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Outsourcing in the aerospace industry

The Boeing 787 Dreamliner’s flight critical,
embedded software is build on the

WRS ARINC 653 system and is assembled
from software components by multiple subcontractors
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Source: Boeing / Reuters
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Outsourcing in the aerospace industry

BOEING STRUCTURE SUPPLIERS

B Parts built by the |AM union of Boeing workers

737 Classic 747 series
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Outsourcing in the aerospace industry

® The delivery date was pushed back 4 times and was late more than 4 years

® The aft fuselage consisted of 6,000 components, and many of those
components failed to conform to Boeing’s specified tolerances, resulting in
significant cost and schedule delays

® The first Dreamliner to arrive at the company’s assembly place was missing
tens of thousands of parts
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Outsourcing in the aerospace industry
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Outsourcing in the aerospace industry

® January 201 3:50 Dreamliner was grounded due to issues with the lithium-
ion batteries.

® On balance with just under 60 aircraft in service, the 787 has had 6 reported
mechanical incidents in 201 3.

® All the individual parts worked in isolation. But, together, under certain
circumstances, the parts failed.
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Outsourcing in the aerospace industry

“While we can’t completely eliminate failures, the answer lies
in system engineering. This involves a process of careful
design and architecture ... as well as a staged integration of
the entire system, and extensive qualification, verification and
validation testing.” Prof.S. Eppinger (MIT)

* http://executive.mit.edu/blog/will-risk-result-in-reward-for-boeings-dreamliner
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This talk .... :

... outsourcing in flight critical software

. virtual integration of outsourced components
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Assurance of Flight Critical Systems (FCS)
Aim:

® Develop multidisciplinary V&V tools and techniques that advance safety
assurance and certification

® Flight-critical systems: any systems that directly controls the safe
conduct of an aircraft’s flight, i.e. air and ground systems

Technical Challenges:

|. Argument-based safety assurance
2. Integrated distributed systems

3. Authority and Autonomy

4. Software intensive systems

5. Assessment environments
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Assurance of Flight Critical Systems (FCS)

Topic: “Support for verification of black-box FCS”
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Assurance of Flight Critical Systems (FCS)

Topic: “Support for verification of black-box FCS”

Context:

® More and more design and implementation of FCS is contracted out to
external companies

® Example: FAA contracts out the implementation of most of the air traffic
systems

® |ntegration of FCS from Commercial Off-The-Shelf (COTS) components
® Current technique is based on black-box testing
® Many of those systems have been first prototyped in-house

® Example: Many FAA systems has been prototyped by MIT Lincoln Lab,
NASA etc. (e.g. TCAS, ACAS-X, TSAFE, etc.)
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Assurance of Flight Critical Systems (FCS)

Topic: “Support for verification of black-box FCS”

In house prototyping

System
Design
Model

Component
prototype imp.
(JAVA)

System Level Properties

Component Design
Model
(Simulink/Stateflow)

Component
prototype imp.
(C/C++)

-------------

: Component

' Requirement :

-------------

Component
Outsourced For
Implementation
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Assurance of Flight Critical Systems (FCS)

Topic: “Support for verification of black-box FCS”

In house prototyping
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Contract-based Compositional verification
for outsourced FCS (CoCo) (i

CRITICAL
Ly GENERATION

SYSTEMS INFERENGE MRSHT MODEL

AUTOMATA = CONTRACT
FORMAL
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Qutline

® Two stage solution for virtual integration
® |st stage: contract generation
® )nd stage: contract compliance

® Flight critical system case studies
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Two Stage solution for virtual integration
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Two Stage solution for virtual integration

In house prototyping

Component System Level Properties

prototype imp.
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Two Stage solution for virtual integration

Pre-Delivery Stage

Component
Outsourced For
Implementation

Post-Delivery stage

Black-box
Component
Delivery
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Two Stage solution for virtual integration

Pre-Delivery Stage
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Two Stage solution for virtual integration

Pre-Delivery Stage

J‘ .I' System Level Properties

Generation Implementation

Automated Component
Contract Outsourced For

Post-Delivery stage

Black-box
Component
Delivery
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Two Stage solution for virtual integration

Pre-Delivery Stage

J‘ .I' System Level Properties

-------------

Model Contract Requirement Outsourced For
Implementation

System | “ ! : :
Dcugn ' ' Automated EComponentE > Component

Post-Delivery stage

Black-box
Component
Delivery
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Two Stage solution for virtual integration

Pre-Delivery Stage

Jl — System Level Properties

System : ;

Design - Nl | i Component : Component

Model Contract ; Requirement Outsourced For
Generation Implementation

Black-box
Component
Black-box Component
Implementation .
Delivery
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Pre-delivery verification stage
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Pre-delivery Verification Stage

How to generate formal contracts from models and prototypical code!

|. Define a notion of a component contract
® system property based
® allows obtain a higher degree of assurance
2. Design a uniform intermediate modeling formalism
® to facilitate the integration of different techniques
® to target heterogeneous in-house system prototypes

3. Develop (semi)-automated techniques to generate contract from models and
prototypical code

Wednesday, May 20, 15



Notion of a Formal Contract

® Contracts as a method to organize and integrate component-based systems

® Specify precisely the information necessary to reason about a component
Interactions

® Contracts specify I/O behavior of a component:

® Define the component guarantees provided that its environment obey
certain assumptions.
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Notion of a Formal Contract

® Contracts as a method to organize and integrate component-based systems

® Specify precisely the information necessary to reason about a component
Interactions

® Contracts specify I/O behavior of a component:

® Define the component guarantees provided that its environment obey
certain assumptions.

