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Hardware-software co-design
• There are many deterrents to co-design:

• Design space is much larger

• Vastly more work to realistically evaluate

• Long transition times to industrial practice

• Non-overlapping areas of expertise

• Differing implementation cycles / timelines

• Skeptical academic/industrial views

• But potential for enormous rewards
• New computer architecture enables new 

workloads, deployments, and use cases

• Disrupts current fundamental tradeoff spaces

• E.g., GPUs, BigLittle, NVM, etc.
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DARPA – CRASH

If you could revise the fundamental
principles of computer-system design

to improve security…

…what would you change?
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Principle of least privilege

Every program and every privileged
user of the system should operate

using the least amount of privilege
necessary to complete the job.

Saltzer 1974 - CACM 17(7)
Saltzer and Schroeder 1975 - Proc. IEEE 63(9)

Needham 1972 - AFIPS 41(1)
…



String 
buffer

Malicious 
data

$pc

$ra

Architectural least privilege
• Classical buffer-overflow attack

• Buggy code overruns a buffer,
overwrites on-stack return address

• Overwritten return address is loaded and 
jumped to, corrupting control flow

• These privileges were not required by the 
C language – so why grant them:

• Ability to overrun the buffer?

• Ability to corrupt or inject a code pointer?

• Ability to execute data as code?

• Limiting privilege doesn’t fix bugs – but
does provide vulnerability mitigation

• Current ISAs do not enable efficient, 
fine-grained privilege reduction
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Application-level least privilege (1)
Software compartmentalization decomposes software into 
isolated compartments that are delegated limited rights

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities/exploits
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Application-level least privilege (2)
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• Compartmentalization options for software describe a 
compartmentalization space:

• Points in the space trade off security against performance 
and programming complexity

• Increasing compartmentalization granularity better 
approximates the principle of least privilege …

• … but Memory Management Unit (MMU)-based 
architectures do not scale to many compartments (processes):

• Poor spatial protection granularity

• Limited simultaneous-process scalability

• Multi-address-space programming model



CHERI PROTECTION MODEL
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CHERI software protection goals
• C/C++-language TCBs: kernels, runtimes, browsers, …

• Granular spatial protection, pointer protection

• Buffer overflows, control-flow attacks (ROP, JOP), …

• Foundations for temporal safety

• Mitigate memory re-use attacks

• E.g., through accurate C-language garbage collection

• Higher-level language safety

• E.g., mitigate C++ COOP attacks

• Scalable in-process compartmentalization

• Facilitate exploit-independent mitigation techniques
10



CHERI architectural goals
• De-conflate virtualization and protection

• Memory Management Units (MMUs) protect by location
• CHERI protects references to code and data: pointers

• Architectural mechanism directed by software policy
• Language-based properties

(e.g., C/C++ compiler, linkers, OS model, runtime)

• New software abstractions
(e.g., confined objects for compartmentalization)

• Hybrid capability-system model
• Capability systems target the principle of least privilege 

(more on capabilities in a moment)

• Hybrid capability systems compose cleanly w/current designs

• Low overhead for fine-grained memory protection
• Significant performance gain for compartmentalization

11



virtual address (64 bits)

Pointers today

• Implemented as integer virtual addresses

• (Usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection – can be injected/corrupted

• Arithmetic errors – out-of-bounds leaks/overwrites

• Inappropriate use – executable data, format strings

⛵Attacks on data and code pointers are highly effective 
achieving arbitrary code execution
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CHERI protection model
• RISC hybrid-capability architecture supporting 

fine-grained, pointer-based memory protection:

• pointer integrity (e.g., no pointer corruption)

• pointer provenance validity (e.g., no pointer 
injection)

• bounds checking (e.g., no buffer overflows)

• permission checking (e.g., W^X for pointers)

• monotonicity (e.g., no pointer privilege 
escalation / improper re-use)

