
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (‘CTSRD’) and FA8750-11-C-0249 (‘MRC2’). The views, opinions,
and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

CHERI: Reinventing Computer
Architecture for Security

Robert N. M.Watson, Simon W. Moore, Peter G.Neumann
Jonathan Anderson, John Baldwin, Hadrien Barrel, Ruslan Bukin, David Chisnall, Nirav Dave,

Brooks Davis, Lawrence Esswood, Khilan Gudka, Alexandre Joannou, Robert Kovacsics, Ben Laurie,
A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur,
Steven J. Murdoch, Edward Napierala, Robert Norton-Wright, Philip Paeps, Alex Richardson,

Michael Roe, Colin Rothwell, Hassen Saidi, Peter Sewell, Stacey Son, Andrew Turner, MunrajVadera,
Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge SRI International

Summer School on Formal Techniques, Menlo College

23 May 2019

Hardware-software co-design
• There are many deterrents to co-design:

• Design space is much larger

• Vastly more work to realistically evaluate

• Long transition times to industrial practice

• Non-overlapping areas of expertise

• Differing implementation cycles / timelines

• Skeptical academic/industrial views

• But potential for enormous rewards
• New computer architecture enables new

workloads, deployments, and use cases

• Disrupts current fundamental tradeoff spaces

• E.g., GPUs, BigLittle, NVM, etc.
2

Vary hardware

Va
ry

 s
of

tw
ar

e

Hardware research

So
ftw

ar
e

re
se

ar
ch

Co-design
research

Δ Energy efficiency?

Δ Security?

Δ Performance?

3

DARPA – CRASH

If you could revise the fundamental
principles of computer-system design

to improve security…

…what would you change?

4

Principle of least privilege

Every program and every privileged
user of the system should operate

using the least amount of privilege
necessary to complete the job.

Saltzer 1974 - CACM 17(7)
Saltzer and Schroeder 1975 - Proc. IEEE 63(9)

Needham 1972 - AFIPS 41(1)
…

String
buffer

Malicious
data

$pc

$ra

Architectural least privilege
• Classical buffer-overflow attack

• Buggy code overruns a buffer,
overwrites on-stack return address

• Overwritten return address is loaded and
jumped to, corrupting control flow

• These privileges were not required by the
C language – so why grant them:

• Ability to overrun the buffer?

• Ability to corrupt or inject a code pointer?

• Ability to execute data as code?

• Limiting privilege doesn’t fix bugs – but
does provide vulnerability mitigation

• Current ISAs do not enable efficient,
fine-grained privilege reduction

5

$a1

$ra

$a0

Register file
Virtual

memory

$pc
Return
Address

Program
counter

Application-level least privilege (1)
Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities/exploits

6

Application-level least privilege (2)

7

8

HTTP GET
sandbox

5. fetch

URL-specific sandbox
URL-specific sandbox

SSL
sandbox

HTTPS
sandbox

network
sandbox

Code-centred compartmentalisation

D
at

a-
ce

nt
er

ed
 c

om
pa

rtm
en

ta
lis

at
io

n

1. fetch
main loop

http

ssl

ftp

URL-specific sandbox

main loop

http

ssl

ftp

FTP
sandbox

2. fetch
main loop

http

ssl

ftp

HTTP
sandbox

3. fetch
main loop

http

ssl

FTP
sandbox

ftp

SSL
sandbox

HTTP auth
sandbox

4. fetch
main loop

http auth

ssl

FTP
sandbox

ftp http get

• Compartmentalization options for software describe a
compartmentalization space:

• Points in the space trade off security against performance
and programming complexity

• Increasing compartmentalization granularity better
approximates the principle of least privilege …

• … but Memory Management Unit (MMU)-based
architectures do not scale to many compartments (processes):

• Poor spatial protection granularity

• Limited simultaneous-process scalability

• Multi-address-space programming model

CHERI PROTECTION MODEL

9

CHERI software protection goals
• C/C++-language TCBs: kernels, runtimes, browsers, …

