Specification and Proof with PVS

N．Shankar

Computer Science Laboratory
SRI International
Menlo Park，CA

May 17， 2015

Course Outline

An Introduction to computer-aided specification and verification (using PVS, SAL, and Yices)
(1) Basic logic: Propositional logic, Equational logic, First-order logic
(2) Logic in PVS: Theories, Definitions, Arithmetic, Subtypes, Dependent types
(3) Advanced specification and verification with PVS

What is PVS?

- PVS (Prototype Verification System): A mechanized framework for specification and verification.
- Developed over the last decade at the SRI International Computer Science Laboratory, PVS includes
- A specification language based on higher-order logic
- A proof checker based on the sequent calculus that combines automation (decision procedures), interaction, and customization (strategies).
- The primary goal of the course is to teach the effective use of logic in specification and proof construction through PVS.

Some PVS Background

- A PVS theory is a list of declarations.
- Declarations introduce names for types, constants, variables, or formulas.
- Propositional connectives are declared in theory booleans.
- Type bool contains constants TRUE and FALSE.
- Type [bool -> bool] is a function type where the domain and range types are bool.
- The PVS syntax allows certain prespecified infix operators.

More PVS Background

- Information about PVS is available at http://pvs.csl.sri.com.
- PVS is used from within Emacs.
- The PVS Emacs command M-x pvs-help lists all the PVS Emacs commands.

Propositional Logic in PVS

```
booleans: THEORY
    BEGIN
        boolean: NONEMPTY_TYPE
        bool: NONEMPTY_TYPE = boolean
        FALSE, TRUE: bool
        NOT: [bool -> bool]
        AND, &, OR, IMPLIES, =>, WHEN, IFF, <=>
            : [bool, bool -> bool]
    END booleans
```

AND and \& are synonymous and infix.
IMPLIES and => are synonymous and infix.
A WHEN B is just B IMPLIES A.
IFF and <=> are synonymous and infix.

Propositional Proofs in PVS

```
prop_logic : THEORY
    BEGIN
    A, B, C, D: bool
    ex1: LEMMA A IMPLIES (B OR A)
    ex2: LEMMA (A AND (A IMPLIES B)) IMPLIES B
    ex3: LEMMA
        ((A IMPLIES B) IMPLIES A) IMPLIES (B IMPLIES (B AND A))
    END prop_logic
```

A, B, C, D are arbitrary Boolean constants. ex1, ex2, and ex3 are LEMMA declarations.

Propositional Proofs in PVS.

```
ex1 :
    |-------
{1} A IMPLIES (B OR A)
Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
Q.E.D.
```

PVS proof commands are applied at the Rule? prompt, and generate zero or more premises from conclusion sequents. Command (flatten) applies the disjunctive rules: $\vdash \vee, \vdash \neg, \vdash \supset$, $\wedge \vdash$, ᄀト.

Propositional Proofs in PVS

```
ex2 :
    |-------
{1} (A AND (A IMPLIES B)) IMPLIES B
Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
this simplifies to:
ex2 :
{-1} A
{-2} (A IMPLIES B)
    |-------
{1} B
Rule? (split)
Splitting conjunctions,
this yields 2 subgoals:
```


Propositional Proof (continued)

```
ex2.1 :
{-1} B
[-2] A
    |-------
[1] B
which is trivially true.
This completes the proof of ex2.1.
```

PVS sequents consist of a list of (negative) antecedents and a list of (positive) consequents.
$\{-1\}$ indicates that this sequent formula is new.
(split) applies the conjunctive rules $\vdash \wedge$, $\vee \vdash$, $\supset \vdash$.

Propositional Proof (continued)

```
ex2.2 :
[-1] A
    |-------
{1} A
[2] B
which is trivially true.
This completes the proof of ex2.2.
Q.E.D.
```

Propositional axioms are automatically discharged. flatten and split can also be applied to selected sequent formulas by giving suitable arguments.

- A simple language is used for defining proof strategies:
- try for backtracking
- if for conditional strategies
- let for invoking Lisp
- Recursion
- prop\$ is the non-atomic (expansive) version of prop.

```
(defstep prop ()
    (try (flatten) (prop$) (try (split) (prop$) (skip)))
    "A black-box rule for propositional simplification."
    "Applying propositional simplification")
```


Propositional Proofs Using Strategies

```
ex2 :
    |-------
{1} (A AND (A IMPLIES B)) IMPLIES B
Rule? (prop)
Applying propositional simplification,
Q.E.D.
```

(prop) is an atomic application of a compound proof step. (prop) can generate subgoals when applied to a sequent that is not propositionally valid.

Using BDDs for Propositional Simplification

- Built-in proof command for propositional simplification with binary decision diagrams (BDDs).

```
ex2 :
```

ex2 :

{1} (A AND (A IMPLIES B)) IMPLIES B
{1} (A AND (A IMPLIES B)) IMPLIES B
Rule? (bddsimp)
Rule? (bddsimp)
Applying bddsimp,
Applying bddsimp,
this simplifies to:
this simplifies to:
Q.E.D.

```
Q.E.D.
```

- BDDs will be explained in a later lecture.

Cut in PVS

```
ex3 :
    |-------
{1} ((A IMPLIES B) IMPLIES A) IMPLIES (B IMPLIES (B AND A))
Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
this simplifies to:
ex3 :
{-1} ((A IMPLIES B) IMPLIES A)
{-2} B
    |-------
{1} (B AND A)
```


Cut in PVS

```
Rule? (case "A")
Case splitting on
    A,
this yields 2 subgoals:
ex3.1 :
{-1} A
[-2] ((A IMPLIES B) IMPLIES A)
[-3] B
    |-------
[1] (B AND A)
Rule? (prop)
Applying propositional simplification,
This completes the proof of ex3.1.
```


Cut in PVS

```
ex3.2 :
[-1] ((A IMPLIES B) IMPLIES A)
[-2] B
    |-------
{1} A
[2] (B AND A)
Rule? (prop)
Applying propositional simplification,
This completes the proof of ex3.2.
Q.E.D.
```

(case "A") corresponds to the Cut rule.

Propositional Simplification

```
ex4 :
    |-------
    {1} ((A IMPLIES B) IMPLIES A) IMPLIES (B AND A)
Rule? (prop)
Applying propositional simplification,
this yields 2 subgoals:
ex4.1 :
{-1} A
    |-------
{1} B
```

(prop) generates subgoal sequents when applied to a sequent that is not propositionally valid.

Propositional Simplification with BDDs

```
ex4 :
    |-------
{1} ((A IMPLIES B) IMPLIES A) IMPLIES (B AND A)
Rule? (bddsimp)
Applying bddsimp,
this simplifies to:
ex4 :
{-1} A
    |-------
{1} B
```

Notice that bddsimp is more efficient.

Equality in PVS

```
equalities [T: TYPE]: THEORY
    BEGIN
    =: [T, T -> boolean]
    END equalities
```

Predicates are functions with range type boolean. Theories can be parametric with respect to types and constants. Equality is a parametric predicate.

Proving Equality in PVS

```
eq : THEORY
    BEGIN
        T : TYPE
        a : T
        f : [T -> T]
        ex1: LEMMA f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a)))))=f(a)
    END eq
```

ex1 is the same example in PVS.

Proving Equality in PVS

```
ex1 :
    |-------
{1} f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)
Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
this simplifies to:
ex1 :
{-1} f(f(f(a))) = f(a)
    |-------
{1} f(f(f(f(f(a)))))=f(a)
```


Proving Equality in PVS

```
Rule? (replace -1)
Replacing using formula -1,
this simplifies to:
ex1 :
[-1] f(f(f(a)))=f(a)
    |-------
{1} f(f(f(a)))=f(a)
which is trivially true.
Q.E.D.
```

(replace -1) replaces the left-hand side of the chosen equality by the right-hand side in the chosen sequent.
The range and direction of the replacement can be controlled through arguments to replace.

Proving Equality in PVS

```
ex1 :
    |-------
{1} f(f(f(a)))=f(a) IMPLIES f(f(f(f(f(a)))))=f(a)
Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
this simplifies to:
ex1 :
{-1} f(f(f(a))) = f(a)
    |-------
{1} f(f(f(f(f(a)))))=f(a)
Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,
Q.E.D.
```


A Strategy for Equality

```
(defstep ground ()
    (try (flatten) (ground$) (try (split) (ground$) (assert)))
    "Does propositional simplification followed by the use of
        decision procedures."
    "Applying propositional simplification and decision procedures")
```

```
ex1 :
```

 |-------
 $\{1\} \quad f(f(f(a)))=f(a) \operatorname{IMPLIES} f(f(f(f(f(a))))=f(a)$
Rule? (ground)
Applying propositional simplification and decision procedures,
Q.E.D.

Exercises

(1) Prove: If Bob is Joe's father's father, Andrew is Jim's father's father, and Joe is Jim's father, then prove that Bob is Andrew's father.
(2) Prove $f(f(f(x)))=x, x=f(f(x)) \vdash f(x)=x$.
(3) Prove $f(g(f(x)))=x, x=f(x) \vdash f(g(f(g(f(g(x))))))=x$.
(9) Show that the proof system for equational logic is sound, complete, and decidable.
(5) What happens when everybody loves my baby, but my baby loves nobody but me?

First-Order Logic in PVS: Overview

- We next examine proof construction with conditionals, quantifiers, theories, definitions, and lemmas.
- We also explore the use of types in PVS, including predicate subtypes and dependent types.

