State-of-the-art SAT Solving

Marijn J.H. Heule

THE UNIVERSITY OF

TEXAS

—— AT AUSTIN ——

Summer School on Formal Techniques, May 22, 2017

1/29

Dress Code as Satisfiability Problem

The SAT problem: Can a formula in propositional logic be satisfied?

Propositional logic
» Boolean variables : tie and shirt (for the example below)
» Logic symbols : = (not), Vv (or), A (and)
» Literals : tie, —tie, shirt, and —shirt

Three conditions / clauses :
» not wearing a tie nor a shirt is impolite (tie V shirt)
» clearly one should not wear a tie without a shirt (—tie V shirt)
» wearing a tie and a shirt is overkill —(tie A shirt) = (—tie V —shirt)

Is the formula (tie V shirt) A (—tie V shirt) A (—tie VV —shirt) satisfiable?

2/29

The Satisfiability (SAT) problem

()Q5 V Xg V 5&2) VAN ()QZ V 5?1 V 5&3) VAN (5@3 V 5{3 V 557) N
(5@5 V 5?1 V 5&5) VAN ()Q3 V 5&; V)(3) VAN ()Qz V X1 V)(3) N
(5&9 V 5&5 V)Q3) A ()Q3 V X3 V 5&;) VAN ()Q; V 5{3 V)03) N
()(2 V 523 V 5@3) VAN ()Kg V 5@5 V 5&3) VAN ()Kg V 5?3 V 5?1) N
()67 V Xq V 5@2) VAN ()(8 V 5&; V)Qg) VAN (521 V 5&3 V)64) N
()(3 V 564 V 5@5) VAN (521 V 537 V)05) VAN (5%7 V x1 'V)Q5) N
()_(4\/X9\/)_(3)/\(XQ\/Xg\/Xl)/\(X5\/)_(7\/X1)/\
()Qg V x5 V)64) AN ()Kg V Xq V)05) AN ()Q; V Xg V)(3) A
(X2\/)_(3\/X1)/\()_(7\/X1\/X5)/\(X1\/X4\/X3)/\
()(3 V X5 V)Qﬁ) VAN (5?6 V X3 V 5&;) VAN (5?7 V Xg V)q;) N
()(4 V X7 V)(3) A ()(4 V 5&; V 567) A ()(5 V 5?1 V)67) A
()Q5 V X7 V 5&3) VAN (5?8 V 5@5 V 5?7) VAN ()Q5 V X2 V)(3) A

Does there exist an assignment satisfying all clauses?

(5@5 V X3 V Xg
(5?1 V Xg V X4
()Q5 V 5&; V X5
(5&3 V Xg V 5?2
()Qg V x1V 5?2
(5?5 V X4 V 5&5
(X7 V Xo V Xg
(5?5 V 567 V Xg
()(1 V 5&; V 5?4
()(7 V 5?5 vV 5?2
()Q5 V 5?1 vV X7
(5?8 V X2 vV X5

>>>>>>>>>> >

3/29

Search for a satisfying assignment (or proof none exists)

)_(5\/X3\/X8
)_(1\/X8\/X4
X6\/)_(9\/X5
)_(8\/X6\/)_(2
Xg\/Xl\/)_Q

)
)
)
)
)
)_<5 \/X4 \/)_<6)
)
)
)
)
)
)

(X2\/X1\/X3)/\(X8\/)_(3\/)_(7)
(Xg\/Xg\/X3)/\(X2\/X1\/X3)
(Xg\/X3\/Xg)/\(X9\/)_(3\/X8)
(Xg\/)_(6V)_(3)/\(X8\/)_(3\/)_(1)
(X7\/X9\/X2) xg V Xg V x2) A (X1 V X V Xxq)
(X3 V X4 V X5 X1V XV xs) A (X7 V xqVoxs)
(X X0V xg Vxi) A(xs VX7V xq)
(xg VXV x5) A (x5 V xo V x3)
(X7\/X1\/X5 (x1 V x4 V x3)
((%7 V x5 V xg)
(X4\/Xg\/X7) (X5\/)_<1\/X7)
(Xg V Xs V X7) A (%6 V x2 V x3)

%V Xo V X
)_<5\/)_(7\/X9
Xl\/)_(g\/)_(4
X7\/)_<5\/)_(2
X5\/)_<1\/X7
)_(8\/X2\/X5

Xo V X5 V Xy
Xg\/Xg\/Xl
X3V x5 V Xg)
X4\/X7\/X3)
Xe V X7V X3) A

)
X4V Xo V Xg)
)
)

— — N

>>>>>>>>>>>

A
A
A
A
A
A
A

/\/\/\/—\/—\/—\/—\/—\AAAA

A
A
A
A
A
A
A
A
A
A
A
A

4/29

NP-Complete: Good or Bad News?

