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Agenda

* Today
* Motivation
* Deductive Verification in Ivy

* Wednesday
* Decidable logics

e Case study

e Reasoning about linked list
* Modularity and decidability



Why verity distributed protocols?

 Distributed systems are everywhere
 Safety-critical systems
* Cloud infrastructure

* Blockchain

 Distributed systems are notoriously hard to get right
* Even small protocols can be tricky
* Bugs occur on rare scenarios

 Testing is costly and not sufficient
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Why verity distributed protocols?

e Distributed systems are everywhere
 Safety-critical systems
* Cloud infrastructure

e Blockchain

 Distributed systems are notoriously hard to get right

' ot Using Lj © CCR'12
SIGCOMM'01 9 Lightwej ,
Chord: A Scalable Peer-to-Ptf_f 9ht Modeling 15 |,

for Internet Appl’ -
- David Liben-Nowell, David R. Kar Fﬁg oragﬁefi‘gis
lon Stoica, Robert Moris, Hari Balakrishnan. Membi 1de Pameg(grrg'sgz Jerse}fe ?Jrg?\
I the Same rch.att.com

. [ 05} ¢

-d 1 1 0S¢

res of Chord include 14}, StCon s
provable performanc nott one of

.. ac

1s and departut€ g

Attractive featu

correctness. and _
current node arriva

con






Proving distributed systems is hard

 Amazon [CACM’15] uses TLA+ for testing protocols, but no proofs
* [ronFleet [SOSP’15] — verification of Multi-Paxos in Dafny (3.7 person-years)
e Verdi [PLDI’15] — verification of Raft in Coq (50,000 lines of proofs)

[CACM’15] Newcombe et al. How Amazon Web Services Uses Formal Methods

[SOSP’15] Hawblitzel et al. IronFleet: proving practical distributed systems correct

[PLDI’15] Wilcox et al. Verdi: a framework for implementing and formally verifying distributed systems



Automatic verification of infinite-state systems

Property ¢

Rice’s Theorem
Verification == IR

" | can’t decide!

l l

Counterexample Unknown / Diverge Proof

?




Semi-automatic deductive verification




Deductive verification

ctive Verification
or S that proves ¢ ?
Wians valid ?

1

Counter-model




Inductive invariants

System State Space Safety

Reach

Init

System S is safe if all the reachable states satisfy the property =Bad



Inductive invariants

System State Space Safety

Inv

Reach

Init

System S is safe if all the reachable states satisfy the property =Bad

System S is safe iff there exists an inductive invariant /717 :
Init € Inv (Initiation)
if o € Invand o - ¢’ then o’ € Inv (Consecution) translated to VC's
Inv N Bad = @ (Safety)



Counterexample To Induction (CTl)

e States 0,0’ are a CTI of Inv if:
* 0€EInv
e 0 & lnv

e 020

A CTI may indicate:
* Abugin the system
* A bugin the safety property
* A bugin the inductive invariant
* Too weak
* Too strong



Strengthening & weakening from CT]

. .| Weakening

N

Strengthening




Induction on a ball game

* Four players pass a ball:
* Awill passto C
*Bwill pasto D ®
* Cwill passto A
* D will pass to B

* The ball starts at player A
e Can the ball get to D?



Induction on a ball game

* Four players pass a ball:

* Awill passto C

*Bwill pasto D

* Cwill passto A

* D will pass to B @
* The ball starts at player A
e Can the ball get to D?




Formalizing with induction

*x,=A
(C if x,=A
_)Difx, =B
" Xnt1 = Aifx,=C
LB ifx, =D
* Prove by induction Vn.x,, # D
*xo*D ?

'xm#:D:>xm+1¢D ?



