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Hardware-software co-design

* There are many deterrents to co-design:

A
o * Design space is much larger

o

> -

£ * Vastly more work to realistically evaluate
2 Co-design

> e : : :
g research * Long transition times to industrial practice

* Non-overlapping areas of expertise

A Energy efficiency?
A Security?

* Differing implementation cycles / timelines

A Performance!?
< |
\

Software research

 Skeptical academic/industrial views

* But potential for enormous rewards

gware researc * New computer architecture enables new

> workloads, deployments, and use cases

Vary hardware
* Disrupts current fundamental tradeoff spaces

* E.g., GPUs, BigLittle, NVM, etc.
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DARPA - CRASH

If you could revise the fundamental
principles of computer-system design
to improve security...

...what would you change?
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Principle of least privilege

Every program and every privileged
user of the system should operate
using the least amount of privilege
hecessary to complete the job.

Saltzer 1974 - CACM 17(7)
Saltzer and Schroeder 1975 - Proc. |IEEE 63(9)
Needham 1972 - AFIPS 41(1)
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Architectural least privilege

e C(Classical buffer-overflow attack Program

counter

* Buggy code overruns a buffer,
overwrites on-stack return address

* Opverwritten return address is loaded and
jumped to, corrupting control flow

* These privileges were not required by the
C language — so why grant them:

 Ability to overrun the buffer?

* Ability to corrupt or inject a code pointer?

 Ability to execute data as code?

* Limiting privilege doesn’t fix bugs — but
does provide vulnerability mitigation

* Current ISAs do not enable efficient, Virtual

fine-grained privilege reduction Register file memory
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Application-level least privilege (1)

Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Conventional gunzip

UNIX process

S

/

/ vulnerable
decompression
code

Kernel

Compartmentalized gunzip

UNIX process

main loop

Capability-mode process

vulnerable
decompression
code

-
—’-—
-

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities/exploits
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Application-level least privilege (2)

@ Grab File Edit Capture Window Help O 0 = Thu05:49 100% B Q =

? A ® L)

o0e
]

bilities in 2012

ploitation Trends, Microsoft

esponding?
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Code-centred compartmentalisation

»
>

1. fetch 2. fetch 3. fetch 4. fetch
c iy 3/ S T
% gzavégg(x @ sandbox L sandbox sandbo>f } san '
§ sandbox sg;ii} Sasr:_dbox @
:::) 5. fetch sandbox
* Compartmentalization options for software describe a
T compartmentalization space:
L * Points in the space trade off security against performance

and programming complexity

* Increasing compartmentalization granularity better
approximates the principle of least privilege ...

* ... but Memory Management Unit (MMU)-based
architectures do not scale to many compartments (processes):

* Poor spatial protection granularity
* Limited simultaneous-process scalability

* Multi-address-space programming model

8
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CHERI PROTECTION MODEL
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CHERI software protection goals

C/C++-language TCBs: kernels, runtimes, browsers, ...
* Granular spatial protection, pointer protection

* Buffer overflows, control-flow attacks (ROP, JOP), ...

Foundations for temporal safety

* Mitigate memory re-use attacks

* E.g,through accurate C-language garbage collection
* Higher-level language safety

* E.g., mitigate C++ COOP attacks

Scalable in-process compartmentalization

* Facilitate exploit-independent mitigation techniques
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CHERI architectural goals

* De-conflate virtualization and protection
* Memory Management Units (MMUs) protect by location
* CHERI protects references to code and data: pointers

* Architectural mechanism directed by software policy

* Language-based properties
(e.g., C/C++ compiler, linkers, OS model, runtime)

* New software abstractions
(e.g., confined objects for compartmentalization)

* Hybrid capability-system model
* Capability systems target the principle of least privilege
(more on capabilities in a moment)
* Hybrid capability systems compose cleanly w/current designs
* Low overhead for fine-grained memory protection

* Significant performance gain for compartmentalization
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Pointers today

64-bit
e pointer

Implemented as integer virtual addresses

(Usually) point into allocations, mappings
* Derived from other pointers via integer arithmetic

