of natural numbers. We say that i is Richardian if
¬pi (i). Is there a property pr in the enumeration that
captures the property of being Richardian?

Let R be the set {x |x 6∈ x}. Is R ∈ R?

Is there a universal set V given by {x |x = x}?
The set of ordinals ON is itself well-ordered. Is ON ∈ ON?
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Logic Basics

Logic studies the trinity between language, interpretation, and
proof.

Language: What are you allowed to say?

Interpretation: What is the intended meaning?

Meaning is usually compositional: Follows the syntax
Some symbols have fixed meaning: connectives, equality,
quantifiers
Other symbols are allowed to vary variables, functions, and
predicates
Assertions either hold or fail to hold in a given interpretation
A valid assertion holds in every interpretation

Proofs are used to demonstrate validity
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Propositional Logic

Propositional logic can be more accurately described as a
logic of conditions – propositions are always true or always
false. [Couturat, Algebra of Logic]

A condition can be represented by a propositional variable,
e.g., p, q, etc., so that distinct propositional variables can
range over possibly different conditions.

The conjunction, disjunction, and negation of conditions are
also conditions.

The syntactic representation of conditions is using
propositional formulas:

φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2

P is a class of propositional variables: p0, p1, . . ..

Examples of formulas are p, p ∧ ¬p, p ∨ ¬p, (p ∧ ¬q) ∨ ¬p.
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Meaning

In logic, the meaning of an expression is constructed
compositionally from the meanings of its subexpressions.

The meanings of the symbols are either fixed, as with ¬, ∧,
and ∨, or allowed to vary, as with the propositional variables.

An interpretation (truth assignment) M assigns truth values
{>,⊥} to propositional variables: M(p) = > ⇐⇒ M |= p.

M[[A]] is the meaning of A in M and is computed using truth
tables:

φ p q ¬p p ∨ q p ∧ q

M1(φ) ⊥ ⊥ > ⊥ ⊥
M2(φ) ⊥ > > > ⊥
M3(φ) > ⊥ ⊥ > ⊥
M4(φ) > > ⊥ > >
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Truth Tables

We can use truth tables to evaluate formulas for
validity/satisfiability.

p q (¬p ∨ q) (¬(¬p ∨ q) ∨ p) ¬(¬(¬p ∨ q) ∨ p) ∨ p

⊥ ⊥ > ⊥ >
⊥ > > ⊥ >
> ⊥ ⊥ > >
> > > > >

How many rows are there in the truth table for a formula with n
distinct propositional variables?
How many distinct truth tables are there in n distinct propositional
variables?
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Problems

Define the operation of substituting a formula A for a variable
p in a formula B, i.e., B[p 7→ A].

Is the result always a well-formed formula?

Can the variable p occur in B[p 7→ A]?

What is the truth-table meaning of B[p 7→ A] in terms of the
meaning of B and A?
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Defining New Connectives

How do you define ∧ in terms of ¬ and ∨?

Give the truth table for A⇒ B and define it in terms of ¬
and ∨.

Define bi-implication A ⇐⇒ B in terms of ⇒ and ∧ and
show its truth table.

An n-ary Boolean function maps {>,⊥}n to {>,⊥}
Show that every n-ary Boolean function can be defined using
¬ and ∨.

Using ¬ and ∨ define an n-ary parity function which evaluates
to > iff the parity is odd.

Define an n-ary function which determines that the unsigned
value of the little-endian input p0, . . . , pn−1 is even?

Define the NAND operation, where NAND(p, q) is ¬(p ∧ q)
using ¬ and ∨. Conversely, define ¬ and ∨ using NAND.
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Satisfiability and Validity

An interpretation M is a model of a formula φ if M |= φ.

If M |= ¬φ, then M is a countermodel for φ.

When φ has a model, it is said to be satisfiable.

If it has no model, then it is unsatisfiable.

If ¬φ is unsatisfiable, then φ is valid, i.e., alway evaluates to
>.

We write φ |= ψ if every model of φ is a model of ψ.

If φ ∧ ¬ψ is unsatisfiable, then φ |= ψ.
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Satisfiable, Unsatisfiable, or Valid?

Classify these formulas as satisfiable, unsatisfiable, or valid?

p ∨ ¬p
p ∧ ¬p
¬p ⇒ p
((p ⇒ q)⇒ p)⇒ p

Make up some examples of formulas that are satisfiable
(unsatisfiable, valid)?

If A and B are satisfiable, is A ∧ B satisfiable? What about
A ∨ B.

Can A and ¬A both be satisfiable (unsatisfiable, valid)?
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Some Valid Laws

A bi-implication A ⇐⇒ B is valid (and hence A and B are
equivalent) iff every model of A is a model of B and
vice-versa.

Check that following formulas are valid for any assignment to
A and B?

1 ¬(A ∧ B) ⇐⇒ ¬A ∨ ¬B
2 ¬(A ∨ B) ⇐⇒ ¬A ∧ ¬B
3 ((A ∨ B) ∨ C ) ⇐⇒ A ∨ (B ∨ C )
4 (A⇒ B) ⇐⇒ (¬A ∨ B)
5 (¬A⇒ ¬B) ⇐⇒ (B ⇒ A)
6 ¬¬A ⇐⇒ A
7 A⇒ B ⇐⇒ ¬A ∨ B
8 ¬(A ∧ B) ⇐⇒ ¬A ∨ ¬B
9 ¬(A ∨ B) ⇐⇒ ¬A ∧ ¬B

10 ¬A⇒ B ⇐⇒ ¬B ⇒ A
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What Can Propositional Logic Express?

Constraints over bounded domains can be expressed as
satisfiability problems in propositional logic (SAT).

Define a 1-bit full adder in propositional logic.

The Pigeonhole Principle states that if n + 1 pigeons are
assigned to n holes, then some hole must contain more than
one pigeon. Formalize the pigeonhole principle for four
pigeons and three holes.

Formalize the statement that a graph of n elements is
k-colorable for given k and n such that k < n.

Formalize and prove the statement that given a symmetric
and transitive graph over 3 elements, either the graph is
complete or contains an isolated point.

Formalize Sudoku and Latin Squares in propositional logic.
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Using Propositional Logic

Write a propositional formula for checking that a given finite
automaton 〈Q,Σ, q,F , δ〉 with

Alphabet Σ,
Set of states S
Initial state q,
Set of final states F , and
Transition function δ from 〈Q,Σ〉 to Q

accepts some string of length 5.

Describe an N-bit ripple carry adder with a carry-in and
carry-out bits as a formula.
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Cook’s Theorem

A Turing machine consists of a finite automaton reading (and
writing) symbols from a finite set Σ (including a blank symbol
‘ ’) from a tape . . . ,T (−1),T (0),T (1), . . ..

Initially, the tape is blank except at the input
T (0), . . . ,T (n − 1).

The finite automaton has a finite set of states Q, a subset F
of which are accepting states.

In each step, if the automaton is at a non-accepting state, the
machine reads the symbol at the current position of the head,
and nondeterministically executes a step consisting of

1 A new symbol to write at the head position
2 A move (left or right) of the head from the current position
3 A next automaton state
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Cook’s Theorem

For some bound N on the number of machine steps, show
that the it is possible to represent the following using a
polynomial number (in n) of Boolean variables

1 The k’th symbol is on the i ’th cell in the j ’th state of the
computation.

2 The head is at the i ’th cell in the j ’th state of the computation.
3 The automaton is in the m’th state in the j ’th state of the

computation.

Show that SAT is solvable in polynomial time (in the size n of
the input) by a nondeterministic Turing machine.

Show that for any nondeterministic Turing machine and
polynomial bound p(n) for input of size n, one can (in
polynomial time) construct a propositional formula which is
satisfiable iff there is the Turing machine accepts the input in
at most p(n).
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Reductions to SAT

Encode the following problems as SAT problems
1 3-colorability of an undirected graph.
2 The k-colorability for a given k .
3 The existence of a Hamiltonian path in a graph, one that visits

each vertex exactly once.
4 The existence of a k-clique in a graph: a set of k vertices that

are pairwise connected by edges.

What is the size of your encoding?

A problem is NP-hard if there is a polynomial-time
(many-to-one, Turing, truth-table) reduction from SAT (or
another NP-hard) problem to it.
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Proof Systems

There are three basic styles of proof systems.

These are distinguished by their basic judgement.
1 Hilbert systems: ` A means the formula A is provable.
2 Natural deduction: Γ ` A means the formula A is provable

from a set of assumption formulas Γ.
3 Sequent Calculus: Γ ` ∆ means the consequence of

∨
∆ from∧

Γ is derivable.
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Hilbert System (H) for Propositional Logic

The basic judgement here is ` A asserting that a formula is
provable.

We can pick ⇒ as the basic connectives

The axioms are

`A⇒A
`A⇒(B⇒A)

`(A⇒(B⇒C ))⇒((A⇒B)⇒(A⇒C ))

A single rule of inference (Modus Ponens) is given

` A ` A⇒ B

` B

Can you prove ((p ⇒ q)⇒ p)⇒ p using the above system?
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Hilbert System (H)

Are any of the axioms redundant? [Hint: See if you can prove
the first axiom from the other two.]

Can you prove
1 A⇒ (B ⇒ B)
2 (A⇒ B)⇒ ((B ⇒ C )⇒ (A⇒ C )).

Write Hilbert-style axioms for ¬, ∧ and ∨.
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Deduction Theorem

We write Γ ` A for a set of formulas Γ, if ` A can be proved
given ` B for each B ∈ Γ.

Deduction theorem: Show that if Γ,A ` B, then Γ ` A⇒ B,
where Γ,A is Γ ∪ {A}. [Hint: Use induction on proofs.]

A derived rule of inference has the form

P1, . . . ,Pn

C

where there is a derivation in the base logic from the premises
P1, . . . ,Pn to the conclusion C .

An admissible rule of inference is one where the conclusion C
is provable if the premises P1, . . . ,Pn are provable.

Every derived rule is admissible, but what is an example of an
admissible rule that is not a derived one?
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Natural Deduction for Propositional Logic

In natural deduction (ND), the basic judgement is Γ ` A.

The rules are classified according to the introduction or
elimination of connectives from A in Γ ` A.

The axiom, introduction, and elimination rules of natural
deduction are

Γ,A`A
Γ1`A Γ2`A⇒B

Γ1∪Γ2`B
Γ,A`B

Γ`A⇒B
Use ND to prove the axioms of the Hilbert system.

A proof is in normal form if no introduction rule appears
above an elimination rule. Can you ensure that your proofs
are always in normal form? Can you write an algorithm to
convert non-normal proofs to normal ones?
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Minimal Logic

Add a propositional constant ⊥ to the implicational logic
above.

