
Trusting Outsourced Components
in Flight-Critical Systems

Temesghen Kahsai

NASA Ames / CMU

Wednesday, May 20, 15

Joint work with ...

Dr. Kasper Luckow
(CMU)

Dr. Arie Gurfinkel
(SEI / CMU)

Prof. Cesare Tinelli
(The University of Iowa)

Dr. Adrien Champion
(The University of Iowa)

Wednesday, May 20, 15

Outsourcing in the aerospace industry

Wednesday, May 20, 15

Outsourcing in the aerospace industry

The Boeing 787 Dreamliner’s flight critical,
embedded software is build on the
WRS ARINC 653 system and is assembled
from software components by multiple subcontractors

Wednesday, May 20, 15

Boeing 737 and 747 = 35-50%

Boeing 787 = 70%

Outsourcing in the aerospace industry

Wednesday, May 20, 15

• The delivery date was pushed back 4 times and was late more than 4 years

• The aft fuselage consisted of 6,000 components, and many of those
components failed to conform to Boeing’s specified tolerances, resulting in
significant cost and schedule delays

• The first Dreamliner to arrive at the company’s assembly place was missing
tens of thousands of parts

Outsourcing in the aerospace industry

Wednesday, May 20, 15

Outsourcing in the aerospace industry

Wednesday, May 20, 15

• January 2013: 50 Dreamliner was grounded due to issues with the lithium-
ion batteries.

• On balance with just under 60 aircraft in service, the 787 has had 6 reported
mechanical incidents in 2013.

• All the individual parts worked in isolation. But, together, under certain
circumstances, the parts failed.

Outsourcing in the aerospace industry

Wednesday, May 20, 15

* http://executive.mit.edu/blog/will-risk-result-in-reward-for-boeings-dreamliner

“While we can’t completely eliminate failures, the answer lies
in system engineering. This involves a process of careful
design and architecture ... as well as a staged integration of
the entire system, and extensive qualification, verification and
validation testing.” Prof. S. Eppinger (MIT)

Outsourcing in the aerospace industry

Wednesday, May 20, 15

http://executive.mit.edu/blog/will-risk-result-in-reward-for-boeings-dreamliner
http://executive.mit.edu/blog/will-risk-result-in-reward-for-boeings-dreamliner

.... outsourcing in flight critical software

This talk

.... virtual integration of outsourced components

Wednesday, May 20, 15

Assurance of Flight Critical Systems (FCS)

• Develop multidisciplinary V&V tools and techniques that advance safety
assurance and certification

• Flight-critical systems: any systems that directly controls the safe
conduct of an aircraft’s flight, i.e. air and ground systems

Technical Challenges:

Aim:

1. Argument-based safety assurance

2. Integrated distributed systems

3. Authority and Autonomy

4. Software intensive systems

5. Assessment environments

Wednesday, May 20, 15

Assurance of Flight Critical Systems (FCS)

• Develop multidisciplinary V&V tools and techniques that advance safety
assurance and certification

• Flight-critical systems: any systems that directly controls the safe
conduct of an aircraft’s flight, i.e. air and ground systems

Technical Challenges:

Aim:

1. Argument-based safety assurance

2. Integrated distributed systems

3. Authority and Autonomy

4. Software intensive systems

5. Assessment environments

Wednesday, May 20, 15

Assurance of Flight Critical Systems (FCS)
Topic: “Support for verification of black-box FCS”

Wednesday, May 20, 15

Assurance of Flight Critical Systems (FCS)
Topic: “Support for verification of black-box FCS”

Context:

• More and more design and implementation of FCS is contracted out to
external companies

• Example: FAA contracts out the implementation of most of the air traffic
systems

• Integration of FCS from Commercial Off-The-Shelf (COTS) components

• Current technique is based on black-box testing

• Many of those systems have been first prototyped in-house

• Example: Many FAA systems has been prototyped by MIT Lincoln Lab,
NASA etc. (e.g. TCAS, ACAS-X, TSAFE, etc.)

Wednesday, May 20, 15

In house prototyping

Assurance of Flight Critical Systems (FCS)
Topic: “Support for verification of black-box FCS”

Component
Requirement

Component
Outsourced For
Implementation

System
Design
Model

System Level Properties

Component Design
Model

Component Design
Model

Component Design
Model

(Simulink/Stateflow)

Component Design
Model

Component Design
Model

Component
prototype imp.