* Dereferenced via jump, load, store

Allocation

No integrity protection — can be injected/corrupted

Arithmetic errors — out-of-bounds leaks/overwrites

Virtual
address
space

* Inappropriate use — executable data, format strings

4 Attacks on data and code pointers are highly effective

achieving arbitrary code execution
12 BB UNIVERSITY OF
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CHERI protection model

* RISC hybrid-capability architecture supporting
fine-grained, pointer-based memory protection:

* pointer integrity (e.g., no pointer corruption)

* pointer provenance validity (e.g., no pointer
injection)

* bounds checking (e.g., no buffer overflows)
* permission checking (e.g.,, W”X for pointers)

* monotonicity (e.g., no pointer privilege
escalation / improper re-use)

* encapsulation (e.g., protect software objects)
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Architectural protection model for pointers

Data

_________________________________________________

Control flow

4

________________________

Integrity and

provenance Bounds Monotonicity Permissions

Valid userspace pointer set — provenance rules control dereference
* Valid pointers are derived from valid pointers via valid transformations
* E.g,Received network data cannot be interpreted as a code pointer

Pointer privilege reduction — capabilities allow pointers to carry specific
privileges, which can be minimized with OS, compiler, and linker support:

 E.g,Pointers cannot be manipulated to access other heap or stack data

Foundation for memory protection, software compartmentalization

5 UNIVERSITY OF
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CHERI-MIPS INSTRUCTION-
SET ARCHITECTURE (ISA)
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CHERI architectural approach

* RISC ISA extensions that avoid microcode, table lookups, exceptions:
* MMUs control the implementation of virtual addresses
* CHERI protects references to virtual addresses (pointers)
* Pointers can be implemented via architectural capabilities
» Capabilities: unforgeable, delegable tokens of authority
 Tagged memory protects capability integrity, provenance in DRAM
* Pointer metadata, including bounds and permissions, limit use
* Guarded manipulation implements capability monotonicity
» Sealing provides immutable, software-defined capabilities
* Exception model allows controlled escape from constrained contexts
* 256-bit architectural model — 64-bit addresses, 2x 64-bit bounds, etc.

» Efficient 128-bit architectural, microarchitecture implementation
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256-bit architectural capabilities

{— \'/

| -bit
tag

objtype (24bits) = permissions (31 bits) s
length (64 bits)
offset (64 bits) .
base (64 bits)

256-bit
capability
A

=—

CHERI capabilities extend pointers with:

Tags to protect in-memory capabilities:
«  Dereferencing an untagged capability throws an exception | Allgeatien |

* In-memory overwrite automatically clears capability tag

* Bounds to limit range of address space accessible via pointer

* Permissions to limit operations — e.g., load, store, instruction fetch Virtual
* Sealing for encapsulation: immutable, non-dereferenceable address
space

* Guarded manipulation enforces monotonic rights non-increase
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| 28-bit micro-architectural capabilities

Y o
< 8{ v
> o o o m—————
s
a E perms } compressed bounds relative to address s
| o
w m . '
& Virtual address (64 bits) '
U —

* Exchange bounds precision for reduced size

* Floating-point bounds relative to pointer

* Imprecision — stronger allocation alignment Allocation

—————————

Security properties maintained (e.g., monotonicity)

Different formats for sealed vs. non-sealed capabilities

Still supports out-of-bound C pointers Virtual
* DRAM tag density from 0.4% to 0.8% of memory size address

space

*_Full prototype with full software stack on FPGA

7S 58 UNIVERSITY OF
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Mapping CHERI into 64-bit MIPS

§ c $pCC v $ddc LV | Capabili;cy width |
$ra $c31 v
‘ d d -
o $al | PoTen $c4 v
$a0 $c3 i Capability v
General-purpose Capability register file
register file Physical memory

* Capability register file holds in-use capabilities (code and data pointers)
 Tagged memory protects capability-sized and -aligned words in DRAM

* Program-counter capability ($pcc) constrains program counter ($pc)
* Default data capability ($ddc) constrains legacy MIPS loads/stores

System control registers are also extended — e.g., $epc—$epcc, TLB
19 B UNIVERSITY OF
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Virtual memory and capabilities
___________|VirtualMemory ___|Capabilities

Protects Virtual addresses and pages References (pointers) to C
code, data structures