• encapsulation (e.g., protect software objects)
13



Valid userspace pointer set – provenance rules control dereference

• Valid pointers are derived from valid pointers via valid transformations

• E.g., Received network data cannot be interpreted as a code pointer

Pointer privilege reduction – capabilities allow pointers to carry specific 
privileges, which can be minimized with OS, compiler, and linker support:

• E.g., Pointers cannot be manipulated to access other heap or stack data

Foundation for memory protection, software compartmentalization

Data

Architectural protection model for pointers
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CHERI-MIPS INSTRUCTION-
SET ARCHITECTURE (ISA)
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CHERI architectural approach
• RISC ISA extensions that avoid microcode, table lookups, exceptions:

• MMUs control the implementation of virtual addresses

• CHERI protects references to virtual addresses (pointers)

• Pointers can be implemented via architectural capabilities

• Capabilities: unforgeable, delegable tokens of authority

• Tagged memory protects capability integrity, provenance in DRAM

• Pointer metadata, including bounds and permissions, limit use

• Guarded manipulation implements capability monotonicity

• Sealing provides immutable, software-defined capabilities

• Exception model allows controlled escape from constrained contexts

• 256-bit architectural model – 64-bit addresses, 2x 64-bit bounds, etc.

• Efficient 128-bit architectural, microarchitecture implementation
16
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256-bit architectural capabilities

CHERI capabilities extend pointers with:

• Tags to protect in-memory capabilities:

• Dereferencing an untagged capability throws an exception

• In-memory overwrite automatically clears capability tag

• Bounds to limit range of address space accessible via pointer

• Permissions to limit operations – e.g., load, store, instruction fetch

• Sealing for encapsulation: immutable, non-dereferenceable

• Guarded manipulation enforces monotonic rights non-increase
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128-bit micro-architectural capabilities
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• Exchange bounds precision for reduced size
• Floating-point bounds relative to pointer
• Imprecision → stronger allocation alignment
• Security properties maintained (e.g., monotonicity)
• Different formats for sealed vs. non-sealed capabilities
• Still supports out-of-bound C pointers

• DRAM tag density from 0.4% to 0.8% of memory size
• Full prototype with full software stack on FPGA

perms compressed bounds relative to address s
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Mapping CHERI into 64-bit MIPS

• Capability register file holds in-use capabilities (code and data pointers)

• Tagged memory protects capability-sized and -aligned words in DRAM

• Program-counter capability ($pcc) constrains program counter ($pc)

• Default data capability ($ddc) constrains legacy MIPS loads/stores

• System control registers are also extended – e.g., $epc→$epcc, TLB
19
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Virtual memory and capabilities
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Virtual Memory Capabilities
Protects Virtual addresses and pages References (pointers) to C 

code, data structures

Hardware MMU,TLB, page-table 
walker

Capability registers,
tagged memory

Costs TLB, page tables, page-table 
lookups, shoot-down IPIs

Per-pointer overhead,
context switching

CHERI hybridizes the two models: use the
best combination for any given problem

Compartment scalability Tens to hundreds Thousands or more

Domain crossing IPC Function calls

Optimization goals Isolation, full virtualization Memory sharing,
frequent domain transitions



HARDWARE-SOFTWARE
CO-DESIGN FOR CHERI
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Hardware-software co-design
• CHERI protection model protects OS, C, linker, 

application structures and abstractions

• CHERI-MIPS ISA extends the 64-bit MIPS ISA

• L3 + Sail MIPS + CHERI ISA formal models

• Qemu-CHERI fast ISA emulator

• Bluespec SystemVerilog (BSV) pipelined, multicore
BERI MIPS + CHERI processor prototype

• Simple but realistic microarchitecture

• C → Cycle-accurate software simulator

• Verilog → Field Programmable Gate Array (FPGA) @100MHz

• CHERI software stack: FreeBSD, Clang/LLVM, 
application corpus – OpenSSH, Postgres, nginx, …

• Evaluation: Performance, security, compatibility, …

22
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CHERI R&D Timeline
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CHERI ISA refinement (+reinvention)
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Year Version Description
2010-
2012