Conditionals in PVS

-

```
if_def [T: TYPE]: THEORY
    BEGIN
        IF:[boolean, T, T -> T]
        END if_def
```

- PVS uses a mixfix syntax for conditional expressions IF A THEN M ELSE N ENDIF

PVS Proofs with Conditionals

```
conditionals : THEORY
    BEGIN
        A, B, C, D: bool
        T : TYPE+
        K, L, M, N : T
        IF_true: LEMMA IF TRUE THEN M ELSE N ENDIF = M
        IF_false: LEMMA IF FALSE THEN M ELSE N ENDIF = N
    END conditionals
```


PVS Proofs with Conditionals

```
IF_true :
    |-------
{1} IF TRUE THEN M ELSE N ENDIF = M
Rule? (lift-if)
Lifting IF-conditions to the top level,
this simplifies to:
IF_true :
    |-------
{1} TRUE
which is trivially true.
Q.E.D.
```


PVS Proofs with Conditionals

```
IF_false :
    |-------
{1} IF FALSE THEN M ELSE N ENDIF = N
Rule? (lift-if)
Lifting IF-conditions to the top level,
this simplifies to:
IF_false :
    |-------
{1} TRUE
which is trivially true.
Q.E.D.
```

```
conditionals : THEORY
    BEGIN
        \vdots
        IF_distrib: LEMMA (IF (IF A THEN B ELSE C ENDIF)
                        THEN M
                                ELSE N
                                ENDIF)
            = (IF A
                THEN (IF B THEN M ELSE N ENDIF)
                        ELSIF C
                            THEN M
                    ELSE N
                            ENDIF)
    END conditionals
```

```
IF_distrib :
    |-------
{1} (IF (IF A THEN B ELSE C ENDIF) THEN M ELSE N ENDIF) =
    (IF A THEN (IF B THEN M ELSE N ENDIF)
                        ELSIF C THEN M ELSE N ENDIF)
Rule? (lift-if)
Lifting IF-conditions to the top level,
this simplifies to:
IF_distrib :
    |-------
{1} TRUE
which is trivially true.
Q.E.D.
```

```
IF_test :
    |-------
{1} IF A THEN (IF B THEN M ELSE N ENDIF)
                ELSIF C THEN N ELSE M ENDIF =
    IF A THEN M ELSE N ENDIF
Rule? (lift-if)
Lifting IF-conditions to the top level,
this simplifies to:
IF_test :
    |-------
{1} IF A
            THEN IF B THEN TRUE ELSE N = M ENDIF
            ELSE IF C THEN TRUE ELSE M = N ENDIF
            ENDIF
```


Exercises

(1) Prove
$\operatorname{IF}(\operatorname{IF}(A, B, C), M, N)=\operatorname{IF}(A, \operatorname{IF}(B, M, N), \operatorname{IF}(C, M, N))$.
(2) Prove that conditional expressions with the boolean constants TRUE and FALSE are a complete set of boolean connectives.
(3) A conditional expression is normal if all the first (test) arguments of any conditional subexpression are variables. Write a program to convert a conditional expression into an equivalent one in normal form.

Quantifiers in PVS

```
quantifiers : THEORY
    BEGIN
    T: TYPE
    P: [T -> bool]
    Q: [T, T -> bool]
    x, y, z: VAR T
    ex1: LEMMA FORALL x: EXISTS y: x = y
    ex2: CONJECTURE (FORALL x: P(x)) IMPLIES (EXISTS x: P(x))
    ex3: LEMMA
        (EXISTS x: (FORALL y: Q(x, y)))
            IMPLIES (FORALL y: EXISTS x: Q(x, y))
END quantifiers
```


Quantifier Proofs in PVS

```
ex1 :
    |-------
{1} FORALL x: EXISTS y: x = y
Rule? (skolem * "x")
For the top quantifier in *, we introduce Skolem constants: x,
this simplifies to:
ex1 :
    |-------
{1} EXISTS y: x = y
Rule? (inst * "x")
Instantiating the top quantifier in * with the terms:
    x,
Q.E.D.
```


A Strategy for Quantifier Proofs

```
ex1 :
    |-------
{1} FORALL x: EXISTS y: x = y
Rule? (skolem!)
Skolemizing,
this simplifies to:
ex1 :
    |-------
{1} EXISTS y: x!1 = y
Rule? (inst?)
Found substitution: y gets x!1,
Using template: y
Instantiating quantified variables,
Q.E.D.
```


Alternative Quantifier Proofs

```
ex1 :
    |-------
{1} FORALL x: EXISTS y: x = y
Rule? (skolem!)
Skolemizing, this simplifies to:
ex1 :
    |-------
{1} EXISTS y: x!1 = y
Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,
Q.E.D.
```


Alternative Quantifier Proofs

```
ex3 :
    |-------
{1} (EXISTS x: (FORALL y: Q(x, y)))
        IMPLIES (FORALL y: EXISTS x: Q(x, y))
Rule? (reduce)
Repeatedly simplifying with decision procedures, rewriting,
    propositional reasoning, quantifier instantiation, skolemization,
    if-lifting and equality replacement,
Q.E.D.
```

- We have seen a formal language for writing propositional, equational, and conditional expressions, and proof commands:
- Propositional: flatten, split, case, prop, bddsimp.
- Equational: replace, assert.
- Conditional: lift-if.
- Quantifier: skolem, skolem!, inst, inst?.
- Strategies: ground, reduce

Formalization Using PVS: Theories

```
group : THEORY
    BEGIN
        T: TYPE+
        x, y, z: VAR T
        id : T
        * : [T, T -> T]
        associativity: AXIOM (x * y) * z = x * (y * z)
        identity: AXIOM x * id = x
        inverse: AXIOM EXISTS y: x * y = id
        left_identity: LEMMA EXISTS z: z * x = id
    END group
```

Free variables are implicitly universally quantified.

Parametric Theories

```
pgroup [T: TYPE+, * : [T, T -> T], id: T ] : THEORY
    BEGIN
    ASSUMING
    x, y, z: VAR T
    associativity: ASSUMPTION (x * y) * z = x * (y * z)
    identity: ASSUMPTION x * id = x
    inverse: ASSUMPTION EXISTS y: x * y = id
    ENDASSUMING
    left_identity: LEMMA EXISTS z: z * x = id
    END pgroup
```


Exercises

(1) Prove $(\forall x: p(x)) \supset(\exists x: p(x))$.
(2) Define equivalence. Prove the associativity of equivalence.
(3) Prove $\neg(\forall x: p(x)) \Longleftrightarrow(\exists x: \neg p(x))$.
(4) Prove $(\exists x: \forall y: p(x) \Longleftrightarrow p(y)) \Longleftrightarrow(\exists x: p(x)) \Longleftrightarrow(\forall y: p(y))$.
(5) Give at least two satisfying interpretations for the statement $(\exists x: p(x)) \supset(\forall x: p(x))$.
(0) Write a formula asserting the unique existence of an x such that $p(x)$.
(7) Show that any quantified formula is equivalent to one in prenex normal form, i.e., where the only quantifiers appear at the head of the formula.

Using Theories

We can build a theory of commutative groups by using IMPORTING group.

```
commutative_group : THEORY
BEGIN
    IMPORTING group
    x, y, z: VAR T
    commutativity: AXIOM x * y = y * x
    END commutative_group
```

The declarations in group are visible within commutative_group, and in any theory importing commutative_group.

Using Parametric Theories

To obtain an instance of pgroup for the additive group over the real numbers:

```
additive_real : THEORY
    BEGIN
        IMPORTING pgroup[real, +, 0]
    END additive_real
```


Proof Obligations from IMPORTING

IMPORTING pgroup[real, +, 0] when typechecked, generates proof obligations corresponding to the ASSUMINGs:

```
IMP_pgroup_TCC1: OBLIGATION
    FORALL (x, y, z: real): (x + y) + z = x + (y + z);
IMP_pgroup_TCC2: OBLIGATION FORALL (x: real): x + 0 = x;
IMP_pgroup_TCC3: OBLIGATION
    FORALL (x: real): EXISTS (y: real): x + y = 0;
```

The first two are proved automatically, but the last one needs an interactive quantifier instantiation.

Definitions

```
group : THEORY
    BEGIN
    T: TYPE+
    x, y, z: VAR T
    id : T
        * : [T, T -> T]
        :
        square(x): T = x * x
    END group
```

Type T, constants id and * are declared; square is defined. Definitions are conservative, i.e., preserve consistency.

Using Definitions

- Definitions are treated like axioms.
- We examine several ways of using definitions and axioms in proving the lemma:

```
square_id: LEMMA square(id) = id
```


Proofs with Definitions

```
square_id :
    |-------
{1} square(id) = id
Rule? (lemma "square")
Applying square
this simplifies to:
square_id :
{-1} square = (LAMBDA (x): x * x)
    |-------
[1] square(id) = id
```


Proving with Definitions

```
square_id :
    |-------
{1} square(id) = id
Rule? (lemma "square" ("x" "id"))
Applying square where
    x gets id,
this simplifies to:
square_id :
{-1} square(id) = id * id
    |-------
[1] square(id) = id
```

The lemma step brings in the specified instance of the lemma as an antecedent formula.