Different notions of formal contract, e.g.:

® Othello: Trace-based contract framework [Tonetta et. al.]

® AGREE: Contract language for AADL [Cofer et.al.

o ACSL, JML,SPARK, etc : Contract in Programming Languages.
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ooooooooooooooooooooooooo

Compositional Verification

Check P on entire system: too complicated (e.g. many states)

Use system’s natural decomposition into components to break-up the ver-
ification task

Check components in isolation: M; = P?

... typically a component is designed to satisfy its requirements in specific
contexts
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Compositional Verification

e Check P on entire system: too complicated (e.g. many states)

e Use system’s natural decomposition into components to break-up the ver-
ification task

e Check components in isolation: M; = P?

e ... typically a component is designed to satisty its requirements in specific

contexts
M, e Assume-Guarantee reasoning
{F o Misra & Chandy 81, Jones 83, Pnueli 84, Pasareanu 01
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Compositional Verification

Check P on entire system: too complicated (e.g. many states)

Use system’s natural decomposition into components to break-up the ver-
ification task

Check components in isolation: M; = P?

... typically a component is designed to satisfy its requirements in specific
contexts

e Assume-Guarantee reasoning

o Misra & Chandy 81, Jones 83, Pnueli 84, Pasareanu 01

e introduces assumption A representing M;’s context
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Compositional Verification

(A) M (P) is true if whenever M

is part of a system that satisfies A,
then the system must also guarantee P

Simplest assume-guarantee rule (Asym)
1. (A) M, (P)
2. (true) Mo (A)
(true) My ||Ms (P)
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Compositional Verification

(A) M (P) is true if whenever M

is part of a system that satisfies A,
then the system must also guarantee P

Simplest assume-guarantee rule (Asym)
1. (A) M, (P)
2. (true) Mo (A)
(true) My ||Ms (P)

* Cobleigh et. al “Learning assumption for compositional verification”. TACAS'O
* Emmi et. al “Assume Guarantee Verification for Interface Automata”. FM’08
* Giannakopoulou et. al “Symbolic Learning of component interfaces”. SAS’ |2

* Howar et. al “Hybrid learning: interface generation through static, dynamic, and
symbolic analysis” ISSTA’| 3.
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Compositional Verification

Example of assumptions (*)

® no file“close” before “open”
® access to shared variable “X” must be protected by lock “L”

® (rover executive) whenever thread “T” reads variable “V”, no other
thread can read “V’ before thread “T” clears it first

® (spacecrdaft flight phases) a docking maneuver can only be invoked if
the launch abort system has previously been jettisoned from the
spacecraft

(*) C. Pasareanu slides on compositional verification from SSFT 2012
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Two Stage solution for virtual integration

Pre-Delivery Stage

Jl — System Level Properties

System : ;

Design - Nl | i Component : Component

Model Contract ; Requirement Outsourced For
Generation Implementation

Black-box
Component
Black-box Component
Implementation .
Delivery
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Two Stage solution for virtual integration

-------------

Nidelriee | i Component : Component
Contract ; Requirement Outsourced For:

Generation Implementation;

Black-box
Component
Black-box Component
Implementation .
Delivery
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Pre-delivery Verification Stage

Our current approach:

Simulink/
Statetiow
Sarety
Lustre C/C++ JAVA Froperties

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

v v

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec 'i
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Pre-delivery Verification Stage

Our current approach:

Integrated Simulink 2 Lustre
Modular Compiler

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

LLVM-based

languages
Sarety
Lustre C/C++ JAVA Froperties

v v

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec 's
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Pre-delivery Verification Stage

Our current approach:

Simulink/

S 'Hu\»(/

Uniform intermediate
verification language

Integrated Simulink 2 Lustre
Modular Compiler

LLVM-based

languages
Sarety
C/CtF JAVA Froperties

Different techniques

for automated Generalized PDR, Concolic Execution, Automata Learning ...

contract generation

Assume/Guarantee
contract

\ 4

CoCoSpec
uSoCospes 3
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Lustre

® Declarative and deterministic specification language

® |ustre programs = systems of equational constraints between
input and output streams

node therm_control (actual: real; up, dn: bool )
returns (heat, cool : bool)
var desired, margin : real;
let
margin = 1.5;
desired = 21.0 — if dn then (pre desired) — 1.0
else if up then (pre desired) + 1.0
else (pre desired);
(actual — desired) > margin;
(actual — desired) < —margin;

cool
heat
tel
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Lustre

® A Lustre program models an |/O automaton

Inputs step function outputs
(transition)
memory
(state)
Implementing a Lustre program
* Read inputs
* Compute next state and outputs Repeat at every trigger
* Write outputs (external event)
* Update state
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Lustre

A Lustre program is a collection of nodes: L = [Ny, N1,..., Ny,
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Lustre

A Lustre program is a collection of nodes: L = [Ny, N1,..., Ny,

N; = (Z;, O;, L;, Init;, Trans;)

e 7,,0;,L;: set of input/output/local vars

e Init;, I'rans; : set of formulas for the initial states and transition relation
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Lustre

A Lustre program is a collection of nodes: L = [Ny, N1,..., Ny,

N; = (Z;, O;, L;, Init;, Trans;)

e 7,,0;,L;: set of input/output/local vars

e Init;, I'rans; : set of formulas for the initial states and transition relation