(C/C++)

Component Design
Model

Component Design
Model

Component
prototype imp.

(JAVA)

Wednesday, May 20, 15

In house prototyping

Assurance of Flight Critical Systems (FCS)
Topic: “Support for verification of black-box FCS”

Component
Requirement

Component
Outsourced For
Implementation

System
Design
Model

System Level Properties

Component Design
Model

Component Design
Model

Component Design
Model

(Simulink/Stateflow)

Component Design
Model

Component Design
Model

Component
prototype imp.

(C/C++)

Component Design
Model

Component Design
Model

Component
prototype imp.

(JAVA)

In house assembling

Black-box
Component

Delivery

Component
Black-box

Implementation

C1

C2

C3

Black Box Testing

Testing
Environment

Wednesday, May 20, 15

Contract-based Compositional verification
for outsourced FCS (CoCo)

Wednesday, May 20, 15

Outline

• Two stage solution for virtual integration

• 1st stage: contract generation

• 2nd stage: contract compliance

• Flight critical system case studies

Wednesday, May 20, 15

Two Stage solution for virtual integration

Wednesday, May 20, 15

In house prototyping

Component
Requirement

Component
Outsourced For
Implementation

System
Design
Model

System Level Properties

Component Design
Model

Component Design
Model

Component Design
Model

(Simulink/Stateflow)

Component Design
Model

Component Design
Model

Component
prototype imp.

(C/C++)

Component Design
Model

Component Design
Model

Component
prototype imp.

(JAVA)

In house assembling

Black-box
Component

Delivery

Component
Black-box

Implementation

C1

C2

C3

Black Box Testing

Testing
Environment

Two Stage solution for virtual integration

Wednesday, May 20, 15

Pre-Delivery Stage

Post-Delivery stage

Component
Outsourced For
Implementation

Black-box
Component

Delivery

Two Stage solution for virtual integration

Wednesday, May 20, 15

Pre-Delivery Stage

Post-Delivery stage

Component
Outsourced For
Implementation

Black-box
Component

Delivery

Two Stage solution for virtual integration

System Level PropertiesComponent Design
Model

Component Design
Model

Component Design
Model
(JAVA)

System
Design
Model

Component Design
Model

Component Design
Model

Component Design
Model

(Simulink/Stateflow)

Component Design
Model

Component Design
Model

Component
prototype imp.

(C/C++)

Wednesday, May 20, 15

Pre-Delivery Stage

Post-Delivery stage

Component
Outsourced For
Implementation

Black-box
Component

Delivery

Two Stage solution for virtual integration

System Level PropertiesComponent Design
Model

Component Design
Model

Component Design
Model
(JAVA)

System
Design
Model

Component Design
Model

Component Design
Model

Component Design
Model

(Simulink/Stateflow)

Component Design
Model

Component Design
Model

Component
prototype imp.

(C/C++)

 Automated
Contract

Generation

Wednesday, May 20, 15

Pre-Delivery Stage

Post-Delivery stage

Component
Outsourced For
Implementation

Component
Requirement

Contract

Black-box
Component

Delivery

Two Stage solution for virtual integration

System Level PropertiesComponent Design
Model

Component Design
Model

Component Design
Model
(JAVA)

System
Design
Model

Component Design
Model

Component Design
Model

Component Design
Model

(Simulink/Stateflow)

Component Design
Model

Component Design
Model

Component
prototype imp.

(C/C++)

 Automated
Contract

Generation

Wednesday, May 20, 15

Pre-Delivery Stage

Post-Delivery stage

Component
Outsourced For
Implementation

System Level Properties

Component
Requirement

Contract

Black-box
Component

Delivery

Contract - Based
Component Testing

Contract - Based
Integration Testing

Component
Black-box

Implementation

Con
tra

ct

Con
tra

ct

Two Stage solution for virtual integration

Component Design
Model

Component Design
Model

Component Design
Model
(JAVA)

System
Design
Model

Component Design
Model

Component Design
Model

Component Design
Model

(Simulink/Stateflow)

Component Design
Model

Component Design
Model

Component
prototype imp.