Formalizing with induction

*x, A
 (Cifx,=4
'xn+1:<Dl:fxn=B
Aifx, =C
\B ifx, =D
* Prove a stronger claim by induction Vn. x,, # Xn
* D

* Xg #FBAxyg#FD
*Xm FBAXy, D > X1 FBAXp1 FD



Simple example: loop invariants

X :=1;

while * do { s
assert —even[x];
y 1=y o+ 2 <D

} x=3,y =4




Simple example: loop invariants

—even|[x]

X
y = 2;
while * do {
assert —even[x];
TR | X =X+ Y;
y :=y + 2;
}

1;

Counterexample to\@
induction (CTI)




Simple example: loop invariants

Inv = —even[x] A even|y]

X
y = 2;
while * do {
assert —even[x];
X 1= X +VY;
y :=y + 2;
}

1;

TR




Simple example: loop invariants

Inv = —even[x] A even|y]

X 1;
y = 2;
while * do {
assert —even[x];
e | X=Xy Ry) / (x-y);
y :=y + 2;
}




TR

X
Y «
W

Simple example: loop invariants

Inv=y? —2y —4x+4 =0

1;
2,
hile * do {

assert —even[x];
X 1= X +VY;




Dafny [Leino’17]

Deductive Verification
Is Inv an inductive invariant for S that proves ¢ ?
- Are the logical verification conditions valid ?

/GMT Formula
X UNSAT

-

K. Rustan M. Leino: Accessible Software Verification with Dafny. IEEE Software 34(6): 94-97 (2017)



Deductive verification

Deductive Verification
Is Inv an inductive invariant for S that proves ¢ ?
- Are the logical verification conditions valid ?

1 v l

Counter-model Unknown / Diverge Proof

= )

_—-,

: —\
D 7




Effects of undecidability

* The verifier may fail on tiny programs

* No explanation when tactics fails
e Counterproofs

The butterfly effect
* Observed in the IronFleet Project




Challenges in deductive verification

formalizing infinite-state systems and their properties

: checking inductiveness
* Undecidability of implication checking

* Unbounded state (threads, messages), arithmetic, quantifier alternation

finding (Inv)
 Hard to specify
* Hard to maintain
 Hardtoinfer

e Undecidable even when deduction is decidable



Expressiveness

State of the art in formal verification

Proof Assistants

Ultimately limited by human

proof/code:
Verdi: ~10

IronFleet: ~4 IVy

Decidable deduction
Finite counterexamples
proof/code: ~0.2

Ultimately limited by undecidability

Decidable Models
Model Checking
Static Analysis

Automation



Modularity

Original system Original inductive argument

Original property




Verification of each module

Correct

Findzéroof




lvy’s principles

* The user breaks the verification system into small problems expressed in decidable logics
* The system explores circular assume/guarantee reasoning to prove correctness

* Turing complete imperative programs over unbounded relations

* Allows quantifiers to reason about unbounded sets
* But no arbitrary quantifier alternations and theories

* Checking inductiveness is decidable
 Display CTls as graphs (similar to Alloy)



Languages and verification

Language Executable Expressiveness Inductiveness

C, Java, Python... Turing-Complete Undecidable

SMV Finite-state Temporal Properties

TLA+ Turing-Complete Manual

Coq, Isabelle/HOL M Turing-Complete Manual with tactics

Dafny M Turing-Complete Undecidable with
lemmas

lvy M Turing-Complete Decidable(EPR)



Example: Leader election in a ring

next
* Unidirectional ring of nodes, unigue numeric ids next next
* Protocol:
* Each node sends its id to the next next next
e Upon receiving a message, a node passes it (to the next) if e

the id in the message is higher than the node’s own id
e A node that receives its own id becomes a leader

 Theorem: The protocol selects at most one leader
* Inductive? NO

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes



Example: Leader election in a ring

next
* Unidirectional ring of nodes, unigue numeric ids next next
* Protocol:
* Each node sends its id to the next next next
* Upon receiving a message, a node passes it (to the next) if AR,

theic  Proposition: This algorithm detects one and only one
e A nochighest number.