ISAv1 RISC capability-system model w/64-bit MIPS
Capability registers, tagged memory
Guarded manipulation of registers

2012 ISAv2 Extended tagging to capability registers
Capability-aware exception handling
Boots an MMU-based OS with CHERI support

2014 ISAv3 Fat pointers + capabilities, compiler support
Instructions to optimize hybrid code
Sealed capabilities, CCall/CReturn

2015 ISAv4 MMU-CHERI integration (TLB permissions)
ISA support for compressed capabilities
HW-accelerated domain switching
Multicore instructions: full suite of LL/SC variants

2016 ISAv5 CHERI-128 compressed capability model
Improved generated code efficiency
Initial in-kernel privilege limitations

2017 ISAv6 Mature kernel privilege limitations
Further generated code efficiency
CHERI-x86 and CHERI-RISC-V sketches
Exception-free domain transition
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CHERI SOFTWARE
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CHERI software models

• Source and binary compatibility: C-language idioms, multiple ABIs

• Unmodified code: Existing n64 code runs without modification

• Hybrid code: E.g., used in return addresses, for annotated data/code 
pointers, for specific types, stack pointers, etc. n64-interoperable.

• Pure-capability code: Ubiquitous data- and data-pointer protection. 
Non-n64-interoperable due to changed pointer size.

• CHERI Clang/LLVM compiler prototype generates code for all three

26
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Hybrid userspace

Sandboxj

Multiple process ABIs

• 64-bit MIPS ABI: n64-compatible hybrid code execution

• Many pointers are integers (including system-call arguments)

• Pure-capability code supported in sandboxes

• CheriABI: Strong pure-capability code throughout

• All pointers are capabilities (including system-call arguments)

• Hybrid-capability code supported in sandboxes
27
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CheriABI: “pure-capability” processes
• Userspace compiled for ubiquitous pointer protection

• Goal: OpenSSH (etc) without buffer overflows, ROP, JOP, …

• Ensure valid provenance, minimize privilege for pointers

• Where does (or should) every pointer come from?

• What bounds and permissions should each pointer have?

• Grand tour of the OS, process model, and toolchain:

• execve() mappings, ELF auxiliary arguments, signals, …

• Compile-time and run-time linker for code, globals

• System calls accepting, returning, and stash pointers

• Stack, heap, and application-specific allocators

• Trading off privilege minimization vs. API conformance
28



CHERI 
COMPARTMENTALIZATION
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Sealed data 
capability 2

Sealed code 
capability 2

In-process compartmentalization
using CHERI (sketch)

• In-process protection domains

• Thread registers describe rights of running code

• I.e., transitive closure of reachable capabilities

• Userspace object-capability model

• libcheri loads and run-time links classes

• Instantiates confined objects w/limited rights

• Sealed capabilities enforce encapsulation

• Shared code and data within address space

• Fast and robust domain transition

• Controlled non-monotonic transformations 
of thread capability registers

• Efficient object and memory sharing

• Delegate capabilities across invocation, return

• Paper at IEEE SSP 2015 (“Oakland”)
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JamVM

CHERI-JNI: Protecting Java from JNI
• Java Native Interface (JNI) allows Java 

programs to use native code for 
performance, code portability, functionality

• Often fragile; sometimes overtly insecure

• Impose Java memory-safety and
security models on JNI code

• Full memory safety for native code

• Limit JNI access to JVM state

• Allow safe copy-free JNI access to Java buffers

• Enforce Java security model on access to Java 
objects and system services (e.g., files, sockets)

• Prototyped using JamVM on CHERI-MIPS

• Paper at ASPLOS 2017
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PERFORMANCE
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Memory-protection performance
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Overhead tracks in-memory pointer 
density (e.g., increased memory use)

Metric: D-Cache miss-rate 
change from pointer-size growth?