Proving with Definitions

```
Rule? (replace -1)
Replacing using formula -1,
this simplifies to:
square_id :
[-1] square(id) = id * id
    |-------
{1} id * id = id
Rule? (lemma "identity")
Applying identity
this simplifies to:
```


Proving with Definitions

```
square_id :
{-1} FORALL (x: T) : x * id = x
[-2] square(id) = id * id
    |-------
[1] id * id = id
Rule? (inst?)
Found substitution:
x: T gets id,
Using template: x * id = x
Instantiating quantified variables,
Q.E.D.
```

The lemma and inst? steps can be collapsed into a single use command.

```
square_id :
[-1] square(id) = id * id
    |-------
{1} id * id = id
Rule? (use "identity")
Using lemma identity,
Q.E.D.
```


Proofs With Definitions

```
square_id :
    |-------
{1} square(id) = id
Rule? (expand "square")
Expanding the definition of square,
this simplifies to:
square_id :
    |-------
```

(expand "square") expands definitions in place.

Proofs With Definitions

```
\vdots
Rule? (rewrite "identity")
Found matching substitution:
x: T gets id,
Rewriting using identity, matching in *,
Q.E.D.
```

(rewrite "identity") rewrites using a lemma that is a rewrite rule.
A rewrite rule is of the form $I=r$ or $h \supset I=r$ where the free variables in r and h are a subset of those in l. It rewrites an instance $\sigma(I)$ of I to $\sigma(r)$ when $\sigma(h)$ simplifies to TRUE.

Rewriting with Lemmas and Definitions

```
square_id :
    |-------
{1} square(id) = id
Rule? (rewrite "square")
Found matching substitution: x gets id,
Rewriting using square, matching in *,
this simplifies to:
square_id :
    |-------
{1} id * id = id
Rule? (rewrite "identity")
Found matching substitution: x: T gets id,
Rewriting using identity, matching in *,
Q.E.D.
```


Automatic Rewrite Rules

```
square_id :
    |-------
{1} square(id) = id
Rule? (auto-rewrite "square" "identity")
    \vdots
Installing automatic rewrites from:
    square
    identity
this simplifies to:
```


Using Rewrite Rules Automatically

```
square_id :
    |-------
[1] square(id) = id
Rule? (assert)
identity rewrites id * id
    to id
square rewrites square(id)
    to id
Simplifying, rewriting, and recording with decision procedures,
Q.E.D.
```


Rewriting with Theories

```
square_id :
    |-------
{1} square(id) = id
Rule? (auto-rewrite-theory "group")
Rewriting relative to the theory: group,
this simplifies to:
square_id :
    |-------
[1] square(id) = id
Rule?
        (assert)
    :
Simplifying, rewriting, and recording with decision procedures,
Q.E.D.
```


grind using Rewrite Rules

```
square_id :
    |-------
{1} square(id) = id
Rule? (grind :theories "group")
identity rewrites id * id
    to id
square rewrites square(id)
    to id
Trying repeated skolemization, instantiation, and if-lifting,
Q.E.D.
```

grind is a complex strategy that sets up rewrite rules from theories and definitions used in the goal sequent, and then applies reduce to apply quantifier and simplification commands.

Numbers in PVS

- All the examples so far used the type bool or an uninterpreted type T.
- Numbers are characterized by the types:
- real: The type of real numbers with operations +, -, *, /.
- rat: Rational numbers closed under $+,-, *, /$.
- int: Integers closed under +, -, *.
- nat: Natural numbers closed under,$+ *$.

Predicate Subtypes

- A type judgement is of the form $a: T$ for term a and type T.
- PVS has a subtype relation on types.
- Type S is a subtype of T if all the elements of S are also elements of T.
- The subtype of a type T consisting of those elements satisfying a given predicate p is give by $\{x: T \mid p(x)\}$.
- For example nat is defined as $\{\mathrm{i}$: int | i >= 0$\}$, so nat is a subtype of int.
- int is also a subtype of rat which is a subtype of real.

Type Correctness Conditions

- All functions are taken to be total, i.e., $f\left(a_{1}, \ldots, a_{n}\right)$ always represents a valid element of the range type.
- The division operation represents a challenge since it is undefined for zero denominators.
- With predicate subtyping, division can be typed to rule out zero denominators.

```
nzreal: NONEMPTY_TYPE = {r: real | r /= 0} CONTAINING 1
    /: [real, nzreal -> real]
```

- nzreal is defined as the nonempty type of real consisting of the non-zero elements. The witness 1 is given as evidence for nonemptiness.

Type Correctness Conditions

```
number_props : THEORY
BEGIN
    x, y, z: VAR real
    div1: CONJECTURE x /= y IMPLIES (x + y)/(x - y) /= 0
END number_props
```

Typechecking number_props generates the proof obligation

```
% Subtype TCC generated (at line 6, column 44) for (x - y)
    % proved - complete
div1_TCC1: OBLIGATION
    FORALL (x, y: real): x /= y IMPLIES (x - y) /= 0;
```

Proof obligations arising from typechecking are called Type Correctness Conditions (TCCs).

Arithmetic Rewrite Rules

- Using the refined type declarations

```
real_props: THEORY
    BEGIN
    w, x, y, z: VAR real
    n0w, n0x, n0y, n0z: VAR nonzero_real
    nnw, nnx, nny, nnz: VAR nonneg_real
    pw, px, py, pz: VAR posreal
    npw, npx, npy, npz: VAR nonpos_real
    nw, nx, ny, nz: VAR negreal
    :
    END real_props
```

- It is possible to capture very useful arithmetic simplifications as rewrite rules.

Arithmetic Rewrite Rules

```
both_sides_times1: LEMMA (x * n0z = y * n0z) IFF x = y
both_sides_div1: LEMMA (x/n0z = y/n0z) IFF x = y
div_cancel1: LEMMA n0z * (x/n0z) = x
div_mult_pos_lt1: LEMMA z/py < x IFF z < x * py
both_sides_times_neg_lt1: LEMMA x * nz < y * nz IFF y < x
```

Nonlinear simplifications can be quite difficult in the absence of such rewrite rules.

Arithmetic Typing Judgements

- The + and * operations have the type [real, real -> real].
- Judgements can be used to give them more refined types especially useful for computing sign information for nonlinear expressions.

```
px, py: VAR posreal
nnx, nny: VAR nonneg_real
    nnreal_plus_nnreal_is_nnreal: JUDGEMENT
        +(nnx, nny) HAS_TYPE nnreal
nnreal_times_nnreal_is_nnreal: JUDGEMENT
        *(nnx, nny) HAS_TYPE nnreal
posreal_times_posreal_is_posreal: JUDGEMENT
        *(px, py) HAS_TYPE posreal
```


Subranges

- The following parametric type definitions capture various subranges of integers and natural numbers.

```
upfrom(i): NONEMPTY_TYPE = {s: int | s >= i} CONTAINING i
    above(i): NONEMPTY_TYPE ={s: int | s > i} CONTAINING i + 1
    subrange(i, j): TYPE = {k: int | i <= k AND k <= j}
    upto(i): NONEMPTY_TYPE ={s: nat | s <= i} CONTAINING i
    below(i): TYPE = {s: nat | s < i} % may be empty
```

- Subrange types may be empty.

Recursion and Induction: Overview

- We have covered the basic logic formulated as a sequent calculus, and its realization in terms of PVS proof commands.
- We have examined types and specifications involving numbers.
- We now examine richer datatypes such as sets, arrays, and recursive datatypes.
- The interplay between the rich type information and deduction is especially crucial.
- PVS is merely used as an aid for teaching effective formalization. Similar ideas can be used in informal developments or with other mechanizations.

Recursive Definition

Many operations on integers and natural numbers are defined by recursion.

```
summation: THEORY
BEGIN
    i, m, n: VAR nat
    sumn(n): RECURSIVE nat =
        (IF n = 0 THEN 0 ELSE n + sumn(n - 1) ENDIF)
        MEASURE n
    sumn_prop: LEMMA
        sumn(n)=(n*(n+1))/2
END summation
```


Termination TCCs

- A recursive definition must be well-founded or the function might not be total, e.g., $\operatorname{bad}(x)=\operatorname{bad}(x)+1$.
- MEASURE m generates proof obligations ensuring that the measure m of the recursive arguments decreases according to a default well-founded relation given by the type of m.
- MEASURE m BY r can be used to specify a well-founded relation.

```
% Subtype TCC generated (at line 8, column 34) for n - 1
sumn_TCC1: OBLIGATION
        FORALL (n: nat): NOT n = 0 IMPLIES n - 1 >= 0;
    % Termination TCC generated (at line 8, column 29) for sumn
    sumn_TCC2: OBLIGATION
    FORALL (n: nat): NOT n = 0 IMPLIES n - 1 < n;
```

Proof obligations are also generated corresponding to the termination conditions for nested recursive definitions.

```
ack(m,n): RECURSIVE nat =
    (IF m=0 THEN n+1
            ELSIF n=0 THEN ack(m-1,1)
                        ELSE \operatorname{ack}(m-1, ack(m, n-1))
            ENDIF)
    MEASURE lex2(m, n)
```

```
f91: THEORY
BEGIN
i, j: VAR nat
g91(i): nat = (IF i > 100 THEN i - 10 ELSE 91 ENDIF)
f91(i) : RECURSIVE {j | j = g91(i)}
    = (IF i>100
        THEN i-10
        ELSE f91(f91(i+11))
        ENDIF)
    MEASURE (IF i>101 THEN O ELSE 101-i ENDIF)
END f91
```