Argument: By the circular nature of the configuration
and the consistent direction of messages, any message
must meet all other processes before it comes back to its
initiator. Only one message, that with the highest num-
ber, will not encounter a higher number on its way
around. Thus, the only process getting its own message
back is the one with the highest number.

e Theorem

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes



Leader election protocol — first-order logic

* < (ID, ID) — total order on node id’s

btw (Node, Node, Node) — the ring topology Axiomatized in first-order logic
id: Node = ID —relate a node to its unique id

pending(ID, Node) — pending messages

leader(Node) — leader(n) means n is the leader

protocol state first-order structure
next
3=p §
next \next
ok thex
6 €= 4
next .-
I <nc, ny, N> € [(btw)



Leader election protocol — first-order logic

< (ID, ID) — total order on node id’s

btw (Node, Node, Node) — the ring topology } Axiomatized in first-order logic
id: Node = ID —relate a node to its unique id

pending(ID, Node) — pending messages

leader(Node) — leader(n) means n is the leader

protocol state first-order structure

Specify and verify the protocol for any number of nodes in the ring

v.c;s.QQ...




Leader election protocol — first-order logic

* < (ID, ID) — total order on node id’s

btw (Node, Node, Node) — the ring topology action receive(n: Node, m: ID) = {
id: Node - ID —relate a node to its unique id requires pending(m, n);
if id(n) = m then

// found Lleader

pending(ID, Node) — pending messages
leader(Node) — leader(n) means n is the leader

leader(n) := true
else if id(n) < m then
action send(n: Node) = { // pass message
“s := next(n)”; “s := next(n)”;
pending(id(n),s) := true } pending(m, s) := true
}

TR (send):
dn,s: Node. “s = next(n)” A Vx:ID,y:Node. pending'(x,y)< (pending(x,y)V(x=1id(n)Ay=s))

Bad:
assert I0 = V Xx,y: Node. leader(x)sleader(y) » x =y






Leader election protocol — inductive invariant

Safety property: I,
I, = VX, y: Node. leader(x) A leader(y) - x =y

Inductive invariant: Inv = I, AI, AL, AL

I, = Vng

How can we find an inductive invariant without knowing it?
I, = Vn be self-pending
I, =Vns,n,,n;: Node. btw(ng,n,,n;) A pending(id[n,], N;) > b id[n,]

Ot bypass higher nodes

< (ID, ID) — total order o
tvcBederated eho (Ve NITEROPAOEN —Inv(V')
id: Node = ID — relate de tnitdYnioBadd V)
pending(ID, Node) — pending messages
leader(Node) — leader(n) means n is the leader

Proof

EPR Solver > é

EARBV) A =Inv(V)

e




Interactive invariant inference [PLDI’'16]

Candidate Inductive Invariant

Inductive Invariant Found Inductive?

Modify candidate invariant

| can decide EPR!
Find “minimal” CTI

Generalize from CTI

EPR

Automation



https://www.quora.com/Human-Computer-Interaction

lvy: check inductiveness

Leader Protocol @v =TI, Al /\D

Check Inductiveness

pnd < 0 =
i id id nd\ 4 ,
: d P\ Tid d
1 X 2 ' 3 rev(l, Id(2)> 1| next 2| next 3|



lvy: check inductiveness

Qader Protocol @= I, AL, AIZD ( Bad = — D

VC Generator

¥

Init(V) A =lnv(V)
Inv(V) N TR(V, V’) N\ ﬂ]TlU(V’) | can decide EPR!

Inv(V) A Bad(V)

v

EPR Solver
v
Proof

I, AI; AT, AI; is an inductive invariant for the leader protocol, proving its safety



V™ invariant — excluded substructures

l

substructure

-------- Init € Inv (Initiation)

il ifo € Invand o —» ¢ then o' € Inv (Consecution)

\:: /nv N Bad = @ (Safety)