Hardware MMU, TLB, page-table Capability registers,
walker tagged memory
Costs TLB, page tables, page-table Per-pointer overhead,
lookups, shoot-down IPIs context switching
Compartment scalability Tens to hundreds Thousands or more
Domain crossing IPC Function calls
Optimization goals Isolation, full virtualization = Memory sharing,

frequent domain transitions

CHERI hybridizes the two models: use the
best combination for any given problem
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HARDWARE-SOFTWARE
CO-DESIGN FOR CHERI
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Hardware-software co-design

* CHERI protection model protects OS, C, linker,
application structures and abstractions

e CHERI-MIPS ISA extends the 64-bit MIPS ISA
e L3 + Sail MIPS + CHERI ISA formal models

* Qemu-CHERI fast ISA emulator

* Bluespec SystemVerilog (BSV) pipelined, multicore
BERI MIPS + CHERI processor prototype

» Simple but realistic microarchitecture
* C — Cycle-accurate software simulator
* Verilog — Field Programmable Gate Array (FPGA) @ |00MHz

* CHERI software stack: FreeBSD, Clang/LLVM,
application corpus — OpenSSH, Postgres, nginx, ...

* Evaluation: Performance, security, compatibility, ...

22 BB UNIVERSITY OF
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Oct. 2011: Capability

CTSRD

CHERI R&D Timeline

Nov. 2012:

Sandboxed code on | g8 %

CheriBSD; live

Sep. 2014: MIT LL red-
team live Heartbleed
mitigation demo

Sep. 2015: CheriABI
pure-capability POSIX
process environment

microkernel runs FPGA-base Trojan )
sandbox on FPGA . 2012: LLVM  Mitigation demo Nov. 2014: tcpdump + Apr. 2016: CHERI Microkernel
generates ? multiple per-packet Workshop with ARM, Broadcom,
CHERI code Dec. 2013: @ g domain switches demo /' Cambridge, ETH Zurich, GWU,
Jul. 2010: CheriBSD 4 HPE, Oracle, SRI
CTSRD Jun. 2012: CCall Jan. 2014: Jun. 2015: )
proposal CheriBSD capability exception  CheriBSD + 128-bit LLVM Jul. 121016[. iHE'g'FI
submitted context switching CHERI LLVM and CherlBSD LLUEULALC o0
\ / for dynamic linking
1 | \ | I I / = |
>
12010 p 2011 / ' 2012 ' 2013 ' 2014 \ ' 2015 ¢ ' 2016~ 12017
Oct: 2010: Jul. 2014: Merged Jun. 2016:
CTSRD project capabilities and fat (";E\é sf: ;A , ﬁ:ﬁ‘:‘e' ISAVS -
begins work pointers; ISA + V¥
\ FPGA prototype 128-bit caps, GHERL128;
fast domain- code efficiency
Nov. 2011: L7’ itchi improvements
May 2012: switching p
FPGA tablet + C:yab"meS/MMU 0o April 2013: multi- Jun. 2015: 128-bit instructions
CHERI-specific IS/-{)+ FPGA. FreeBSD FPGA CheriCloud “candidate 3" ISA +
microkernel ? FPGA prototype ACM CCS 2015: IEEE Micro Journal:
OS boots on prototype :
Program analysis, Fast ISA-supported
compartmentalization domain switching
LAW 2010: RESOLVE 2012: ISCA 2014: ASPLOS 2015: IEEE S&P 2015: PLDI 2016:
Capabilities Hybrid MMU/ Hybrid MMU/capability C-language Operating systems, CHERI C-language
revisited capability model model + architecture compatibility compartmentalization formal semantics
23 8 UNIVERSITY OF
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CHERI ISA refinement (+reinvention)

2010- ISAvI RISC capability-system model w/64-bit MIPS

P
2012 Capability registers, tagged memory S ®
. : . - 0O
Guarded manipulation of registers B+

2012 ISAv2 Extended tagging to capability registers = §_
Capability-aware exception handling ® C
=+

Boots an MMU-based OS with CHERI support

2014 ISAv3 Fat pointers + capabilities, compiler support
Instructions to optimize hybrid code
Sealed capabilities, CCall/CReturn