• Granular spatial protection, pointer protection

• Buffer overflows, control-flow attacks (ROP, JOP), …

• Foundations for temporal safety

• Mitigate memory re-use attacks

• E.g., through accurate C-language garbage collection

• Higher-level language safety

• E.g., mitigate C++ COOP attacks

• Scalable in-process compartmentalization

• Facilitate exploit-independent mitigation techniques
10

CHERI architectural goals
• De-conflate virtualization and protection

• Memory Management Units (MMUs) protect by location
• CHERI protects references to code and data: pointers

• Architectural mechanism directed by software policy
• Language-based properties

(e.g., C/C++ compiler, linkers, OS model, runtime)

• New software abstractions
(e.g., confined objects for compartmentalization)

• Hybrid capability-system model
• Capability systems target the principle of least privilege

(more on capabilities in a moment)

• Hybrid capability systems compose cleanly w/current designs

• Low overhead for fine-grained memory protection
• Significant performance gain for compartmentalization

11

virtual address (64 bits)

Pointers today

• Implemented as integer virtual addresses

• (Usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection – can be injected/corrupted

• Arithmetic errors – out-of-bounds leaks/overwrites

• Inappropriate use – executable data, format strings

⛵Attacks on data and code pointers are highly effective
achieving arbitrary code execution

12

64
-b

it
po

in
te

r

Allocation

Virtual
address
space

CHERI protection model
• RISC hybrid-capability architecture supporting

fine-grained, pointer-based memory protection:

• pointer integrity (e.g., no pointer corruption)

• pointer provenance validity (e.g., no pointer
injection)

• bounds checking (e.g., no buffer overflows)

• permission checking (e.g., W^X for pointers)

• monotonicity (e.g., no pointer privilege
escalation / improper re-use)

• encapsulation (e.g., protect software objects)
13

Valid userspace pointer set – provenance rules control dereference

• Valid pointers are derived from valid pointers via valid transformations

• E.g., Received network data cannot be interpreted as a code pointer

Pointer privilege reduction – capabilities allow pointers to carry specific
privileges, which can be minimized with OS, compiler, and linker support:

• E.g., Pointers cannot be manipulated to access other heap or stack data

Foundation for memory protection, software compartmentalization

Data

Architectural protection model for pointers

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under
contracts FA8750-10-C-0237 (‘CTSRD’) and FA8750-11-C-0249 (‘MRC2’). The views, opinions, and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and should not
be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance Bounds

CHERI-MIPS INSTRUCTION-
SET ARCHITECTURE (ISA)

15

CHERI architectural approach
• RISC ISA extensions that avoid microcode, table lookups, exceptions:

• MMUs control the implementation of virtual addresses

• CHERI protects references to virtual addresses (pointers)

• Pointers can be implemented via architectural capabilities

• Capabilities: unforgeable, delegable tokens of authority

• Tagged memory protects capability integrity, provenance in DRAM

• Pointer metadata, including bounds and permissions, limit use

• Guarded manipulation implements capability monotonicity

• Sealing provides immutable, software-defined capabilities

• Exception model allows controlled escape from constrained contexts

• 256-bit architectural model – 64-bit addresses, 2x 64-bit bounds, etc.

• Efficient 128-bit architectural, microarchitecture implementation
16

virtual address (64 bits)25
6-

bi
t

ca
pa

bi
lit

y

length (64 bits)
offset (64 bits)
base (64 bits)

256-bit architectural capabilities

CHERI capabilities extend pointers with:

• Tags to protect in-memory capabilities:

• Dereferencing an untagged capability throws an exception

• In-memory overwrite automatically clears capability tag

• Bounds to limit range of address space accessible via pointer

• Permissions to limit operations – e.g., load, store, instruction fetch

• Sealing for encapsulation: immutable, non-dereferenceable

• Guarded manipulation enforces monotonic rights non-increase
17

Allocation

Virtual
address
space

v1-
bi

t
ta

g

permissions (31 bits) sobjtype (24bits)

128-bit micro-architectural capabilities

18

12
8-

bi
t

ca
pa

bi
lit

y

Allocation

Virtual
address
space

v

1-
bi

t
ta

g

• Exchange bounds precision for reduced size
• Floating-point bounds relative to pointer
• Imprecision → stronger allocation alignment
• Security properties maintained (e.g., monotonicity)
• Different formats for sealed vs. non-sealed capabilities
• Still supports out-of-bound C pointers