Proof by Induction

```
sumn_prop :
    |-------
{1} FORALL (n: nat): sumn(n) = (n * (n + 1)) / 2
Rule? (induct "n")
Inducting on n on formula 1,
this yields 2 subgoals:
sumn_prop.1 :
    |-------
{1} sumn(0) = (0* (0 + 1)) / 2
```


Proof by Induction

```
Rule? (expand "sumn")
Expanding the definition of sumn,
this simplifies to:
sumn_prop. 1 :
    |-------
\(\{1\} \quad 0=0 / 2\)
Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,
This completes the proof of sumn_prop.1.
```


Proof by Induction

sumn_prop. 2 :
|-------
\{1\} FORALL j :

$$
\begin{aligned}
& \operatorname{sumn}(j)=(j *(j+1)) / 2 \text { IMPLIES } \\
& \operatorname{sumn}(j+1)=((j+1) *(j+1+1)) / 2
\end{aligned}
$$

Rule? (skosimp)
Skolemizing and flattening, this simplifies to:
sumn_prop. 2 :
$\{-1\} \operatorname{sumn}(j!1)=(j!1 *(j!1+1)) / 2$
|-------
$\{1\} \quad \operatorname{sumn}(j!1+1)=((j!1+1) *(j!1+1+1)) / 2$

Proof by Induction

```
Rule? (expand "sumn" +)
Expanding the definition of sumn,
this simplifies to:
sumn_prop.2 :
[-1] sumn(j!1) = (j!1 * (j!1 + 1)) / 2
    |-------
{1} 1 + sumn(j!1) + j!1 = (2 + j!1 + (j!1 * j!1 + 2 * j!1)) / 2
Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,
This completes the proof of sumn_prop.2.
Q.E.D.
```


An Induction/Simplification Strategy

```
sumn_prop :
    |-------
{1} FORALL (n: nat): sumn(n) = (n * (n + 1)) / 2
Rule? (induct-and-simplify "n")
sumn rewrites sumn(0)
    to 0
sumn rewrites sumn(1 + j!1)
    to 1 + sumn(j!1) + j!1
By induction on n, and by repeatedly rewriting and simplifying,
Q.E.D.
```

- Variables allow general facts to be stated, proved, and instantiated over interesting datatypes such as numbers.
- Proof commands for quantifiers include skolem, skolem!, skosimp, skosimp*, inst, inst?, reduce.
- Proof commands for reasoning with definitions and lemmas include lemma, expand, rewrite, auto-rewrite, auto-rewrite-theory, assert, and grind.
- Predicate subtypes with proof obligation generation allow refined type definitions.
- Commands for reasoning with numbers include induct, assert, grind, induct-and-simplify.
(1) Define an operations for extracting the quotient and remainder of a natural number with respect to a nonzero natural number, and prove its correctness.
(2) Define an addition operation over two n-digit numbers over a base $b(b>1)$ represented as arrays, and prove its correctness.
(3) Define a function for taking the greatest common divisor of two natural numbers, and state and prove its correctness.
(9) Prove the decidability of first-order logic over linear arithmetic equalities and inequalities over the reals.

Higher-Order Logic: Overview

- Thus far, variables ranged over ordinary datatypes such as numbers, and the functions and predicates were fixed (constants).
- Higher order logic allows free and bound variables to range over functions and predicates as well.
- This requires strong typing for consistency, otherwise, we could define $R(x)=\neg x(x)$, and derive $R(R)=\neg R(R)$.
- Higher order logic can express a number of interesting concepts and datatypes that are not expressible within first-order logic: transitive closure, fixpoints, finiteness, etc.
- Base types: bool, nat, real
- Tuple types: $\left[T_{1}, \ldots, T_{n}\right]$ for types T_{1}, \ldots, T_{n}.
- Tuple terms: $\left(a_{1}, \ldots, a_{n}\right)$
- Projections: $\pi_{i}(a)$
- Function types: [$T_{1} \rightarrow T_{2}$] for domain type T_{1} and range type T_{2}.
- Lambda abstraction: $\lambda\left(x: T_{1}\right): a$
- Function application: f a.

Tuple and Function Expressions in PVS

- Tuple type: [T_1, ..., T_n].
- Tuple expression: (a_1,..., a_n). (a) is identical to a.
- Tuple projection: PROJ_3(a) or a'3.
- Function type: [T_1 -> T_2]. The type [[T_1, ..., T_n] -> T] can be written as [T_1, ..., T_n -> T].
- Lambda Abstraction: LAMBDA $\mathrm{x}, \mathrm{y}, \mathrm{z}: \mathrm{x} *(\mathrm{y}+\mathrm{z})$.
- Function Application: $\mathrm{f}(\mathrm{a}-1, \ldots, \mathrm{a}$ _n)

Induction in Higher Order Logic

- Given pred : TYPE = [T -> bool]

```
p: VAR pred[nat]
    nat_induction: LEMMA
        (p(0) AND (FORALL j: p(j) IMPLIES p(j+1)))
                IMPLIES (FORALL i: p(i))
```

- nat_induction is derived from well-founded induction, as are other variants like structural recursion, measure induction.

Higher-Order Specification: Functions

```
functions [D, R: TYPE]: THEORY
    BEGIN
    f, g: VAR [D -> R]
    x, x1, x2: VAR D
    extensionality_postulate: POSTULATE
            (FORALL (x: D): f(x) = g(x)) IFF f = g
        congruence: POSTULATE f = g AND x1 = x2 IMPLIES f(x1) = g(x2)
        eta: LEMMA (LAMBDA (x: D): f(x)) = f
        injective?(f): bool =
            (FORALL x1, x2: (f(x1) = f(x2) => (x1 = x2)))
    surjective?(f): bool = (FORALL y: (EXISTS x: f(x) = y))
    bijective?(f): bool = injective?(f) & surjective?(f)
    :
    END functions
```


Sets are Predicates

```
sets [T: TYPE]: THEORY
    BEGIN
        set: TYPE = [t -> bool]
        x, y: VAR T
        a, b, c: VAR set
        member(x, a): bool = a(x)
        empty?(a): bool = (FORALL x: NOT member(x, a))
        emptyset: set = {x | false}
        subset?(a, b): bool = (FORALL x: member(x, a) => member(x, b))
        union(a, b): set = {x | member(x, a) OR member(x, b)}
        !
    END sets
```


Deterministic and Nondeterministic Automata

- The equivalence of deterministic and nondeterministic automata through the subset construction is a basic theorem in computing.
- In higher-order logic, sets (over a type A) are defined as predicates over A.
- The set operations are defined as

```
member(x, a): bool = a(x)
    emptyset: set = {x | false}
    subset?(a, b): bool = (FORALL x: member(x, a) => member(x, b))
    union(a, b): set = {x | member(x, a) OR member(x, b)}
```


Image and Least Upper Bound

- Given a function f from domain D to range R and a set X on D, the image operation returns a set over R.

```
image(f, X): set[R] = {y: R | (EXISTS (x:(X)): y = f(x))}
```

- Given a set of sets X of type T, the least upper bound is the union of all the sets in X.

```
lub(setofpred): pred[T] =
    LAMBDA s: EXISTS p: member(p,setofpred) AND p(s)
```


Deterministic Automata

```
DFA [Sigma : TYPE,
    state : TYPE,
    start : state,
    delta : [Sigma -> [state -> state]],
    final? : set[state] ]
: THEORY
BEGIN
DELTA((string : list[Sigma]))((S : state)):
            RECURSIVE state =
        (CASES string OF
            null : S,
        cons(a, x): delta(a)(DELTA(x)(S))
    ENDCASES)
    MEASURE length(string)
DAccept?((string : list[Sigma])) : bool =
    final?(DELTA(string)(start))
END DFA
```

```
NFA [Sigma : TYPE,
    state : TYPE,
    start : state,
    ndelta : [Sigma -> [state -> set[state]]],
    final? : set[state] ]
: THEORY
BEGIN
NDELTA((string : list[Sigma]))((s : state)) :
        RECURSIVE set[state] =
    (CASES string OF
    null : singleton(s),
    cons(a, x): lub(image(ndelta(a), NDELTA(x)(s)))
    ENDCASES)
    MEASURE length(string)
Accept?((string : list[Sigma])) : bool =
    (EXISTS (r : (final?)) :
        member(r, NDELTA(string)(start)))
        END NFA
```


DFA/NFA Equivalence

```
equiv[Sigma : TYPE,
    state : TYPE,
    start : state,
    ndelta : [Sigma -> [state -> set[state]]],
    final? : set[state] ]: THEORY
BEGIN
IMPORTING NFA[Sigma, state, start, ndelta, final?]
    dstate: TYPE = set[state]
    delta((symbol : Sigma))((S : dstate)): dstate =
        lub(image(ndelta(symbol), S))
dfinal?((S : dstate)) : bool =
    (EXISTS (r : (final?)) : member(r, S))
dstart : dstate = singleton(start)
\vdots
END equiv
```