2015 ISAv4 MMU-CHERI integration (TLB permissions) L
ISA support for compressed capabilities
HWh-accelerated domain switching
Multicore instructions: full suite of LL/SC variants

2016 ISAv5 CHERI-128 compressed capability model

Improved generated code efficiency
Initial in-kernel privilege limitations

|
saniiqeded +

UO!J'BZ!|2:)UGWJJ'BdLLI03
J\

|

Aduaniye apod 919-87|

2017 ISAvé6 Mature kernel privilege limitations -

Further generated code efficiency
CHERI-x86 and CHERI-RISC-V sketches
Exception-free domain transition

asn [PUIM}-U|
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CHERI SOFTWARE
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CHERI software models

More compatible Safer
Unmodified Hybrid Pure-capability
All pointers are Annotated and automatically All pointers are
integers selected pointers are capabilities capabilities

* Source and binary compatibility: C-language idioms, multiple ABls
* Unmodified code: Existing n64 code runs without modification

* Hybrid code: E.g., used in return addresses, for annotated data/code
pointers, for specific types, stack pointers, etc. n64-interoperable.

* Pure-capability code: Ubiquitous data- and data-pointer protection.
Non-né64-interoperable due to changed pointer size.

* CHERI Clang/LLVM compiler prototype generates code for all three

26 B UNIVERSITY OF
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Multiple process ABls

Hybrid userspace Pure-capability userspace

__________

__________

( ; Sandbox;
. Sandbox; '

S

CheriABI shim

L] MIPS code Hybrid code — Pure-capability code

* 64-bit MIPS ABI: n64-compatible hybrid code execution

* Many pointers are integers (including system-call arguments)
* Pure-capability code supported in sandboxes

* CheriABI: Strong pure-capability code throughout
* All pointers are capabilities (including system-call arguments)

* Hybrid-capability code supported in sandboxes

27 #H UNIVERSITY OF
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CheriABI:“pure-capability’” processes

* Userspace compiled for ubiquitous pointer protection
* Goal: OpenSSH (etc) without buffer overflows, ROP, JOP, ...
* Ensure valid provenance, minimize privilege for pointers
* Where does (or should) every pointer come from!?
* What bounds and permissions should each pointer have!?
* Grand tour of the OS, process model, and toolchain:
* execve() mappings, ELF auxiliary arguments, signals, ...
* Compile-time and run-time linker for code, globals
* System calls accepting, returning, and stash pointers
 Stack, heap, and application-specific allocators

* Trading off privilege minimization vs. APl conformance

28 58 UNIVERSITY OF
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CHERI
COMPARTMENTALIZATION
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In-process compartmentalization

using CHERI (sketch)

Ambient In-process protection domains
stack(s . . . .
___________ & * Thread registers describe rights of running code
i Sealed data’i . ive cl ¢ reachabl biliti
AR O S E——— .e., transitive closure of reachable capabilities
| Sedled:ode s | | « Userspace object-capability model
;i1 icapability 2| Stack : : T
"""""" — o * libcheri loads and run-time links classes
- o . . . . .
'"Zt:tr:e = * Instantiates confined objects w/limited rights
. 0
Hiimhinininn O wﬁ_ - * Sealed capabilities enforce encapsulation
Ifiﬁ?ﬁf?ﬁ.’ﬁ@?‘?.}. 5 1T
""" capabiliey: i ): B g « Shared code and data within address space
........... _‘ ass g
' - @ + Fast and robust domain transition
Global heap | * Controlled non-monotonic transformations
memory of thread capability registers
. * Efficient object and memory sharing
1 1
Application * Delegate capabilities across invocation, return
libc
—d * Paper at [EEE SSP 2015 (“Oakland”)
30 B UNIVERSITY OF
P . J
= ¢¥ CAMBRIDGE




CHERI-JNI: Protecting Java from NI

* Java Native Interface (JNI) allows Java
programs to use native code for
performance, code portability, functionality

* Often fragile; sometimes overtly insecure

Java
application

o * Impose Java memory-safety and

| Sandboxed security models on JNI code
JNI code

* Full memory safety for native code

JamVM libcheri e Limit JNI access to JVM state

runtime

* Allow safe copy-free NI access to Java buffers
CheriBSD

* Enforce Java security model on access to Java
objects and system services (e.g., files, sockets)