/\ v; = p(8;)

ieN
o v, € O;UL; and Vars(st) CZ; UO; UL,
e s, arbitrary Lustre expression including node calls N;(uq, ..., up)
e p function maps expression to expression

a in Init;

a — b is projected as { b in Trans;

Wednesday, May 20, 15



Lustre

A Lustre program is a collection of nodes: L = [Ny, N1,..., Ny,

N; = (Z;, O;, L;, Init;, Trans;)

e 7,,0;,L;: set of input/output/local vars

e Init;, I'rans; : set of formulas for the initial states and transition relation
/\ vi = p(si)
iEN

o v, € O;UL; and Vars(st) CZ; UO; UL,

e s, arbitrary Lustre expression including node calls N;(uq, ..., up)

e p function maps expression to expression

a in Init;

a — b is projected as { b in Trans;

e A safety property P is any Lustre expression over the main node N
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Pre-delivery Verification Stage

Our current approach:

Simulink/
Statetiow
Sarety
Lustre C/C++ JAVA Froperties

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

v v

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec 'i
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Pre-delivery Verification Stage

Our current approach:

&

(Vs

imulink/

Safety
C/Ct+ JAVA Froperties

Uniform intermediate

verification language Constrained Horn Clauses

| v ¢
Different techniques
for automated Generalized PDR, Concolic Execution, Automata Learning ...

contract generation
contract oL oopec

Wednesday, May 20, 15



Assume-Guarantee contracts

consist of
@ an assumption A: how the component must be used

o a guarantee G: how the component must behave, assuming A
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Assume-Guarantee contracts

consist of
@ an assumption A: how the component must be used

o a guarantee G: how the component must behave, assuming A

If (A, G) is a contract for component C, then if A is always true so is G:

(OA) = (OG) holds for C

In practice, usually weakened to
(hist A) = G is an invariant of C
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Assume-Guarantee contracts

consist of
@ an assumption A: how the component must be used

o a guarantee G: how the component must behave, assuming A

If (A, G) is a contract for component C, then if A is always true so is G:

(OA) = (OG) holds for C

In practice, usually weakened to
(hist A) = G is an invariant of C

If component C’ uses C, then A (A at call site) must always be true:
Acs is an invariant of ('
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Assume-Guarantee contracts

Improves scalability of the verification of hierarchical
systems by abstracting components by their contract.

The analysis is bottom-up:

o leaves are analyzed as usual, which can succeed or
fail.

o for nodes, we first abstract the subcomponents,
which can succeed, or fail.
In case of failure we can restart the analysis after
(soundly) refining the abstraction, possibly several
times.

O ®
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Assume-Guarantee contracts

Improves scalability of the verification of hierarchical
systems by abstracting components by their contract. {

The analysis is bottom-up:

o leaves are analyzed as usual, which can succeed or
fail.

o for nodes, we first abstract the subcomponents,

which can succeed, or fail. @ @

In case of failure we can restart the analysis after
(soundly) refining the abstraction, possibly several
times.

Implemented in Kind2: a multi engine .
model checker for Lustre programs

http://kindZ-mc.github.io/kindZ//
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CoCoSpec

® An Assume/Guarantee-based Contract Language on top of Lustre

A CocoSpec contract is a pair (A, G)

Assumption — how the component must be used:

A

V  (require;)

Guarantee — how the component behaves:
G = A (require; = ensure;)
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CoCoSpec

® An Assume/Guarantee-based Contract Language

node component(nil, n2:int; chaos:bool)
returns (out: bool; corrupted, warning:bool) ;
--!contract : contr -

let
-- Implementation.
tel

contract contr(nl, n2:int; chaos:bool)

returns (out: bool; corrupted, warning:bool) ;

let
require (-7 <= nl1) and (7 <= n1); -- nl1 legal input
require (-11 <= n2) and (11 <= n2); -- n2 legal input
ensure (-42 <= out) and (42 <= out); -- out is bounded
tel

AR

Wednesday, May 20, 15



CoCoSpec

® An Assume/Guarantee-based Contract Language

returns (out: bool; corrupted, warning:bool) ;
. —-lcontract : contr -

' let
-- Implementation.

contract contr(nl, n2:int; chaos:bool)

returns (out: bool; corrupted, warning:bool) ;

let
require (-7 <= n1) and (7 <= n1); -- nl legal input
require (-11 <= n2) and (11 <= n2); -- n2 legal input
ensure (-42 <= out) and (42 <= out); -- out is bounded
tel

R ————
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CoCoSpec

® An Assume/Guarantee-based Contract Language

‘node component(nl, n2:int; chaos:bool) f
returns (out: bool; corrupted, warning:bool) ;
i --lcontract : contr - '
mR
‘let
-- Implementation.
tel
: contract contr(nl, n2:int: chaos:bool)

returns (out: bool; corrupted, warning:bool) ;
let

require (-7 <= nl1) and (7 <= n1); -- nl1 legal input
require (-11 <= n2) and (11 <= n2); -- n2 legal input
ensure (-42 <= out) and (42 <= out); -- out is bounded

