CRASH-WORTHY
TRUSTWORTHY
SYSTEMS
RESEARCH AND
DEVELOPMENT

CHERI: Reinventing Computer
Architecture for Security

Robert N. M.Watson, Simon W. Moore, Peter G. Neumann

Jonathan Anderson, John Baldwin, Hadrien Barrel, Ruslan Bukin, David Chisnall, Nirav Dave,
Brooks Davis, Lawrence Esswood, Khilan Gudka, Alexandre Joannou, Robert Kovacsics, Ben Laurie,
A.Theo Markettos, . Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur,
Steven J. Murdoch, Edward Napierala, Robert Norton-Wright, Philip Paeps, Alex Richardson,
Michael Roe, Colin Rothwell, Hassen Saidi, Peter Sewell, Stacey Son, Andrew Turner, MunrajVadera,
Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge SRI International

Summer School on Formal Techniques, Menlo College

23 May 2019

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (‘CTSRD’) and FA8750-11-C-0249 (‘MRC2’). The views, opinions,
and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

B UNIVERSITY OF
4P CAMBRIDGE

CTSRD

Hardware-software co-design

* There are many deterrents to co-design:

A
o * Design space is much larger

o

> -

£ * Vastly more work to realistically evaluate
2 Co-design

> e : : :
g research * Long transition times to industrial practice

* Non-overlapping areas of expertise

A Energy efficiency?
A Security?

* Differing implementation cycles / timelines

A Performance!?
< |
\

Software research

 Skeptical academic/industrial views

* But potential for enormous rewards

gware researc * New computer architecture enables new

> workloads, deployments, and use cases

Vary hardware
* Disrupts current fundamental tradeoff spaces

* E.g., GPUs, BigLittle, NVM, etc.

2 BB UNIVERSITY OF

CAMBRIDGE

CTSRD

DARPA - CRASH

If you could revise the fundamental
principles of computer-system design
to improve security...

...what would you change?

I H UNIVERSITY OF
¢¥» CAMBRIDGE

CTSRD

Principle of least privilege

Every program and every privileged
user of the system should operate
using the least amount of privilege
hecessary to complete the job.

Saltzer 1974 - CACM 17(7)
Saltzer and Schroeder 1975 - Proc. |IEEE 63(9)
Needham 1972 - AFIPS 41(1)

8B UNIVERSITY OF
P CAMBRIDGE

CTSRD

Architectural least privilege

e C(Classical buffer-overflow attack Program

counter

* Buggy code overruns a buffer,
overwrites on-stack return address

* Opverwritten return address is loaded and
jumped to, corrupting control flow

* These privileges were not required by the
C language — so why grant them:

 Ability to overrun the buffer?

* Ability to corrupt or inject a code pointer?

 Ability to execute data as code?

* Limiting privilege doesn’t fix bugs — but
does provide vulnerability mitigation

* Current ISAs do not enable efficient, Virtual

fine-grained privilege reduction Register file memory
5 5B UNIVERSITY OF

€¥ CAMBRIDGE

CTSRD

Application-level least privilege (1)

Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Conventional gunzip

UNIX process

S

/

/ vulnerable
decompression
code

Kernel

Compartmentalized gunzip

UNIX process

main loop

Capability-mode process

vulnerable
decompression
code

-
—’-—
-

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities/exploits

58 UNIVERSITY OF
P CAMBRIDGE

Application-level least privilege (2)

@ Grab File Edit Capture Window Help O 0 = Thu05:49 100% B Q =

? A ® L)

o0e
]

bilities in 2012

ploitation Trends, Microsoft

esponding?

7 § UNIVERSITY OF
ﬂ CAMBRIDGE

CTSRD

Code-centred compartmentalisation

»
>

1. fetch 2. fetch 3. fetch 4. fetch
c iy 3/ S T
% gzavégg(x @ sandbox L sandbox sandbo>f } san '
§ sandbox sg;ii} Sasr:_dbox @
:::) 5. fetch sandbox
* Compartmentalization options for software describe a
T compartmentalization space:
L * Points in the space trade off security against performance

and programming complexity

* Increasing compartmentalization granularity better
approximates the principle of least privilege ...