(C/C++)

 Automated
Contract

Generation

Wednesday, May 20, 15

Pre-delivery verification stage

Wednesday, May 20, 15

Pre-delivery Verification Stage

How to generate formal contracts from models and prototypical code?

1. Define a notion of a component contract

• system property based

• allows obtain a higher degree of assurance

2. Design a uniform intermediate modeling formalism

• to facilitate the integration of different techniques

• to target heterogeneous in-house system prototypes

3. Develop (semi)-automated techniques to generate contract from models and
prototypical code

Wednesday, May 20, 15

Notion of a Formal Contract
• Contracts as a method to organize and integrate component-based systems

• Specify precisely the information necessary to reason about a component
interactions

• Contracts specify I/O behavior of a component:

• Define the component guarantees provided that its environment obey
certain assumptions.

Wednesday, May 20, 15

Notion of a Formal Contract
• Contracts as a method to organize and integrate component-based systems

• Specify precisely the information necessary to reason about a component
interactions

• Contracts specify I/O behavior of a component:

• Define the component guarantees provided that its environment obey
certain assumptions.

Different notions of formal contract, e.g.:

• Othello: Trace-based contract framework [Tonetta et. al.]

• AGREE: Contract language for AADL [Cofer et. al.]

• ACSL, JML, SPARK, etc : Contract in Programming Languages.

Wednesday, May 20, 15

Compositional Verification

M1

M2

|= P

• Check P on entire system: too complicated (e.g. many states)

• Use system’s natural decomposition into components to break-up the ver-

ification task

• Check components in isolation: M1 |= P?

• ... typically a component is designed to satisfy its requirements in specific

contexts

Wednesday, May 20, 15

Compositional Verification

M1

M2

|= P

• Check P on entire system: too complicated (e.g. many states)

• Use system’s natural decomposition into components to break-up the ver-

ification task

• Check components in isolation: M1 |= P?

• ... typically a component is designed to satisfy its requirements in specific

contexts

Wednesday, May 20, 15

Compositional Verification

M1

M2

|= P

• Check P on entire system: too complicated (e.g. many states)

• Use system’s natural decomposition into components to break-up the ver-

ification task

• Check components in isolation: M1 |= P?

• ... typically a component is designed to satisfy its requirements in specific

contexts

• Assume-Guarantee reasoning

• Misra & Chandy 81, Jones 83, Pnueli 84, Pasareanu 01

Wednesday, May 20, 15

Compositional Verification

M1

M2

|= P

• Check P on entire system: too complicated (e.g. many states)

• Use system’s natural decomposition into components to break-up the ver-

ification task

• Check components in isolation: M1 |= P?

• ... typically a component is designed to satisfy its requirements in specific

contexts

A

• introduces assumption A representing M1’s context

• Assume-Guarantee reasoning

• Misra & Chandy 81, Jones 83, Pnueli 84, Pasareanu 01

Wednesday, May 20, 15

Compositional Verification

1. hAi M1 hP i
2. htruei M2 hAi
htruei M1kM2 hP i

Simplest assume-guarantee rule (Asym)

M1

M2

|= P

A

hAi M hP i is true if whenever M
is part of a system that satisfies A,

then the system must also guarantee P

Wednesday, May 20, 15

Compositional Verification

1. hAi M1 hP i
2. htruei M2 hAi
htruei M1kM2 hP i

Simplest assume-guarantee rule (Asym)

M1

M2

|= P

A

hAi M hP i is true if whenever M
is part of a system that satisfies A,

then the system must also guarantee P

* Cobleigh et. al “Learning assumption for compositional verification”. TACAS’01
* Emmi et. al “Assume Guarantee Verification for Interface Automata”. FM’08
* Giannakopoulou et. al “Symbolic Learning of component interfaces”. SAS’12
* Howar et. al “Hybrid learning: interface generation through static, dynamic, and
symbolic analysis” ISSTA’13.