Define negation ¬A as A⇒ ⊥.

Can you prove
1 ¬A⇒ (A⇒ B)
2 ¬A⇒ (A⇒ ¬B)
3 A⇒ ¬¬A
4 ¬¬A⇒ A
5 ⊥ ⇒ A

If you take Formula 1 as an axiom, can you prove the others?

Conjunction A ∧ B can be encoded as (A⇒ (B ⇒ ⊥))⇒ ⊥.

Show that A⇒ (B ⇒ (A ∧ B)), (A ∧ B)⇒ A, and
(A ∧ B)⇒ B.
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Sequent Calculus (LK) for Propositional Logic

The basic judgement is Γ ` ∆ asserting that
∧

Γ⇒
∨

∆, where Γ
and ∆ are sets (or bags) of formulas.

Left Right

Ax
Γ,A ` A,∆

¬ Γ ` A,∆

Γ,¬A ` ∆

Γ,A ` ∆

Γ ` ¬A,∆

∨ Γ,A ` ∆ Γ,B ` ∆

Γ,A ∨ B ` ∆

Γ ` A,B,∆

Γ ` A ∨ B,∆

∧ Γ,A,B ` ∆

Γ,A ∧ B ` ∆

Γ ` A,∆ Γ ` B,∆

Γ ` A ∧ B,∆

⇒ Γ,B ` ∆ Γ ` A,∆

Γ,A⇒ B ` ∆

Γ,A ` B,∆

Γ ` A⇒ B,∆

Cut
Γ ` A,∆ Γ,A ` ∆

Γ ` ∆
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Peirce’s Formula

A sequent calculus proof of Peirce’s formula
((p ⇒ q)⇒ p)⇒ p is given by

p ` p, q
Ax

` p, p ⇒ q
`⇒

p ` p
Ax

(p ⇒ q)⇒ p ` p
⇒`

` ((p ⇒ q)⇒ p)⇒ p
`⇒

The sequent formula that is introduced in the conclusion is
the principal formula, and its components in the premise(s)
are side formulas.
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Metatheory

Metatheorems about proof systems are useful in providing
reasoning short-cuts.

The deduction theorem for H and the normalization theorem
for ND are examples.

Prove that the Cut rule is admissible for the LK . (Difficult!)

A bi-implication is a formula of the form A ⇐⇒ B, and it is
an equivalence when it is valid. Show that the following is a
derived inference rule.

A ⇐⇒ B

C [p 7→ A] ⇐⇒ C [p 7→ B]

State a similar rule for implication where

A⇒ B

C [p 7→ A]⇒ C [p 7→ B]
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Normal Forms for Formulas

A formula where negation is applied only to propositional
atoms is said to be in negation normal form (NNF).

For example, ¬(p ∨ ¬q) can be represented as ¬p ∧ q.

Show that every propositional formula built using ¬, ∨, and ∧
is equivalent to one in NNF.

A literal l is either a propositional atom p or its negation ¬p.

A clause is a multiary disjunction of a set of literals
l1 ∨ . . . ∨ ln.

A multiary conjunction of n formulas A1, . . . ,An is
∧n

i=1 Ai .
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Conjunctive and Disjunctive Normal Forms

A formula that is a multiary conjunction of multiary
disjunctions of literals is in conjunctive normal form (CNF).

CNF Example: (¬p ∨ q ∨ ¬r)
∧ (p ∨ r)
∧ (¬p ∨ ¬q ∨ r)

Define an algorithm for converting any propositional formula
to CNF.

A formula is in k-CNF if it uses at most k literals per clause.
Define an algorithm for converting any formula to 3-CNF.

A formula that is a multiary disjunction of multiary
conjunctions of literals is in disjunctive normal form (DNF).

Define an algorithm for converting any formula to DNF.
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Soundness

A proof system is sound if all provable formulas are valid, i.e.,
` A implies |= A, i.e., M |= A for all M.

To prove soundness, show that for any inference rule of the
form

` P1, . . . ,` Pn

` C
,

any model of all of the premises is also a model of the
conclusion.

Since the axioms are valid, and each step preserves validity,
we have that the conclusion of a proof is also valid.

Demonstrate the soundness of the proof systems shown so far,
i.e.,

1 Hilbert system H
2 Natural deduction ND
3 Sequent Calculus LK
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Completeness

A proof system is complete if all valid formulas are provable,
i.e., |= A implies ` A.
A countermodel M of Γ ` ∆ is one where either M |= A for
all A in Γ, and M |= ¬B for all B ∈ ∆.
In LK , any countermodel of some premise of a rule is also a
countermodel for the conclusion. What is the countermodel
for p ∨ q ` p ∧ q?.
We can then show that a non-provable sequent Γ ` ∆ has a
countermodel.
Each non-Cut rule has premises that are simpler than its
conclusion.
By applying the rules starting from Γ ` ∆ to completion, you
end up with a set of premise sequents {Γ1 ` ∆1, . . . , Γn ` ∆n}
that are atomic, i.e., that contain no connectives.
If an atomic sequent Γi ` ∆i is unprovable, then it has a
countermodel, i.e., one in which each formula in Γi holds but
no formula in ∆i holds.
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Completeness, More Generally

A set of formulas Γ is consistent, i.e., Con(Γ) iff there is no
formula A in Γ such that Γ ` ¬A is provable.

If Γ is consistent, then Γ ∪ {A} is consistent iff Γ ` ¬A is not
provable.

If Γ is consistent, then at least one of Γ ∪ {A} or Γ ∪ {¬A}
must be consistent.

A set of formulas Γ is complete if for each formula A, it
contains A or ¬A.
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Completeness

Any consistent set of formulas Γ can be made complete as Γ̂.

Let Ai be the i ’th formula in some enumeration of PL
formulas. Define

Γ0 = Γ

Γi+1 = Γi ∪ {Ai}, if Con(Γi ∪ {Ai})
= Γi ∪ {¬Ai}, otherwise.

Γ̂ = Γω =
⋃
i

Γi

Ex: Check that Γ̂ yields an interpretation MΓ̂ satisfying Γ.

If Γ ` ∆ is unprovable, then Γ ∪∆ is consistent, and has a
model.
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Compactness

A logic is compact if any set of sentences Γ is satisfiable iff all
finite subsets of it are, i.e., if it is finitely satisfiable.

Propositional logic is compact — hard direction is showing
that every finitely satisfiable set is satisfiable.

Zorn’s lemma states that if in a partially ordered set A, every
chain L has an upper bound L̂ in A, then A has a maximal
element.

Given a finitely satisfiable set Γ, the set AΓ of finitely
satisfiable supersets of Γ satisfies the conditions of Zorn’s
lemma.

Hence there is a maximal extension Γ̂ that is finitely
satisfiable.

For any atom p, either p ∈ Γ̂ or ¬p ∈ Γ̂, but not both. Why?

We can similarly define the model M
Γ̂

to show that Γ̂ is
satisfiable.
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Interpolation

Craig’s interpolation property for one-sided sequents: If ` Γ; ∆,
then there is an I in the variables common to Γ and ∆ such that
` Γ, I and ` ¬I ,∆.

Ax1 [⊥] ` Γ,P,P; ∆

Ax2 [>] ` Γ; P,P,∆

Ax3 [P] ` Γ,P; P,∆

¬¬ [I ] ` Γ,P,∆
[I ] ` Γ,¬¬P,∆

∨ [I ] ` Γ,A,B,∆
[I ] ` Γ,A ∨ B,∆

¬∨1
[I1] ` Γ,¬A; ∆ [I2] ` Γ,¬B; ∆

[[I1 ∨ I2] ` Γ,¬(A ∨ B); ∆

¬∨2
[I1] ` Γ;¬A,∆ [I2] ` Γ;¬B,∆

[I1 ∧ I2] ` Γ;¬(A ∨ B),∆
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Resolution

We have already seen that any propositional formula can be
written in CNF as a conjunction of clauses.

Input K is a set of clauses.

Tautologies, i.e., clauses containing both l and l , are deleted
from initial input.

Res
K , l ∨ Γ1, l ∨ Γ2

K , l ∨ Γ1, l ∨ Γ2, Γ1 ∨ Γ2

Γ1 ∨ Γ2 6∈ K
Γ1 ∨ Γ2 is not tautological

Contrad
K , l , l

⊥
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Resolution: Example

(K0 =) ¬p ∨ ¬q ∨ r , ¬p ∨ q, p ∨ r , ¬r

(K1 =) ¬q ∨ r , K0
Res

(K2 =) q ∨ r , K1
Res

(K3 =) r , K2
Res

⊥
Contrad

Show that resolution is a sound and complete procedure for
checking satisfiability.
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CDCL Informally

Goal: Does a given set of clauses K have a satisfying
assignment?

If M is a total assignment such that M |= Γ for each Γ ∈ K ,
then M |= K .

If M is a partial assignment at level h, then propagation
extends M at level h with the implied literals l such that
l ∨ Γ ∈ K ∪ C and M |= ¬Γ.

If M detects a conflict, i.e., a clause Γ ∈ K ∪ C such that
M |= ¬Γ, then the conflict is analyzed to construct a conflict
clause that allows the search to be continued from a prior
level.

If M cannot be extended at level h and no conflict is detected,
then an unassigned literal l is selected and assigned at level
h + 1 where the search is continued.
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Conflict-Driven Clause Learning (CDCL) SAT

Check satisfiability of given set of clauses K , with decision level h,
partial assignment M, and learned (lemma) clauses J.

Name Rule Condition

Propagate
h, 〈M〉,K , J

h, 〈M, l [Γ]〉,K , J
Γ ≡ l ∨ Γ′ ∈ K ∪ J
M |= ¬Γ′

Select
h, 〈M〉,K , J

h + 1, 〈M; l []〉,K , J
M 6|= l
M 6|= ¬l

Conflict
0, 〈M〉,K , J

⊥
M |= ¬Γ
for some Γ ∈ K ∪ J

Backjump
h + 1, 〈M〉,K , J

h′, 〈M≤h′ , l [Γ′]〉,K , J ∪ {Γ′}

M |= ¬Γ
for some Γ ∈ K ∪ J
〈h′, Γ′〉
= analyze(ψ)(Γ)

for ψ = h, 〈M〉,K , J
analyze(h, 〈M〉,K , J)(l ∨ Γ) = 〈level(Γ), l ∨ Γ〉, if level(Γ) < h.
analyze(h, 〈M〉,K , J)(l ∨ Γ) = analyze(h, 〈M〉,K , J)(Γ′ ∨ Γ), for
l [Γ′] ∈ M, otherwise.