Principle: first-order abstractions/modularity

Intention

First-order abstraction

Concept

Node ID’s

Integers

function id: Node 2 ID

relation <(ID, ID)

axiom Vx:1D. x < x reflexive

axiom Vx,y,z:|D. x<y Ay=z — x =< z transitive
axiom Vx,y:ID. x<<y A y= x — x=y anti-symmetric
axiom Vx,y:ID. x<y Vy < x total

axiom Vx, y: Node. id(x) = id(y) — x=y injective

Ring Topology

Next edges +
Transitive
closure

relation btw (Node, Node, Node)

axiom Vx, v, z: Node. btw(x, y, z) =btwl(y, z, x) circular

axiom Vx, vy, z, w: Node. btw(w, x, y) A btw(w, vy, z) = btw(w, x, z) transitive
axiom Vx, y, w: Node. btw(w, x, y) = —btw(w, vy, x) anti-symmetric

axiom Vx, y, w: Node. #(w, x, y) = btw(w, x, y) V btw(w, vy, x) total

macro “next(a)=b” = Vx: Node. x=a v x=b v btw(a,b,x) edges




Challenge: How to use restricted first-order
logic to verity interesting systems?

@ )

* Linked lists
* Ring protocols

.

e Paxos, Multi-Paxos
* Reconfiguration
* Byzantine Fault Tolerance



Key idea: representing deterministic paths
[Itzhaky SIGPLAN Dissertation Award 2016]

h n n G n* =~ btw
@
n*

Alternative 1: maintain n Alternative 2: maintain n”
* n" defined by transitive closure of n * ndefined by transitive reduction of n”
* not definable in first-order logic * Unique due to outdegree <1

* Definable in first order logic (for roots)
* n*(a,b)=n7(a, b)razb
* n(a, b)=n*(a,b) AVz: n*(a, z)>n*(b, z)

h t
Not first order expressible
Nt B
First order expressible



Challenge: How to use restricted first-order
logic to verity interesting systems?

(

\_

* Linked lists
* Ring protocols
~N
* Paxos and its variants
* Byzantine Fault Tolerance
* Reconfiguration y




Paxos

* Single decree Paxos — consensus
lets nodes make a common decision despite node crashes and packet loss

e Paxos family of protocols — state machine replication
variants for different tradeoffs, e.g., Fast Paxos is optimized for low
contention, Vertical Paxos is reconfigurable, etc.

e Pervasive approach to fault-tolerant distributed computing
* Google Chubby
* VMware NSX
* Amazon AWS
* Many more...



Challenge: sets and cardinalities in FOL

* Consensus algorithms use set cardinalities action propose(r:Round) {

, require “>N/2 join_msg’s”
* Wait for messages from more than N / 2 nodes q /2 join_msg

* Insight: set cardinalities are used to get a simple effect ¥

Can be modeled in first-order logic! '

action propose(r:Round) {
* Solution: axiomatize quorums in first-order logic require Jq.vn.member(n,q) -

sort Quorum dr’,v’.join_msg(n,r,r’,v’)
relation member (Node, Quorum)
— set membership (2"-order logic in first-order) }

axiom Vq,,q,: Quorum. 3n: Node. member(n, q,) A member(n, g,)



Principle: first-order abstractions

Concept Intention First-order abstraction
. relation member (Node, Quorum)
Quorums |Majority sets :
axiom Vq,,q,:Quorum3n:Node. member(n, q,) A member(n, qg,)
relation <(Round, Round)
axiom Vx:Round. x < x reflexive
Natural . "
Rounds axiom Vx,y,z:Round. x<y Ay=z — x < z transitive
numbers : . .
axiom Vx,y:Round. x=<y A y= x — x=y anti-symmetric
axiom Vx,y:Round. x<y V vy < x total
Network with: |relation start msg(Round)
dropping relation join msg(Node, Round, Round, Value)
Messages N .
duplication relation propose msg(Round, Value)

reordering

relation vote msg(Node, Round, Value)




| sort node, quorum, round, valus 22 action smeT_Rousni(r : round) |

2 25 assumer# L

5 relation < : round, round 24  start_round msg(r) -= true

4 axiom total orden(<) R

5 constant 1 - round 26 action poaw_novwndn - node, 1 - round) |

h 27T assumer# L

7 relation member : node, quorum 28 assume start round msgir)

B axiom'Yq. gz : quorum. 3n : node. member(n, g;) A member(n, gq) o gssume -3¢, P, vl r" = r A Join_ack msgin, L P w)

g 30 # find maximal round inwhich n voted, and the corresponding vobe.
10 relation stard round_msg - round 31 & maxt = L and v is arbitrary when n never voted.