• DRAM tag density from 0.4% to 0.8% of memory size
• Full prototype with full software stack on FPGA

perms compressed bounds relative to address s

Virtual address (64 bits)

Mapping CHERI into 64-bit MIPS

• Capability register file holds in-use capabilities (code and data pointers)

• Tagged memory protects capability-sized and -aligned words in DRAM

• Program-counter capability ($pcc) constrains program counter ($pc)

• Default data capability ($ddc) constrains legacy MIPS loads/stores

• System control registers are also extended – e.g., $epc→$epcc, TLB
19

General-purpose
register file Physical memory

Capability register file

$ra

$a1
$a0 vCapability

Capability width

-

v$ddc

v$c4

v

-

$c31

$c3

pointers

$pc

dd

$pcc v

Virtual memory and capabilities

20

Virtual Memory Capabilities
Protects Virtual addresses and pages References (pointers) to C

code, data structures

Hardware MMU,TLB, page-table
walker

Capability registers,
tagged memory

Costs TLB, page tables, page-table
lookups, shoot-down IPIs

Per-pointer overhead,
context switching

CHERI hybridizes the two models: use the
best combination for any given problem

Compartment scalability Tens to hundreds Thousands or more

Domain crossing IPC Function calls

Optimization goals Isolation, full virtualization Memory sharing,
frequent domain transitions

HARDWARE-SOFTWARE
CO-DESIGN FOR CHERI

21

Hardware-software co-design
• CHERI protection model protects OS, C, linker,

application structures and abstractions

• CHERI-MIPS ISA extends the 64-bit MIPS ISA

• L3 + Sail MIPS + CHERI ISA formal models

• Qemu-CHERI fast ISA emulator

• Bluespec SystemVerilog (BSV) pipelined, multicore
BERI MIPS + CHERI processor prototype

• Simple but realistic microarchitecture

• C → Cycle-accurate software simulator

• Verilog → Field Programmable Gate Array (FPGA) @100MHz

• CHERI software stack: FreeBSD, Clang/LLVM,
application corpus – OpenSSH, Postgres, nginx, …

• Evaluation: Performance, security, compatibility, …

22

Instruction
Fetch

Register
Fetch Decode Execute Writeback

Capability Coprocessor

Instruction Cache MMU: TLB Data Cache

Memory

Memory
Access

L2 Cache

Tag Controller

Implementation on FPGA

CHERI R&D Timeline

23

CHERI ISA refinement (+reinvention)

24

Year Version Description
2010-
2012

ISAv1 RISC capability-system model w/64-bit MIPS
Capability registers, tagged memory
Guarded manipulation of registers

2012 ISAv2 Extended tagging to capability registers
Capability-aware exception handling
Boots an MMU-based OS with CHERI support

2014 ISAv3 Fat pointers + capabilities, compiler support
Instructions to optimize hybrid code
Sealed capabilities, CCall/CReturn

2015 ISAv4 MMU-CHERI integration (TLB permissions)
ISA support for compressed capabilities
HW-accelerated domain switching
Multicore instructions: full suite of LL/SC variants

2016 ISAv5 CHERI-128 compressed capability model
Improved generated code efficiency
Initial in-kernel privilege limitations

2017 ISAv6 Mature kernel privilege limitations
Further generated code efficiency
CHERI-x86 and CHERI-RISC-V sketches
Exception-free domain transition

R
ISC

 + M
M

U
 +

capabilities

C
 + capabilities

C
om

partm
entalization

128-bit, code efficiency

In-kernel use

CHERI SOFTWARE

25

CHERI software models

• Source and binary compatibility: C-language idioms, multiple ABIs

• Unmodified code: Existing n64 code runs without modification

• Hybrid code: E.g., used in return addresses, for annotated data/code
pointers, for specific types, stack pointers, etc. n64-interoperable.

• Pure-capability code: Ubiquitous data- and data-pointer protection.
Non-n64-interoperable due to changed pointer size.