* Prototyped using JamVM on CHERI-MIPS
* Paper at ASPLOS 2017
31
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PERFORMANCE
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Memory-protection performance

Overhead tracks in-memory pointer
density (e.g.,increased memory use)

10 10
In  CHERI-256 : .
© 8 8 I CHERLI198 Metric: D-Cache miss-rate
B IaMIPS base case | €hange from pointer-size growth?
s 6 6
g 4 4 Left: Low pointer-density
e ZL; 1 2 benchmarks from MiBench

Right: High pointer-density

0
Pointer < (.2

3 8 17 23 24 24 26 26 32
ensity N b
S ews £ 2 EET EFOEOE benchmarks
N = = 5 2 3 E 8 2 2 QE) .
S S22 a2 3 52 =% M-MiBench
§ 5§ 4 = O g £
T T g > O
s 3 S = O - Olden
a4 = B .
3 J - Octane JavaScript
L1 D-Cache miss rate for 1%-2% increase in L1 D-Cache
CHERI-256, CHERI-128, and MIPS miss rate for |128-bit capabilities

for most practical workloads
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Domain switching

3 103E .
Lol | * Function-call performance
2l E semantics with low fixed overhead
B g :
100 e Metrics: L2 cache miss rate, TLB
i miss rates, execution time as
= workload footprint approaches limits
A 10% |
108 - - * Fixed cost for CCall/CReturn
s * No overhead to delegate memory or
° object capabilities
£ 107
g IR * Much faster than IPC for frequent,
B —e— CHERI small messages (<512K) common in
§ 102 »——"""  ——function | compartmentalized programs
¥ X X D P RIS
YV o) ) N N N N N > o .
VST & g & 97 ¢ ¢ Shared memory access scales with
payload size in-process access rather than
Comparison of domain-crossing methods — MMU-based Shal‘lng

absolute cycle cost (log-log)
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Memory-safe, compartmentalized gzip

| |—o— Process
—a— CHERI

| |—o— Baseline

2 3 4 5 6
File size / MB

Compression time in seconds for
compartmentalized gzip

zlib library compartmentalization

Best cut point for security and
reusability is a shared-memory API

* Extremely awkward for MMU-based
compartmentalization...

* ... but simple pointer delegation with
CHERI compartmentalization

MMU process-based sandboxing w/o
memory safety

e 40%-43% wall-clock overhead

CHERI object-based sandboxing with
full memory safety

* 3%-5% wall-clock overhead
(measured on 256-bit CHERI)
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WHERE NEXT?

36 #H UNIVERSITY OF

&¥ CAMBRIDGE




Ongoing research

* Quantitatively motivated ISA optimization = * CHERI for safe native-code interfaces (e.g.,
and code generation for Java’s |NI)

* Implications for more complex * CHERI as a safe inter-language substrate

microarchitectures (e.g., superscalar)
* Efficient C-language garbage collection

* Tagged memory: tag cache vs. native

support in DRAM * CHERI and managed languages
« Complete tool-chain: linker, debugger *  Formal proofs of ISA properties
«  C++ compilation to CHERI (+COOP) *  Formal proofs of software properties
«  OS support, larger application corpus *  Verifying hardware implementations
e« CHERI and ISO C/POSIX APIs * Interactions with persistent memory
«  Map sandbox frameworks into CHERI *  Dynamic tracing of CHERI provenance

*  CHERI-specific (MMU-free) microkernel *  MMU-free HW designs for “loT”

37 BB UNIVERSITY OF
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Conclusion
* CHERI is a RISC hybrid capability-system architecture

* Iterative hardware-software co-design over 7 years
* Novel convergence of MMU and capability-based approaches
* Fine-grained, pointer-oriented protection for code and data
* Strong, real-world C-language support with low overhead
* Scalable, fine-grained intra-process compartmentalization

* Substantial vulnerability-mitigation benefit

* Validated against large, real-world software corpora

* Publications include: ISCA 2014, ASPLOS 2015, IEEE SSP 2015,ACM
CCS 2015, PLDI 2016, IEEE Micro 2016; ASPLOS 2017, ...