* ... but Memory Management Unit (MMU)-based
architectures do not scale to many compartments (processes):

* Poor spatial protection granularity
* Limited simultaneous-process scalability

* Multi-address-space programming model

8

5B UNIVERSITY OF
4¥ CAMBRIDGE

CTSRD

CHERI PROTECTION MODEL

I UNIVERSITY OF
CAM BRIDGE

CTSRD

CHERI software protection goals

C/C++-language TCBs: kernels, runtimes, browsers, ...
* Granular spatial protection, pointer protection

* Buffer overflows, control-flow attacks (ROP, JOP), ...

Foundations for temporal safety

* Mitigate memory re-use attacks

* E.g,through accurate C-language garbage collection
* Higher-level language safety

* E.g., mitigate C++ COOP attacks

Scalable in-process compartmentalization

* Facilitate exploit-independent mitigation techniques

10 B UNIVERSITY OF

&¥ CAMBRIDGE

CHERI architectural goals

* De-conflate virtualization and protection
* Memory Management Units (MMUs) protect by location
* CHERI protects references to code and data: pointers

* Architectural mechanism directed by software policy

* Language-based properties
(e.g., C/C++ compiler, linkers, OS model, runtime)

* New software abstractions
(e.g., confined objects for compartmentalization)

* Hybrid capability-system model
* Capability systems target the principle of least privilege
(more on capabilities in a moment)
* Hybrid capability systems compose cleanly w/current designs
* Low overhead for fine-grained memory protection

* Significant performance gain for compartmentalization

' B UNIVERSITY OF

&¥ CAMBRIDGE

CTSRD

Pointers today

64-bit
e pointer

Implemented as integer virtual addresses

(Usually) point into allocations, mappings
* Derived from other pointers via integer arithmetic

* Dereferenced via jump, load, store

Allocation

No integrity protection — can be injected/corrupted

Arithmetic errors — out-of-bounds leaks/overwrites

Virtual
address
space

* Inappropriate use — executable data, format strings

4 Attacks on data and code pointers are highly effective

achieving arbitrary code execution
12 BB UNIVERSITY OF
«¥ CAMBRIDGE

CHERI protection model

* RISC hybrid-capability architecture supporting
fine-grained, pointer-based memory protection:

* pointer integrity (e.g., no pointer corruption)

* pointer provenance validity (e.g., no pointer
injection)

* bounds checking (e.g., no buffer overflows)
* permission checking (e.g.,, W”X for pointers)

* monotonicity (e.g., no pointer privilege
escalation / improper re-use)

* encapsulation (e.g., protect software objects)

13 B UNIVERSITY OF

&¥ CAMBRIDGE

CTSRD

Architectural protection model for pointers

Data

Control flow

4

Integrity and

provenance Bounds Monotonicity Permissions

Valid userspace pointer set — provenance rules control dereference
* Valid pointers are derived from valid pointers via valid transformations
* E.g,Received network data cannot be interpreted as a code pointer

Pointer privilege reduction — capabilities allow pointers to carry specific
privileges, which can be minimized with OS, compiler, and linker support:

 E.g,Pointers cannot be manipulated to access other heap or stack data

Foundation for memory protection, software compartmentalization

5 UNIVERSITY OF
@» CAMBRIDGE

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under
contracts FA8750-10-C-0237 (‘CTSRD’) and FA8750- 1 1-C-0249 (‘MRC2’). The views, opinions, and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and should not
be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

CTSRD

CHERI-MIPS INSTRUCTION-
SET ARCHITECTURE (ISA)

I H UNIVERSITY OF
¢¥» CAMBRIDGE

CTSRD

CHERI architectural approach

* RISC ISA extensions that avoid microcode, table lookups, exceptions:
* MMUs control the implementation of virtual addresses
* CHERI protects references to virtual addresses (pointers)
* Pointers can be implemented via architectural capabilities
» Capabilities: unforgeable, delegable tokens of authority
 Tagged memory protects capability integrity, provenance in DRAM
* Pointer metadata, including bounds and permissions, limit use
* Guarded manipulation implements capability monotonicity
» Sealing provides immutable, software-defined capabilities
* Exception model allows controlled escape from constrained contexts
* 256-bit architectural model — 64-bit addresses, 2x 64-bit bounds, etc.