• CHERI Clang/LLVM compiler prototype generates code for all three

26

More compatible Safer

Unmodified
All pointers are
integers

Hybrid
Annotated and automatically

selected pointers are capabilities

Pure-capability
All pointers are

capabilities

Hybrid userspace

Sandboxj

Multiple process ABIs

• 64-bit MIPS ABI: n64-compatible hybrid code execution

• Many pointers are integers (including system-call arguments)

• Pure-capability code supported in sandboxes

• CheriABI: Strong pure-capability code throughout

• All pointers are capabilities (including system-call arguments)

• Hybrid-capability code supported in sandboxes
27

MIPS code Pure-capability codeHybrid code

Kernel
CheriABI shim

Pure-capability userspace

Sandboxx SandboxySandboxj

CheriABI: “pure-capability” processes
• Userspace compiled for ubiquitous pointer protection

• Goal: OpenSSH (etc) without buffer overflows, ROP, JOP, …

• Ensure valid provenance, minimize privilege for pointers

• Where does (or should) every pointer come from?

• What bounds and permissions should each pointer have?

• Grand tour of the OS, process model, and toolchain:

• execve() mappings, ELF auxiliary arguments, signals, …

• Compile-time and run-time linker for code, globals

• System calls accepting, returning, and stash pointers

• Stack, heap, and application-specific allocators

• Trading off privilege minimization vs. API conformance
28

CHERI
COMPARTMENTALIZATION

29

Sealed data
capability 2

Sealed code
capability 2

In-process compartmentalization
using CHERI (sketch)

• In-process protection domains

• Thread registers describe rights of running code

• I.e., transitive closure of reachable capabilities

• Userspace object-capability model

• libcheri loads and run-time links classes

• Instantiates confined objects w/limited rights

• Sealed capabilities enforce encapsulation

• Shared code and data within address space

• Fast and robust domain transition

• Controlled non-monotonic transformations
of thread capability registers

• Efficient object and memory sharing

• Delegate capabilities across invocation, return

• Paper at IEEE SSP 2015 (“Oakland”)
30Process

Class

Per-class
libcheri

Sealed data
capability

Sealed code
capability

Instance
data

Stack(s) Per-object

Object metadata

Instance data 2

libc
rtld

Ambient
stack(s)

Global heap
memory

Application

JamVM

CHERI-JNI: Protecting Java from JNI
• Java Native Interface (JNI) allows Java

programs to use native code for
performance, code portability, functionality

• Often fragile; sometimes overtly insecure

• Impose Java memory-safety and
security models on JNI code

• Full memory safety for native code

• Limit JNI access to JVM state

• Allow safe copy-free JNI access to Java buffers

• Enforce Java security model on access to Java
objects and system services (e.g., files, sockets)

• Prototyped using JamVM on CHERI-MIPS

• Paper at ASPLOS 2017
31

libcheri
runtime

CheriBSD

JNI code

Java
application

Sandboxed
JNI code

PERFORMANCE

32

Memory-protection performance

33

Overhead tracks in-memory pointer
density (e.g., increased memory use)

Metric: D-Cache miss-rate
change from pointer-size growth?

Left: Low pointer-density
benchmarks from MiBench

Right: High pointer-density
benchmarks

M - MiBench

O - Olden
J - Octane JavaScript

1%-2% increase in L1 D-Cache
miss rate for 128-bit capabilities
for most practical workloads

L1 D-Cache miss rate for
CHERI-256, CHERI-128, and MIPS

Domain switching
• Function-call performance

semantics with low fixed overhead

• Metrics: L2 cache miss rate, TLB
miss rates, execution time as
workload footprint approaches limits

• Fixed cost for CCall/CReturn

• No overhead to delegate memory or
object capabilities

• Much faster than IPC for frequent,
small messages (<512K) common in
compartmentalized programs

• Shared memory access scales with
in-process access rather than
MMU-based sharing

34

100

101

102

103

T
L
B

m
is
se
s

100

102

104

106

L
2
m
is
se
s

32
B

12
8B

51
2B

2K
iB

8K
iB

32
K
iB

12
8K
iB

51
2K
iB
2M

iB
8M

iB

102

105

108

payload size

ex
ec
u
ti
on

ti
m
e
(c
y
cl
es
)

pipe

shmem

CHERI

function

Figure 3: Comparison of domain crossing methods –
absolute cycle cost (log-log)

8 Related work

Capability systems have a long history [3, 8, 13], with
hardware-software systems such as the tagged and
typed-object PSOS design [10] and the CAP [17] im-
plementation – ideas adopted in operating systems
such as HYDRA [20], and SeL4 [6], and FreeBSD us-
ing Capsicum [15].