DFA/NFA Equivalence

```
IMPORTING DFA[Sigma, dstate, dstart, delta, dfinal?]
main: LEMMA
    (FORALL (x : list[Sigma]), (s : state):
            NDELTA(x)(s) = DELTA(x)(singleton(s)))
equiv: THEOREM
    (FORALL (string : list[Sigma]):
        Accept?(string) IFF DAccept?(string))
```

```
Tarski_Knaster [T : TYPE, <= : PRED[[T, T]], glb : [set[T] -> T] ]
: THEORY
BEGIN
ASSUMING
    x, y, z: VAR T
    X, Y, Z : VAR set[T]
    f, g : VAR [T -> T]
    antisymmetry: ASSUMPTION x <= y AND y <= x IMPLIES x = y
    transitivity : ASSUMPTION x <= y AND y <= z IMPLIES x <= z
    glb_is_lb: ASSUMPTION X(x) IMPLIES glb(X) <= x
    glb_is_glb: ASSUMPTION
    (FORALL x: X(x) IMPLIES y <= x) IMPLIES y <= glb(X)
ENDASSUMING
```

```
    8
    mono?(f): bool = (FORALL x, y: x <= y IMPLIES f(x) <= f(y))
    lfp(f) : T = glb({x | f(x) <= x })
    TK1: THEOREM
    mono?(f) IMPLIES
        lfp(f) = f(lfp(f))
END Tarski_Knaster
```

Monotone operators on complete lattices have fixed points. The fixed point defined above can be shown to be the least such fixed point.

```
TK1 :
    |-------
{1} FORALL (f: [T -> T]): mono?(f) IMPLIES lfp(f) = f(lfp(f))
Rule? (skosimp)
Skolemizing and flattening,
this simplifies to:
TK1 :
{-1} mono?(f!1)
    |-------
1 lfp(f!1) = f!1(lfp(f!1))
Rule? (case "f!1(lfp(f!1)) <= lfp(f!1)")
Case splitting on f!1(lfp(f!1)) <= lfp(f!1),
this yields 2 subgoals:
```

```
TK1.1 :
{-1} f!1(lfp(f!1)) <= lfp(f!1)
[-2] mono?(f!1)
    |-------
[1] lfp(f!1) = f!1(lfp(f!1))
Rule? (grind :theories "Tarski_Knaster")
lfp rewrites lfp(f!1)
    to glb(x | f!1(x) <= x)
mono? rewrites mono?(f!1)
    to FORALL x, y: x <= y IMPLIES f!1(x) <= f!1(y)
glb_is_lb rewrites glb(x | f!1(x) <= x) <= f!1(glb(x | f!1(x) <= x))
    to TRUE
antisymmetry rewrites glb(x | f!1(x) <= x) = f!1(glb(x | f!1(x) <= x))
    to TRUE
Trying repeated skolemization, instantiation, and if-lifting,
This completes the proof of TK1.1.
```

```
TK1.2 :
[-1] mono?(f!1)
    |-------
{1} f!1(lfp(f!1)) <= lfp(f!1)
[2] lfp(f!1) = f!1(lfp(f!1))
Rule? (grind :theories "Tarski_Knaster" :if-match nil)
lfp rewrites lfp(f!1)
    to glb(x | f!1(x) <= x)
mono? rewrites mono?(f!1)
    to FORALL x, y: x <= y IMPLIES f!1(x) <= f!1(y)
Trying repeated skolemization, instantiation, and if-lifting,
this simplifies to:
```

```
TK1.2 :
{-1} FORALL x, y: x <= y IMPLIES f!1(x) <= f!1(y)
    |-------
{1} f!1(glb(x | f!1(x) <= x)) <= glb(x | f!1(x)<= x)
2 glb(x | f!1(x) <= x) = f!1(glb(x | f!1(x) <= x))
Rule? (rewrite "glb_is_glb")
Found matching substitution:
X: set[T] gets x | f!1(x) <= x,
y: T gets f!1(glb(x | f!1(x) <= x)),
Rewriting using glb_is_glb, matching in *,
this simplifies to:
```

```
TK1.2 :
[-1] FORALL x, y: x <= y IMPLIES f!1(x) <= f!1(y)
    |-------
{1} FORALL (x_200: T):
    f!1(x_200) <= x_200 IMPLIES f!1(glb(x | f!1(x) <= x)) <= x_200
[2] f!1(glb(x | f!1(x) <= x)) <= glb(x | f!1(x) <= x)
[3] glb(x | f!1(x) <= x) = f!1(glb(x | f!1(x) <= x))
Rule? (skosimp*)
Repeatedly Skolemizing and flattening,
this simplifies to:
TK1.2 :
{-1} f!1(x!1) <= x!1
[-2] FORALL x, y: x <= y IMPLIES f!1(x) <= f!1(y)
    |-------
1 f!1(glb(x | f!1(x) <= x)) <= x!1
[2] f!1(glb(x | f!1(x) <= x)) <= glb(x | f!1(x) <= x)
[3] glb(x | f!1(x) <= x) = f!1(glb(x | f!1(x) <= x))
```


Continuation-Based Program Transformation

```
wand [dom, rng: TYPE, %function domain, range
    a: [dom -> rng], %base case function
    d: [dom-> rng], %recursion parameter
    b: [rng, rng -> rng],%continuation builder
    c: [dom -> dom], %recursion destructor
    p: PRED[dom], %branch predicate
    m: [dom -> nat], %termination measure
    F : [dom -> rng]] %tail-recursive function
    : THEORY
    BEGIN
    \vdots
    END wand
```


Continuation-Based Program Transformation (contd.)

```
ASSUMING %3 assumptions: b associative,
            % c decreases measure, and
            % F defined recursively
            % using p, a, b, c, d.
        u, v, w: VAR rng
    assoc: ASSUMPTION b(b(u, v), w) = b(u, b(v, w))
    x, y, z: VAR dom
    wf : ASSUMPTION NOT p(x) IMPLIES m(c(x)) < m(x)
    F_def: ASSUMPTION
        F(x) =
    (IF p(x) THEN a(x) ELSE b(F(c(x)), d(x)) ENDIF)
ENDASSUMING
```


Continuation-Based Program Transformation (contd.)

```
    f: VAR [rng -> rng]
%FC is F redefined with explicit continuation f.
    FC(x, f) : RECURSIVE rng =
        (IF p(x)
            THEN f(a(x))
            ELSE FC(c(x), (LAMBDA u: f(b(u, d(x)))))
        ENDIF)
    MEASURE m(x)
%FFC is main invariant relating FC and F.
    FFC: LEMMA FC(x, f) = f(F(x))
%FA is FC with accumulator replacing continuation.
    FA(x, u): RECURSIVE rng =
        (IF p(x)
            THEN b(a(x), u)
            ELSE FA(c(x), b(d(x), u)) ENDIF)
            MEASURE m(x)
%Main invariant relating FA and FC.
    FAFC: LEMMA FA(x, u) = FC(x, (LAMBDA w: b(w, u)))
```


Useful Higher Order Datatypes: Finite Sets

Finite sets: Predicate subtypes of sets that have an injective map to some initial segment of nat.

```
finite_sets_def[T: TYPE]: THEORY
    BEGIN
    x, y, z: VAR T
    S: VAR set[T]
    N: VAR nat
    is_finite(S): bool = (EXISTS N, (f: [(S) -> below[N]]):
        injective?(f))
    finite_set: TYPE = (is_finite) CONTAINING emptyset[T]
    :
END finite_sets_def
```


Useful Higher Order Datatypes: Sequences

```
sequences[T: TYPE]: THEORY
    BEGIN
    sequence: TYPE = [nat->T]
    i, n: VAR nat
    x: VAR T
    p: VAR pred[T]
    seq: VAR sequence
    nth(seq, n): T = seq(n)
    suffix(seq, n): sequence =
        (LAMBDA i: seq(i+n))
    delete(n, seq): sequence =
        (LAMBDA i: (IF i < n THEN seq(i) ELSE seq(i + 1) ENDIF))
    \vdots
    END sequences
```


Arrays

- Arrays are just functions over a subrange type.
- An array of size N over element type T can be defined as

```
INDEX: TYPE = below(N)
ARR: TYPE = ARRAY[INDEX -> T]
```

- The k'th element of an array A is accessed as A(k-1).
- Out of bounds array accesses generate unprovable proof obligations.
- Updates are a distinctive feature of the PVS language.
- The update expression f WITH [(a) := v] (loosely speaking) denotes the function (LAMBDA i: IF i = a THEN v ELSE f(i) ENDIF).
- Nested update f WITH [(a_1)(a_2) := v] corresponds to f WITH [(a_1) := f(a_1) WITH [(a_2) := v]].
- Simultaneous update f WITH [(a_1) := v_1, (a_2) := v_2] corresponds to (f WITH [(a_1) := v_1]) WITH [(a_2) := v_2].
- Arrays can be updated as functions. Out of bounds updates yield unprovable TCCs.

Record Types

- Record types: $\left[\# I_{1}: T_{1}, \ldots I_{n}: T_{n} \#\right.$], where the I_{i} are labels and T_{i} are types.
- Records are a variant of tuples that provided labelled access instead of numbered access.
- Record access: 1 (r) or $r^{\prime} 1$ for label 1 and record expression r.
- Record updates: r WITH ['l := v] represents a copy of record r where label l has the value v.