Wednesday, May 20, 15

Compositional Verification

• no file “close” before “open”

• access to shared variable “X” must be protected by lock “L”

• (rover executive) whenever thread “T” reads variable “V”, no other
thread can read “V” before thread “T” clears it first

• (spacecraft flight phases) a docking maneuver can only be invoked if
the launch abort system has previously been jettisoned from the
spacecraft

(*) C. Pasareanu slides on compositional verification from SSFT 2012

Example of assumptions (*)

Wednesday, May 20, 15

Pre-Delivery Stage

Post-Delivery stage

Component
Outsourced For
Implementation

System Level Properties

Component
Requirement

Contract

Black-box
Component

Delivery

Contract - Based
Component Testing

Contract - Based
Integration Testing

Component
Black-box

Implementation

Con
tra

ct

Con
tra

ct

Two Stage solution for virtual integration

Component Design
Model

Component Design
Model

Component Design
Model
(JAVA)

System
Design
Model

Component Design
Model

Component Design
Model

Component Design
Model

(Simulink/Stateflow)

Component Design
Model

Component Design
Model

Component
prototype imp.

(C/C++)

 Automated
Contract

Generation

Wednesday, May 20, 15

Pre-Delivery Stage

Post-Delivery stage

Component
Outsourced For
Implementation

System Level Properties

Component
Requirement

Contract

Black-box
Component

Delivery

Contract - Based
Component Testing

Contract - Based
Integration Testing

Component
Black-box

Implementation

Con
tra

ct

Con
tra

ct

Two Stage solution for virtual integration

Component Design
Model

Component Design
Model

Component Design
Model
(JAVA)

System
Design
Model

Component Design
Model

Component Design
Model

Component Design
Model

(Simulink/Stateflow)

Component Design
Model

Component Design
Model

Component
prototype imp.

(C/C++)

 Automated
Contract

Generation

Wednesday, May 20, 15

Simulink/
Stateflow

Lustre C/C++ JAVA
Safety

Properties

Pre-delivery Verification Stage

Constrained Horn Clauses
Uniform intermediate
verification language

Different techniques
for automated
contract generation

CoCoSpec
Assume/Guarantee
contract

Our current approach:

Sim
2Lu

s

Generalized PDR, Concolic Execution, Automata Learning ...

Wednesday, May 20, 15

Simulink/
Stateflow

Lustre C/C++ JAVA
Safety

Properties

Pre-delivery Verification Stage

Constrained Horn Clauses
Uniform intermediate
verification language

Different techniques
for automated
contract generation

CoCoSpec
Assume/Guarantee
contract

Our current approach:

Sim
2Lu

s

Integrated Simulink 2 Lustre
Modular Compiler

LLVM-based
languages

Generalized PDR, Concolic Execution, Automata Learning ...

Wednesday, May 20, 15

Simulink/
Stateflow

Lustre C/C++ JAVA
Safety

Properties

Pre-delivery Verification Stage

Constrained Horn Clauses
Uniform intermediate
verification language

Different techniques
for automated
contract generation

CoCoSpec
Assume/Guarantee
contract

Our current approach:

Sim
2Lu

s

Integrated Simulink 2 Lustre
Modular Compiler

LLVM-based
languages

Generalized PDR, Concolic Execution, Automata Learning ...

Wednesday, May 20, 15

• Declarative and deterministic specification language

• Lustre programs = systems of equational constraints between
input and output streams

Lustre

Wednesday, May 20, 15

step function
(transition)

inputs

Lustre

memory
(state)

• A Lustre program models an I/O automaton

outputs

• Read inputs
• Compute next state and outputs
• Write outputs
• Update state

Implementing a Lustre program

Repeat at every trigger
 (external event)

Wednesday, May 20, 15

A Lustre program is a collection of nodes: L = [N0, N1, . . . , Nm]

Lustre

Wednesday, May 20, 15

• Ii,Oi,Li : set of input/output/local vars

• Initi, T ransi : set of formulas for the initial states and transition relation

Ni = (Ii,Oi,Li, Initi, T ransi)

A Lustre program is a collection of nodes: L = [N0, N1, . . . , Nm]

Lustre

Wednesday, May 20, 15

^

i2N
vi = ⇢(si)

• vi 2 Oi [Li and V ars(si) ✓ Ii [Oi [Li

• si arbitrary Lustre expression including node calls Nj(u1, . . . , un)

• ⇢ function maps expression to expression

a ! b is projected as

⇢
a in Initi
b in Transi

• Ii,Oi,Li : set of input/output/local vars

• Initi, T ransi : set of formulas for the initial states and transition relation

Ni = (Ii,Oi,Li, Initi, T ransi)