» Efficient 128-bit architectural, microarchitecture implementation

16 B UNIVERSITY OF

&Y CAMBRIDGE

256-bit architectural capabilities

{— \'/

| -bit
tag

objtype (24bits) = permissions (31 bits) s
length (64 bits)
offset (64 bits) .
base (64 bits)

256-bit
capability
A

=—

CHERI capabilities extend pointers with:

Tags to protect in-memory capabilities:
« Dereferencing an untagged capability throws an exception | Allgeatien |

* In-memory overwrite automatically clears capability tag

* Bounds to limit range of address space accessible via pointer

* Permissions to limit operations — e.g., load, store, instruction fetch Virtual
* Sealing for encapsulation: immutable, non-dereferenceable address
space

* Guarded manipulation enforces monotonic rights non-increase

58 UNIVERSITY OF
P CAMBRIDGE

| 28-bit micro-architectural capabilities

Y o
< 8{ v
> o o o m—————
s
a E perms } compressed bounds relative to address s
| o
w m . '
& Virtual address (64 bits) '
U —

* Exchange bounds precision for reduced size

* Floating-point bounds relative to pointer

* Imprecision — stronger allocation alignment Allocation

—————————

Security properties maintained (e.g., monotonicity)

Different formats for sealed vs. non-sealed capabilities

Still supports out-of-bound C pointers Virtual
* DRAM tag density from 0.4% to 0.8% of memory size address

space

*_Full prototype with full software stack on FPGA

7S 58 UNIVERSITY OF
ational CAMBRIDGE

CTSRD

Mapping CHERI into 64-bit MIPS

§ c $pCC v $ddc LV | Capabili;cy width |
$ra $c31 v
‘ d d -
o $al | PoTen $c4 v
$a0 $c3 i Capability v
General-purpose Capability register file
register file Physical memory

* Capability register file holds in-use capabilities (code and data pointers)
 Tagged memory protects capability-sized and -aligned words in DRAM

* Program-counter capability ($pcc) constrains program counter ($pc)
* Default data capability ($ddc) constrains legacy MIPS loads/stores

System control registers are also extended — e.g., $epc—$epcc, TLB
19 B UNIVERSITY OF
¥ CAMBRIDGE

CTSRD

Virtual memory and capabilities
___________|VirtualMemory ___|Capabilities

Protects Virtual addresses and pages References (pointers) to C
code, data structures

Hardware MMU, TLB, page-table Capability registers,
walker tagged memory
Costs TLB, page tables, page-table Per-pointer overhead,
lookups, shoot-down IPIs context switching
Compartment scalability Tens to hundreds Thousands or more
Domain crossing IPC Function calls
Optimization goals Isolation, full virtualization = Memory sharing,

frequent domain transitions

CHERI hybridizes the two models: use the
best combination for any given problem

CTSRD

HARDWARE-SOFTWARE
CO-DESIGN FOR CHERI

I H UNIVERSITY OF
¢¥» CAMBRIDGE

CTSRD

Hardware-software co-design

* CHERI protection model protects OS, C, linker,
application structures and abstractions

e CHERI-MIPS ISA extends the 64-bit MIPS ISA
e L3 + Sail MIPS + CHERI ISA formal models

* Qemu-CHERI fast ISA emulator

* Bluespec SystemVerilog (BSV) pipelined, multicore
BERI MIPS + CHERI processor prototype

» Simple but realistic microarchitecture
* C — Cycle-accurate software simulator
* Verilog — Field Programmable Gate Array (FPGA) @ |00MHz

* CHERI software stack: FreeBSD, Clang/LLVM,
application corpus — OpenSSH, Postgres, nginx, ...

* Evaluation: Performance, security, compatibility, ...