CheriBSD’s object-capability model is strongly in-
fluenced by HYDRA: our trusted stack records syn-
chronous object invocations able to pass typed capa-
bilities between protection domains within a thread
of execution. Whereas HYDRA used an MMU-based
model with kernel-implemented capabilities, CHERI
capabilities are represented in the ISA.

CHERI is also strongly influenced by M-
Machine [1], which implemented fine-grained mem-
ory capabilities with tagged memory. Whereas M-
Machine implemented an asynchronous model (rea-
sonably described as secure closures, combining code

1 2 3 4 5 6 7 8
0

10

20

30

40

File size / MB
T
ot
al

ti
m
e
(s
ec
on

d
s)

Process
CHERI
Baseline

Figure 4: Compression time for gzip with library
compartmentalization

and data references in entry and return capabilities,
allowing a single-instruction call/return mechanism),
CheriBSD implements secure object invocation based
on a TCB-maintained reliable return stack, and sepa-
rate code and data capabilities. CHERI’s exception-
handler-based approach can support a range of
software-defined models including the M-Machine
model. Unlike M-Machine, CHERI maintains source-
code and binary compatibility with current software
stacks through a conventional MMU, process model,
C language, and interoperable ABIs.

Prior hardware research has explored other mod-
els for e�cient domain crossing. Mondriaan is an
access-control-centered approach based on a table-
based mechanisms representing in-address-space se-
curity domains, and runs an adaptation of Linux [18].
PUMP provides a software-defined tagged model
based on a clean-slate ISA approach, able to con-
strain information flow [4]. CODOMs [14] provides
code-centric, rather than object-centric, domains,
where the current PC determines the accessible mem-
ory based on tags attached to page-table entries. It
provides low-latency switching by jumping between
code domains but restricts each domain to a single
instance. Data can be passed between domains using

9

Comparison of domain-crossing methods –
absolute cycle cost (log-log)

Memory-safe, compartmentalized gzip
• zlib library compartmentalization

• Best cut point for security and
reusability is a shared-memory API

• Extremely awkward for MMU-based
compartmentalization…

• … but simple pointer delegation with
CHERI compartmentalization

• MMU process-based sandboxing w/o
memory safety

• 40%-43% wall-clock overhead

• CHERI object-based sandboxing with
full memory safety

• 3%-5% wall-clock overhead
(measured on 256-bit CHERI)

35

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

File size / MB

T
o
ta
l
ti
m
e
(s
e
c
o
n
d
s)

Process
CHERI
Baseline

Compression time in seconds for
compartmentalized gzip

WHERE NEXT?

36

Ongoing research
• Quantitatively motivated ISA optimization

and code generation

• Implications for more complex
microarchitectures (e.g., superscalar)

• Tagged memory: tag cache vs. native
support in DRAM

• Complete tool-chain: linker, debugger

• C++ compilation to CHERI (+COOP)

• OS support, larger application corpus

• CHERI and ISO C/POSIX APIs

• Map sandbox frameworks into CHERI

• CHERI-specific (MMU-free) microkernel

• CHERI for safe native-code interfaces (e.g.,
for Java’s JNI)

• CHERI as a safe inter-language substrate

• Efficient C-language garbage collection

• CHERI and managed languages

• Formal proofs of ISA properties

• Formal proofs of software properties

• Verifying hardware implementations

• Interactions with persistent memory

• Dynamic tracing of CHERI provenance

• MMU-free HW designs for “IoT”