R ———
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CoCoSpec

® An Assume/Guarantee-based Contract Language

node component(on, off: bool) returns (active: bool) ;
--lcontract : nop -
--!lcontract : inhibited ;
let
-- Implementation.
tel

contract inhibited(on, off: bool) returns (active: bool) ;
var
Act. . raise: Dool  lapf.sct.raige: iIint ;
let
active_raise

false -> active and not pre active ;

last_act_raise = 0 -> if pre active_raise then 1
else 1 + pre last_act_raise ;
require last_act_raise <= n ;
ensure active ;
tel

DR —
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CoCoSpec

® An Assume/Guarantee-based Contract Language

node component(on, off: bool) returns (active: bool) ;
--lcontract : nop -

--lcontract : inhibited ;

let h iabl
-- Implementation. 8 ost variable
tel

contract inhibited(on, off: bool) returnss(active: bool) ;

» var :

....act.raise: bool ; last.act.raise: iRt ... a
let

. active_raise = false -> active and not pre active ; |

i last_act_raise = 0 -> if pre active_raise then 1 E

: else 1 + pre last_act_raise ; E

require last_act_raise <= n ;
ensure active ;
tel

DR —
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Pre-delivery Verification Stage

Our current approach:

Simulink/
Stateflow.

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

Lustre C/C++

v

Generalized PDR, Concolic Execution, Automata Learning ...

4

CoCoSpec
CoCospes_}
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Pre-delivery Verification Stage

Our current approach:

Simulink/

Stateflow

Sarety
- Lustre C/C++ JAVA Froperties &
P I. cmmmmmea - ........................................................ fommmmmm e nns '

Zustre<g

Uniform intermediate
verification language

Constrained Horn Clauses

l

v v
Different techniques
for automated Generalized PDR, Concolic Execution, Automata Learning ...

contract generation

Assume/Guarantee COCOSPEC 1
tract .
contrac r_, - 4
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Zustre

A verification engine and CoCoSpec generator for Lustre program

Lustre + safety property

Modular .
compiler M Lustre2Horn

Horn clauses:

Generalized SPACER

Property-based
Reachability
}
Unsafe E/ Safe
(CEX)

T. Kahsai, PL. Garoche, A. Gurfinkel:*“Synthesizing modular invariants for synchronous code”. In HCVS 2014.
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Zustre

A verification engine and CoCoSpec generator for Lustre program

Lustre + safety property

Modular .
compiler Lustre2Horn NB. Currently it only

5 infers guarantees
Horn clauses:

Generalized SPACER
Property-based : ;
Reachability CoCoSpec *
e ‘ -------------------------- ' ’— -
} N A
Unsafe VSafe B> .mod.ular
(CEX) Invariants ;

T. Kahsai, PL. Garoche, A. Gurfinkel:*“Synthesizing modular invariants for synchronous code”. In HCVS 2014.
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Constrained Horn Clause
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Constrained Horn Clause

e A fragment of First Order Logic.

e A uniform way to represent transition systems for verification.

F . set of tfunction symbols
P . set of predicate symbols
)V :  set of variables

Constrained Horn Clause (CHC) is a formula:

YV (o Ap1| X1 A Apn| X, — A X]), forn >0

0 . constraint over F UV with respect to some background theory
e.¢. arithmetic, arrays, SMT

X;, X CV : (possibly empty) vectors of variables
P1,...,Pn,h : n-ary predicates

i | X;] . application p(tq,...,t,) of an n-ary predicate symbol
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Example |

node therm_control (actual: real; up, dn: bool )
returns (heat, cool : bool)
var desired, margin : real;
let
margin = 1.5;
desired = 21.0 — if dn then (pre desired) — 1.0
else if up then (pre desired) + 1.0
else (pre desired);
(actual — desired) > margin;
(actual — desired) < —margin;

cool
heat
tel
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Example |

node therm_control (actual: real; up, dn: bool )
returns (heat, cool : bool)
var desired, margin : real;
let
margin = 1.5;
desired = 21.0 — if dn then (pre desired) — 1.0
else if up then (pre desired) + 1.0

else (pre desired);
(actual — desired) > margin;

cool =
heat = (actual — desired) < —margin;
tel
' [ margin = 1.5 :
v A desired = 21.0 i |n|t|a| states

: A cool = actual — desired > margin
i A heat = ...] = TCipnit(actual, up, dn, heat, cool, desired)

[ margin=15 N .
. A\ desired’ = ite(dn (desired — 1.0) (ite...)) ETransmon relation

i A\ cool = actual — desired’ > margin
: A heat = ...| = TCirans(actual, up, dn, heat, cool, desired, desired’ )

' T'Clinit(actual, up, dn, heat, cool, desired) = Loop(actual, up, dn, heat, cool, desired);

Loop(actual’,up’, dn’, heat’, cool’, desired) ;LOOP
/\ TClrans(actual, up, dn heat cool, desired, desired’) :
E = Loop(actual, up, dn, heat, cool, deszred’ ) 5
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Zustre

A verification engine and CoCoSpec generator for Lustre program

Lustre + safety property

Lustre2Horn

e N(Z,0,8,8") = A\ ¢ : an invariant for a node N
Horn clauses:

e Modular invariants : invariants for each node

SPACER

g CoCoSpec
""" I " :
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From Horn Clauses to CoCoSpec

node Sofar( X : bool ) returns ( Y : bool );
let

Y = (true -> pre Y) and X;
tel

node Store( Delta : int ) returns ( Total : int );
var Prev : int;
let

Prev = @ -> pre Total;