SAT is the first N"P-complete problem [Cook'71]

5/29

NP-Complete: Good or Bad News?

SAT is the first N"P-complete problem [Cook'71]
Bad?

» Only exponential time solving algorithms are known
» Probably no polynomial time algorithm exists (P # N'P)

5/29

NP-Complete: Good or Bad News?

SAT is the first N"P-complete problem [Cook'71]
Bad?

» Only exponential time solving algorithms are known
» Probably no polynomial time algorithm exists (P # N'P)

Good!

» SAT solvers are powerful tools for real world problems

» All problems in NP can be translated into SAT in
polynomial time

5/29

Motivation

From 100 variables, 200 constraints (early 90s)
to 1,000,000 vars. and 20,000,000 cls. in 20 years.

6/29

Motivation

From 100 variables, 200 constraints (early 90s)
to 1,000,000 vars. and 20,000,000 cls. in 20 years.

Applications:

Hardware and Software Verification, Planning,
Scheduling, Optimal Control, Protocol Design,
Routing, Combinatorial problems, Equivalence
Checking, etc.

6/29

Motivation

From 100 variables, 200 constraints (early 90s)
to 1,000,000 vars. and 20,000,000 cls. in 20 years.

Applications:

Hardware and Software Verification, Planning,
Scheduling, Optimal Control, Protocol Design,
Routing, Combinatorial problems, Equivalence
Checking, etc.

SAT used to solve many other problems!

6/29

Capitalise on the performance of SAT solvers

0 !]
\/ I

bioinformatics train safety

formal verification

olokd 1 J
0000
00 - 00

number theory cryptography rewriting termination

timetabling

encode SAT solver

7/29

Overview

Search for Lemmas (Today)
» Learning Lemmas
» Data-structures
» Heuristics

Search for Simplification (Tomorrow)
» Variable elimination
» Blocked clause elimination
» Unhiding redundancy

8/29

Conflict-driven SAT solvers: Search and Analysis

()(1 V)64) A (::)
()(3 V 564 vV 565) A

(X3 VX2V Xq) A

]:extra

9/29

Conflict-driven SAT solvers: Search and Analysis

(X]_\/X4) A o
(X3\/)_(4\/)_<5)/\ X5:1
()_(3\/)_(2\/)_(4) A\ o

]: extra

9/29

Conflict-driven SAT solvers: Search and Analysis

()(1 V)64) A 1'EI}
()(3 V 564 vV 525) VAN X5 = 1
(5?3 V 5?2 V 5221) A ‘Iil.
]: extra X = 1

9/29

Conflict-driven SAT solvers: Search and Analysis

()(1 V)64) A 1'EI'
()(3 V 564 V 525) AN X5 = 1
(5?3 V 5?2 V 5221) A ‘Iil.
]: extra X = 1

©

9/29

Conflict-driven SAT solvers: Search and Analysis

()(1 V)64) A 1'EI’
()(3 V 564 vV 525) VAN X5 = 1
(5?3 V 5?2 V)Qi@) A ‘Iil.
]: extra X = 1
(2
(©
X1 = 0

9/29

Conflict-driven SAT solvers: Search and Analysis

()(1 V)61) A 1'EI'
()(3 V 5&4 V 525) AN X5 = 1
(5?3 V 5?2 V 524) A ‘Iil.
]: extra X = 1
(2
(©
X1 = 0
Xy = 1

9/29

Conflict-driven SAT solvers: Search and Analysis

()(1 V)61) A 1':.}
()(3 V 5&4 V 525) AN X5 = 1
(5?3 V 5?2 V 524.) A "El’
]: extra X = 1

X1 = 0

Xy = 1

X3 = 1

X3 = 0

9/29

Conflict-driven SAT solvers: Search and Analysis

()(1 V)(4_) A 1':.’
()(3 V 564 V 5?5) AN X5 = 1
(5?3 V 5?2 V 5?4) A ‘I!'
fextra. X2—1
X1 = 0
X4:1
X3_1
X3_O

9/29

Conflict-driven SAT solvers: Search and Analysis

()(1 V)(4_) VAN 1':.’
()(3 V 564 V 5?5) VAN X5 = 1
()_(3 V)_<2 V)_(4) A e
fextra.

9/29

Conflict-driven SAT solvers: Search and Analysis

()(1 V)64) A

()(3 V 564 V 5&5) VAN
(X3 VXV Xq) A
fextra

9/29

Conflict-driven SAT solvers: Search and Analysis

()(1 V)(4) VAN

()(3 V 564 V 5&5) VAN
(X3 VXV X) A
fextra.