37

Conclusion
• CHERI is a RISC hybrid capability-system architecture

• Iterative hardware-software co-design over 7 years

• Novel convergence of MMU and capability-based approaches

• Fine-grained, pointer-oriented protection for code and data

• Strong, real-world C-language support with low overhead

• Scalable, fine-grained intra-process compartmentalization

• Substantial vulnerability-mitigation benefit

• Validated against large, real-world software corpora

• Publications include: ISCA 2014, ASPLOS 2015, IEEE SSP 2015, ACM
CCS 2015, PLDI 2016, IEEE Micro 2016; ASPLOS 2017, …

• Open-source hardware and software; publication specifications

https://www.cheri-cpu.org/
38

https://www.cheri-cpu.org/

Q&A

39

CHERI papers
ISCA 2014: Fine-grained, in-address-space memory protection
hybridizing MMU, capability model

ASPLOS 2015: Explore and refine C-language compatibility;
converge capabilities and fat pointers

Oakland 2015: Efficient, capability-based hardware-software
compartmentalization within processes

ACM CCS 2015: Compartmentalization modeling

PLDI 2016: C-language semantics + CHERI extension (w/REMS)

IEEE Micro Journal September/October 2016: Hardware
assistance for efficient domain switching

ASPLOS 2017: CHERI reinforcement for Java JNI

(Various other submissions, in-flight papers)

40

CHERI technical reports
Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (CHERI ISAv5)

• UCAM-CL-TR-891 – June 2016

• Mature 128-bit capabilities, code generation efficiency
improvements, detailed exploration of language/ISA linkage

• CHERI ISAv6 in May 2017 w/privileged code support

Capability Hardware Enhanced RISC Instructions: CHERI
Programmer’s Guide

• UCAM-CL-TR-877 – November 2015

• C language, compiler, OS internals

• Multiple technical reports on the BERI prototyping platform

41

BACKUP SLIDES

42

String
buffer

Malicious
data

$pc

$ra

Architectural support for least privilege

43

$a1

$ra

$a0

Register file
Virtual

memory

$pc
Return
Address

Program
counterCHERI memory protection:

• Eliminates out-of-bounds accesses
• Prevents injected data use as a code or data pointer
• Disallows jumping to data pointers
• Protects code pointers to limit code reuse attacks
• Mitigates as-yet undiscovered exploit techniques and

supply-chain attacks through scalable compartmentalization
• Supports managed-language runtimes (e.g., accurate C

garbage collection, safe native-code interfaces for Java)
• …

While:
• Retaining current programming languages and models
• Supporting incremental deployment in software stack

Reminder: MMU process model
• Coarse-grained process isolation

• Inter-program robustness
• Bridged by kernel services (e.g., IPC);

OS access control limits global rights
• Memory Management Unit (MMU)

• Page tables control per-process
virtual-to-physical mappings

• Powerful tool for application isolation
• Inefficient and hard-to-program for

compartmentalization
• Process-model costs: page tables,

dynamic linkage, globals, heaps, …
• High explicit domain-switch costs
• Implied overhead growth on page

table, cache, TLB as sharing grows

44

Physical
memory

Stack

Shared
Data

Process1

Shared
code

Process2

Stack

Stack

Software deployment models

45

OS kernel

Address-space executive

Address-space executive

Legacy application
+

capability libraries
Address-space executive

Pure-capability
application

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s

Hybrid capability/MMU OSes

Capability-based
OS with legacy

libraries

CHERI CPU

libsslzlibzlib zlibzlib class1
libssl

class2

libssllibssl

Single address space

Hybrid MMU-capability models: protection and
compartmentalization within virtual address spaces

Single-address-space systems
are possible but still experimental

Object-capability invocation
• Mutual trust: robust function calls

• CHERI-aware CJALR and CJR instructions

• Destination + return address are capabilities

• Shared stack, globals, …

• Mutual distrust: Object-capability invocation

• CCall/CReturn instructions w/exceptions

• Independent stacks, globals, …

• Per-thread trusted stack links object stacks

• Reliable call-return semantics

• Reliable recovery on uncaught exception

• Classes permissions control system calls

• Similar to Java JNI: “system classes”
46

Confined object

CCall

CReturn

Confined object

CCall

CReturn

Kernel

Syscall

Syscall
return

Ambient
environment

function 1

function 2

CJALR CJR

Ambient
environment

CCall

CReturn