Total = if Delta < @ and Prev > @ then Prev+Delta
else if Delta > @ and Prev < 10 then Prev+Delta
else Prev;

tel

node top( Delta : int ) returns ( OK : bool );
var Total : int;
S: bool;

let

Total‘= Store( Delta );

| S = Sofar( -1 <= Delta and Delta <= 1 );
OK = S = @ <= Total and Total <= 20;

tel
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From Horn Clauses to CoCoSpec

node Sofar( X : bool ) returns ( Y : bool );
let

Y = (true -> pre Y) and X;
tel

node Store( Delta : int ) returns ( Total : int );
var Prev : int;
let

Prev = @ -> pre Total;

Total = if Delta < @ and Prev > @ then Prev+Delta
else if Delta > @ and Prev < 10 then Prev+Delta
else Prev;

tel

node top( Delta : int ) returns ( OK : bool );
var Total : int;
S: bool;

let

Total‘= Store( Delta );

| S = Sofar( -1 <= Delta and Delta <= 1 );
OK = S = @ <= Total and Total <= 20;

tel
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From Horn Clauses to CoCoSpec

node Sofar( X : bool ) returns ( Y : bool );
let And(Not(Not(Sofar.__Sofar_2_x) == Sofar.X),
Y = (true -> pre Y) and X; Not(Not(Sofar.Y) == Sofar.X))
tel And(Not(Sofar.Y == Or(Not(Sofar.__Sofar_2_c), Not(Sofar.X))),
Not(Not(Sofar.__Sofar_2_x) == Sofar.Y))

node Store( Delta : int ) returns ( Total : int );
var Prev : int;
let

Prev = 0 -> pre Total;

Total = if Delta < @ and Prev > @ then Prev+Delta
else if Delta > @ and Prev < 10 then Prev+Delta
else Prev;

tel

node top( Delta : int ) returns ( OK : bool );
var Total : int;

S: bool;
let e

-

Total = Store( Delta );

| S = Sofar( -1 <= Delta and Delta <= 1 );
OK = S => @ <= Total and Total <= 20;

- : AN

tel
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From Horn Clauses to CoCoSpec

node Sofar( X : bool ) returns ( Y : bool );
let

Y = (true -> pre Y) and X;
tel

And(Not(Not(Sofar.__Sofar_2_x) == Sofar.X),
Not(Not(Sofar.Y) == Sofar.X))

And(Not(Sofar.Y == Or(Not(Sofar.__Sofar_2_c), Not(Sofar.X))),
Not(Not(Sofar.__Sofar_2_x) == Sofar.Y))

node Store( Delta : int ) returns ( Total : int );
var Prev : int;
let

Prev @ -> pre Total;

Total = if Delta < @ and Prev > @ then Prev+Delta
else if Delta > @ and Prev < 10 then Prev+Delta
else Prev;

tel

node top( Delta : int ) returns ( OK : bool );
var Total : int;
S: bool;

veLcta._const .

contract Sofar (X:bool) returns (Y:bool);
let

ensure (Y = X) -> (Y = (pre(Y) and X));
tel

let

Total = Store( Delta );

| S = Sofar( -1 <= Delta and Delta <= 1 );
OK = S => @ <= Total and Total <= 20;

NB.We use Z3 tactics to simplify
(manipulate) formulas

Wednesday, May 20, 15



Pre-delivery Verification Stage

Our current approach:

Simulink/
Stateflow
Safety
: Lustre C/C++ JAVA Properties
R I. Emmmmm——. - ........................................................ 1 ................ '

Zustre<gt

Uniform intermediate
verification language

Constrained Horn Clauses

l

v v
Different techniques
for automated Generalized PDR, Concolic Execution, Automata Learning ...

contract generation

Assume/Guarantee -
contract COCO S’PeC i
r—'
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Our current approach: Integrated Analysis

Pre-delivery Verification Stage

&4\ MathWorks

Simulink/
Stateflow.

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

Sarety
Lustre C/C++ JAVA Properties

............ e Ml CTEETEE S SRR DR

Zustre<st

Constrained Horn Clauses

l

v

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec 'i
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(Info)[genecode]

useful,

(Info)[genecode)
(Info)[genecode]
(Info)[genecode)
(Info)[genecode)
(Info)[genecode]
(Info)[genecode)
(Info)[genecode)
(Info)[genecode]

(Info)[genecode)
(Info)[genecode)

zustre =

> |

<@ " 51 4 LI/ » Users » teme » Documents » BitBucket » coco-simulink » tools » gac »
>> coco('../../test/gac/properties/property 3 test.mdl’)

Integrated Analysis Framework

MATLAB R2013a

Welcome to the CoCo -- Contract generation and verification of Simulink models

MATLAB Sim2Preludelustre is free software: you can redistribute it
and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

MATLAB Sim2PreludeLustre is distributed in the hope that it will be

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCEANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the CNU Ceneral Public License.