N. Shankar Speaking Logic 2019 69/179



CDCL Example

Let K be
{p∨q,¬p∨q, p∨¬q, s ∨¬p∨q,¬s ∨p∨¬q,¬p∨ r ,¬q∨¬r}.

step h M K C Γ

select s 1 ; s K ∅
select r 2 ; s; r K ∅
propagate 2 ; s; r ,¬q[¬q ∨ ¬r ] K ∅
propagate 2 ; s; r ,¬q, p[p ∨ q] K ∅
conflict 2 ; s; r ,¬q, p K ∅ ¬p ∨ q
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CDCL Example (contd.)

step h M K C Γ

conflict 2 ; s; r ,¬q, p K ∅ ¬p ∨ q

backjump 0 ∅ K q

propagate 0 q[q] K q

propagate 0 q, p[p ∨ ¬q] K q

propagate 0 q, p, r [¬p ∨ r ] K q

conflict 0 q, p, r K q ¬q ∨ ¬r

Show that CDCL is sound and complete.
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ROBDD

Boolean functions map {0, 1}n to {0, 1}.
We have already seen how n-ary Boolean functions can be
represented by propositional formulas of n variables.

ROBDDs are a canonical representation of boolean functions
as a decision diagram where

1 Literals are uniformly ordered along every branch:
f (x1, . . . , xn) = IF(x1, f (>, x2, . . . , xn), f (⊥, x2, . . . , xn))

2 Common subterms are identified
3 Redundant branches are removed: IF(xi ,A,A) = A

Efficient implementation of boolean operations: f1.f2, f1 + f2,
−f , including quantification.

Canonical form yields free equivalence checks (for convergence
of fixed points).
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ROBDD for Even Parity

ROBDD for even parity boolean function of a, b, c .

0 1

0 1

1
0 0

1

1
0

1
0

a

b b

c c

Construct an algorithm to compute f1 � f2, where � is ∧ or ∨.
Construct an algorithm to compute ∃x .f .
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First and Higher-Order Logic
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Equality Logic (EL)

In the process of creeping toward first-order logic, we introduce a
modest but interesting extension of propositional logic.
In addition to propositional atoms, we add a set of constants τ
given by c0, c1, . . . and equalities c = d for constants c and d .

φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | τ1 = τ2

The structure M now has a domain |M| and maps propositional
variables to {>,⊥} and constants to |M|.

M[[c = d ]] =

{
>, if M[[c]] = M[[d ]]
⊥, otherwise
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Proof Rules for Equality Logic

Reflexivity Γ ` a = a,∆

Symmetry
Γ ` a = b,∆

Γ ` b = a,∆

Transitivity
Γ ` a = b,∆ Γ ` b = c ,∆

Γ ` a = c ,∆

Show that the above proof rules (on top of propositional
logic) are sound and complete.

Show that Equality Logic is decidable.

Adapt the above logic to reason about a partial ordering
relation ≤, i.e., one that is reflexive, transitive, and
anti-symmetric (x ≤ y ∧ y ≤ x ⇒ x = y).
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Term Equality Logic (TEL)

One further extension is to add function symbols from a
signature Σ that assigns an arity to each symbol.

Function symbols are used to form terms τ , so that constants
are just 0-ary function symbols.

τ := f (τ1, . . . , τn), for n ≥ 0

φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | τ1 = τ2

For an n-ary function f , M(f ) maps |M|n to |M|.

M[[a = b]] = M[[a]] = M[[b]]

M[[f (a1, . . . , an)]] = (M[[f ]])(M[[a1]], . . . ,M[[an]])

We need one additional proof rule.

Congruence
Γ ` a1 = b1,∆ . . . Γ ` an = bn,∆

Γ ` f (a1, . . . , an) = f (b1, . . . , bn),∆
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Term Equality Proof Examples

Let f n(a) represent f (. . . f︸ ︷︷ ︸
n

(a) . . .).

f 3(a) = f (a) ` f 3(a) = f (a)
Ax

f 3(a) = f (a) ` f 4(a) = f 2(a)
C

f 3(a) = f (a) ` f 5(a) = f 3(a)
C

f 3(a) = f (a) ` f 3(a) = f (a)
Ax

f 3(a) = f (a) ` f 5(a) = f (a)
T

Show soundness and completeness of TEL.
Show that TEL is decidable.

N. Shankar Speaking Logic 2019 78/179



Equational Logic

Equational Logic is a heavily used fragment of first-order logic.

It consists of term equalities s = t, with proof rules
1 Reflexivity: s=s
2 Symmetry:

s=t
t=s

3 Transitivity:
r=s s=t

r=t
4 Congruence:

s1=t1,...,sn=tn
f (s1,...,sn)=f (t1,...,tn)

5 Instantiation:
s=t

σ(s)=σ(t) , for substitution σ.

We say Γ ` s = t when the equality s = t can be derived from
the equalities in Γ.

Show that equational logic is sound and complete.
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Equational Logic

Use equational logic to formalize

1 Semigroups: A set G with an associative binary operator .

2 Monoids: A set M with associative binary operator . and unit 1

3 Groups: A monoid with a right-inverse operator x−1

4 Commutative groups and semigroups

5 Rings: A set R with commutative group 〈R,+,−, 0〉, semigroup
〈R, .〉, and distributive laws x .(y + z) = x .y + x .z and
(y + z).x = y .x + z .x

6 Semilattice: A commutative semigroup 〈S ,∧〉 with idempotence
x ∧ x = x

7 Lattice: 〈L,∧,∨〉 where 〈L,∧〉 and 〈L,∨〉 are semilattices, and
x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x .

8 Distributive lattice: A lattice with x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

9 Boolean algebra: Distributive lattice with constants 0 and 1 and
unary operation − such that x ∧ 0 = 0, x ∨ 1 = 1, x ∧ −x = 0, and
x ∨ −x = 1.
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Equational Logic

Prove that every group element has a left inverse.

For a lattice, define x ≤ y as x ∧ y = x . Show that ≤ is a
partial order (reflexive, transitive, and antisymmetric).

Show that a distributive lattice satisfies
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Prove the de Morgan laws, −(x ∨ y) = −x ∧ −y and
−(x ∧ y) = −x ∨ −y for Boolean algebras.

Prove that the set of integers Z form a commutative ring
under addition and multiplication.

A field is a ring where nonzero elements have a multiplicative
inverse. Prove that the rationals and reals form a field under
addition and multiplication.
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First-Order Logic

We can now complete the transition to first-order logic by adding

τ := X
| f (τ1, . . . , τn), for n ≥ 0

φ := ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | τ1 = τ2

| ∀x .φ | ∃x .φ | q(τ1, . . . , τn), for n ≥ 0

Terms contain variables, and formulas contain atomic and
quantified formulas.
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Semantics for Variables and Quantifiers

M[[q]] is a map from Dn to {>,⊥}, where n is the arity of
predicate q.

M[[x ]]ρ = ρ(x)

M[[q(a1, . . . , an)]]ρ = M[[q]](M[[a1]]ρ, . . . ,M[[an]]ρ)

M[[∀x .A]]ρ =

{
>, if M[[A]]ρ[x := d ] for all d ∈ D
⊥, otherwise

M[[∃x .A]]ρ =

{
>, if M[[A]]ρ[x := d ] for some d ∈ D
⊥, otherwise

Atomic formulas are either equalities or of the form q(a1, . . . , an).
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First-Order Logic

Left Right

∀ Γ,A[t/x ] ` ∆

Γ, ∀x .A ` ∆

Γ ` A[c/x ],∆

Γ ` ∀x .A,∆

∃ Γ,A[c/x ] ` ∆

Γ, ∃x .A ` ∆

Γ ` A[t/x ],∆

Γ ` ∃x .A,∆

Constant c must be chosen to be new so that it does not
appear in the conclusion sequent.

Demonstrate the soundness of first-order logic.

A theory consists of a signature Σ for the function and
predicate symbols and non-logical axioms.

If a T is obtained from S by extending the signature and
adding axioms, then T is conservative with respect to S , if all
the formulas in S provable in T are also provable in S .
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Using First-Order Logic

Prove ∃x .(p(x)⇒ ∀y .p(y)).
Give at least two satisfying interpretations for the statement
(∃x .p(x)) =⇒ (∀x .p(x)).
A sentence is a formula with no free variables. Find a
sentence A such that both A and ¬A are satisfiable.
Write a formula asserting the unique existence of an x such
that p(x).
Define operations for collecting the free variables vars(A) in a
given formula A, and substituting a term a for a free variable
x in a formula A to get A{x 7→ a}.
Is M[[A{x 7→ a}]]ρ = M[[A]]ρ[x := M[[a]]ρ]? If not, show an
example where it fails. Under what condition does the
equality hold?
Show that any quantified formula is equivalent to one in
prenex normal form, i.e., where the only quantifiers appear at
the head of the formula and the body is purely a propositional
combination of atomic formulas.

N. Shankar Speaking Logic 2019 85/179



More Exercises

Prove
1 ¬∀x .A ⇐⇒ ∃x .¬A
2 (∀x .A ∧ B) ⇐⇒ (∀x .A) ∧ (∀x .B)
3 (∃x .A ∨ B) ⇐⇒ (∃x .A) ∨ (∃x .B)
4 ((∀x .A) ∨ (∀x .B))⇒ (∀x .A ∨ B)

Write the axioms for a partially ordered relation ≤.

Write the axioms for a bijective (1-to-1, onto) function f .

Write a formula asserting that for any x , there is a unique y
such that p(x , y).

Can you write first-order formulas whose models
1 Have exactly (at most, at least) three elements?
2 Are infinite
3 Are finite but unbounded

Can you write a first-order formula asserting that
1 A relation is transitively closed
2 A relation is the transitive closure of another relation.
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SMT Overview

In SMT solving, the Boolean atoms represent constraints over
individual variables ranging over integers, reals, datatypes, and
arrays.

The constraints can involve theory operations, equality, and
inequality.

The SAT solver has to interact with a theory constraint solver
which propagates truth assignments and adds new clauses.

The theory solver can detect conflicts involving theory
reasoning, e.g.,

1 f (x) = f (y) ∨ x 6= y
2 f (x − 2) 6= f (y + 3) ∨ x − y ≤ 5 ∨ y − z ≤ −2 ∨ z − x ≤ −3
3 x XOR y 6= 0b0000000 ∨ select(store(A, x , v), y) = v

The theory solver must produce efficient explanations,
incremental assertions, and efficient backtracking.
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Example Constraint Solvers

Core theory: Equalities between variables x = y , offset
equalities x = y + c .

Term equality: Congruence closure for uninterpreted
function symbols

Difference constraints: Incremental negative cycle
detection for inequality constraints of the form x − y ≤ k .

Linear arithmetic constraints: Fourier’s method, Simplex.