A Lustre program is a collection of nodes: L = [N0, N1, . . . , Nm]

Lustre

Wednesday, May 20, 15

^

i2N
vi = ⇢(si)

• vi 2 Oi [Li and V ars(si) ✓ Ii [Oi [Li

• si arbitrary Lustre expression including node calls Nj(u1, . . . , un)

• ⇢ function maps expression to expression

a ! b is projected as

⇢
a in Initi
b in Transi

• Ii,Oi,Li : set of input/output/local vars

• Initi, T ransi : set of formulas for the initial states and transition relation

Ni = (Ii,Oi,Li, Initi, T ransi)

• A safety property P is any Lustre expression over the main node N0

A Lustre program is a collection of nodes: L = [N0, N1, . . . , Nm]

Lustre

Wednesday, May 20, 15

Simulink/
Stateflow

Lustre C/C++ JAVA
Safety

Properties

Pre-delivery Verification Stage

Constrained Horn Clauses
Uniform intermediate
verification language

Different techniques
for automated
contract generation

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec

Our current approach:

Sim
2Lu

s

Assume/Guarantee
contract

Wednesday, May 20, 15

Simulink/
Stateflow

Lustre C/C++ JAVA
Safety

Properties

Pre-delivery Verification Stage

Constrained Horn Clauses
Uniform intermediate
verification language

Different techniques
for automated
contract generation

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec

Our current approach:

Sim
2Lu

s

Assume/Guarantee
contract

Wednesday, May 20, 15

Assume-Guarantee contracts

Wednesday, May 20, 15

Assume-Guarantee contracts

Wednesday, May 20, 15

Assume-Guarantee contracts

Wednesday, May 20, 15

Assume-Guarantee contracts

Wednesday, May 20, 15

Assume-Guarantee contracts

Implemented in Kind2: a multi engine
model checker for Lustre programs

http://kind2-mc.github.io/kind2/
Wednesday, May 20, 15

http://kind2-mc.github.io/kind2/
http://kind2-mc.github.io/kind2/

CoCoSpec

• An Assume/Guarantee-based Contract Language on top of Lustre

Wednesday, May 20, 15

CoCoSpec

• An Assume/Guarantee-based Contract Language

Wednesday, May 20, 15

CoCoSpec

• An Assume/Guarantee-based Contract Language

Wednesday, May 20, 15

CoCoSpec

• An Assume/Guarantee-based Contract Language

Wednesday, May 20, 15

CoCoSpec

• An Assume/Guarantee-based Contract Language

Wednesday, May 20, 15

CoCoSpec

• An Assume/Guarantee-based Contract Language

ghost variable

Wednesday, May 20, 15

Simulink/
Stateflow

Lustre C/C++ JAVA
Safety

Properties

Pre-delivery Verification Stage

Constrained Horn Clauses
Uniform intermediate
verification language

Different techniques
for automated
contract generation

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec

Our current approach:

Sim
2Lu

s

Assume/Guarantee
contract

Wednesday, May 20, 15

Simulink/
Stateflow

Lustre C/C++ JAVA
Safety

Properties

Pre-delivery Verification Stage

Constrained Horn Clauses
Uniform intermediate
verification language

Different techniques
for automated
contract generation

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec

Our current approach:

Sim
2Lu

s

Zustre

Assume/Guarantee
contract

Wednesday, May 20, 15

 A verification engine and CoCoSpec generator for Lustre program

Lustre2Horn

Horn clauses

Lustre + safety property

Unsafe
(CEX)

Safe

Zustre

T. Kahsai, PL. Garoche, A. Gurfinkel: “Synthesizing modular invariants for synchronous code”. In HCVS 2014.

Generalized
Property-based

Reachability

SPACER

Z3

Modular
compiler

Wednesday, May 20, 15

 A verification engine and CoCoSpec generator for Lustre program

Lustre2Horn

Horn clauses

Lustre + safety property

Unsafe
(CEX)

Safe

Zustre

T. Kahsai, PL. Garoche, A. Gurfinkel: “Synthesizing modular invariants for synchronous code”. In HCVS 2014.

Generalized
Property-based

Reachability

SPACER

Z3

Modular
compiler

modular
invariants

CoCoSpec

NB. Currently it only
infers guarantees

Wednesday, May 20, 15

Constrained Horn Clause

Wednesday, May 20, 15

Constrained Horn Clause

F : set of function symbols

P : set of predicate symbols

V : set of variables

• A fragment of First Order Logic.