Proofs with Updates

```
array_record : THEORY
```


BEGIN

```
ARR: TYPE = ARRAY[below(5) -> nat]
rec: TYPE = [# a : below(5), b : ARR #]
r, s, t: VAR rec
test: LEMMA r WITH ['b(r`a) := 3, 'a := 4] =
    (r WITH [`a := 4]) WITH [`b(r`a) := 3]
test2: LEMMA r WITH ['b(r'a) := 3, 'a := 4] =
    (# a := 4, b := (r`b WITH [(r`a) := 3]) #)
```

END array_record

Proofs with Updates

```
test :
    |-------
{1} FORALL (r: rec):
r WITH [(b) (r'a) := 3, (a) := 4] =
    (r WITH [(a) := 4]) WITH [(b) (r'a) := 3]
Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,
Q.E.D.
```


Proofs with Updates

```
test2 :
    |-------
{1} FORALL (r: rec):
r WITH [(b) (r'a) := 3, (a) := 4] =
(# a := 4, b := (r'b WITH [(r`a) := 3]) #)
Rule? (skolem!)
Skolemizing,
this simplifies to:
```


Proofs with Updates

```
test2 :
    |-------
{1} r!1 WITH [(b)(r!1'a) := 3, (a) := 4] =
        (# a := 4, b := (r!1'b WITH [(r!1'a) := 3]) #)
    Rule? (apply-extensionality)
    Applying extensionality,
    Q.E.D.
```


Dependent Types

- Dependent records have the form

$$
\left[\# I_{1}: T_{1}, I_{2}: T_{2}\left(I_{1}\right), \ldots, I_{n}: T_{N}\left(I_{1}, \ldots, I_{n-1}\right) \#\right]
$$

```
finite_sequences [T: TYPE]: THEORY
    BEGIN
        finite_sequence: TYPE
            = [# length: nat, seq: [below[length] -> T] #]
    END finite_sequences
```

- Dependent function types have the form $\left[x: T_{1} \rightarrow T_{2}(x)\right]$

```
abs(m): {n: nonneg_real | n >= m}
    = IF m < 0 THEN -m ELSE m ENDIF
```

- Higher order variables and quantification admit the definition of a number of interesting concepts and datatypes.
- We have given higher-order definitions for functions, sets, sequences, finite sets, arrays.
- Dependent typing combines nicely with predicate subtyping as in finite sequences.
- Record and function updates are powerful operations.

Recursive Datatypes: Overview

- Recursive datatypes like lists, stacks, queues, binary trees, leaf trees, and abstract syntax trees, are commonly used in specification.
- Manual axiomatizations for datatypes can be error-prone.
- Verification system should (and many do) automatically generate datatype theories.
- The PVS DATATYPE construct introduces recursive datatypes that are freely generated by given constructors, including lists, binary trees, abstract syntax trees, but excluding bags and queues.
- The PVS proof checker automates various datatype simplifications.

Lists and Recursive Datatypes

- A list datatype with constructors null and cons is declared as

```
list [T: TYPE]: DATATYPE
BEGIN
null: null?
cons (car: T, cdr:list):cons?
    END list
```

- The accessors for cons are car and cdr.
- The recognizers are null? for null and cons? for cons-terms.
- The declaration generates a family of theories with the datatype axioms, induction principles, and some useful definitions.

Introducing PVS: Number Representation

```
bignum [ base : above(1) ] : THEORY
    BEGIN
    l, m, n: VAR nat
    cin : VAR upto(1)
    digit : TYPE = below(base)
    JUDGEMENT 1 HAS_TYPE digit
    i, j, k: VAR digit
    bignum : TYPE = list[digit]
    X, Y, Z, X1, Y1: VAR bignum
    val(X) : RECURSIVE nat =
        CASES X of
            null: 0,
            cons(i, Y): i + base * val(Y)
        ENDCASES
    MEASURE length(X);
```


Adding a Digit to a Number

```
+(X, i): RECURSIVE bignum =
    (CASES X of
        null: cons(i, null),
        cons(j, Y):
            (IF i + j < base
                THEN cons(i+j, Y)
                ELSE cons(i + j - base, Y + 1)
            ENDIF)
        ENDCASES)
MEASURE length(X);
correct_plus: LEMMA
    val(X + i) = val(X) + i
```


Adding Two Numbers

```
bigplus(X, Y, (cin : upto(1))): RECURSIVE bignum =
    CASES X of
        null: Y + cin,
        cons(j, X1):
            CASES Y of
                null: X + cin,
                cons(k, Y1):
                    (IF cin + j + k < base
                        THEN cons((cin + j + k - base),
                        bigplus(X1, Y1, 1))
                        ELSE cons((cin + j + k), bigplus(X1, Y1, 0))
                ENDIF)
            ENDCASES
        ENDCASES
MEASURE length(X)
bigplus_correct: LEMMA
    val(bigplus(X, Y, cin)) = val(X) + val(Y) + cin
```


Binary Trees

- Parametic in value type T.
- Constructors: leaf and node.
- Recognizers: leaf? and node?.
- node accessors: val, left, and right.
-

```
binary_tree[T : TYPE] : DATATYPE
BEGIN
    leaf : leaf?
    node(val : T, left : binary_tree, right : binary_tree) : node?
END binary_tree
```

- The binary_tree declaration generates three theories axiomatizing the binary tree data structure:
- binary_tree_adt: Declares the constructors, accessors, and recognizers, and contains the basic axioms for extensionality and induction, and some basic operators.
- binary_tree_adt_map: Defines map operations over the datatype.
- binary_tree_adt_reduce: Defines an recursion scheme over the datatype.
- Datatype axioms are already built into the relevant proof rules, but the defined operations are useful.

Basic Binary Tree Theory

```
binary_tree_adt[T: TYPE]: THEORY
    BEGIN
    binary_tree: TYPE
    leaf?, node?: [binary_tree -> boolean]
    leaf: (leaf?)
    node: [[T, binary_tree, binary_tree] -> (node?)]
    val: [(node?) -> T]
    left: [(node?) -> binary_tree]
    right: [(node?) -> binary_tree]
    END binary_tree_adt
```

Predicate subtyping is used to precisely type constructor terms and avoid misapplied accessors.

An Extensionality Axiom per Constructor

Extensionality states that a node is uniquely determined by its accessor fields.

```
binary_tree_node_extensionality: AXIOM
    (FORALL (node?_var: (node?)),
            (node?_var2: (node?)):
        val(node?_var) = val(node?_var2)
        AND left(node?_var) = left(node?_var2)
            AND right(node?_var) = right(node?_var2)
        IMPLIES node?_var = node?_var2)
```


Accessor/Constructor Axioms

Asserts that val(node(v, A, B)) $=\mathrm{v}$.

```
binary_tree_val_node: AXIOM
    (FORALL (node1_var: T), (node2_var: binary_tree),
            (node3_var: binary_tree):
        val(node(node1_var, node2_var, node3_var)) = node1_var)
```


An Induction Axiom

Conclude FORALL A: $p(A)$ from p (leaf) and $p(A) \wedge p(B) \supset p(\operatorname{node}(v, A, B))$.

```
binary_tree_induction: AXIOM
    (FORALL (p: [binary_tree -> boolean]):
        p(leaf)
            AND
            (FORALL (node1_var: T), (node2_var: binary_tree),
                (node3_var: binary_tree):
            p(node2_var) AND p(node3_var)
            IMPLIES p(node(node1_var, node2_var, node3_var)))
            IMPLIES (FORALL (binary_tree_var: binary_tree):
                        p(binary_tree_var)))
```


Pattern-matching Branching

- The CASES construct is used to branch on the outermost constructor of a datatype expression.
- We implicitly assume the disjointness of (node?) and (leaf?):

```
CASES leaf OF
\(=\mathrm{u}\)
    leaf : u,
    node(a, y, z) : v(a, y, z)
    ENDCASES
CASES node(b, w, x) OF \(\quad=\mathrm{v}(\mathrm{b}, \mathrm{w}, \mathrm{x})\)
    leaf : u,
    node(a, y, z) : v(a, y, z)
    ENDCASES
```


Useful Generated Combinators

```
reduce_nat(leaf?_fun:nat, node?_fun:[[T, nat, nat] -> nat]):
    [binary_tree -> nat] = ...
```

every(p: PRED[T])(a: binary_tree): boolean = ...
some(p: PRED[T])(a: binary_tree): boolean $=\ldots$
subterm(x, y: binary_tree): boolean $=\ldots$
$\operatorname{map}(\mathrm{f}:[\mathrm{T}->\mathrm{T} 1])(\mathrm{a}:$ binary_tree[T]): binary_tree[T1] =\ldots

Ordered Binary Trees

- Ordered binary trees can be introduced by a theory that is parametric in the value type as well as the ordering relation.
- The ordering relation is subtyped to be a total order.

```
total_order?(<=): bool = partial_order?(<=) & dichotomous?(<=)
```

```
obt [T : TYPE, <= : (total_order?[T])] : THEORY
BEGIN
IMPORTING binary_tree[T]
    A, B, C: VAR binary_tree
    x, y, z: VAR T
    pp: VAR pred[T]
    i, j, k: VAR nat
    END obt
```

The number of nodes in a binary tree can be computed by the size function which is defined using reduce_nat.

```
size(A) : nat =
    reduce_nat(0, (LAMBDA x, i, j: i + j + 1))(A)
```

Recursively checks that the left and right subtrees are ordered, and that the left (right) subtree values lie below (above) the root value.

```
ordered?(A) : RECURSIVE bool =
    (IF node?(A)
    THEN (every((LAMBDA y: y<=val(A)), left(A)) AND
            every((LAMBDA y: val(A)<=y), right(A)) AND
                ordered?(left(A)) AND
            ordered?(right(A)))
        ELSE TRUE
        ENDIF)
    MEASURE size
```


Insertion

- Compares x against root value and recursively inserts into the left or right subtree.

```
insert(x, A): RECURSIVE binary_tree[T] =
    (CASES A OF
        leaf: node(x, leaf, leaf),
        node(y, B, C): (IF x<=y THEN node(y, insert(x, B), C)
                                    ELSE node(y, B, insert(x, C))
                        ENDIF)
        ENDCASES)
    MEASURE (LAMBDA x, A: size(A))
```