Generating Lustre code from Simulink model: ../../test/gac/properties/property 3 _test.ndl
Internal representation building

Printing original dataflow model

Flattening of virtual SubSytems

Printing flattened dataflow model

Internal representation browsing for implicit data type conversions detection

Printing flattened-type-converted dataflow model

Code printing

(Warning)[write_code) A Terminator block have been found. No code will be generated for it:
property_3_test/Terminator

End of code generation
Cleaning temporary files

/Users/teme/Documents/CitHub/zustre/src/

(Info)[Zustre property checking)] Zustre result for property node [property_3_test_observer): SAFE

4\ MathWorks

: - *, New Variable Analyze Cod b - | ¢4 Commun
3 o2 U . Find Files & B — & : iw - (©) Preferences \2) e i
.2 Open Variable » 7 Run and Time e 9 Request Support
New New Open . Compare Import Save o Simulink  Layout |  SetPath Help
Script v - Data Workspace - Clear Workspace v ) Clear Commands ~  Library - v G Add-Ons v
FILE VARIABLE CODE | SIMUUNK ENVIRONMENT RESOURCES

(Info)[Traceability] Traceability data generated in file: ../../test/gac/properties/src_property 3 _test/property 3 _test.trace
(Info)[CGeneration result) Lustre code generated in file: ../../test/gac/properties/src_property 3 test/property 3 test.lus
(Info)[Safety)] Running Zustre
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Integrated Analysis Framework ‘ MathWorks:

e 00 MATLAB R2013a 800 ’i;wopeny;lJtst
File Ect View Display Diagram Sinmwlaton Analysis Code Tools Help
v us @& v o » b = @ [0 1 2@
|yt (T] (2 NewVarisble Garie e = B~ 8 = 6 ®» | ©~ |
L3 S \J (5 FindFiles & g e = Heisn o O g
.2 Open Variable » 7 Run and Time e
New New Open . Compare Import Save us> Simulink Layout -
ScIit. =~ Data Workspace - Clear Workspace v ) Clear Commands v  Library - @
e FILE | VARIABLE | CODE | SIMUUNK ENVIR( > Chotrsr Block ! 'IEI
<@ " 51 34 [/ » Users » teme » Documents » BitBucket » coco-simulink » tools » gac » Q [‘ Terminator
>> coco('../../test/gac/properties/property 3 test.mdl’) 4
(Info)[genecode] Welcome to the CoCo -- Contract generation and verification of Simulink mod Cj:}f
MATLAB Sim2PreludelLustre is free software: you can redistribute it = 1
and/or modify it under the terms of the GNU General Public License & ks < A
as published by the Free Software Foundation, either version 3 of > =§;;)
the License, or (at your option) any later version. Operanor
MATLAB Sim2PreludeLustre is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of C;;>
MERCEANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. » =x
You should have received a copy of the CNU Ceneral Public License. ) 'g;;)
(Info)[genecode) Generating Lustre code from Simulink model: ../../test/gac/properties/prope e

(Info)[genecode] Internal representation building
(Info)[genecode) Printing original dataflow model
(Info)[genecode] Flattening of virtual SubSytems
(Info)[genecode] Printing flattened dataflow model
(Info)[genecode) Internal representation browsing for implicit data type conversions detecti
(Info)[genecode] Printing flattened-type-converted dataflow model
(Info)[genecode)] Code printing
(Warning)[write_code) A Terminator block have been found. No code will be generated for it:
property_3_test/Terminator
(Info)[genecode) End of code generation
(Info)[genecode) Cleaning temporary files »
(Info)[Traceability)] Traceability data generated in file: ../../tost/qac/propoztioa/src_propR.u” 100% VariabieStepDiscrete
(Info)[Ceneration result)] Lustre code generated in file: ../../test/gac/properties/src_proplivy v _rivwwrpivpvivy_o_cvewsaus
(Info)[Safety) Running Zustre

zustre =
/Users/teme/Documents/CitHub/zustre/src/

(Info)[Zustre property checking)] Zustre result for property node [property_3_test_observer): SAFE
> |

Specify safety properties
using synchronous observers
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Integrated Analysis Framework ‘ MathWorks:

800 MATLAB R2013a

EsEs) TR A

View Display Diagram Simulaton Analysis Code Tools Help

-3 40P

: L (1] - New Variable Analyze Code o -
L3 92 \J (5FindFiles & a = = 1) R
.2 Open Variable » L7 Run and Time
New New Open . Compare Import Save us> Simulink  Layout
Script - - Data Workspace - Clear Workspace ~ | Clear Commands ~  Library -
FILE VARIABLE CODE SIMULINK
=] » Users » teme » Documents » BitBucket » coco-simulink » tools » gac »
>>jcoco(’'../../test/gac/properties/property 3 test.mdl’)
(I FUTTTONt FrTUT e e - : oTe on and verification of Simulink mod
MATLAB Sim2PreludelLustre is free software: you can redistribute it 1
and/or modify it under the terms of the GNU General Public License ks < A >
as published by the Free Software Foundation, either version 3 of > Ag;;)
the License, or (at your option) any later version. Operanor
MATLAB Sim2PreludeLustre is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of C;;>
MERCEANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. » =x
You should have received a copy of the CNU Ceneral Public License. ) 'g;;)
(Info)[genecode) Generating Lustre code from Simulink model: ../../test/gac/properties/prope e
(Info)[genecode] Internal representation building
(Info)[genecode) Printing original dataflow model
(Info)[genecode] Flattening of virtual SubSytems

(Info)[genecode] Printing flattened dataflow model

(Info)[genecode) Internal representation browsing for implicit data type conversions detecti

(Info)[genecode] Printing flattened-type-converted dataflow model

(Info)[genecode)] Code printing

(Warning)[write_code) A Terminator block have been found. No code will be generated for it:
property_3_test/Terminator

(Info)[genecode) End of code generation

(Info)[genecode) Cleaning temporary files »

(Info)[Traceability)] Traceability data generated in file: ../../tost/qac/propoztioa/src_propR.u” 100% VariabieStepDiscrete