9/29

Conflict-driven SAT solvers: Search and Analysis

()(1 V)(4) VAN

()(3 V 564 V 5&5) VAN
(X3 VXV X) A
fextra.

9/29

Conflict-driven SAT solvers: Pseudo-code

1: while TRUE do

2:

3:

4:

8:

9:

10:

lgecision := GETDECISIONLITERAL()

If no Iyecision then return satisfiable

F = SIMPLIFY(F (lecision < 1))

while F contains Csifeq do
Ceonflict := ANALYZECONFLICT(Ciasified)
If Coonniicte = 0 then return unsatisfiable
BACKTRACK(Ceonflict)
F = SIMPLIFY(F U { Ceonflict })

end while

11: end while

10/29

Learning conflict clauses ~ [Marques-SilvaSakallah'96]

Xgﬁ]x

X19:1

11/29

Learning conflict clauses ~ [Marques-SilvaSakallah'96]

Xgﬁ]x

(_‘Xl V-=x3V x5 VX7V _‘Xlg) x19=1

tri-asserting clause

11/29

Learning conflict clauses ~ [Marques-SilvaSakallah'96]

(x10 V =xg V x17 V —x19) x19=1

first unique implication point

11/29

Learning conflict clauses ~ [Marques-SilvaSakallah'96]

(X2 V =xgV—xgVxi7 V _‘Xlg) x19=1

second unique implication point

11/29

Average Learned Clause Length

600

500

400

300

200 r |

100 n |

it

.
T

A +++H»++++++++’H~++~H»++++++++H++
+ + ‘ | |

0 10 20 30 40 50 60 70 80

0

12/29

Data-structures

Watch pointers

13/29

Simple data structure for unit propagation

:// 1|2
1
Variables ?{% ™| 2| Clauses
2 —~_
3N 3 -1]-2
- -3/ 1
\

14/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

@:{Xlz *, X2

= k,X3= % ,X4= ¥,X5g = ¥,Xg = %}

- X1

X1

_\X3

15/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={x1=*x,x%0=*x,x3=*%,x4= *%,x5=1,X%= %}

X1 X2

X1 X3

15/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

e={x1=*,x%0=*,x3=1,x=%,x5=1,x= *}

- X1

X1

15/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={x1=*x,x0=%,x3=1,x=*,x5=1,x%= %}

- X1

X2

X1

X4

15/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={xi=lx=x,x3=1xg=%,x5=1x= %}

—|X1

X2

\/

X1

Xa —Xe

15/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={x1=Llx=x*x,x3=1,x=x,xs=1,x= *}

X6

X1

- X6

X4

15/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={x=1x%=*x,x3=1,x%=0x=1x= *}

X6

X1

- X6

X4

15/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

Y = {:)<1 =]., Xy = (), X3 =]., Xq4 = (), X5 =]., X = * }

X6

X1

- X6

X4

15/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

(p:{Xl =].,X2:O,X3: 1,X4:O,X5:].,X6:1}

X6

X2

X1

X4

15/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

Y = {Xlz 1,X2:O,X3:1,X4:0,X5:].,X6: 1}

X6

X2

X1

X4

15/29

Conflict-driven: Watch pointers (2) [MoskewiczMZZM'01]

Only examine (get in the cache) a clause when both
» a watch pointer gets falsified
» the other one is not satisfied

While backjumping, just unassign variables
Conflict clauses — watch pointers
No detailed information available

Not used for binary clauses

16/29

Average Number Clauses Visited Per Propagation

25

20

15

10

4t

I
-

+

.
"
4t

B AR

+++++++++++++++++++++++

R

10

20

30

40

50

60

70

80

17/29

Percentage visited

90
85
80
75
70
65
60
55
50
45
40

clauses with other watched literal true

N
T

L+t
T

T
L 1+
+++
it

=
4
"
N T

e
++F

o NS

+

ettt

0

10 20 30 40 50 60

70

80

18/29

Heuristics

19/29

Most important CDCL heuristics

Variable selection heuristics
» aim: minimize the search space
» plus: could compensate a bad value selection

20/29

Most important CDCL heuristics

Variable selection heuristics
» aim: minimize the search space
» plus: could compensate a bad value selection

Value selection heuristics
» aim: guide search towards a solution (or conflict)

» plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche'07]

20/29

Most important CDCL heuristics

Variable selection heuristics
» aim: minimize the search space
» plus: could compensate a bad value selection

Value selection heuristics
» aim: guide search towards a solution (or conflict)

» plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche'07]

Restart strategies
» aim: avoid heavy-tail behavior [GomesSelmanCrato'97]