• A uniform way to represent transition systems for verification.

� : constraint over F [V with respect to some background theory

e.g. arithmetic, arrays, SMT

Xi, X ✓ V : (possibly empty) vectors of variables

p1, . . . , pn, h : n-ary predicates

pi[Xi] : application p(t1, . . . , tn) of an n-ary predicate symbol

Constrained Horn Clause (CHC) is a formula:

8V · (� ^ p1[X1] ^ · · · ^ pn[Xn] ! h[X]), for n � 0

Wednesday, May 20, 15

Example 1

Wednesday, May 20, 15

Example 1

[margin = 1.5
^ desired = 21.0
^ cool = actual � desired > margin

^ heat = ...]) TCinit(actual, up, dn, heat, cool, desired)

Initial states

[margin = 1.5
^ desired

0 = ite(dn (desired� 1.0) (ite...))
^ cool = actual � desired

0
> margin

^ heat = ...]) TCtrans(actual, up, dn, heat, cool, desired, desired0)

Transition relation

TCinit(actual, up, dn, heat, cool, desired)) Loop(actual, up, dn, heat, cool, desired)

Loop(actual0, up0, dn0
, heat

0
, cool

0
, desired)

^ TCtrans(actual, up, dn, heat, cool, desired, desired0)
) Loop(actual, up, dn, heat, cool, desired0)

Loop

Wednesday, May 20, 15

 A verification engine and CoCoSpec generator for Lustre program

Lustre2Horn

Horn clauses

Lustre + safety property

Unsafe
(CEX)

Safe

Zustre

SPACER

Z3

• N(I,O,S,S 0
) =

V
' : an invariant for a node N

• Modular invariants : invariants for each node

modular
invariants

CoCoSpec

Wednesday, May 20, 15

From Horn Clauses to CoCoSpec

Wednesday, May 20, 15

From Horn Clauses to CoCoSpec

Wednesday, May 20, 15

From Horn Clauses to CoCoSpec

Wednesday, May 20, 15

From Horn Clauses to CoCoSpec

NB. We use Z3 tactics to simplify
 (manipulate) formulas

Wednesday, May 20, 15

Simulink/
Stateflow

Lustre C/C++ JAVA
Safety

Properties

Pre-delivery Verification Stage

Constrained Horn Clauses
Uniform intermediate
verification language

Different techniques
for automated
contract generation

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec

Our current approach:

Sim
2Lu

s

Zustre

Assume/Guarantee
contract

Wednesday, May 20, 15

Simulink/
Stateflow

Lustre C/C++ JAVA
Safety

Properties

Pre-delivery Verification Stage

Constrained Horn Clauses
Uniform intermediate
verification language

Different techniques
for automated
contract generation

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec

Our current approach:

Sim
2Lu

s

Zustre

Assume/Guarantee
contract

Integrated Analysis

Wednesday, May 20, 15

Integrated Analysis Framework

Wednesday, May 20, 15

Integrated Analysis Framework

Specify safety properties
using synchronous observers

Wednesday, May 20, 15

Integrated Analysis Framework

Specify safety properties
using synchronous observers

Wednesday, May 20, 15

Integrated Analysis Framework

Specify safety properties
using synchronous observers

Wednesday, May 20, 15

Integrated Analysis Framework

Wednesday, May 20, 15

Integrated Analysis Framework

Wednesday, May 20, 15

Simulink/
Stateflow

Lustre C/C++ JAVA
Safety

Properties

Pre-delivery Verification Stage

Constrained Horn Clauses
Uniform intermediate
verification language

Different techniques
for automated
contract generation

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec

Our current approach:

Sim
2Lu

s

Zustre

Assume/Guarantee
contract

Wednesday, May 20, 15

Simulink/
Stateflow

Lustre C/C++ JAVA
Safety

Properties

Pre-delivery Verification Stage

Constrained Horn Clauses
Uniform intermediate
verification language

Different techniques
for automated
contract generation

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec

Our current approach:

Sim
2Lu

s

Zustre SeaHorn

Assume/Guarantee
contract

Wednesday, May 20, 15

A framework for verifying LLVM-based programs

A. Gurfinkel, T. Kahsai, J. Navas, : “Algorithmic Logic-based verification”. In ACM-SIGLOG, April 2015.

A. Gurfinkel,T. Kahsai, J. Navas, : “SeaHorn: A framework for verifying C programs (competition contribution)”. In SVCOMP
(TACAS-2015).