- The following is a very simple property of insert.

```
ordered?_insert_step: LEMMA
    pp(x) AND every(pp, A) IMPLIES every(pp, insert(x, A))
```


Proof of insert property

```
ordered?_insert_step :
    |-------
{1} (FORALL (A: binary_tree[T], pp: pred[T], x: T):
        pp(x) AND every(pp, A) IMPLIES every(pp, insert(x, A)))
Rule? (induct-and-simplify "A")
every rewrites every(pp!1, leaf)
    to TRUE
insert rewrites insert(x!1, leaf)
    to node(x!1, leaf, leaf)
every rewrites every(pp!1, node(x!1, leaf, leaf))
    to TRUE
    :
By induction on A, and by repeatedly rewriting and simplifying,
Q.E.D.
```


Orderedness of insert

ordered?_insert: THEOREM
ordered?(A) IMPLIES ordered?(insert(x, A))
is proved by the 4-step PVS proof

```
(""
    (induct-and-simplify "A" :rewrites "ordered?_insert_step")
    (rewrite "ordered?_insert_step")
    (typepred "obt.<=")
    (grind :if-match all))
```


Automated Datatype Simplifications

```
binary_props[T : TYPE] : THEORY
    BEGIN
    IMPORTING binary_tree_adt[T]
    A, B, C, D: VAR binary_tree[T]
    x, y, z: VAR T
    leaf_leaf: LEMMA leaf?(leaf)
    node_node: LEMMA node?(node(x, B, C))
    leaf_leaf1: LEMMA A = leaf IMPLIES leaf?(A)
    node_node1: LEMMA A = node(x, B, C) IMPLIES node?(A)
    val_node: LEMMA val(node(x, B, C)) = x
    leaf_node: LEMMA NOT (leaf?(A) AND node?(A))
    node_leaf: LEMMA leaf?(A) OR node?(A)
    leaf_ext: LEMMA (FORALL (A, B: (leaf?)): A = B)
    node_ext: LEMMA
        (FORALL (A : (node?)) : node(val(A), left(A), right(A)) = A)
    END binary_props
```


Inline Datatypes

```
combinators : THEORY
    BEGIN
    combinators: DATATYPE
        BEGIN
            K: K?
            S: S?
            app(operator, operand: combinators): app?
        END combinators
    x, y, z: VAR combinators
    reduces_to: PRED[[combinators, combinators]]
    K: AXIOM reduces_to(app(app (K, x), y), x)
    S: AXIOM reduces_to(app (app (app (S, x), y), z),
        app(app(x,z), app(y,z)))
    END combinators
```


Scalar Datatypes

```
colors: DATATYPE
        BEGIN
            red: red?
            white: white?
            blue: blue?
    END colors
```

The above verbose inline declaration can be abbreviated as:
colors: TYPE $=\{$ red, white, blue $\}$

Disjoint Unions

```
disj_union[A, B: TYPE] : DATATYPE
    BEGIN
        inl(left : A): inl?
        inr(right : B): inr?
    END disj_union
```


Mutually Recursive Datatypes

- PVS does not directly support mutually recursive datatypes.
- These can be defined as subdatatypes (e.g., term, expr) of a single datatype.

```
arith: DATATYPE WITH SUBTYPES expr, term
    BEGIN
        num(n:int): num? :term
        sum(t1:term,t2:term): sum? :term
% ...
    eq(t1: term, t2: term): eq? :expr
    ift(e: expr, t1: term, t2: term): ift? :term
% ...
    END arith
```

- The PVS datatype mechanism succinctly captures a large class of useful datatypes by exploiting predicate subtypes and higher-order types.
- Datatype simplifications are built into the primitive inference mechanisms of PVS.
- This makes it possible to define powerful and flexible high-level strategies.
- The PVS datatype is loosely inspired by the Boyer-Moore Shell principle.
- Other systems HOL [Melham89, Gunter93] and Isabelle [Paulson] have similar datatype mechanisms as a provably conservative extension of the base logic.
- Many computational systems can be modeled as transition systems.
- A transition system is a triple $\langle\Sigma, I, N\rangle$ consisting of a set of states Σ, an initialization predicate I, and transition relation N.
- Transition system properties include invariance, stability, eventuality, and refinement.
- Finite-state transition systems can be analyzed by means of state exploration.
- Properties of infinite-state transition systems can be proved using various combinations of theorem proving and model checking.

States and Transitions in PVS

Given some state type, an assertion is a predicate on this type, and action is a relation between states, and a computation is an infinite sequence of states.

```
state[state: TYPE] : THEORY
BEGIN
    IMPORTING sequences[state]
    statepred: TYPE = PRED[state] %assertions
    Action: TYPE = PRED[[state, state]]
    computation : TYPE = sequence[state]
    pp: VAR statepred
    action: VAR Action
    aa, bb, cc: VAR computation
```


States and Transitions

- A run is valid if the initialization predicate pp holds initially, and the action aa holds of each pair of adjacent states.
- An invariant assertion holds of each state in the run.

```
Init(pp)(aa) : bool = pp(aa(0))
    Inv(action)(aa) : bool =
        (FORALL (n : nat) : action(aa(n), aa(n+1)))
    Run(pp, action)(aa): bool =
        (Init(pp)(aa) AND Inv(action)(aa))
    Inv(pp)(aa) : bool =
    (FORALL (n : nat) : pp(aa(n)))
END state
```


(Simplified) Peterson's Mutual Exclusion Algorithm

- The algorithm ensures mutual exclusion between two processes P and Q.
- The global state of the algorithm is a record consisting of the program counters PCP and PCQ, and boolean turn variable.

```
mutex : THEORY
    BEGIN
        PC : TYPE = sleeping, trying, critical
        state : TYPE = [# pcp : PC,
            turn: bool,
            pcq : PC #]
        IMPORTING state[state]
        s, s0, s1: VAR state
```


Defining Process P

P is initially sleeping. It moves to trying by setting the turn variable to FALSE, and enters the critical state if Q is sleeping or turn is TRUE.

```
I_P(s) : bool = (sleeping?(pcp(s)))
G_P(s0, s1): bool =
    ( (s1 = s0) %stutter
        OR (sleeping?(pcp(s0)) AND %try
            s1 = s0 WITH [pcp := trying, turn := FALSE])
    OR (trying?(pcp(s0)) AND %enter critical
            (turn(s0) OR sleeping?(pcq(sO))) AND
        s1 = s0 WITH [pcp := critical])
    OR (critical?(pcp(sO)) AND %exit critical
        s1 = s0 WITH [pcp := sleeping, turn := FALSE ]))
```


Defining Process Q

Process Q is similar to P with the dual treatment of the turn variable.

```
I_Q(s) : bool = (sleeping?(pcq(s)))
G_Q(s0, s1): bool =
    ( (s1 = s0) %stutter
    OR (sleeping?(pcq(s0)) AND %try
        s1 = sO WITH [pcq := trying, turn := TRUE])
    OR (trying?(pcq(s0)) AND %enter
            (NOT turn(sO) OR sleeping?(pcp(sO))) AND
        s1 = s0 WITH [pcq := critical])
    OR (critical?(pcq(sO)) AND %exit critical
        s1 = s0 WITH [pcq := sleeping, turn := TRUE]))
```

The system consists of:

- The conjunction of the initializations for P and Q
- The disjunction of the actions for P and Q (interleaving).

```
I(s) : bool = (I_P(s) AND I_Q(s))
G(s0, s1) : bool = (G_P(s0, s1) OR G_Q(s0, s1))
END mutex
```


Proving Mutual Exclusion

safe is the assertion that P and Q are not simultaneously critical.

```
mutex_proof: THEORY
    BEGIN
        IMPORTING mutex, connectives[state]
        s, s0, s1: VAR state
        safe(s) : bool = NOT (critical?(pcp(s)) AND critical?(pcq(s)))
        safety_proved: CONJECTURE
            (FORALL (aa: computation):
                Run(I, G) (aa)
                IMPLIES Inv(safe)(aa))
```

safety_proved asserts the invariance of safe.

Proving Mutual Exclusion

```
safety_proved :
    |-------
{1} (FORALL (aa: computation):
                        Run(I, G)(aa) IMPLIES Inv(safe)(aa))
Rule? (reduce-invariant)
    :
Apply the invariance rule,,
this yields 11 subgoals:
```

reduce-invariant is a proof strategy that reduces the task to that of showing that each transition preserves the invariant.