22 BB UNIVERSITY OF

€¥ CAMBRIDGE

Oct. 2011: Capability

CTSRD

CHERI R&D Timeline

Nov. 2012:

Sandboxed code on | g8 %

CheriBSD; live

Sep. 2014: MIT LL red-
team live Heartbleed
mitigation demo

Sep. 2015: CheriABI
pure-capability POSIX
process environment

microkernel runs FPGA-base Trojan)
sandbox on FPGA . 2012: LLVM Mitigation demo Nov. 2014: tcpdump + Apr. 2016: CHERI Microkernel
generates ? multiple per-packet Workshop with ARM, Broadcom,
CHERI code Dec. 2013: @ g domain switches demo /' Cambridge, ETH Zurich, GWU,
Jul. 2010: CheriBSD 4 HPE, Oracle, SRI
CTSRD Jun. 2012: CCall Jan. 2014: Jun. 2015:)
proposal CheriBSD capability exception CheriBSD + 128-bit LLVM Jul. 121016[. iHE'g'FI
submitted context switching CHERI LLVM and CherlBSD LLUEULALC o0
\ / for dynamic linking
1 | \ | I I / = |
>
12010 p 2011 / ' 2012 ' 2013 ' 2014 \ ' 2015 ¢ ' 2016~ 12017
Oct: 2010: Jul. 2014: Merged Jun. 2016:
CTSRD project capabilities and fat (";E\é sf: ;A , ﬁ:ﬁ‘:‘e' ISAVS -
begins work pointers; ISA + V¥
\ FPGA prototype 128-bit caps, GHERL128;
fast domain- code efficiency
Nov. 2011: L7’ itchi improvements
May 2012: switching p
FPGA tablet + C:yab"meS/MMU 0o April 2013: multi- Jun. 2015: 128-bit instructions
CHERI-specific IS/-{)+ FPGA. FreeBSD FPGA CheriCloud “candidate 3" ISA +
microkernel ? FPGA prototype ACM CCS 2015: IEEE Micro Journal:
OS boots on prototype :
Program analysis, Fast ISA-supported
compartmentalization domain switching
LAW 2010: RESOLVE 2012: ISCA 2014: ASPLOS 2015: IEEE S&P 2015: PLDI 2016:
Capabilities Hybrid MMU/ Hybrid MMU/capability C-language Operating systems, CHERI C-language
revisited capability model model + architecture compatibility compartmentalization formal semantics
23 8 UNIVERSITY OF

CAMBRIDGE

CTSRD

CHERI ISA refinement (+reinvention)

2010- ISAvI RISC capability-system model w/64-bit MIPS

P
2012 Capability registers, tagged memory S ®
. : . - 0O
Guarded manipulation of registers B+

2012 ISAv2 Extended tagging to capability registers = §_
Capability-aware exception handling ® C
=+

Boots an MMU-based OS with CHERI support

2014 ISAv3 Fat pointers + capabilities, compiler support
Instructions to optimize hybrid code
Sealed capabilities, CCall/CReturn

2015 ISAv4 MMU-CHERI integration (TLB permissions) L
ISA support for compressed capabilities
HWh-accelerated domain switching
Multicore instructions: full suite of LL/SC variants

2016 ISAv5 CHERI-128 compressed capability model

Improved generated code efficiency
Initial in-kernel privilege limitations

|
saniiqeded +

UO!J'BZ!|2:)UGWJJ'BdLLI03
J\

|

Aduaniye apod 919-87|

2017 ISAvé6 Mature kernel privilege limitations -

Further generated code efficiency
CHERI-x86 and CHERI-RISC-V sketches
Exception-free domain transition

asn [PUIM}-U|

@ 8 UNIVERSITY OF
P CAMBRIDGE

CTSRD

CHERI SOFTWARE

25 BB UNIVERSITY OF

«» CAMBRIDGE

CHERI software models

More compatible Safer
Unmodified Hybrid Pure-capability
All pointers are Annotated and automatically All pointers are
integers selected pointers are capabilities capabilities

* Source and binary compatibility: C-language idioms, multiple ABls
* Unmodified code: Existing n64 code runs without modification

* Hybrid code: E.g., used in return addresses, for annotated data/code
pointers, for specific types, stack pointers, etc. n64-interoperable.

* Pure-capability code: Ubiquitous data- and data-pointer protection.
Non-né64-interoperable due to changed pointer size.