A. Gurfinkel ,T. Kahsai, A. Komuravelli, J. Navas, : “The SeaHorn Verification Framework”. In CAV 2015.

NB. (i) Current version targets C programs
 (ii) and does not generate CoCoSpec

Program
+ Safety properties

Automated
Analysis

Correct

Incorrect

SeaHorn

Wednesday, May 20, 15

A framework for verifying LLVM-based programs

SeaHorn

A. Gurfinkel, T. Kahsai, J. Navas, : “Algorithmic Logic-based verification”. In ACM-SIGLOG, April 2015.

A. Gurfinkel,T. Kahsai, J. Navas, : “SeaHorn: A framework for verifying C programs (competition contribution)”. In SVCOMP
(TACAS-2015).

A. Gurfinkel ,T. Kahsai, A. Komuravelli, J. Navas, : “The SeaHorn Verification Framework”. In CAV 2015.

NB. (i) Current version targets C programs
 (ii) and does not generate CoCoSpec

Program
+ Safety properties

SeaHorn

SAFE
+ Certificate

UNSAFE
+ CEX

Wednesday, May 20, 15

A framework for verifying LLVM-based programs

SeaHorn

A. Gurfinkel, T. Kahsai, J. Navas, : “Algorithmic Logic-based verification”. In ACM-SIGLOG, April 2015.

A. Gurfinkel,T. Kahsai, J. Navas, : “SeaHorn: A framework for verifying C programs (competition contribution)”. In SVCOMP
(TACAS-2015).

A. Gurfinkel ,T. Kahsai, A. Komuravelli, J. Navas, : “The SeaHorn Verification Framework”. In CAV 2015.

NB. (i) Current version targets C programs
 (ii) and does not generate CoCoSpec

Program
+ Safety properties

SeaHorn

SAFE
+ Certificate

UNSAFE
+ CEX

Dr. Arie Gurfinkel
(SEI / CMU)

Wednesday, May 20, 15

Post-delivery verification stage

Wednesday, May 20, 15

Pre-Delivery Stage

Post-Delivery stage

Component
Outsourced For
Implementation

System Level Properties

Component
Requirement

Contract

Black-box
Component

Delivery

Contract - Based
Component Testing

Contract - Based
Integration Testing

Component
Black-box

Implementation

Con
tra

ct

Con
tra

ct

Two Stage solution for virtual integration

Component Design
Model

Component Design
Model

Component Design
Model
(JAVA)

System
Design
Model

Component Design
Model

Component Design
Model

Component Design
Model

(Simulink/Stateflow)

Component Design
Model

Component Design
Model

Component
prototype imp.

(C/C++)

 Automated
Contract

Generation

Wednesday, May 20, 15

Pre-Delivery Stage

Post-Delivery stage

Component
Outsourced For
Implementation

System Level Properties

Component
Requirement

Contract

Black-box
Component

Delivery

Contract - Based
Component Testing

Contract - Based
Integration Testing

Component
Black-box

Implementation

Con
tra

ct

Con
tra

ct

Two Stage solution for virtual integration

Component Design
Model

Component Design
Model

Component Design
Model
(JAVA)

System
Design
Model

Component Design
Model

Component Design
Model

Component Design
Model

(Simulink/Stateflow)

Component Design
Model

Component Design
Model

Component
prototype imp.

(C/C++)

 Automated
Contract

Generation

Wednesday, May 20, 15

Post-delivery Verification Stage

CoCoSpec
Component
Black-box

Implementation
|=

?

Contract-based test generation

• Test generation via Bounded Model Checking

• Coverage and mutation oriented

• TestEAS: test execution and analysis system

Wednesday, May 20, 15

Test generation via BMC

Wednesday, May 20, 15

Test generation via BMC

Wednesday, May 20, 15

Post-delivery Integration testing

W. Damm et al : “Using contract-based component specifications for virtual integration and architecture design”. In DATE 2011.

A. Cimatti et al : “A property-based proof system for contract based design”. In SEAA 2012.

A. Benveniste et al : “Multiple Viewpoint Contract-based Specification and Design”. In FMCO 2007.

E. Kesseler et al : “Assessing COTS software in a certifiable safety-critical domain”. In Information Systems Journal 2008.

Post-Delivery stage

Black-box
Component

Delivery

Contract - Based
Component Testing

Contract - Based
Integration Testing

Component
Black-box

Implementation

Con
tra

ct

Con
tra

ct

Wednesday, May 20, 15

Post-delivery integration testing

Wednesday, May 20, 15

Post-delivery integration testing

Wednesday, May 20, 15

Post-delivery integration testing

Wednesday, May 20, 15

Post-delivery integration testing

Wednesday, May 20, 15

Post-delivery integration testing

Wednesday, May 20, 15

FCS Case Studies

Wednesday, May 20, 15

Transport Class Model (TCM)
The TCM – a twin-engine tube and wings
configuration aircraft simulation,
scaled up from the Generic Transport Model (GTM).

Wednesday, May 20, 15

Transport Class Model (TCM)
The TCM – a twin-engine tube and wings
configuration aircraft simulation,
scaled up from the Generic Transport Model (GTM).

UAV-sized (wingspan ~6ft) version
of a plane with geometry similar to
a transport -class aircraft

Intended as an experimental
platform for controls and health
management system

Wednesday, May 20, 15

Transport Class Model (TCM)
The TCM – a twin-engine tube and wings
configuration aircraft simulation,
scaled up from the Generic Transport Model (GTM).

UAV-sized (wingspan ~6ft) version
of a plane with geometry similar to
a transport -class aircraft

Intended as an experimental
platform for controls and health
management system

Simulink simulator for the avionics
(transport delay), actuators,
engines, landing gear, aero,
sensors (including noise) ...

Wednesday, May 20, 15

TCM Autopilot

Wednesday, May 20, 15

TCM Autopilot

• Safety verification via model checking
• Manual decomposition of ‘hard’ safety properties

Kahsai et. al. “Verifying the safety of a flight critical software”. FM’15.

Wednesday, May 20, 15

NextGen Air-Traffic Control

Wednesday, May 20, 15

NextGen Air-Traffic Control

Wednesday, May 20, 15

NextGen Air-Traffic Control

Wednesday, May 20, 15

Summary

Wednesday, May 20, 15

.... outsourcing in flight critical software

This talk

.... virtual integration of outsourced components

Wednesday, May 20, 15

Pre-Delivery Stage

Post-Delivery stage

Component
Outsourced For
Implementation

System Level Properties

Component
Requirement

Contract

Black-box
Component

Delivery

Contract - Based
Component Testing

Contract - Based
Integration Testing

Component
Black-box

Implementation

Con
tra

ct

Con
tra

ct

Two Stage solution for virtual integration

Component Design
Model

Component Design
Model

Component Design
Model
(JAVA)

System
Design
Model

Component Design
Model

Component Design
Model

Component Design
Model

(Simulink/Stateflow)

Component Design
Model

Component Design
Model

Component
prototype imp.

(C/C++)

 Automated
Contract

Generation

Wednesday, May 20, 15

Simulink/
Stateflow

Lustre C/C++ JAVA
Safety

Properties

tools tools and tools

Constrained Horn Clauses

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec

Sim
2Lu

s

Zustre SeaHorn
Psycho

Kind-2

Component
Black-box

Implementation

Contract-based
testing

|=

Wednesday, May 20, 15

Thank you

Wednesday, May 20, 15

Temesghen Kahsai
Research Scientist @ RSE (Code TI) NASA Ames / CMU
email: temesghen.kahsaiazene@nasa.gov
web (work): http://ti.arc.nasa.gov/profile/tkahsaia/
web (personal): http://www.lememta.info/

Contact information

Wednesday, May 20, 15

mailto:temesghen.kahsaiazene@nasa.gov
mailto:temesghen.kahsaiazene@nasa.gov
http://ti.arc.nasa.gov/profile/tkahsaia/
http://ti.arc.nasa.gov/profile/tkahsaia/
http://www.lememta.info
http://www.lememta.info