* Open-source hardware and software; publication specifications

https://www.cheri-cpu.org/
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Q&A
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CHERI papers

ISCA 2014: Fine-grained, in-address-space memory protection
hybridizing MMU, capability model

ASPLOS 2015: Explore and refine C-language compatibility;
converge capabilities and fat pointers

Oakland 201 5: Efficient, capability-based hardware-software
compartmentalization within processes

ACM CCS 2015: Compartmentalization modeling
PLDI 2016: C-language semantics + CHERI extension (w/REMS)

IEEE Micro Journal September/October 2016: Hardware
assistance for efficient domain switching

ASPLOS 2017: CHERI reinforcement for Java JNI

(Various other submissions, in-flight papers)
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CHERI technical reports

Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (CHERI ISAvV5)

* UCAM-CL-TR-891 —June 2016

* Mature |28-bit capabilities, code generation efficiency
improvements, detailed exploration of language/ISA linkage

« CHERI ISAvé in May 2017 w/privileged code support

Capability Hardware Enhanced RISC Instructions: CHERI
Programmer’s Guide

« UCAM-CL-TR-877 — November 2015
* C language, compiler, OS internals

* Multiple technical reports on the BERI prototyping platform
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BACKUP SLIDES
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Architectural support for least privilege

CHERI memory protection:
* Eliminates out-of-bounds accesses

* Prevents injected data use as a code or data pointer Return

* Disallows jumping to data pointers Addres

* Protects code pointers to limit code reuse attacks |

* Mitigates as-yet undiscovered exploit techniques and Maliciou
supply-chain attacks through scalable compartmentalization data

* Supports managed-language runtimes (e.g., accurate C
garbage collection, safe native-code interfaces for Java)

While: ]
* Retaining current programming languages and models
* Supporting incremental deployment in software stack Virtual

memor
UNIVERSI Y OF
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Reminder: MMU process model

Coarse-grained process isolation

* Inter-program robustness

* Bridged by kernel services (e.g., IPC);
OS access control limits global rights

* Memory Management Unit (MMU)

* Page tables control per-process
virtual-to-physical mappings

Shared * Powerful tool for application isolation
Data

- * Inefficient and hard-to-program for

compartmentalization

Shared * Process-model costs: page tables,
code dynamic linkage, globals, heaps, ...

* High explicit domain-switch costs

Process; Process; * Implied overhead growth on page

Physical table, cache, TLB as sharing grows
memory

44 58 UNIVERSITY OF
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Software deployment models

Hybrid capability/ MMU OSes

T r------:-': T TTGREA r------:-': l.r::::::.-|: r------:-': T
7)) 0 . (T { 0 . Y " 0 h s W
) v zlib  y: libss| v zlib g libss| o 1 class1 577" I 92
8 SR S SR TS S ? I v libssl :: 8
o teccece=- e —
0 I'r:'-:::::l: )
@ | | Legacy application . ' T Q
2 gacy fp Pure-capability :_C_I??f’_z_!: Q
5 e application ®
S | | capability libraries PP . P
@ Capability-based »
© ‘X‘ Address-space executive Address-space executive OS with |egacy %’
) . - Q
= libraries Q
S OS kernel ip o

Yy

'\ Addre’ ipace executive v

Y iJ ¢ AJAN ) JUICC J1 O LC @ al |

compartmentalization within virtual address spaces




Object-capability invocation

Ambient * Mutual trust: robust function calls
environment ¢ CHERI-aware CJALR and CJR instructions
CJALR function CIR * Destination + return address are capabilities
function 2
' * Shared stack, globals, ...
CCall 8
< _> * Mutual distrust: Object-capability invocation
CReturn » CCall/CReturn instructions w/exceptions
Confined object
* Independent stacks, globals, ...
CCall
< — * Per-thread trusted stack links object stacks
CCall < Confined object | CReturn * Reliable call-return semantics
]
Ambient CReturn * Reliable recovery on uncaught exception
| ‘ .
Sysca < environment * Classes permissions control system calls
| e Similar NI “ m classes”
Kernel Sysca Similar to Java J system ¢
return 46 g E UNIVERSITY OF
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