* CHERI Clang/LLVM compiler prototype generates code for all three

26 B UNIVERSITY OF

&¥ CAMBRIDGE

Multiple process ABls

Hybrid userspace Pure-capability userspace

(; Sandbox;
. Sandbox; '

S

CheriABI shim

L] MIPS code Hybrid code — Pure-capability code

* 64-bit MIPS ABI: n64-compatible hybrid code execution

* Many pointers are integers (including system-call arguments)
* Pure-capability code supported in sandboxes

* CheriABI: Strong pure-capability code throughout
* All pointers are capabilities (including system-call arguments)

* Hybrid-capability code supported in sandboxes

27 #H UNIVERSITY OF

€¥ CAMBRIDGE

CheriABI:“pure-capability’” processes

* Userspace compiled for ubiquitous pointer protection
* Goal: OpenSSH (etc) without buffer overflows, ROP, JOP, ...
* Ensure valid provenance, minimize privilege for pointers
* Where does (or should) every pointer come from!?
* What bounds and permissions should each pointer have!?
* Grand tour of the OS, process model, and toolchain:
* execve() mappings, ELF auxiliary arguments, signals, ...
* Compile-time and run-time linker for code, globals
* System calls accepting, returning, and stash pointers
 Stack, heap, and application-specific allocators

* Trading off privilege minimization vs. APl conformance

28 58 UNIVERSITY OF
¥ CAMBRIDGE

CTSRD

CHERI
COMPARTMENTALIZATION

BB UNIVERSITY OF
CAMBRIDGE

In-process compartmentalization

using CHERI (sketch)

Ambient In-process protection domains
stack(s
___________ & * Thread registers describe rights of running code
i Sealed data’i . ive cl ¢ reachabl biliti
AR O S E——— .e., transitive closure of reachable capabilities
| Sedled:ode s | | « Userspace object-capability model
;i1 icapability 2| Stack : : T
"""""" — o * libcheri loads and run-time links classes
- o
'"Zt:tr:e = * Instantiates confined objects w/limited rights
. 0
Hiimhinininn O wﬁ_ - * Sealed capabilities enforce encapsulation
Ifiﬁ?ﬁf?ﬁ.’ﬁ@?‘?.}. 5 1T
""" capabiliey: i): B g « Shared code and data within address space
........... _‘ ass g
' - @ + Fast and robust domain transition
Global heap | * Controlled non-monotonic transformations
memory of thread capability registers
. * Efficient object and memory sharing
1 1
Application * Delegate capabilities across invocation, return
libc
—d * Paper at [EEE SSP 2015 (“Oakland”)
30 B UNIVERSITY OF
P . J
= ¢¥ CAMBRIDGE

CHERI-JNI: Protecting Java from NI

* Java Native Interface (JNI) allows Java
programs to use native code for
performance, code portability, functionality

* Often fragile; sometimes overtly insecure

Java
application

o * Impose Java memory-safety and

| Sandboxed security models on JNI code
JNI code

* Full memory safety for native code

JamVM libcheri e Limit JNI access to JVM state

runtime

* Allow safe copy-free NI access to Java buffers
CheriBSD

* Enforce Java security model on access to Java
objects and system services (e.g., files, sockets)

* Prototyped using JamVM on CHERI-MIPS
* Paper at ASPLOS 2017
31

8B UNIVERSITY OF
P CAMBRIDGE

CTSRD

PERFORMANCE

32 #H UNIVERSITY OF

&¥ CAMBRIDGE

CTSRD

Memory-protection performance

Overhead tracks in-memory pointer
density (e.g.,increased memory use)

10 10
In CHERI-256 : .
© 8 8 I CHERLI198 Metric: D-Cache miss-rate
B IaMIPS base case | €hange from pointer-size growth?
s 6 6
g 4 4 Left: Low pointer-density
e ZL; 1 2 benchmarks from MiBench