» plus: focus search on recent conflicts when combined with
dynamic heuristics

20/29

Variable selection heuristics

Based on the occurrences in the (reduced) formula

» examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

» not practical for CDCL solver due to watch pointers

21/29

Variable selection heuristics

Based on the occurrences in the (reduced) formula

» examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

» not practical for CDCL solver due to watch pointers

Variable State Independent Decaying Sum (VSIDS)

» original idea (zChaff): for each conflict, increase the score
of involved variables by 1, half all scores each 256 conflicts
[MoskewiczMZZM'01]

» improvement (MiniSAT): for each conflict, increase the
score of involved variables by ¢ and increase ¢ := 1.056
[EenSérensson’03]

21/29

Visualization of VSIDS in PicoSAT

http://www.youtube.com/watch?v=M0jhFywLre8

22/29

http://www.youtube.com/watch?v=MOjhFywLre8

Value selection heuristics

Based on the occurrences in the (reduced) formula

» examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

» not practical for CDCL solver due to watch pointers

23/29

Value selection heuristics

Based on the occurrences in the (reduced) formula

» examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

» not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
» negative branching (early MiniSAT) [EenSorensson’03]

23/29

Value selection heuristics

Based on the occurrences in the (reduced) formula

» examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

» not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
» negative branching (early MiniSAT) [EenSorensson’03]

Based on the last implied value (phase-saving)
» introduced to CDCL [PipatsrisawatDarwiche'07]
» already used in local search [HirschKojevnikov'01]

23/29

Heuristics: Phase-saving [PipatsrisawatDarwiche’07]

Selecting the last implied value remembers solved components

J

. ' .

]
S
3

1000

Variable index

0 50000 100000 150000 ?01?000 250000 300000 350000 400000 0 50000 100000 150000 200000 250000
Decision number Decision number

negative branching phase-saving

24/29

Restarts

Restarts in CDCL solvers:
» Counter heavy-tail behavior [GomesSelmanCrato'97]
» Unassign all variables but keep the (dynamic) heuristics

25/29

Restarts

Restarts in CDCL solvers:
» Counter heavy-tail behavior [GomesSelmanCrato'97]
» Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman'93]
» Geometrical restart: e.g. 100, 150,225, 333,500, 750, . ..
» Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . ..

25/29

Restarts

Restarts in CDCL solvers:
» Counter heavy-tail behavior [GomesSelmanCrato'97]
» Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman'93]
» Geometrical restart: e.g. 100, 150,225, 333,500, 750, . ..
» Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . ..

Rapid restarts by reusing trail:
[vanderTakHeuleRamos'11]

» Partial restart same effect as full restart
» Optimal strategy Luby-1: 1,1,2,1,1,2 4 ...

25/29

Conflict-Clause Minimization

26/29

Self-Subsumption

Use self-subsumption to shorten conflict clauses

cCvl DvI (avbVvl) (avbVvcVi)
D cchb (aVbVc)

Conflict clause minimization is an important optimization.

27/29

Self-Subsumption

Use self-subsumption to shorten conflict clauses

cCvl DvI (avbVvl) (avbVvcVi)
D cch (aVbVc)

Conflict clause minimization is an important optimization.

Use implication chains to further minimization:

...(avb)(bvc)(avevd)... = ...(avb)(bvc)(cVd)...

27/29

Conflict-clause minimization [SérenssonBiere'09]

X2:1 X3:O

28/29

Conflict-clause minimization [SérenssonBiere'09]

X2:1 X3:O

x13=0

()_Q VXxsVXeVxsV X11)
first unique

implication point

28/29

Conflict-clause minimization [SérenssonBiere'09]

X2:1 X3:O

et O
n0=1 @

(X1 V)_(4 V)_(8 V)_(10)

last unique

implication point

28/29

Conflict-clause minimization [SérenssonBiere'09]

()_Q V x5 V X \/X11)

reduced conflict clause

28/29

Conflict-clause minimization [SérenssonBiere'09]

()_Q V x5 V \/X11)
minimized conflict clause

28/29

Conclusions: state-of-the-art CDCL solver

Key contributions to CDCL solvers:

» concept of conflict clauses (grasp)
[Marques-SilvaSakallah'96]

> restart strategies [GomesSC'97,LubySZ'93]

» 2-watch pointers and VSIDS (zChaff)
[MoskewiczMZZM'01]

» efficient implementation (Minisat) [EenSorensson’03]
» phase-saving (Rsat) [PipatsrisawatDarwiche’'07]
» conflict-clause minimization [SorenssonBiere'09]

+ Pre- and in-processing techniques

29/29

	Data-structures
	Heuristics
	Conflict-Clause Minimization