(Info)[Ceneration result)] Lustre code generated in file: ../../test/gac/properties/src_proplivy v _rivwwrpivpvivy_o_cvewsaus

(Info)[Safety) Running Zustre

zustre =
/Users/teme/Documents/CitHub/zustre/src/

(Info)[Zustre property checking)] Zustre result for property node [property_3_test_observer): SAFE
> |

Specify safety properties
using synchronous observers
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L3 92 \J (5FindFiles

New New Open LhJCompun Import
Script

ML

o/ ftest/gac/properties/property 3 test.mdl’)

Integrated Analysis Framework

MATLAB R2013a

wr ., New Variable & Analyze Code
o .2 Open Variable » L7 Run and Time
Workspace - Clear Workspace v Clear Commands ~
VARIABLE CODE

Y

—

» Users » teme » Documents » BitBucket » coco-simulink » tools » gac »

and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

MATLAB Sim2PreludeLustre is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the CNU

General Public License for more details.
You should have received a copy of the CNU Ceneral Public License.

(Info)[genecode)
(Info)[genecode]
(Info)[genecode)
(Info)[genecode)
(Info)[genecode]
(Info)[genecode)
(Info)[genecode)
(Info)[genecode]

GCenerating Lustre code from Simulink model:
Internal representation building

Printing original dataflow model
Flattening of virtual SubSytems

Printing flattened dataflow model

Internal representation browsing for implicit data type conversions detecti

Printing flattened-type-converted dataflow model
Code printing

4\ MathWorks

—
&8 |
Simulink  Layout
Library -
SMNK

T : e : - on and verification of Simulink meod
MATLAB Sim2Preludelustre is free software: you can redistribute it

o/ /test/gac/properties/prope

(Warning)[write_code) A Terminator block have been found. No code will be generated for it:
property_3_test/Terminator

(Info)[genecode)
(Info)[genecode)

(Info)[Traceability] Traceability data generated in file: ../../test/gac/properties/src_prop
(Info)[CGeneration result) Lustre code genecrated in file: ../../test/gac/properties/src_propesivy_o_w«

End of code generation
Cleaning temporary files

(Info)[Safety)] Running Zustre

zustre =

/Users/teme/Documents/CitHub/zustre/src/

m
MR < AN
Operator
&
» >
w @
800 a property_3_test *

v 3 -3 4P ~ @
_property 3 test
-

10.0 vl

»

(Info)[Zustre

roperty checkin

Zustre result for property node ropert

Specify safety properties
using synchronous observers

3 test observer):

Y :@.
£y "
-
g x N e
SAFE ﬁ Soah
&
[V
kel o ”,

»
Ready 100% VarabieStepDiscreto
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Integrated Analysis Framework ‘ MathWorks:

800 . - MATLAS R2013a . s
e - B B O e ——— TR O L e —
wﬁJQmm& w::'w. ;:.:CT: & D@,Hesdit\ﬁewoiaplayoiagmmSMﬁonAnalyaisCodaToolstb
s:"u ":' 0'-” Lt COmPES .:u:‘ w?m ;oum - umm v Useary e 4 ) — ~ (
P SEIRA T L e D e T el 2L » B _ g O~ B O > = @ 10.0 | » @~

LY
S 03 Ql » Users » teme » Documents » BitBucket » coco-simulink » tools » gac »

ty Dicdhs test.mdl, lise 14681: line does not Rave a paraseter nased 20rder

private/oponsd at

A8 L ‘vt at +9Y
>> 00co( ../ .. teat/qac/propertics/property biobs test.ndl’)
(Info)[gonocode] Welcome to the Colo -~ Conmtract gomoration and verification of Simulink mode
MATLAS Sim2Preludelustre is free software: you can redistribute it > Cbserver Biock -—D@
and/or modify it under the terms of the ONU General Public License ROE i1
an published by the Froe Software Foundation, either version 3 of gy -
the License, or (at your optiom) any later version. cbserver

®

|

MATLAR Sim2Proludelustro is distributed in the hopo that it will be e o

wseful, bat WITHOUT ANY MARRANTY; without evesn the isplied warranty of

MERCHANTAPILITY or FITNESS FOR A PARTICULAR PURPOSE. Sece the GNU

Goneral Public License for more details. = Im

You should have received a copy of the CNU Ceneral Public License. >
(Info)[gonocode] Generating Lustre code from Simulink model: ../../test/gac/properties/proper > »h N\
(Info)[genecode] Iaternal representation building @ > @
(Info)[genccode] Printing original dataflow model — Out1
(Info)[gonecode] Flattening of virtual SubSyte=a Swich
(Info)[genccode] Printing flattened dataflow model m
(Info)[gonocode] Internal representation browsing for isplicit data type conversions detectiocg < E ;
(Info)[genecode] Printing flattened-type-converted dataflow sodel %)
({Info)[genccode] Code printing
(Warning)[write_code] A Terminator block have been found. No code will be generated for it:

property biobs_test/Terminator
(Warning)[writeo_code] A Torminator block have been found. No code will be generated for it: )

. property bicbs_test/Terminatorl —> Observer Biock —b@

(Info)[genccode] End of code generation >
(Info)[genecode] Cleaning temporary filea Torminator
(Info)[Traceability] Traceability data generated inm file: ../../test/gac/properties/src_prope obsarver_bis
(Info)[Cenoration result) Lustro code generated in file: ../../test/gac/properties/src_proper
(Info)[Safety) Running Rustre

zuatre =

/Users/tomo/Documents /GitHub/zustro/src/

(Info)[Zustre property checking) ZTustre result for property node [property_biobs_test_observer): SAFE
(Info)[Zustre property checking) Zuatre result for property node [property biocba_teat_observer_bis): CEX
£ >> |
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Integrated Analysis Framework