Right: High pointer-density

0
Pointer < (.2

3 8 17 23 24 24 26 26 32
ensity N b
S ews £ 2 EET EFOEOE benchmarks
N = = 5 2 3 E 8 2 2 QE) .
S S22 a2 3 52 =% M-MiBench
§ 5§ 4 = O g £
T T g > O
s 3 S = O - Olden
a4 = B .
3 J - Octane JavaScript
L1 D-Cache miss rate for 1%-2% increase in L1 D-Cache
CHERI-256, CHERI-128, and MIPS miss rate for |128-bit capabilities

for most practical workloads

B8 UNIVERSITY OF

.
&¥ CAMBRIDGE

CTSRD

Domain switching

3 103E .
Lol | * Function-call performance
2l E semantics with low fixed overhead
B g :
100 e Metrics: L2 cache miss rate, TLB
i miss rates, execution time as
= workload footprint approaches limits
A 10% |
108 - - * Fixed cost for CCall/CReturn
s * No overhead to delegate memory or
° object capabilities
£ 107
g IR * Much faster than IPC for frequent,
B —e— CHERI small messages (<512K) common in
§ 102 »——""" ——function | compartmentalized programs
¥ X X D P RIS
YV o)) N N N N N > o .
VST & g & 97 ¢ ¢ Shared memory access scales with
payload size in-process access rather than
Comparison of domain-crossing methods — MMU-based Shal‘lng

absolute cycle cost (log-log)

34 BB UNIVERSITY OF

«¥ CAMBRIDGE

Total time (seconds)

>
(33

>
o

Lo
Ut
t

w
o
t

DO
<t
t

DO
o
t

—_
(@23
t

10 +

CTSRD

Memory-safe, compartmentalized gzip

| |—o— Process
—a— CHERI

| |—o— Baseline

2 3 4 5 6
File size / MB

Compression time in seconds for
compartmentalized gzip

zlib library compartmentalization

Best cut point for security and
reusability is a shared-memory API

* Extremely awkward for MMU-based
compartmentalization...

* ... but simple pointer delegation with
CHERI compartmentalization

MMU process-based sandboxing w/o
memory safety

e 40%-43% wall-clock overhead

CHERI object-based sandboxing with
full memory safety

* 3%-5% wall-clock overhead
(measured on 256-bit CHERI)

BB UNIVERSITY OF

.
&¥ CAMBRIDGE

CTSRD

WHERE NEXT?

36 #H UNIVERSITY OF

&¥ CAMBRIDGE

Ongoing research

* Quantitatively motivated ISA optimization = * CHERI for safe native-code interfaces (e.g.,
and code generation for Java’s |NI)

* Implications for more complex * CHERI as a safe inter-language substrate

microarchitectures (e.g., superscalar)
* Efficient C-language garbage collection

* Tagged memory: tag cache vs. native

support in DRAM * CHERI and managed languages
« Complete tool-chain: linker, debugger * Formal proofs of ISA properties
« C++ compilation to CHERI (+COOP) * Formal proofs of software properties
« OS support, larger application corpus * Verifying hardware implementations
e« CHERI and ISO C/POSIX APIs * Interactions with persistent memory
« Map sandbox frameworks into CHERI * Dynamic tracing of CHERI provenance

* CHERI-specific (MMU-free) microkernel * MMU-free HW designs for “loT”

37 BB UNIVERSITY OF

«¥ CAMBRIDGE

CTSRD

Conclusion
* CHERI is a RISC hybrid capability-system architecture

* Iterative hardware-software co-design over 7 years
* Novel convergence of MMU and capability-based approaches
* Fine-grained, pointer-oriented protection for code and data
* Strong, real-world C-language support with low overhead
* Scalable, fine-grained intra-process compartmentalization

* Substantial vulnerability-mitigation benefit

* Validated against large, real-world software corpora

* Publications include: ISCA 2014, ASPLOS 2015, IEEE SSP 2015,ACM
CCS 2015, PLDI 2016, IEEE Micro 2016; ASPLOS 2017, ...

* Open-source hardware and software; publication specifications

https://www.cheri-cpu.org/

38 i B UNIVERSITY OF

&% CAMBRIDGE

https://www.cheri-cpu.org/

CTSRD

Q&A

39 #H UNIVERSITY OF

4¥ CAMBRIDGE

CHERI papers

ISCA 2014: Fine-grained, in-address-space memory protection
hybridizing MMU, capability model

ASPLOS 2015: Explore and refine C-language compatibility;
converge capabilities and fat pointers

Oakland 201 5: Efficient, capability-based hardware-software
compartmentalization within processes

ACM CCS 2015: Compartmentalization modeling
PLDI 2016: C-language semantics + CHERI extension (w/REMS)

IEEE Micro Journal September/October 2016: Hardware
assistance for efficient domain switching

ASPLOS 2017: CHERI reinforcement for Java JNI

(Various other submissions, in-flight papers)

40 B UNIVERSITY OF

&Y CAMBRIDGE

CHERI technical reports

Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (CHERI ISAvV5)

* UCAM-CL-TR-891 —June 2016

* Mature |28-bit capabilities, code generation efficiency
improvements, detailed exploration of language/ISA linkage

« CHERI ISAvé in May 2017 w/privileged code support

Capability Hardware Enhanced RISC Instructions: CHERI
Programmer’s Guide

« UCAM-CL-TR-877 — November 2015
* C language, compiler, OS internals

* Multiple technical reports on the BERI prototyping platform

41 B UNIVERSITY OF

&¥ CAMBRIDGE

CTSRD

BACKUP SLIDES

42 #H UNIVERSITY OF

&¥ CAMBRIDGE

CTSRD

Architectural support for least privilege

CHERI memory protection:
* Eliminates out-of-bounds accesses

* Prevents injected data use as a code or data pointer Return

* Disallows jumping to data pointers Addres

* Protects code pointers to limit code reuse attacks |

* Mitigates as-yet undiscovered exploit techniques and Maliciou
supply-chain attacks through scalable compartmentalization data

* Supports managed-language runtimes (e.g., accurate C
garbage collection, safe native-code interfaces for Java)

While:]
* Retaining current programming languages and models
* Supporting incremental deployment in software stack Virtual

memor
UNIVERSI Y OF
¥ CAMBRIDGE

CTSRD

Reminder: MMU process model

Coarse-grained process isolation

* Inter-program robustness

* Bridged by kernel services (e.g., IPC);
OS access control limits global rights

* Memory Management Unit (MMU)

* Page tables control per-process
virtual-to-physical mappings

Shared * Powerful tool for application isolation
Data

- * Inefficient and hard-to-program for

compartmentalization

Shared * Process-model costs: page tables,
code dynamic linkage, globals, heaps, ...

* High explicit domain-switch costs

Process; Process; * Implied overhead growth on page

Physical table, cache, TLB as sharing grows
memory

44 58 UNIVERSITY OF
&Y CAMBRIDGE

CTSRD

Software deployment models

Hybrid capability/ MMU OSes

T r------:-': T TTGREA r------:-': l.r::::::.-|: r------:-': T
7)) 0 . (T { 0 . Y " 0 h s W
) v zlib y: libss| v zlib g libss| o 1 class1 577" I 92
8 SR S SR TS S ? I v libssl :: 8
o teccece=- e —
0 I'r:'-:::::l:)
@ | | Legacy application . ' T Q
2 gacy fp Pure-capability :_C_I??f’_z_!: Q
5 e application ®
S | | capability libraries PP . P
@ Capability-based »
© ‘X‘ Address-space executive Address-space executive OS with |egacy %’
) . - Q
= libraries Q
S OS kernel ip o

Yy

'\ Addre’ ipace executive v

Y iJ ¢ AJAN) JUICC J1 O LC @ al |

compartmentalization within virtual address spaces

Object-capability invocation

Ambient * Mutual trust: robust function calls
environment ¢ CHERI-aware CJALR and CJR instructions
CJALR function CIR * Destination + return address are capabilities
function 2
' * Shared stack, globals, ...
CCall 8
< _> * Mutual distrust: Object-capability invocation
CReturn » CCall/CReturn instructions w/exceptions
Confined object
* Independent stacks, globals, ...
CCall
< — * Per-thread trusted stack links object stacks
CCall < Confined object | CReturn * Reliable call-return semantics
]
Ambient CReturn * Reliable recovery on uncaught exception
| ‘ .
Sysca < environment * Classes permissions control system calls
| e Similar NI “ m classes”
Kernel Sysca Similar to Java J system ¢
return 46 g E UNIVERSITY OF

«¥ CAMBRIDGE