Left: Low pointer-density 
benchmarks from MiBench

Right: High pointer-density 
benchmarks

M - MiBench

O - Olden
J - Octane JavaScript

1%-2% increase in L1 D-Cache 
miss rate for 128-bit capabilities 
for most practical workloads

L1 D-Cache miss rate for
CHERI-256, CHERI-128, and MIPS



Domain switching
• Function-call performance 

semantics with low fixed overhead

• Metrics: L2 cache miss rate, TLB 
miss rates, execution time as 
workload footprint approaches limits

• Fixed cost for CCall/CReturn

• No overhead to delegate memory or 
object capabilities

• Much faster than IPC for frequent, 
small messages (<512K) common in 
compartmentalized programs

• Shared memory access scales with 
in-process access rather than 
MMU-based sharing
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Figure 3: Comparison of domain crossing methods –
absolute cycle cost (log-log)

8 Related work

Capability systems have a long history [3, 8, 13], with
hardware-software systems such as the tagged and
typed-object PSOS design [10] and the CAP [17] im-
plementation – ideas adopted in operating systems
such as HYDRA [20], and SeL4 [6], and FreeBSD us-
ing Capsicum [15].

CheriBSD’s object-capability model is strongly in-
fluenced by HYDRA: our trusted stack records syn-
chronous object invocations able to pass typed capa-
bilities between protection domains within a thread
of execution. Whereas HYDRA used an MMU-based
model with kernel-implemented capabilities, CHERI
capabilities are represented in the ISA.

CHERI is also strongly influenced by M-
Machine [1], which implemented fine-grained mem-
ory capabilities with tagged memory. Whereas M-
Machine implemented an asynchronous model (rea-
sonably described as secure closures, combining code
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Figure 4: Compression time for gzip with library
compartmentalization

and data references in entry and return capabilities,
allowing a single-instruction call/return mechanism),
CheriBSD implements secure object invocation based
on a TCB-maintained reliable return stack, and sepa-
rate code and data capabilities. CHERI’s exception-
handler-based approach can support a range of
software-defined models including the M-Machine
model. Unlike M-Machine, CHERI maintains source-
code and binary compatibility with current software
stacks through a conventional MMU, process model,
C language, and interoperable ABIs.

Prior hardware research has explored other mod-
els for e�cient domain crossing. Mondriaan is an
access-control-centered approach based on a table-
based mechanisms representing in-address-space se-
curity domains, and runs an adaptation of Linux [18].
PUMP provides a software-defined tagged model
based on a clean-slate ISA approach, able to con-
strain information flow [4]. CODOMs [14] provides
code-centric, rather than object-centric, domains,
where the current PC determines the accessible mem-
ory based on tags attached to page-table entries. It
provides low-latency switching by jumping between
code domains but restricts each domain to a single
instance. Data can be passed between domains using

9

Comparison of domain-crossing methods –
absolute cycle cost (log-log)



Memory-safe, compartmentalized gzip
• zlib library compartmentalization

• Best cut point for security and 
reusability is a shared-memory API

• Extremely awkward for MMU-based 
compartmentalization…

• … but simple pointer delegation with 
CHERI compartmentalization

• MMU process-based sandboxing w/o 
memory safety

• 40%-43% wall-clock overhead

• CHERI object-based sandboxing with 
full memory safety

• 3%-5% wall-clock overhead
(measured on 256-bit CHERI)
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WHERE NEXT?
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Ongoing research
• Quantitatively motivated ISA optimization 

and code generation

• Implications for more complex 
microarchitectures (e.g., superscalar)

• Tagged memory: tag cache vs. native 
support in DRAM

• Complete tool-chain: linker, debugger

• C++ compilation to CHERI (+COOP)

• OS support, larger application corpus

• CHERI and ISO C/POSIX APIs

• Map sandbox frameworks into CHERI

• CHERI-specific (MMU-free) microkernel

• CHERI for safe native-code interfaces (e.g., 
for Java’s JNI)

• CHERI as a safe inter-language substrate

• Efficient C-language garbage collection

• CHERI and managed languages

• Formal proofs of ISA properties 

• Formal proofs of software properties

• Verifying hardware implementations

• Interactions with persistent memory

• Dynamic tracing of CHERI provenance

• MMU-free HW designs for “IoT”
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Conclusion
• CHERI is a RISC hybrid capability-system architecture

• Iterative hardware-software co-design over 7 years

• Novel convergence of MMU and capability-based approaches

• Fine-grained, pointer-oriented protection for code and data

• Strong, real-world C-language support with low overhead

• Scalable, fine-grained intra-process compartmentalization

• Substantial vulnerability-mitigation benefit

• Validated against large, real-world software corpora

• Publications include: ISCA 2014, ASPLOS 2015, IEEE SSP 2015, ACM 
CCS 2015, PLDI 2016, IEEE Micro 2016; ASPLOS 2017, …

• Open-source hardware and software; publication specifications

https://www.cheri-cpu.org/
38
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CHERI papers
ISCA 2014: Fine-grained, in-address-space memory protection 
hybridizing MMU, capability model

ASPLOS 2015: Explore and refine C-language compatibility; 
converge capabilities and fat pointers

Oakland 2015: Efficient, capability-based hardware-software 
compartmentalization within processes

ACM CCS 2015: Compartmentalization modeling

PLDI 2016: C-language semantics + CHERI extension (w/REMS)

IEEE Micro Journal September/October 2016: Hardware 
assistance for efficient domain switching

ASPLOS 2017: CHERI reinforcement for Java JNI

(Various other submissions, in-flight papers)
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CHERI technical reports
Capability Hardware Enhanced RISC Instructions: CHERI 
Instruction-Set Architecture (CHERI ISAv5)

• UCAM-CL-TR-891 – June 2016

• Mature 128-bit capabilities, code generation efficiency 
improvements, detailed exploration of language/ISA linkage

• CHERI ISAv6 in May 2017 w/privileged code support

Capability Hardware Enhanced RISC Instructions: CHERI 
Programmer’s Guide

• UCAM-CL-TR-877 – November 2015

• C language, compiler, OS internals

• Multiple technical reports on the BERI prototyping platform

41



BACKUP SLIDES
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Architectural support for least privilege
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Register file
Virtual 

memory

$pc
Return 
Address

Program 
counterCHERI memory protection:

• Eliminates out-of-bounds accesses
• Prevents injected data use as a code or data pointer
• Disallows jumping to data pointers
• Protects code pointers to limit code reuse attacks
• Mitigates as-yet undiscovered exploit techniques and 

supply-chain attacks through scalable compartmentalization
• Supports managed-language runtimes (e.g., accurate C 

garbage collection, safe native-code interfaces for Java)
• …

While:
• Retaining current programming languages and models
• Supporting incremental deployment in software stack



Reminder: MMU process model
• Coarse-grained process isolation

• Inter-program robustness
• Bridged by kernel services (e.g., IPC);

OS access control limits global rights
• Memory Management Unit (MMU)

• Page tables control per-process 
virtual-to-physical mappings

• Powerful tool for application isolation
• Inefficient and hard-to-program for 

compartmentalization
• Process-model costs: page tables, 

dynamic linkage, globals, heaps, …
• High explicit domain-switch costs
• Implied overhead growth on page 

table, cache, TLB as sharing grows
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Software deployment models
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Single address space

Hybrid MMU-capability models: protection and 
compartmentalization within virtual address spaces

Single-address-space systems 
are possible but still experimental



Object-capability invocation
• Mutual trust: robust function calls

• CHERI-aware CJALR and CJR instructions

• Destination + return address are capabilities

• Shared stack, globals, …

• Mutual distrust: Object-capability invocation

• CCall/CReturn instructions w/exceptions

• Independent stacks, globals, …

• Per-thread trusted stack links object stacks

• Reliable call-return semantics

• Reliable recovery on uncaught exception

• Classes permissions control system calls

• Similar to Java JNI: “system classes”
46
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