N. Shankar Speaking Logic 2019 88/179



What is an Inference Algorithm?

An Σ-inference structure 〈Ψ,`,Λ,M〉 consists of

Ψ, a set of logical states
`, the reduction relation between states
Λ, a map from states to Σ-formulas
M, which extracts models from canonical states

An inference system is an inference structure that is

Conservative: If ψ ` ψ′, then Λ(ψ) and Λ(ψ′) are
equisatisfiable.
Progressive: ` is well-founded.
Canonizing: If ψ 6` ψ′ for any ψ′, then either ψ is ⊥ (i.e.,
unsatisfiable) or ψ is in a canonical form so that M(ψ) is a
model for Λ(ψ).

It is strongly conservative if whenever ψ ` ψ′, then ψ and ψ′

are equisatisfiable and any model of ψ′ is also a model of ψ.

We focus here on basic inference systems, but there are
interesting variants.
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What is an Inference Algorithm?

An inference algorithm is an inference system where the
reduction relation is presented as a collection of effective
inference rules that transform an inference state ψ to an
inference state ψ′ such that ψ ` ψ′. Example: Ordered
resolution is an algorithm for CNF satisfiability.

Input K is a set of ordered clauses where the literals appear in
decreasing order w.r.t. some order e.g., q ≺ ¬q ≺ p ≺ ¬p.

Tautologies, i.e., clauses containing both p and ¬p, are
deleted from initial input.

Res
K , p ∨ Γ1,¬p ∨ Γ2

K , p ∨ Γ1,¬p ∨ Γ2, Γ1 ∨ Γ2

Γ1 ∨ Γ2 6∈ K
Γ1 ∨ Γ2 is not tautological

Contrad
K , p,¬p

⊥
A set of clauses is canonical if it is closed under applications
of Res and the Contrad rule is inapplicable.

N. Shankar Speaking Logic 2019 90/179



Resolution: Example

(K0 =) ¬p ∨ ¬q ∨ r , ¬p ∨ q, p ∨ r , ¬r

(K1 =) ¬q ∨ r , K0
Res

(K2 =) q ∨ r , K1
Res

(K3 =) r , K2
Res

⊥
Contrad

Drop the clause ¬r , and we reach an irreducible state from
which a truth assignment {r 7→ >, q 7→ ⊥, p 7→ ⊥} can be
constructed.
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Resolution as an Inference Algorithm

The resolution inference system is strongly conservative:
Γ1 ∨ Γ2 is satisfiable if p ∨ Γ1 and ¬p ∨ Γ2 are.

It is progressive: Bounded number of new clauses in the input
variables.

It is canonizing: Build a model M by assigning to atoms p1 to
pn within a series of partial assignments M0, . . . ,Mn:

M0 is the empty truth assignment.
Mi+1 = Mi [pi+1 7→ v ], where v = > iff there is some clause
pi+1 ∨ Γ in the irreducible state K such that Mi |= ¬Γ.

If Mi |= ¬Γ, then for any clause ¬pi ∨∆, Mi |= ∆ since
Γ ∨∆ ∈ K .

Invariant: Mi |= Γ for all clauses Γ in K in the atoms
p1, . . . , pi .

Unordered resolution is also conservative, progressive, and
canonizing, but it does not have the same set of canonical
states.
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Maintaining Equivalence with Union-Find

The logical state is a triple 〈G ,F 〉 with the input equalities and
disequalities G and the find structure F which is a set of oriented
equalities, i.e., orient y = x as x = y if y ≺ x .

Delete
x = y ,G ; F

G ; F
if F (x) ≡ F (y)

Merge
x = y ,G ; F

G ; F ′ ◦ F
if F (x) 6≡ F (y)

F ′ = {orient(F (x) = F (y))}

Contrad
x 6= y ,G ; F

⊥ if F (x) = F (y)

The above inference system is (strongly) conservative,
progressive, and canonizing.

Example: x = y , x = z , u = v ; ∅ reduces to
∅; x = z , y = z , u = v .
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Satisfiability Modulo Theories

SMT deals with formulas with theory atoms like x = y ,
x 6= y , x − y ≤ 3, and select(store(A, i , v), j) = w .

The CDCL search state is augmented with a theory state S in
addition to the partial assignment.

Total assignments are checked for theory satisfiability.

When a literal is added to M by unit propagation, it is also
asserted to S .

When a literal is implied by S , it is propagated to M.

When backjumping, the literals deleted from M are also
retracted from S .
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SMT example

The state extends CDCL with a find structure F and disquality set
D.
Input is y = z , x = y ∨ x = z , x 6= y ∨ x 6= z

Step M F D C
Assert y = z {y 7→ z} ∅ ∅
Select y = z ; x 6= y {y 7→ z} {x 6= y} ∅

Prop
. . . , x 6= z
[x 6= z ∨ y 6= z ∨ x = y ]

{y 7→ z} {x 6= y} ∅

Conflict . . . {y 7→ z} {x 6= y} ∅
Analyze . . . {y 7→ z} {x 6= y} {y 6= z

∨x = y}
Bkjump y = z , x = y {y 7→ z} ∅ . . .
Assert y = z , x = y {x 7→ y , y 7→ z} ∅ . . .

Prop
. . . , x = z
[x = z ∨ x 6= y ∨ y 6= z ]

{x 7→ y , y 7→ z} ∅ . . .

Conflict
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Generalizing Inference Algorithms: Dijkstra

Given a weighted directed graph G = (V ,W ), with
non-negative (or ∞) edge weights, find the smallest-weight
path from a given source vertex s to each vertex, i.e., a map
Ps on V : Ps(s) = 0, and for v 6= s,
Ps(v) =

d
{Ps(u) + W (u, v) | u ∈ V }.

Let

post(X )(v) =

{
0, if v = sd
{X (u) + W (u, v) | u ∈ dom(X )}, otherwise.

We therefore want to compute Ps such that Ps = post(Ps).
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Generalizing Inference Algorithms: Dijkstra

The logical state has two partial maps D and Q:
1 Each v ∈ V is either in dom(D) or dom(Q), but not both,
2 D(v) = post(D)(v) for v ∈ dom(D),
3 Q(v) = post(D)(v) for v ∈ dom(Q), and
4 D(u) ≤ Q(v) for u ∈ dom(D) and v ∈ dom(Q).

Initially, D = [s 7→ 0], and Q = [v 7→W (s, v) | v 6= s].

Each inference step has the form

〈D,Q〉
〈D ′,Q ′〉

, where

u = argminuQ(u)

D ′ = D[u 7→ Q(u)]

Q ′ = [v 7→ Q(v) u (Q(u) + W (u, v)) | v ∈ dom(Q)− {u}]
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Higher-Order Logic

Thus far, variables ranged over ordinary datatypes such as
numbers, and the functions and predicates were fixed
(constants).

Second-order logic allows free and bound variables to range
over the functions and predicates of first-order logic.

In n’th-order logic, the arguments (and results) of functions
and predicates are the functions and predicates of m’th-order
logic for m < n.

This kind of strong typing is required for consistency,
otherwise, we could define R(x) = ¬x(x), and derive
R(R) = ¬R(R).

Higher-order logic, which includes n’th-order logic for any
n > 0, can express a number of interesting concepts and
datatypes that are not expressible within first-order logic:
transitive closure, fixpoints, finiteness, etc.
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Types in Higher-Order Logic

Base types: e.g., bool, nat, real

Tuple types: [T1, . . . ,Tn] for types T1, . . . , Tn.

Tuple terms: (a1, . . . , an)

Projections: πi (a)

Function types: [T1→T2] for domain type T1 and range type
T2.

Lambda abstraction: λ(x : T1) : a

Function application: f a.
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Semantics of Higher Order Types

[[bool]] = {0, 1}
[[real]] = R

[[[T1, . . . ,Tn]]] = [[T1]]× . . .× [[Tn]]

[[[T1→T2]]] = [[T2]][[T1]]
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Higher-Order Proof Rules

β-reduction
Γ ` (λ(x : T ) : a)(b) = a[b/x ],∆

Extensionality
Γ ` (∀(x : T ) : f (x) = g(x)),∆

Γ ` f = g ,∆

Projection
Γ ` πi (a1, . . . , an) = ai ,∆

Tuple Ext.
Γ ` π1(a) = π1(b),∆, . . . , Γ ` πn(a) = πi (b),∆

Γ ` a = b,∆
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Sets in Higher-Order Logic

For a type T , the type of predicates over T is [T→bool].

Predicates can be viewed as sets of elements from T .

Define the empty set, the full set, the complement of a set,
the union, intersection, and difference of two sets, the subset
relation between two sets.

Define a type that is a set of sets over T , and define the
operation of taking the union and intersection over these set
of sets.
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Sequences in Higher-Order Logic

Given the type N of natural numbers, a sequence σ over type
T can be represented as [N→T ].

If T is the type of R of real numbers, define the concept of a
convergent series, i.e., there is some limit x such that for any
ε > 0, there is an N such that for any n > N, |σn − x | ≤ ε.
Write a formal definition for the convergence of a series.

Write a formal definition that x is the limit of a series σ.

A Cauchy sequence σ is one where for any ε > 0, there is an
N such that for all i , j > N, |σm − σn| < ε.

Write a formal definition of a Cauchy sequence.

Define a predicate that checks if one sequence σ is a
subsequence of another sequence ρ.

Show that every bounded sequence of reals has a convergent
subsequence.
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Functions in Higher-Order Logic

Let f be a function from domain D to range R, i.e., in type
[D→R].

If D is some subtype of R and R is R, then f is monotonically
nondecreasing if f (x) ≤ f (y) whenever x ≤ y .

Define a predicate that checks that f is monotonically
nondecreasing.

A function is continuous in an interval I if for any x ∈ I and
ε > 0, there is a δ > 0 such that for any y ∈ I if |x − y | < δ,
then |f (x)− f (y)| < ε. Formalize.

A function is uniformly continuous in I if for any ε > 0 there
is a δ > 0 such that for any x , y ∈ I , if |x − y | < δ, then
|f (x)− f (y)| < ε. Formalize.

Formalize Lipschitz continuity: for any x , y in I ,
|f (x)− f (y)| ≤ K |x1 − x2|.
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Using Higher-Order Logic

Define universal quantification using equality in higher-order
logic.

Express and prove Cantor’s theorem (there is no injection
from a type T to a [T→bool ]) in higher-order logic.

Write the induction principle for Peano arithmetic in
higher-order logic.

Write a definition for the transitive closure of a relation in
higher-order logic.

Describe the modal logic CTL in higher-order logic.