Proving Mutual Exclusion

```
safety_proved.1 :
{-1} Init(I)(aa!1)
    |-------
{1} safe(aa!1(0))
Rule? (grind)
    :
Trying repeated skolemization, instantiation, and if-lifting,
This completes the proof of safety_proved.1.
```


Proving Mutual Exclusion

```
safety_proved.2 :
{-1} (aa!1(1 + (j!1 + 1 - 1)) = aa!1(j!1 + 1 - 1))
{-2} safe(aa!1(j!1))
    |-------
{1} safe(aa!1(j!1 + 1))
Rule? (grind)
    :
    Trying repeated skolemization, instantiation, and if-lifting,
    This completes the proof of safety_proved.2.
```


Proving Mutual Exclusion

```
safety_proved.3 :
{-1} sleeping?(pcp(aa!1(j!1 + 1 - 1)))
{-2} aa!1(1 + (j!1 + 1 - 1)) =
        aa!1(j!1 + 1 - 1) WITH [pcp := trying, turn := FALSE]
{-3} safe(aa!1(j!1))
    |-------
{1} safe(aa!1(j!1 + 1))
Rule? (grind)
    :
Trying repeated skolemization, instantiation, and if-lifting,
This completes the proof of safety_proved.3.
```


Proving Mutual Exclusion

```
safety_proved.4 :
{-1} turn(aa!1(j!1 + 1 - 1))
{-2} trying?(pcp(aa!1(j!1 + 1 - 1)))
{-3} aa!1(1 + (j!1 + 1 - 1))
    = aa!1(j!1 + 1 - 1) WITH [pcp := critical]
{-4} safe(aa!1(j!1))
    |-------
{1} safe(aa!1(j!1 + 1))
Rule? (grind)
safe rewrites safe(aa!1(j!1))
    to TRUE
safe rewrites safe(aa!1(1 + j!1))
    to NOT critical?(pcq(aa!1(1 + j!1)))
Trying repeated skolemization, instantiation, and if-lifting,
this simplifies to:
```


Proving Mutual Exclusion

```
safety_proved.4 :
{-1} aa!1(j!1)'turn
{-2} trying?(pcp(aa!1(j!1)))
{-3} aa!1(1 + j!1) = aa!1(j!1) WITH [pcp := critical]
[-4] safe(aa!1(j!1))
{-5} critical?(aa!1(j!1)'pcq)
    |-------
```

Unprovable subgoal!
Invariant is too weak, and is not inductive.

Strengthening the Invariant

```
strong_safe(s) : bool =
    ((critical?(pcp(s)) IMPLIES (turn(s) OR sleeping?(pcq(s))))
    AND
    (critical?(pcq(s)) IMPLIES (NOT turn(s) OR sleeping?(pcp(s)))))
    strong_safety_proved: THEOREM
        (FORALL (aa: computation):
            Run(I, G)(aa)
            IMPLIES Inv(strong_safe)(aa))
```

Verified by (then (reduce-invariant) (grind)).

Strong Invariant Implies Weak

```
strong_safe_implies_safe :
    |-------
{1} FORALL (s: state): (strong_safe IMPLIES safe)(s)
Rule? (grind)
    \vdots
Trying repeated skolemization, instantiation, and if-lifting, Q.E.D.
```

- Given a state type state, we already saw that assertions over this state type have the type pred [state].
- Predicate transformers over this type can be given the type [pred[state] -> pred[state]].

```
relation_defs [T1, T2: TYPE]: THEORY
    BEGIN
    R: VAR pred[[T1, T2]]
    X: VAR set[T1]
    Y: VAR set[T2]
        preimage(R)(Y): set[T1] = preimage(R, Y)
        postcondition(R)(X): set[T2] = postcondition(R, X)
        precondition(R)(Y): set[T1] = precondition(R, Y)
    END relation_defs
```

```
mucalculus[T:TYPE]: THEORY
    BEGIN
        s: VAR T
        p, p1, p2: VAR pred[T]
        predicate_transformer: TYPE = [pred[T]->pred[T]]
        pt: VAR predicate_transformer
        setofpred: VAR pred[pred[T]]
        <=(p1,p2): bool = FORALL s: p1(s) IMPLIES p2(s)
    monotonic?(pt): bool =
        FORALL p1, p2: p1 <= p2 IMPLIES pt(p1) <= pt(p2)
    pp: VAR (monotonic?)
    glb(setofpred): pred[T] =
    LAMBDA s: (FORALL p: member(p,setofpred) IMPLIES p(s))
```

```
% least fixpoint
lfp(pp): pred[T] = glb({p | pp(p) <= p})
mu(pp): pred[T] = lfp(pp)
lub(setofpred): pred[T] =
    LAMBDA s: EXISTS p: member(p,setofpred) AND p(s)
% greatest fixpoint
gfp(pp): pred[T] = lub({p | p <= (pp(p)) })
nu(pp): pred[T] = gfp(pp)
END mucalculus
```

The Least Fixed Point

Exercises

(1) P is \cup-continuous if $\left\langle X_{i} \mid i \in \mathbf{N}\right\rangle$ is a family of sets (predicates) such that $X_{i} \subseteq X_{i+1}$, then $P\left(\bigcup_{i}\left(X_{i}\right)\right)=\bigcup_{i}\left(P\left(X_{i}\right)\right)$.
(2) Show that $(\mu Z . P[Z])\left(z_{1}, \ldots, z_{n}\right)=\bigvee_{i} P^{i}[\perp]\left(z_{1}, \ldots, z_{n}\right)$, where $\perp=\lambda z_{1}, \ldots, z_{n}$: false.
(3) Similarly, P is P is \cap-continuous if $\left\langle X_{i} \mid i \in \mathbf{N}\right\rangle$ is a family of sets (predicates) such that $X_{i+1} \subseteq X_{i}$, then $P\left(\bigcap_{i}\left(X_{i}\right)\right)=\bigcap_{i}\left(P\left(X_{i}\right)\right)$.
(4) Show that $(\nu Z . P[Z])\left(z_{1}, \ldots, z_{n}\right)=\bigwedge_{i} P^{i}[\top]\left(z_{1}, \ldots, z_{n}\right)$, where $T=\lambda z_{1}, \ldots, z_{n}$: true.

Fixed Point Computations

- The set of reachable states is fundamental to model checking
- Any initial state is reachable.
- Any state that can be reached in a single transition from a reachable state is reachable.
- These are all the reachable states.
- This is a least fixed point:
mu X: LAMBDA y: $\mathrm{I}(\mathrm{y})$ OR EXISTS $\mathrm{x}: \mathrm{N}(\mathrm{x}, \mathrm{y})$ AND $\mathrm{X}(\mathrm{x})$.
- An invariant is an assertion that is true of all reachable states: AGp.

```
ctlops[state : TYPE]: THEORY
    BEGIN
    u,v,w: VAR state
    f,g,Q,P,p1,p2: VAR pred[state]
    Z: VAR pred[[state, state]]
    N: VAR [state, state -> bool]
    EX(N,f)(u):bool = (EXISTS v: (f(v) AND N(u, v)))
    EU(N,f,g):pred[state] = mu(LAMBDA Q: (g OR (f AND EX(N,Q))))
    EF(N,f):pred[state] = EU(N, TRUE, f)
    AG(N,f):pred[state] = NOT EF(N, NOT f)
    END ctlops
```


Symbolic Fixed Point Computations

- If the computation state is represented as a boolean array $b[1 . . N]$,
- Then a set of states can be represented by a boolean function mapping $\{0,1\}^{N}$ to $\{0,1\}$.
- Boolean functions can represent
- Initial state set
- Transition relation
- Image of transition relation with respect to a state set
- Set of reachable states computable as a boolean function.
- ROBDD representation of boolean functions empirically efficient.
- ROBDDs are a canonical representation of boolean functions as a decision diagram where
(1) Literals are uniformly ordered along every branch
(2) Common subterms are identified
(3) Redundant branches are removed.
- Efficient implementation of boolean operations including quantification.
- Canonical form yields free equivalence checks (for convergence of fixed points).

ROBDD for Even Parity

ROBDD for even parity boolean function of a, b, c.

Model Checking Peterson's Algorithm

```
mutex_mc: THEORY
    BEGIN
        IMPORTING mutex_proof
        s, s0, s1: VAR state
        safety: LEMMA
            I(s) IMPLIES
                AG(G, safe)(s)
        \vdots
        END mutex_mc
```

```
safety :
    |-------
{1} FORALL (s: state): I(s) IMPLIES AG(G, safe)(s)
Rule? (auto-rewrite-theories "mutex" "mutex_proof")
Installing rewrites from theories: mutex mutex_proof,
this simplifies to:
safety :
    |-------
[1] FORALL (s: state): I(s) IMPLIES AG(G, safe)(s)
Rule? (model-check)
    !
By rewriting and mu-simplifying,
Q.E.D.
```

- For state s, the property fairEG(N, f)(Ff)(s) holds when the predicate f holds along every fair path.
- For fairness condition Ff, a fair path is one where Ff holds infinitely often.
- This is given by the set of states that can P that can always reach f AND Ff AND EX (N, P) along an f path.

```
fairEG(N, f)(Ff): pred[state] =
    nu(LAMBDA P: EU(N, f, f AND Ff AND EX(N, P)))
```


Linear-Time Temporal Logic (LTL)

$$
\begin{aligned}
s \models a & =s(a)=\text { true } \\
s \models \neg A & =s \not \models A \\
s \models A_{1} \vee A_{2} & =s \models A_{1} \text { or } s \models A_{2} \\
s \models \mathbf{A} L & =\forall \sigma: \sigma(0)=s \text { implies } \sigma \models L \\
s \models \mathbf{E} L & =\exists \sigma: \sigma(0)=s \text { and } \sigma \models L \\
\sigma \models a & =\sigma(0)(a)=\text { true } \\
\sigma \models \neg L & =\sigma \not \models L \\
\sigma \models L_{1} \vee L_{2} & =\sigma \models L_{1} \text { or } \sigma \models L_{2} \\
\sigma \models \mathbf{X A} & =\sigma\langle 1\rangle \models A \\
\sigma \models A_{1} \mathbf{U} A_{2} & =\exists j: \sigma\langle j\rangle \models A_{2} \text { and } \forall i<j: \sigma\langle i\rangle \models A_{1}
\end{aligned}
$$

Exercise: Embed LTL semantics in PVS.