11 relation jotn_ack_msg - node, round, round, value 52 local maxr, v -= max {{r", ') | vole_mspin, 7", o)A 7 = 1}

12 relation propose msg - round, valee 33 join_ack_msg{n. r, maxr, v) == true

13 melation vole_ msg - node, round, value 34}

14 relation decision : node, round, value 35 action FroposE(r - round, q : quorem) |

15 3 assumer# L

16 init¥r. —start_round msg(r) 37 assume Y. —propose msgir, ©)

17 imit ¥r, ry, Fa, ©. —join_ack mspln, rp, Fa, ©) 38 # 1b from quomm q

I& init ¥r, ©. —propose msgir, @) 50 assume ¥n. member(n, q) — 3¢, v. oin_ack mspin, ', ©)
19 init ¥m, r, v. ~vole_mspin, r, o) 40 # find the maximal round in which a node in the quorum reported
20 init W r. o —decisionn. oo

Paxos in first-order logic

dl
a2

45

51
52

54
55

58

# voting, and the corresponding vote.

# v is arbitrary if the nodes reported not voting.

local maxr, v .= max {(r', @'} | In. memberin, q)

Adoin_ack_mspin, r.r, v ar 2 L)

propose_msp(r, v) = tmee  # propose valoe v

|

action vore(n : node, r: round, v : value) |

assnme 1 # L

ASFUME [Fopose mspir, v)

assume -3r', 7', v, @ > A Join_ack msgin, 7, 77, w)
vote msgin, r, v) = true

|

action Leann(n : node, r : round, v : value, q : quonem) |
ass0me 1 # L

# 2b from quomnim q
assume ¥n. member(n, q) — vole_mspin, 1, v)
decision{n, T, v} == trug

|

¥ni.ny : node,ry.ry : round,v.v9 : value. decision(ny.ri.v1) A decision(ny.rp.v2) — U1 = U3
Yr:
Vn

Yr
¥n

Yn
¥n

¥ri.rg : round, vy, vy : value.q : quorum. propose_msg(ra.va) Ary < rg AUy # Uy —

: round, v : value.(dn : node. decision(n.r.v)) — dq : quorum.Vn : node. member(n,q) — vote_msg(n.r.v)

:node, r,r’ : round, v.v" : value. join_ack_msg(n,r.L.v) Ar’ <r — =vote_msg(n.r’.,v")

Vn :
! Hn r P ! ! ! Hn Hn !

:node, r,r",r” : round, v,v" : value.join_ack_msg(n,r.,r’",v) Ar’ # LAr <r” <r — —vote_msg(n,r'",v")

: node, v : value. —vote_msg(n, L,v)

dn : node.r”.r”” : round.v : value. member(n.q) A ~vote_msg(n.ri.v1) Ar’ > ry A join_ack_msg(n.r’.r”’ ,v)

round, vy, vy : value. propose_msg(r,vy) A propose_msg(r.,vz) — vy = U2

node,r : round, v : value. vote_msg(n,r,v) — propose_msg(r,v)

node, r.r’ : round. v : value. join_ack_msg(n.r.r’.,v) Ar’ # L — r’ <r A vote_msg(n.r’,v)

VC’s in first-order logic




Quantifier alternation cycles

* Axiom
Vq,,9,: Quorum. In: Node. member(n, q,) A member(n, q,)

* Propose action precondition
dg:Quorum. ¥n:Node. member(n,q) - 3r’:Round,v’:Value. join_msg(n,r,r’,v’)

* |Inductive invariant
Vr:Round, v:Value. decision(r,v) - 3g:Quorum. Yn:Node. member(n,q) - votegmsg(n,r,v)

Quantifier
Alternation Cycle




Paxos made EPR [OOPSLA'17]

Methodology for decidable verification of infinite-state systems

Modeling Transforming

Protocol “ Formal specification “ Formal specification
in first-order logic W|th decidable VC