State and prove the Knaster-Tarski theorem.
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Metric Spaces (from Wikipedia)

A metric space is given by an ordered pair (M, d), where
d : M ×M → R, where

1 d(x , y) ≥ 0 non-negativity or separation axiom
2 d(x , y) = 0⇔ x = y identity of indiscernibles
3 d(x , y) = d(y , x) symmetry
4 d(x , z) ≤ d(x , y) + d(y , z) subadditivity or triangle inequality

Define a complete metric space as a metric space that
contains all limits of Cauchy sequences.

Define compact metric spaces where every infinite set contains
a sequence that converges to a limit point in the space.

Define sequentially compact metric spaces where every infinite
sequence has a convergent subsequence.
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Continuity at a Point

A function f from 〈M1, d1〉 to 〈M2, d2〉 is continuous at c if
for any ε > 0, there is a δ > 0 such that for all x ,
d1(x , c) < δ, we have d2(f (x), f (c)) < ε.

Show that a function f from 〈M1, d1〉 to 〈M2, d2〉 is
continuous at c iff whenever a sequence 〈xi 〉i∈N,
limi→∞f (xi ) = f (c) if limi→∞xi = c .

Define uniform continuity and Lipschitz continuity at a point.

Formalize the notion of A topological space 〈X ,T 〉 with T
the open subsets of X such that ∅ ∈ T , X ∈ T , and T is
closed under finite/infinite unions and finite intersections.

Define a function between 〈X1,T1〉 and 〈X2,T2〉 as
continuous if the inverse image of open sets is always open.

Define the derivative of a function on the reals.

Define the Riemann integral of a function on the reals.
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Vector Spaces

A vector space V over a field F is closed under addition
(v + w ∈ V for v ,w ∈ V ) and scalar multiplication (av ∈ V
for v ∈ V ), such that

1 + is associative and commutative with identity 0 and inverse
−.

2 1v = v ; a(bv) = (ab)v ; (a + b)v = av + bv ;
a(v + w) = av + aw ;

Show that the coordinate space of pairs (x , y) of reals forms a
vector space.

A basis for a vector space 〈bi 〉i∈I is a set of linearly
independent vectors such that for any v ∈ V , there exists
〈ai 〉i∈I such that v = Σi∈Iaibi .

A linear map L from vector space V to W preserves sums and
scalar multiplication: L(u + v) = L(u) + L(v) and
L(av) = a.L(v).

Define the kernel ker(L) of a linear map as {v ∈ V |L(v) = 0}.
Show that ker(L) is a vector space.
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Norms

A norm p on a vector space V is a function from V to
[0,+∞) that is

1 subadditive: p(u + v) ≤ p(u) + p(v)
2 absolutely scalable: p(av) = |a|p(v)
3 p(v) = 0 =⇒ v = 0.

Define the following and show that they are norms:

Absolute value x .
Euclidean: ||x ||2 =

√
x2

1 + . . .+ x2
n for x ∈ Rn

Manhattan or l1 norm: ||x ||1 = Σn
i=1|xi |

Infinity norm: max i |xi |
p-norm: (Σn

i=1|xi |p)1/p
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Partial Derivatives

Define the partial derivative ∂f (x1,...,xn)
∂xi

of a n-ary function on
the reals at a = 〈a1, . . . , an〉.
Define the gradient of f , ∇f , at a.

Define the Jacobian of a vector-valued function f from Rm to
Rn.

Define the Hessian of a function f from Rm to R.

N. Shankar Speaking Logic 2019 110/179



Sigma Algebras

Given a set X , a subset Σ of ℘(X ) is a σ-algebra if X ∈ Σ
and Σ is closed under complementation and countable unions.

A set in σ-algebra Σ is measurable.

If Σ is a σ-algebra over X , a measure µ is a map from Σ to
[0,+∞) such that

1 µ(∅) = 0
2 µ(

⋃∞
i=0 Ei = Σ∞i=0µ(Ei ), for pairwise disjoint Ei .

The triple (X ,Σ, µ) is a measure space.
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Probability Basics

Given a sample space Ω of the form {ω1, . . . , ωn}.
An event E is a subset of Ω.

A probability function P assigns a value in [0, 1] to events
such that

1 Σω∈ΩP({ω}) = 1, and
2 P(E ) = Σω∈EP({ω}).

Example: For a fair 6-sided dice, the probability P(i) for
1 ≤ i ≤ 6 is 1

6 , and the probability of an even number is
1
6 + 1

6 + 1
6 = 1

2 .

Similarly, the P(prime) = 1
2 , where prime = {2, 3, 5}.

A probability space is a measure space 〈Ω,Σ,P〉, where
1 Ω is the sample space,
2 The event space Σ is a σ-algebra over Ω,
3 P is a probability measure mapping Σ to [0, 1], where

P(Σ) = 1.
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Bayes Theorem (Wikipedia)

Conditional probability P(A|B) of event A given event B is
P(A ∩ B)/P(B), e.g. P(prime|even) = 1/3 for 6-sided die.
Bayes’ theorem relates the conditional and marginal probabilities of
events A and B, where B has a non-vanishing probability:

P(A|B) =
P(B|A) P(A)

P(B)
.

Each term in Bayes’ theorem has a conventional name:

P(A) is the prior or marginal probability of A.

P(A|B) is the conditional or posterior probability of A, given
B.

P(B|A) is the conditional probability of B given A. It is also
called the likelihood.

P(B) is the prior or marginal probability of B; acts as a
normalizing constant.
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Random Variables

A random variable X is a map from Ω to R.

For a random variable X , Pr(X = x) is the probability
associated with the variable X taking on the value x . We
write this PX (x), or just P(x) when X is obvious.

The expected value E [X ] of a real random variable X is the
weighted average Σxx .Pr(X = x).

For example, the outcome of tossing two six-sided dice can be
represented by X . The probability Pr(X = 8) is 5

36 .

If X represents the toss of a single six-sided dice, E [X ] is 3.5.
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A Little Information Theory

For a random variable X , log(1/Pr(X = x)) (or,
− log(Pr(X = x))) measured in bits is the surprisal or
self-information.2

The entropy H(X ) of a random variable X is the expected
value of the self-information, given by EPX

log 1
PX (x)

It’s the expected number of bits needed to prefix code a
message from X .

E.g., if |X | = 8 and Pr(X = x) = 1/8 (uniform distribution)
for any x in X, then H(X ) = 3.

E.g., if X ∈ {1, 2, 3}, with Pr(X = 1) = 1/2,
Pr(X = 2) = Pr(X = 3) = 1/4, then 1 = 0, 2 = 10, 3 = 11.

The expected number of bits in the prefix code is 1.5.

2Cover, Thomas: Elements of Information Theory
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Conditional Entropy

Given two random variables X and Y , the joint probability
distribution is given by PX ,Y (x , y) = Pr(X = x ,Y = y).

Knowing X = x can give us some information about Y .

H(Y |X = x) = −EPY (.|X=x)[log PY (y |X = x)].

Conditional Entropy: H(Y |X ) = EPX
[H(Y |X = x)]. This is

the expected number of bits to encode Y knowing X , e.g.,
coding

Theorem: H(Y |X ) = H(Y ,X )− H(X ), where
H(Y ,X ) = −Σx ,yPX ,Y (x , y) log PX ,Y (x , y).

Entropy of a distribution: H(p) = −Σxp(x) log p(x).
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KL Divergence

If Ω is a sample space with two probability distributions p and
q on it.

The Kullback–Leibler (KL) divergence

DKL(p‖q) = Σxp(x) log p(x)
q(x) = Ep[log p

q ].

This is the expected number of extra bits needed when coding
with distribution q than with the actual probability
distribution p.

Typically q is the prior or approximate distribution and p the
posterior or true distribution.

DKL is non-negative, but not symmetric.

If u is the uniform distribution, DKL(p‖u) = log N − H(p), for
N = |Ω|.
Cross entropy H(p, q) = −Σxp(x) log q(x) is equal to
H(p)− DKL(p‖q).
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Mutual Information

For two random variables X and Y , let PX ,Y be the joint
distribution, i.e., Pr(X = x ,Y = y).

Let PX and PY the marginal distributions, i.e.,
ΣyPr(X = x ,Y = y) and ΣxPr(X = x ,Y = y), respectively.

The information gain IG (X |Y = y) is DKL(P(X |Y = y),PX )
which is equal to H(X )− H(X |Y = y).

The expected information gain is the mutual information
I (X ; Y ) = DKL(PX ,Y ‖PXPY ).

Mutual information can be seen as the expected number of
bits saved in encoding X ,Y together rather than separately.

Theorem: I (X ; Y ) = H(X ) + H(Y )− H(X ,Y ).
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Advanced Topics
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Completeness of First-Order Logic

The quantifier rules for sequent calculus require copying.

Proof branches can be extended without bound.

Ex: Show that LK is sound: ` A implies |= A.

The Henkin closure H(Γ) is the smallest extension of a set of
sentences Γ that is Henkin-closed, i.e., contains B ⇒ A(cB)
for every B ∈ H(Γ) of the form ∃x : A. (cB is a fresh
constant.)

Any consistent set of formulas Γ has a consistent Henkin
closure H(Γ).

As before, any consistent, Henkin closed set of formulas Γ has
a complete, Henkin-closed extension Γ̂.

Ex: Construct an interpretation M
Ĥ(Γ)

from Ĥ(Γ) and show

that it is a model for Γ.
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Herbrand’s Theorem

For any sentence A there is a quantifier-free sentence AH (the
Herbrand form of A) such that ` A in LK iff ` AH in TEL0.

The Herbrand form is a dual of Skolemization where each
universal quantifier is replaced by a term f (y), where y is the
set of governing existentially quantified variables.

Then, ∃x : (p(x)⇒ ∀y : p(y)) has the Herbrand form
∃x .p(x)⇒ p(f (x)), and the two formulas are equi-valid.

How do you prove the latter formula?
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Herbrand’s Theorem

Herbrand terms are those built from function symbols in AH

(adding a constant, if needed).

Show that if AH is of the form ∃x .B, then ` AH iff∨n
i=0 σi (B), for some Herbrand term substitutions σ1, . . . , σn.

[Hint: In a cut-free sequent proof of a prenex formula, the quantifier

rules can be made to appear below all the other rules. Such proofs

must have a quantifier-free mid-sequent above which the proof is

entirely equational/propositional.]

Show that if a formula has a counter-model, then it has one
built from Herbrand terms (with an added constant if there
isn’t one).
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Skolemization

Consider a formula of the form ∀x .∃y .q(x , y).

It is equisatisfiable with the formula ∀x .q(x , f (x)) for a new
function symbol f .

If M |= ∀x .∃y .q(x , y), then for any c ∈ |M|, there is dc ∈ |M|
such that M[[q(x , y)]]{x 7→ c , y 7→ dc}. let M ′ extend M so
that M(f )(c) = dc , for each c ∈ |M|: M ′ |= ∀x .q(x , f (y)).