4\ MathWorks

ano MATLAR R2013a ol
HOME ) 2 Se i
0.0 A _______ Pyproperty _biobs_test —
: = ' (1] ', New Variable Analyze Cose L. .
3 00 [ Cnume & O3 W gh“ \bu@,ﬁesdd\ﬁewotaplayooagmmSMuonAnalyasCodeToolsrbb
2 Open Variable + o Time
New  New Open | Compare lport  Save - Sirubnk  Layout |/ § e
o S B o e Y iz [l ~ o~ B ® > = @~ [00
& % 2 23 Bl v Users » teme » Documents » BitBucket » coco-simulink » tools » gac »
-’n.; : teat.sdl, lise 1481: line doea not Rave a paraseter nased 10
1 opered at
>> coeo( of sudteat/qac/properties/property biobs test.adl’') >
(!nto)(qomcodo) Weolcome to the Colo -~ Conmtract gomoration and verification of Simulink mode
MATLAS Sim2Preludelustre is free software: you can redistribute it > Cbserver Biock
and/or modify it under the terms of the ONU General Public License LO% i1 Torminator
an published by the Froe Software Foundation, either version 3 of gy
the License, or (at your option) any later version. — observer
MATLAR Sim2Proludelustro is distributed in the hopo that it will be e o
wseful, bat WITHOUT ANY MARRANTY; without evesn the isplied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Sece the GNU
Goneral Public License for more details. = Im
You should have received a copy of the CNU Ceneral Public License. >
(Info)[gonocode] Generating Lustre code from Simulink model: ../../test/gac/properties/proper > »h N\
(Info)[genecode] Iaternal representation building @ > @
(Info)[genccode] Printing original dataflow model — Out1
(Info)[gonecode] Flattening of virtual SubSyte=a Swich
(Info)[genccode] Printing flattened dataflow model m
(Info)[gonocode] Internal representation browsing for isplicit data type conversions detectiocg < E ;
(Info)[genecode] Printing flattened-type-converted dataflow sodel %)
({Info)[genccode] Code printing
(Warning)[write_code] A Terminator block have been found. No code will be generated for it:
property biobs_test/Terminator
(Warning)[writeo_code] A Torminator block have been found. No code will be generated for it: )
property bicbs_test/Terminatorl —> Observer Biock —b@
(Info)[genccode] End of code generation I~ )
(Info)[genecode] Cleaning temporary filea Torminator
(Info)[Traceability] Traceability data generated inm file: ../../test/gac/properties/src_prope obsarver_bis
(Info)[Cenoration result) Lustro code generated in file: ../../test/gac/properties/src_proper
(Info)[Safety) Running Rustre
zustre =
/Users/tomo/Documents /GitHub/zustro/src/
(Info)[Zustre property checking) ZTustre result for property node [property_biobs_test_observer): SAFE
(Info)[Zustre property checking) Zuatre result for property node [property biocba_teat_observer_bis): CEX
fi>> |
8eno >3 property_biobs_test*
File Edt View anlty Dnom srmhbm Analysis Code Tools Hob
@ <« S-F 4 ® P = @~ [00

B LS o

v 9
H4
9
/

8
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Pre-delivery Verification Stage

Our current approach:

Simulink/
Stateflow
Safety
Lustre C/C++ JAVA Properties
............................ [-.--.--‘-f.--.--.--.--.--.--.--.--.--.--.-..--.--.--.--.--.--.--.-1.--.--.--.--.--J

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

Zustre<gt

Constrained Horn Clauses

l v ¢

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec 'i
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Pre-delivery Verification Stage

Our current approach:

Simulink/
Stateflow.

----------------------------------------------------------------------

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

Lustre C/C++

Constrained Horn Clauses

l

v

v

Generalized PDR, Concolic Execution, Automata Learning ...

v

CoCoSpec
JCoCospee_j
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SeaHorn

A framework for verifying LLVM-based programs

Program
+ Safety properties , Correct

Automated
Analysis

\ oo
! ,.,‘\'.,\\-
\ ': 4‘\‘\ \ I\

Incorrect

NB. (i) Current version targets C programs
(i) and does not generate CoCoSpec

A. Gurfinkel, T. Kahsai, J. Navas, :“Algorithmic Logic-based verification”. In ACM-SIGLOG, April 2015.

A. Gurfinkel,T. Kahsai, ]. Navas, :“SeaHorn:A framework for verifying C programs (competition contribution)”. In SYVCOMP
(TACAS-2015).

A. Gurfinkel , T. Kahsai, A. Komuravelli, J. Navas, :“The SeaHorn Verification Framework”. In CAV 2015.
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SeaHorn

A framework for verifying LLVM-based programs

Program

+ Safety properties SAFE

+ Certificate

A\ .'-\" :
S \\'.,\\ '
\ :- ‘.‘.\ Wo

\

UNSAFE
+ CEX

NB. (i) Current version targets C programs
(i) and does not generate CoCoSpec

A. Gurfinkel, T. Kahsai, J. Navas, :“Algorithmic Logic-based verification”. In ACM-SIGLOG, April 2015.

A. