
Sail, RISC-V, and CHERI-RISC-V

Prashanth Mundkur and Peter G. Neumann, SRI International
(most of this work done by University of Cambridge)

Robert Norton-Wright, Jon French, Brian Campbell∗, Alasdair
Armstrong, Thomas Bauereiss, Shaked Flur, Peter Sewell

University of Cambridge (∗University of Edinburgh)

Ninth Summer School on Formal Techniques, May 23, 2019
Menlo College, Atherton, CA

This work was partially supported by EPSRC grant EP/K008528/1 (REMS), an ARM iCASE award, and EPSRC

IAA KTF funding. Approved for public release; distribution is unlimited. This research is sponsored by the Defense

Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts

FA8750-10-C-0237 (”CTSRD”) and FA8650-18-C-7809 (”CIFV”). The views, opinions, and/or findings contained

in this article/presentation are those of the author(s)/presenter(s) and should not be interpreted as representing the

official views or policies of the Department of Defense or the U.S. Government.

1 / 1



ISA Specification

The problem:
I ISA specifications use a

mixture of prose and
pseudocode

I Often many thousands of
pages

I Sometimes loosely worded
and containing errors

Without machine-readable
specifications

I Cannot do machine-checked
proofs

I Hard to test or formally
verify implementations
against specification

2 / 1



Existing Formal ISA Models

I CakeML - HOL models for x86-64, ARMv6, ARMv8,
RISCV-64, MIPS-64

I CompCert - Coq models for PowerPC, ARM, x86, RISC-V
(32- and 64-bit)

I seL4 - Isabelle/HOL ARMv7 model

I ACL2 (x86) - Goel et al

I RockSalt SFI - Coq model of x86 (Morrisett et al)

I ... and others

I Public release of ARMv8-A specification by ARM

but no public tool support

I Few include full system-level specifications

I Tied to specific use-cases or theorem provers

3 / 1



Existing Formal ISA Models

I CakeML - HOL models for x86-64, ARMv6, ARMv8,
RISCV-64, MIPS-64

I CompCert - Coq models for PowerPC, ARM, x86, RISC-V
(32- and 64-bit)

I seL4 - Isabelle/HOL ARMv7 model

I ACL2 (x86) - Goel et al

I RockSalt SFI - Coq model of x86 (Morrisett et al)

I ... and others

I Public release of ARMv8-A specification by ARM

but no public tool support

I Few include full system-level specifications

I Tied to specific use-cases or theorem provers

3 / 1



Existing Formal ISA Models

I CakeML - HOL models for x86-64, ARMv6, ARMv8,
RISCV-64, MIPS-64

I CompCert - Coq models for PowerPC, ARM, x86, RISC-V
(32- and 64-bit)

I seL4 - Isabelle/HOL ARMv7 model

I ACL2 (x86) - Goel et al

I RockSalt SFI - Coq model of x86 (Morrisett et al)

I ... and others

I Public release of ARMv8-A specification by ARM

but no public tool support

I Few include full system-level specifications

I Tied to specific use-cases or theorem provers

3 / 1



Existing Formal ISA Models

I CakeML - HOL models for x86-64, ARMv6, ARMv8,
RISCV-64, MIPS-64

I CompCert - Coq models for PowerPC, ARM, x86, RISC-V
(32- and 64-bit)

I seL4 - Isabelle/HOL ARMv7 model

I ACL2 (x86) - Goel et al

I RockSalt SFI - Coq model of x86 (Morrisett et al)

I ... and others

I Public release of ARMv8-A specification by ARM

but no public tool support

I Few include full system-level specifications

I Tied to specific use-cases or theorem provers

3 / 1



Sail design goals

ISA models which are:

I similar to existing pseudocode

I cover the full scope of the architecture

I translatable into executable sequential emulator code
I translatable into idiomatic theorem prover definitions

I For multiple provers!

I offer fine-grained execution information for relaxed-memory
model integration

I be well-validated

4 / 1



Sail Overview

Power 2.06B
Framemaker

Power 2.06B
XML

asl_parser

ASL (public XML)
ARMv8−A

Sail
ARMv8−A

not yet in Sail−current

NB: some Sail−v1 parts

OCaml,JS,CSS

UI
Coq? HOL4

Sequential

Emulator (OCaml)

Sequential

Emulator (OCaml)
ELF model

Lem

OCaml

Litmus frontend

Isabelle

Lem

Definitions

Sail Sail

Framemaker export

parse, analyse, patch

Sail

Sequential

Emulator (C)

Sail
RISC−V

concurrency

Concurrency models

ARMv8−A, RISC−V, POWER, x86

Lem

tool

x86 (core)Power (core)

RMEM

CHERI−MIPS

Sail

5 / 1



Sail Models

Architecture LOS Boots Generates

ARMv8.3-A 23 000 C, OCaml Isabelle, HOL4
ARMv8.5-A 100 000 Linux C, OCaml
RISC-V 5 000 seL4, Linux, FreeBSD C, OCaml Isabelle, HOL4, Coq
MIPS 2 000 FreeBSD C, OCaml Isabelle, HOL4, Coq
CHERI-MIPS 4 000 FreeBSD C, OCaml Isabelle, HOL4

ARM model generated from ARM ASL, other models hand-written

6 / 1



RISC-V

Open ISA, developed by broad industrial and academic community

I Test system features by booting seL4, FreeBSD and Linux

I Validated against RISC-V test suite, and via trace comparison
with Spike simulator

I Led to contributions to original ISA specification, e.g.
I description of page-faults in page-table walks
I ambiguities in the specification of interrupt delegation
I bug fixes in Spike simulator

I Integration with RMEM concurrency tool
I Used with the 6874 litmus tests for the RISC-V memory model

7 / 1



MIPS and CHERI-MIPS

CHERI: Research architecture that extends 64-bit MIPS with
hardware capabilities for fine-grained memory protection and
secure compartmentalisation
The Sail model:

I Sufficient privileged architecture features to boot FreeBSD,
but excluding floating-point and other optional extensions

I Under continuous development with CHERI project

I Owned and developed by hardware researchers

I Used in upcoming CHERI ISA specification document

Successful example of hardware/software/semantics codesign

8 / 1



The Sail Language

I Imperative first-order language for describing ISA
specifications

I Lightweight dependent types
I Purely syntax directed bi-directional approach
I Prove important properties for MiniSail fragment:

I Type safety
I Decidability of type checking

I SMT solver to make dependent typechecking mostly automatic

As simple as possible, but no simpler

9 / 1



Emulator Generation

Need reasonably efficient emulator generation for ISA validation
Simple OCaml translation, optimised C translation for speed
Key optimisations:

I Use dependent types and SMT to pack integers into 64-bit
machine words

I Similarly, identify bitvectors that can be packed into single
64-bit words

I Statically allocate all storage where possible

1M IPS for MIPS, 80 000 IPS for ARM

10 / 1



Generating Theorem Prover Definitions

I Currently targeting Isabelle/HOL, HOL4, and Coq

I State monad for sequential reasoning

I Free monad over memory effects for concurrent reasoning

I Use dependent type information to integrate with machine
word libraries

I Validation of translation via testing
I Code extraction from Isabelle model of CHERI-MIPS to OCaml
I Successfully (albeit slowly) execute CHERI-MIPS test suite

11 / 1



Example Proof for ARMv8-A

Key question: Is such a large specification actually useable for
proof?

Address translation: Most complex part of ARMv8 model!

I 9000 lines of specification required
I Page table walk: Over 500 LOS excluding helper functions

I . . . and there are lots of page table helper functions

I Involves iteration, variable-length bitvectors, memory effects,
nondeterminism, . . .

12 / 1



Example Proof for ARMv8-A

We define a simple characterisation of address translation suitable
for reasoning about non-system code
About 500 lines of Isabelle total

Theorem
Simplified address translation is equivalent to full ARMv8 address
translation under certain useful assumptions
user mode, no virtualisation, valid translation tables, hardware
updating of translation table flags

Uncovered a few small bugs in the ASL specification

13 / 1



RISC-V in Sail

sail-riscv

+---- model // Sail specification modules

+---- generated_definitions // Files generated by Sail

| +---- c, ocaml, lem, isabelle, coq, hol4, latex

|---- handwritten_support // Prover support files

+---- c_emulator // supporting platform files for C emulator

+---- ocaml_emulator // supporting platform files for OCaml emulator

+---- doc // documentation

+---- test // test files

14 / 1



RISC-V Specification Structure

prelude:
helpers

raw physical memory

basic types:
registers, indices,

exceptions, privilege-levels,. . .

virtual memory:
PTE formats, TLB

page table walks

instructions:
decode, execute

step:
fetch-execute

interrupt dispatch
clock

device models

physical memory:
memory access

platform memory map
MMIO devicesregisters:

PC, integer (user)
system regs

current privilege

privilege transition:
exceptions, interrupts

returns

15 / 1



Extendable ISA Specifications

Possible extension points

I register width (e.g. 32/64, 32+64)

I new registers (floating point, vector)

I privilege levels (e.g. M-only, M/U, M/S/U, virtualization)

I physical memory (tagged memory)

I address translation (virtualization, security extensions)

I adding new instructions

I adding co-processors (debug, crypto, vector)

16 / 1



Extendable ISA Specifications

prelude:
helpers

raw physical memory

basic types:
registers, indices,

exceptions, privilege-levels,. . .

register
width

capability register type

virtual memory:
PTE formats, TLB

page table walks

instructions:
decode, execute

step:
fetch-execute

interrupt dispatch
clock

device models

PTE capability
load/store permissions

CHERI instructions

Program Counter
Capability

Default Data
Capability

physical memory:
memory access

platform memory map
MMIO devices

tagged memory

registers:
PC, integer (user)

system regs
current privilege

privilege transition:
exceptions, interrupts

returns

17 / 1



Extensions in Sail RISC-V

I draft ’N’ standard extension

I draft ’Xcheri’ non-standard extension

18 / 1



’N’ Extension in Sail RISC-V

I additional control/status registers

I changes to exception/interrupt handling

19 / 1



’Xcheri’ Extension in Sail RISC-V

I register formats (capability format)

I new processor exceptions

I physical memory access (tag metadata)

I virtual memory (permissions, PTE formats)

I new instructions

I semantics of existing instructions

I changing memory access due to instruction fetch

20 / 1



Conclusion

The RISC-V and CHERI-RISCV models are available:

https://github.com/rems-project/sail-riscv

https://github.com/CTSRD-CHERI/sail-cheri-riscv

Feedback welcome!

21 / 1

https://github.com/rems-project/sail-riscv
https://github.com/CTSRD-CHERI/sail-cheri-riscv