First-order abstractions |
Domain knowledge | can decide EPR




Inductive invariant of Paxos

conjecture

conjecture

conjecture

conjecture

conjecture

conjecture

conjecture

conjecture

conjecture

decision(N1,R1,V1) & decision(N2,R2,V2) -> V1 = V2

proposal(R,V1) & proposal(R,V2) -> V1 = V2

vote(N,R,V) -> proposal(R,V)

forall R, V. (exists N. decision(N,R,V)) -> exists Q. forall N. member(N, Q) -> vote(N,R,V)
one_b _max_vote(N,R2,none,V1l) & ~le(R2,R1) -> ~vote(N,R1,V2)

one_b _max_vote(N,R,RM,V) & RM ~= none -> ~le(R,RM) & vote(N,RM,V)

one_b_max_vote(N,R,RM,V) & RM ~= none & ~le(R,RO) & ~le(RO,RM) -> ~vote(N,RO,VO)

~le(R2,R1) & proposal(R2,V2) & V1 ~= V2 -> exists N. member(N,Q) & left rnd(N,R1) & ~vote(N,R1,V1)

one_b(N,R2) & ~le(R2,R1) -> left rnd(N,R1)



Paxos made EPR: experimental evaluation

Protocol Model Invariant | EPR [sec]
[LOC] [Conjectures] u o

Paxos

Multi-Paxos 98 12 1.2 01 1.4
Vertical Paxos™ 123 18 2.2 0.2 -
Fast Paxos™ 117 17 47 16 1.5
Flexible Paxos 88 11 1.0 0 1.2
Stoppable Paxos™ 132 16 3.8 09 1.6

*first mechanized verification
Transformation to EPR reusable across all variants!



Paxos made EPR: experimental evaluation

Protocol Model Invariant | EPR [sec]
[LOC] [Conjectures] u o

Paxos
Multi-Paxos
Vertical Paxos*
Fast Paxos™

Flexible Paxos

Stoppable Paxos™

*first mechanized verification

98
123
117

38
132

12
18
17
11
16

1.2 0.1
2.2 0.2
4.7 1.6
1.0 O
3.8 0.9

1.4
1.5
1.2
1.6

Transformation to EPR reusable across all variants!

Proof / code ratio:
lronFleet: ~4
Verdi: ~10
lvy: ~0.2



Paxos made EPR: experimental evaluation

Protocol Model Invariant | EPR [sec]
[LOC] [Conjectures] u o

Paxos

Multi-Paxos 98
Vertical Paxos™ 123
Fast Paxos™ 117
Flexible Paxos 88

Stoppable Paxos™ 132

*first mechanized verification

12
18
17
11
16

1.2 0.1
2.2 0.2
4.7 1.6
1.0 O
3.8 0.9

1.4
1.5
1.2
1.6

Transformation to EPR reusable across all variants!

U — mean
o — std. deviation



Paxos made EPR: experimental evaluation

Protocol Model Invariant | EPR [sec] FOL [sec] 10,
[LOC] [Conjectures] U o u o

Paxos 1.0 0.1

Multi-Paxos 98 12 1.2 0.1 14 | 4 1.8 04 O
Vertical Paxos™ 123 18 2.2 0.2 - 8 107 129 30%
Fast Paxos™ 117 17 47 16 1.5 16 229 110 70%
Flexible Paxos 88 11 1.0 0 1.2 Multi-Paxos in FOL
Stoppable Paxos™ 132 16 3.8 09 1.6

*first mechanized verification

Transformation to EPR reusable across all variants!



Paxos made EPR: experimental evaluation

Protocol Model Invariant |EPR [sec] FOL [sec] 10,
[LOC] [Conjectures] u o U o

Paxos 186 123  50%
Multi-Paxos 98 12 1.2 0.1 14 4 300 O 100%
Vertical Paxos™ 123 18 22 0.2 - 3 300 O 100%
Fast Paxos™ 117 17 4.7 1.6 1.5 16 300 O 100%
Flexible Paxos 88 11 1.0 0 1.2 Stoppable Paxosin FOL
Stoppable Paxos™ 132 16 3.8 09 1.6 |

*first mechanized verification
Transformation to EPR reusable across all variants!