Conversely, if M |= ∀x .q(x , f (y)), then for every c ∈ |M|,
M[[q(x , y)]]{x 7→ c , y 7→ M(f )(c)}.
Prove the general case that any prenex formula can be
Skolemized by replacing each existentially quantified variable
y by a term f (x), where f is a distinct, new function symbol
for each y , and x are the universally quantified variables
governing y .
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Unification

A substitution is a map {x1 7→ a1, . . . , xn 7→ an} from a finite
set of variables {x1, . . . , xn} to a set of terms.
Define the operation σ(a) of applying a substitution (such as
the one above) to a term a to replace any free variables xi in t
with ai .
Define the operation of composing two substitutions σ1 ◦ σ2

as {x1 7→ σ1(a1), . . . , xn 7→ σ1(an)}, if σ2 is of the form
{x1 7→ a1, . . . , xn 7→ an}.
Given two terms f (x , g(y , y)) and f (g(y , y), x) (possibly
containing free variables), find a substitution σ such that
σ(a) ≡ σ(b).
Such a σ is called a unifier.
Not all terms have such unifiers, e.g., f (g(x)) and f (x).
A substitution σ1 is more general than σ2 if the latter can be
obtained as σ ◦ σ1, for some σ.
Define the operation of computing the most general unifier, if
there is one, and reporting failure, otherwise.
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Resolution Example

To prove (∃y .∀x .p(x , y))⇒ (∀x .∃y .p(x , y))

Negate: (∃y .∀x .p(x , y)) ∧ (∃x .∀y .¬p(x , y))

Prenexify: ∃y1.∀x1.∃x2.∀y2.p(x1, y1) ∧ ¬p(x2, y2)

Skolemize: ∀x1, y2.p(x1, c) ∧ ¬p(f (x1), y2)

Distribute and clausify: {p(x1, c),¬p(f (x3), y2)}
Unify and resolve with unifier {x1 7→ f (x3), y2 7→ c}
Yields an empty clause

Now try to show (∀x .∃y .p(x , y))⇒ (∃y .∀x .p(x , y)).
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Dedekind–Peano Arithmetic

The natural numbers consist of 0, s(0), s(s(0)), etc.
Clearly, 0 6= s(x), for any x .
Also, s(x) = s(y)⇒ x = y , for any x and y .
Next, we would like to say that this is all there is, i.e., every
domain element is reachable from 0 through applications of s.
This requires induction:
P(0) ∧ (∀n.P(n)⇒ P(n + 1))⇒ (∀n.P(n)), for every
property P.
But there is no way to write this — there are uncountably
many properties (subset of natural numbers) but only finitely
many formulas.
Induction is therefore given as a scheme, an infinite set of
axioms, with the template

A{x 7→ 0} ∧ (∀x .A⇒ A{x 7→ s(x)})⇒ (∀x .A).

We still need to define + and ×. How?
How do you define the relations x < y and x ≤ y?
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Using Dedekind–Peano Arithmetic

Prove that
1 ∀x .x = 0 ∨ (∃y .s(y) = x)
2 ∀x , y , z .(x + y) + z = x + (y + z)
3 ∀x , y .x + y = y + x
4 ∀x , y .x < y =⇒ ¬(y < x)
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Set Theory

Set theory can be axiomatized using axiom schemes, using a
membership relation ∈:

Extensionality: x = y ⇐⇒ (∀z .z ∈ x ⇐⇒ z ∈ y)

The existence of the empty set ∀x .¬x ∈ ∅
Pairs: ∀x , y .∃z .∀u.u ∈ z . ⇐⇒ u = x ∨ u = y (Define the
singleton set containing the empty set. Construct a
representation for the ordered pair of two sets.)

Union: How? (Define a representation for the finite ordinals
using singleton, or using singleton and union.)

Separation: {x ∈ y |A}, for any formula A, y 6∈ vars(A).
(Define the intersection and disjointness of two sets.)

Infinity: There is a set containing all the finite ordinals.

Power set: For any set, there is a set of all its subsets.

Regularity: Every set has an element that is disjoint from it.

Replacement: There is a set that is the image Y of a set X
with respect to a functional (∀x ∈ X .∃!y .A(x , y)) rule A(x , y).
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Using Set Theory

Can two different sets be empty?

For your definition of ordered pairing, define the first and
second projection operations.

Define the Cartesian product x × y of two sets, as the set of
ordered pairs 〈u, v〉 such that u ∈ x and v ∈ y .

Define a subset of x × y to be functional if it does not contain
any ordered pairs 〈u, v〉 and 〈u′, v〉 such that u 6= u′.

Define the function space y x of the functions that map
elements of x to elements of y .

Define the join of two relations, where the first is a subset of
x × y and the second is a subset of y × z .
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Incompleteness

Can all mathematical truths (valid sentences) be formally
proved?

No. There are valid statements about numbers that have no
proof. (Gödel’s first incompleteness theorem)

Suppose Z is some formal theory claiming to be a sound and
complete formalization of arithmetic, i.e., it proves all and
only valid statements about numbers.

Gödel showed that there is a valid but unprovable statement.
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The First Incompleteness Theorem

The expressions of Z can be represented as numbers as can
the proofs.

The statement “p is a proof of A” can then be represented by
a formula Pf (x , y) about numbers x and y .

If p is represented by the number p and A by A, then
Pf (p,A) is provable iff p is a proof of A.

Numbers such as A are representable as numerals in Z and
these numerals can also be represented by numbers, A.

Then ∃x .Pf (x , y) says that the statement represented by y is
provable. Call this Pr(y).
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The Undecidable Sentence

Let S(x) represent the numeric encoding of the operation
such that for any number k , S(k) is the encoding of the
expression obtained by substituting the numeral for k for the
variable ‘x ’ in the expression represented by the number k .

Let the formula ¬Pr(S(x)) be represented by the number k ,
and the undecidable sentence U is ¬Pr(S(k)).

U is S(k), i.e., the sentence obtained by substituting the
numeral for k for ‘x ’ in ¬Pr(S(x)) which is represented by k .

Since U is ¬Pr(U), we have a situation where either
1 U, i.e., ¬Pr(U), is provable, but from the numbering of the

proof of U, we can also prove Pr(U).
2 ¬U, i.e., Pr(U) is provable, but clearly none of Pf (0,U)

Pf (1,U), . . . , is provable (since otherwise U would be
provable), an ω-inconsistency, or

3 Neither U nor ¬U is provable: an incompleteness.
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Second Incompleteness Theorem

The negation of the sentence U is Σ1, and Z can verify
Σ1-completeness (every valid Σ1-sentence is provable).

Then
` Pr(U)⇒ Pr(Pr(U)).

But this says ` Pr(U)⇒ Pr(¬U).

Therefore ` Con(Z )⇒ ¬Pr(U).

Hence 6` Con(Z ), by the first incompleteness theorem.

Exercise: The theory Z is consistent if A ∧ ¬A is not
provable for any A. Show that ω-consistency is stronger than
consistency. Show that the consistency of Z is adequate for
proving the first incompleteness theorem.
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Floyd’s method for Flowchart programs

A flowchart has a start vertex with a single outgoing edge, a
halt vertex with a single incoming edge.
Each vertex corresponds to a program block or a decision
conditions.
Each edge corresponds to an assertion; the start edge is the
flowchart precondition, and the halt edge is the flowchart
postcondition.
Verification conditions check that for each vertex, each
incoming edge assertion through the block implies the
outgoing edge assertion.
Partial correctness: If each verification condition has been
discharged, then every halting computation starting in a state
satisfying the precondition terminates in a state satisfying the
postcondition.
Total correctness: If there is a ranking function mapping
states to ordinals that strictly decreases for any cycle in the
flowchart, then every computation terminates in the halt
vertex. N. Shankar Speaking Logic 2019 134/179



Floyd’s Method

max = 0;

i = 0;

{i ≤ N ∧ ∀(j < i) : a[j] ≤ max}
while (i < N){
if (a[i] > max){
max = a[i];

}
i++;

}
{∀(j < N) : a[j] ≤ max}

Yes

max = 0;
i = 0;

START

i < N

a[i] > max
HALT

max = a[i];

i++;

No

Yes No

Precondition is true, and postcondition is ∀(j < N) : a[j] ≤ max.
The loop invariant is i ≤ N ∧ ∀(j < i) : a[j] ≤ max.
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Hoare Logic

A Hoare triple has the form {P}S{Q}, where S is a program
statement in terms of the program variables drawn from the
set Y and P and Q are assertions containing logical variables
from X and program variables.

A program statement is one of
1 A skip statement skip.
2 A simultaneous assignment y := e where y is a sequence of n

distinct program variables, e is a sequence of n Σ[Y ]-terms.
3 A conditional statement e ? S1 : S2, where C is a

Σ[Y ]-formula.
4 A loop while e do S .
5 A sequential composition S1; S2.

Express the max program using the language constructs above.

N. Shankar Speaking Logic 2019 136/179



Hoare Logic

Let P, Q, C be state predicates.
Skip {P}skip{P}
Assignment {P[e/y ]}y := e{P}

Conditional
{C ∧ P}S1{Q} {¬C ∧ P}S2{Q}

{P}C ? S1 : S2{Q}

Loop
{P ∧ C}S{P}

{P}while C do S{P ∧ ¬C}

Composition
{P}S1{R} {R}S2{Q}
{P}S1; S2{Q}

Consequence
P ⇒ P ′ {P ′}S{Q ′} Q ′ ⇒ Q

{P}S{Q}
Semantics: A trace σ of length n > 1 satisfies a triple {P}S{Q}
iff whenever P(σ0) and σ |= S , then Q(σn).
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Hoare Logic

{true}
(maxsum, currentsum, i) := (0, 0, 0);
{P(maxsum, i) ∧ Q(currentsum, i)}
while(i < N))

S(maxsum, currentsum, i)
{P(maxsum,N)}

where

S(maxsum, currentsum, i)

=

 maxsum

currentsum

i

 :=

 max(maxsum, currentsum + a[i ])
max(0, currentsum + a[i ])

i + 1


P(maxsum, i)

= (maxsum = max0≤l,h<i≤NΣh
j=la[j ])

Q(currentsum, i)

= (currentsum = max0≤l≤i≤NΣi−1
j=l a[j ])
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Hoare Logic Proof

Triple Explanation

1
{(P(0, 0) ∧ Q(0, 0))}
(maxsum, currentsum, i) := (0, 0, 0)
{P(maxsum, i) ∧ Q(currentsum, i)}

Assignment

2
{true}
(maxsum, currentsum, i) := (0, 0, 0)
{P(maxsum, i) ∧ Q(currentsum, i)}

Consequence[1]

3


i < N

∧ P(max

(
maxsum,
currentsum + a[i ]

)
, i + 1)

∧ Q(max(0, currentsum + a[i ]), i + 1)


S(maxsum, currentsum, i)
{P(maxsum, i) ∧ Q(currentsum, i)}

Assignment
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Hoare Logic Proof

4

 i < N
∧ P(maxsum, i)
∧ Q(currentsum, i)


S(maxsum, currentsum, i)
{P(maxsum, i) ∧ Q(currentsum, i)}

Consequence[3]

5

{P(maxsum, i)}
while(i < N)

S(maxsum, currentsum, i)
{i ≥ N ∧ P(i)}

While[4]

6

{P(maxsum, i)}
while(i < N))

S(maxsum, currentsum, i)
{P(maxsum,N)}

Consequence[5]

5

{true}
(maxsum, currentsum, i) := (0, 0, 0);
while(i < N)

S(maxsum, currentsum, i)
{P(maxsum,N)}

Composition[2, 5]
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Hoare Logic Semantics

Both assertions and statements contain operations from a
first-order signature Σ.

An assignment σ maps program variables in Y to values in
dom(M).

A program expression e has value M[[e]]σ.

The meaning of a statement M[[S ]] is given by a sequence of
states (of length at least 2).

1 σ ◦ σ ∈ M[[skip]], for any state σ.
2 σ ◦ σ[M[[e]]σ/y ] ∈ M[[y := e]], for any state σ.
3 ψ1 ◦ σ ◦ ψ2 ∈ M[[S1; S2]] for ψ1 ◦ σ ∈ M[[S1]] and
σ ◦ ψ2 ∈ M[[S2]]

4 ψ ∈ M[[C ? S1 : S2]] if either M[[C ]]ψ[0] = > and ψ ∈ M[[S1]],
or M[[C ]]ψ[0] = ⊥ and ψ ∈ M[[S2]]

5 σ ◦ σ ∈ M[[while C do S ]] if M[[C ]]σ = ⊥
6 ψ1 ◦ σ ◦ ψ2 ∈ M[[while C do S ]] if M[[C ]](ψ1[0]) = >,
ψ1 ◦ σ ∈ M[[S ]], and σ ◦ ψ2 ∈ M[[while C do S ]]
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Soundness of Hoare Logic

{P}S{Q} is valid in a Σ-structure M if for every sequence
σ ◦ ψ ◦ σ′ ∈ M[[S ]] and any assignment ρ of values in dom(M)
to logical variables in X , either

1 M[[Q]]ρσ′ = >, or
2 M[[P]]ρσ = ⊥.

Informally, every computation sequence for S either ends in a
state satisfying Q or starts in a state falsifying P.

Demonstrate the soundness of the Hoare calculus.
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Completeness of Hoare Logic

The proof of a valid triple {P}S{Q} can be decomposed into
1 The valid triple {wlp(S)(Q)}S{Q}, and
2 The valid assertion P ⇒ wlp(S)(Q)

wlp(S)(Q) (the weakest liberal precondition) is an assertion
such that for any ψ ∈ M[[S ]] with |ψ| = n + 1 and ρ, either
M[[Q]]ρψn

= ⊥ or M[[wlp(S)(Q)]]ρψ0
= >.

Show that for any S and Q, the valid triple
{wlp(S)(Q)}S{Q} can be proved in the Hoare calculus.
(Hint: Use induction on S .)

First-order arithmetic over 〈+, ., 0, 1〉 is sufficient to express
wlp(S)(Q) since it can code up sequences of states
representing computations.
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Transition Systems: Mutual Exclusion

initially
try[1] = critical[1] = turn = false

transition
¬try[1] → try[1] := true;

turn := false;
¬try[2] ∨ turn → critical[1] := true;

critical[1] → critical[1] := false;
try[1] := false;∥∥

initially
try[2] = critical[2] = false

transition
¬try[2] → try[2] := true;

turn := true;
¬try[1] ∨ ¬turn → critical[2] := true;

critical[2] → critical[2] := false;
try[2] := false;
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Model Checking Transition Systems

A transition system is given as a triple 〈W , I ,N〉 of states W ,
an initialization predicate I , and a transition relation N.

Symbolic Model Checking: Fixpoints such as
µX .I t post(N)(X ) which is the set of reachable states can be
constructed as an ROBDD.

Bounded Model Checking: I (s0) ∧
∧k

i=0 N(si , si+1) represents
the set of possible (k + 1)-step computations and ¬P(sk+1)
represents the possible violations of state predicate P at the
state sk+1.

k-Induction: A variant of bounded model checking can be
used to prove properties:

Base: Check that P holds in the first k states of the
computation
Induction: If P holds for any sequence of k steps in a
computation, it holds in the k + 1-th state.

Prove the mutual exclusion property by k-induction.
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Transition Systems

Many computational systems can be modeled as transition
systems.

A transition system is a triple 〈W , I ,N〉 consisting of a set of
states W , an initialization predicate I , and transition relation
N.

Transition system properties include invariance, stability,
eventuality, and refinement.

Finite-state transition systems can be analyzed by means of
state exploration.

Properties of infinite-state transition systems can be proved
using various combinations of theorem proving and model
checking.
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States and Transitions in PVS

Given some state type, an assertion is a predicate on this type,
and action is a relation between states, and a computation is an
infinite sequence of states.

state[state: TYPE] : THEORY

BEGIN

IMPORTING sequences[state]

statepred: TYPE = PRED[state] %assertions

Action: TYPE = PRED[[state, state]]

computation : TYPE = sequence[state]

pp: VAR statepred

action: VAR Action

aa, bb, cc: VAR computation
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States and Transitions

A run is valid if the initialization predicate pp holds initially,
and the action aa holds of each pair of adjacent states.

An invariant assertion holds of each state in the run.

Init(pp)(aa) : bool = pp(aa(0))

Inv(action)(aa) : bool =

(FORALL (n : nat) : action(aa(n), aa(n+1)))

Run(pp, action)(aa): bool =

(Init(pp)(aa) AND Inv(action)(aa))

Inv(pp)(aa) : bool =

(FORALL (n : nat) : pp(aa(n)))

END state
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(Simplified) Peterson’s Mutual Exclusion Algorithm

The algorithm ensures mutual exclusion between two
processes P and Q.

The global state of the algorithm is a record consisting of the
program counters PCP and PCQ, and boolean turn variable.

mutex : THEORY

BEGIN

PC : TYPE = sleeping, trying, critical

state : TYPE = [# pcp : PC,

turn: bool,

pcq : PC #]

IMPORTING state[state]

s, s0, s1: VAR state
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Defining Process P

P is initially sleeping. It moves to trying by setting the turn

variable to FALSE, and enters the critical state if Q is sleeping
or turn is TRUE.

I_P(s) : bool = (sleeping?(pcp(s)))

G_P(s0, s1): bool =

( (s1 = s0) %stutter

OR (sleeping?(pcp(s0)) AND %try

s1 = s0 WITH [pcp := trying, turn := FALSE])

OR (trying?(pcp(s0)) AND %enter critical

(turn(s0) OR sleeping?(pcq(s0))) AND

s1 = s0 WITH [pcp := critical])

OR (critical?(pcp(s0)) AND %exit critical

s1 = s0 WITH [pcp := sleeping, turn := FALSE ]))
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Defining Process Q

Process Q is similar to P with the dual treatment of the turn

variable.

I_Q(s) : bool = (sleeping?(pcq(s)))

G_Q(s0, s1): bool =

( (s1 = s0) %stutter

OR (sleeping?(pcq(s0)) AND %try

s1 = s0 WITH [pcq := trying, turn := TRUE])

OR (trying?(pcq(s0)) AND %enter

(NOT turn(s0) OR sleeping?(pcp(s0))) AND

s1 = s0 WITH [pcq := critical])

OR (critical?(pcq(s0)) AND %exit critical

s1 = s0 WITH [pcq := sleeping, turn := TRUE]))
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The Combined System

The system consists of:

The conjunction of the initializations for P and Q

The disjunction of the actions for P and Q (interleaving).

I(s) : bool = (I_P(s) AND I_Q(s))

G(s0, s1) : bool = (G_P(s0, s1) OR G_Q(s0, s1))

END mutex
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Proving Mutual Exclusion

safe is the assertion that P and Q are not simultaneously
critical.

mutex_proof: THEORY

BEGIN

IMPORTING mutex, connectives[state]

s, s0, s1: VAR state

safe(s) : bool = NOT (critical?(pcp(s)) AND critical?(pcq(s)))

safety_proved: CONJECTURE

(FORALL (aa: computation):

Run(I, G)(aa)

IMPLIES Inv(safe)(aa))

safety proved asserts the invariance of safe.
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Proving Mutual Exclusion

safety_proved :

|-------

{1} (FORALL (aa: computation):

Run(I, G)(aa) IMPLIES Inv(safe)(aa))

Rule? (reduce-invariant)

.

.

.

Apply the invariance rule,,

this yields 11 subgoals:

reduce-invariant is a proof strategy that reduces the task to that
of showing that each transition preserves the invariant.
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Proving Mutual Exclusion

safety_proved.1 :

{-1} Init(I)(aa!1)

|-------

{1} safe(aa!1(0))

Rule? (grind)

.

.

.

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of safety_proved.1.
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Proving Mutual Exclusion

safety_proved.2 :

{-1} (aa!1(1 + (j!1 + 1 - 1)) = aa!1(j!1 + 1 - 1))

{-2} safe(aa!1(j!1))

|-------

{1} safe(aa!1(j!1 + 1))

Rule? (grind)

.

.

.

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of safety_proved.2.
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Proving Mutual Exclusion

safety_proved.3 :

{-1} sleeping?(pcp(aa!1(j!1 + 1 - 1)))

{-2} aa!1(1 + (j!1 + 1 - 1)) =

aa!1(j!1 + 1 - 1) WITH [pcp := trying, turn := FALSE]

{-3} safe(aa!1(j!1))

|-------

{1} safe(aa!1(j!1 + 1))

Rule? (grind)

.

.

.

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of safety_proved.3.
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Proving Mutual Exclusion

safety_proved.4 :

{-1} turn(aa!1(j!1 + 1 - 1))

{-2} trying?(pcp(aa!1(j!1 + 1 - 1)))

{-3} aa!1(1 + (j!1 + 1 - 1))

= aa!1(j!1 + 1 - 1) WITH [pcp := critical]

{-4} safe(aa!1(j!1))

|-------

{1} safe(aa!1(j!1 + 1))

Rule? (grind)

safe rewrites safe(aa!1(j!1))

to TRUE

safe rewrites safe(aa!1(1 + j!1))

to NOT critical?(pcq(aa!1(1 + j!1)))

Trying repeated skolemization, instantiation, and if-lifting,

this simplifies to:
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Proving Mutual Exclusion

safety_proved.4 :

{-1} aa!1(j!1)‘turn

{-2} trying?(pcp(aa!1(j!1)))

{-3} aa!1(1 + j!1) = aa!1(j!1) WITH [pcp := critical]

[-4] safe(aa!1(j!1))

{-5} critical?(aa!1(j!1)‘pcq)

|-------

Unprovable subgoal!
Invariant is too weak, and is not inductive.
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Strengthening the Invariant

strong_safe(s) : bool =

((critical?(pcp(s)) IMPLIES (turn(s) OR sleeping?(pcq(s))))

AND

(critical?(pcq(s)) IMPLIES (NOT turn(s) OR sleeping?(pcp(s)))))

strong_safety_proved: THEOREM

(FORALL (aa: computation):

Run(I, G)(aa)

IMPLIES Inv(strong_safe)(aa))

Verified by (then (reduce-invariant) (grind)).
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Strong Invariant Implies Weak

strong_safe_implies_safe :

|-------

{1} FORALL (s: state): (strong_safe IMPLIES safe)(s)

Rule? (grind)

.

.

.

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.
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Predicate Transformers

Given a state type state, we already saw that assertions over
this state type have the type pred[state].

Predicate transformers over this type can be given the type
[pred[state] -> pred[state]].

relation_defs [T1, T2: TYPE]: THEORY

BEGIN

R: VAR pred[[T1, T2]]

X: VAR set[T1]

Y: VAR set[T2]

preimage(R)(Y): set[T1] = preimage(R, Y)

postcondition(R)(X): set[T2] = postcondition(R, X)

precondition(R)(Y): set[T1] = precondition(R, Y)

END relation_defs
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The Mu-Calculus

mucalculus[T:TYPE]: THEORY

BEGIN

s: VAR T

p, p1, p2: VAR pred[T]

predicate_transformer: TYPE = [pred[T]->pred[T]]

pt: VAR predicate_transformer

setofpred: VAR pred[pred[T]]

<=(p1,p2): bool = FORALL s: p1(s) IMPLIES p2(s)

monotonic?(pt): bool =

FORALL p1, p2: p1 <= p2 IMPLIES pt(p1) <= pt(p2)

pp: VAR (monotonic?)

glb(setofpred): pred[T] =

LAMBDA s: (FORALL p: member(p,setofpred) IMPLIES p(s))
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The Mu-Calculus

% least fixpoint

lfp(pp): pred[T] = glb({p | pp(p) <= p})

mu(pp): pred[T] = lfp(pp)

lub(setofpred): pred[T] =

LAMBDA s: EXISTS p: member(p,setofpred) AND p(s)

% greatest fixpoint

gfp(pp): pred[T] = lub({p | p <= (pp(p))})

nu(pp): pred[T] = gfp(pp)

END mucalculus
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The Least Fixed Point
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Exercises

1 P is ∪-continuous if 〈Xi |i ∈ N〉 is a family of sets (predicates)
such that Xi ⊆ Xi+1, then P(

⋃
i (Xi )) =

⋃
i (P(Xi )).

2 Show that (µZ .P[Z ])(z1, . . . , zn) =
∨

i P i [⊥](z1, . . . , zn),
where ⊥ = λz1, . . . , zn : false.

3 Similarly, P is P is ∩-continuous if 〈Xi |i ∈ N〉 is a family of
sets (predicates) such that Xi+1 ⊆ Xi , then
P(
⋂

i (Xi )) =
⋂

i (P(Xi )).

4 Show that (νZ .P[Z ])(z1, . . . , zn) =
∧

i P i [>](z1, . . . , zn),
where > = λz1, . . . , zn : true.
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Fixed Point Computations

The set of reachable states is fundamental to model checking

Any initial state is reachable.
Any state that can be reached in a single transition from a
reachable state is reachable.
These are all the reachable states.

This is a least fixed point:
mu X: LAMBDA y: I(y) OR EXISTS x: N(x, y) AND

X(x).

An invariant is an assertion that is true of all reachable states:
AGp.
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Temporal Connectives

ctlops[state : TYPE]: THEORY

BEGIN

u,v,w: VAR state

f,g,Q,P,p1,p2: VAR pred[state]

Z: VAR pred[[state, state]]

N: VAR [state, state -> bool]

EX(N,f)(u):bool = (EXISTS v: (f(v) AND N(u, v)))

EU(N,f,g):pred[state] = mu(LAMBDA Q: (g OR (f AND EX(N,Q))))

EF(N,f):pred[state] = EU(N, TRUE, f)

AG(N,f):pred[state] = NOT EF(N, NOT f)

END ctlops
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Symbolic Fixed Point Computations

If the computation state is represented as a boolean array
b[1..N],

Then a set of states can be represented by a boolean function
mapping {0, 1}N to {0, 1}.
Boolean functions can represent

Initial state set
Transition relation
Image of transition relation with respect to a state set

Set of reachable states computable as a boolean function.

ROBDD representation of boolean functions empirically
efficient.
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Model Checking Peterson’s Algorithm

mutex_mc: THEORY

BEGIN

IMPORTING mutex_proof

s, s0, s1: VAR state

safety: LEMMA

I(s) IMPLIES

AG(G, safe)(s)
.
.
.

END mutex_mc

N. Shankar Speaking Logic 2019 170/179



The model-check Command

safety :

|-------

{1} FORALL (s: state): I(s) IMPLIES AG(G, safe)(s)

Rule? (auto-rewrite-theories "mutex" "mutex_proof")

Installing rewrites from theories: mutex mutex_proof,

this simplifies to:

safety :

|-------

[1] FORALL (s: state): I(s) IMPLIES AG(G, safe)(s)

Rule? (model-check)

.

.

.

By rewriting and mu-simplifying,

Q.E.D.
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Fairness

For state s, the property fairEG(N, f)(Ff)(s) holds when
the predicate f holds along every fair path.

For fairness condition Ff, a fair path is one where Ff holds
infinitely often.

This is given by the set of states that can P that can always
reach f AND Ff AND EX(N, P) along an f path.

fairEG(N, f)(Ff): pred[state] =

nu(LAMBDA P: EU(N, f, f AND Ff AND EX(N, P)))
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Linear-Time Temporal Logic (LTL)

s |= a = s(a) = true

s |= ¬A = s 6|= A

s |= A1 ∨ A2 = s |= A1 or s |= A2

s |= AL = ∀σ : σ(0) = s implies σ |= L

s |= EL = ∃σ : σ(0) = s and σ |= L

σ |= a = σ(0)(a) = true

σ |= ¬L = σ 6|= L

σ |= L1 ∨ L2 = σ |= L1 or σ |= L2

σ |= XA = σ〈1〉 |= A

σ |= A1 U A2 = ∃j : σ〈j〉 |= A2 and ∀i < j : σ〈i〉 |= A1

Exercise: Embed LTL semantics in PVS.
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Interpolation-Based Model Checking

Interpolation: The unsatisfiability of the BMC query yields an
interpolant Q such that I (s0) ∧ N(s0, s1) and∧k

i=1 N(si , si+1) ∧ ¬P(sk+1) are jointly unsatisfiable.

The proof yields an interpolant Q(s1).

Let I ′(s0) be I (s0) ∨ Q(s0).

If I (s0) = I ′(s0) then this is an invariant. Otherwise, repeat
the process with I replaced by I ′.

Prove the mutual exclusion property using interpolation-based
model checking.
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Bradley’s Algorithm

Bradley’s algorithm works by Conflict Directed Reachability
(CDR) captured by the abstract system below.

Given a transition system M = 〈I ,N〉, let M[X ] = I t N[X ],
where N[X ] is the image and N−1[X ] is the preimage.

The state of the algorithm, initially n = 0, Q0 = I , C0 = ∅,
consists of

1 Inductive candidates (sets of clauses) Q0, . . . ,Qn:

1 Q0 = I
2 Qi v Qj u P for i < j ≤ n
3 N[Qi ] v Qi+1

2 Counterexample candidates (sets of cubes) C0, . . . ,Cn, where
each Ci is a set of symbolic counterexamples: for each (cube)
R ∈ Ci

1 R = ¬P and i = n, or there is an R ′ in Ci′ , R v N−1[S ],
where i ′ = n if i = n, and i ′ = i + 1, otherwise.

2 Qj v ¬R for all j < i .
3 R u Qi is nonempty, i.e., Qi 6v ¬R.
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Bradley’s Method

To prove M |= P, where M = 〈I ,N〉, build over-approximations Qi

of states (possibly) reachable from I in at most k steps, and
counterexamples Ci of states that can (definitely) reach ¬P.

Q0=I Q1 Q2 Q3 Q4

C5=notPC3C2C1

If Q0 has a counterexample, property fails; and if Qi = Qi+1, ¬P is
unreachable.
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Abstract Conflict Directed Reachability

Fail: If C0 is nonempty, ¬P is reachable.

Succeed: If Qi = Qi+1 for some i < n, we have an inductive
weakening of P.

Extend: If Ci is empty for each i ≤ n, add Qn+1 such that
M[Qn] v Qn+1 and Cn+1 = ∅, if Qn+1 v P, and
Cn+1 = {¬P}, otherwise.
Refine: Check N[Qi ] v ¬R for some R in Ci+1, where Ci is
empty, for j ≤ i :

1 Strengthen: If the query succeeds, find an R̂ weakening R
that is relatively inductive: M[Qi u ¬R̂] v ¬R̂: conjoin ¬R̂ to
each Qj for 1 ≤ j ≤ i + 1, move any S ∈ Ci+1 such that
Qi+1 v ¬S (including R) to Ci+2 if i + 1 < n.

2 Reverse: If the query fails with counterexample s, weaken s to
S such that S v N−1[R] and add S to Ci .

Propagate: Whenever Qi is strengthened, strengthen Qi+1

with Q where M[Qi ] v Q, move any R ∈ Ci+1 such that
Qi+1 v ¬R to Ci+2 if i + 1 < n.
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Conclusions: Speak Logic!

Logic is a powerful tool for
1 Formalizing concepts
2 Defining abstractions
3 Proving validities
4 Solving constraints
5 Reasoning by calculation
6 Mechanized inference

The power of logic is when it is used as an aid to effective
reasoning.
Logic can become enormously difficult, and it would undoubt-
edly be well to produce more assurance in its use. . . . We may
some day click off arguments on a machine with the same as-
surance that we now enter sales on a cash register.

Vannevar Bush, As We May Think

The machinery of logic has made it possible to solve large and
complex problems; formal verification is now a practical
technology.
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