Appendix: The Proof of Correctness
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(1}7. NoneChoosableAfter(i, b, v)
ProoF: We assume v £ StopCmd, j = i, ¢ < b, and w any command and we prove
NotChoosable(j, c,w)'. By Lemma 1.7, it suffices to prove NotChoosable(j, ¢, w).
We split the proof into two cases.
(1. Case: sval2a{i, b, Q) =T
ProoF: Assumption (1)1.3 implies F4(i, b, Q.v), so0o the assumption
v € StopCmd implies E4b(i b, O, v). The case assumption, the assumption
j = i, and E4b(i, b, Q. v) imply sval2a(j, b, ) = T. The assumption ¢ < b
and step {1}4 then imply NotChoosable(j, ¢, w).
(2. Case: sval2a{i, b, Q)£ T
{3)1. sval2ali, b, Q) = val2a({i, b, Q) = v
Proor: Assumption (113 implies FE3{i, b, Q.v), which implies
sval2a(i, b, }) = v. The case assumption and the definition of sval2a then
implies val2a(i, b, Q) = v.
{3)2. Donelaii, mbal2al(i, b, Q). v)
Proor: (3)1, assumption {1}1.4, and the definition of wval2a mply
vote;|a||mbal2a(i, b, Q)] = v for some acceptor a in &), which by Lemma 1.3
implies Done2a(i, mbal2a(i, b, Q), v).
By the assumption ¢ < b, it suffices to consider the following two cases.
{3)3. CasE: ¢ < mbal2a(i, b, Q)
PRrOOF: Step (32 and assumption {1)1.1 imply
NoneChoosable After(i, mbal2a(i, b, @), v). By the case assumption and the
assumptions v € StopCmd and j = i, this implies NotChoosable(j, ¢, w).
{3)4. CasgE: mbal2a(i, b, Q)< c< b
(4}1. mbal2a(j, b, Q) < mbal2a(i, b, Q)
ProOF: The assumption o€ StopCmd and  {3}1 imply
spal2a(i. b, Q) € StopCmd. Case assumption {2}2 and the defini-
tion of sval2a then imply mbal2a(k,b, Q) < mbal2aii, b, Q) for all
ko= il
(4}2. NotChoosable(j, c, w)
ProOF: {4}]1 and case assumption {3}4 imply mbal2a(j. b, Q) < ¢ < b.
By assumption (1}1.4, Lemma 3 implies NotChoosable(j, e, w).




Challenge: How to use restricted first-order
logic to verity interesting systems?

* Linked lists
* Ring protocols

* Paxos and its variants
* Byzantine Fault Tolerance
* Reconfiguration

J

[POPL'18] Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, MS, Sharon Shoham
Reducing Liveness to Safety in First-Order Logic



Leader in Ring

Learning Switch

DB Chain Replication

Chord

Lock Server (500 Coq lines [Verdi])

Distributed Lock (1 week [IronFleet])

Single Decree Paxos (+liveness)
Multi-Paxos (+liveness)

Vertical Paxos*

Fast Paxos

Flexible Paxos

Stoppable Paxos (+liveness) *
Ticket Protocol (+liveness)
Alternating Bit Protocol (+liveness)
TLB Shootdown (+liveness) *
Practical Byzantine Fault Tolerance

Reconfiguration

50
143
155
122

41

85

98
123
117

88
132

86
161
385

Work in progress

1.5
1.7

Proof / c ratio:
> oof / code ratio

IronFleet: ~4
2 Verdi: ~10
1.4 lvy: ~0.2

10.7
14.6
2.2
6.2
2.2

18.4

6 * First mechanized

liveness proof
10

380 (FOL)



Summary

* Distributed protocols are interesting for verification
* But real distributed systems are more complex

* Decidable logics can be used to reason about interesting
systems
* No more butterfly effects
* But some jagged corners
* Details on Wednesday



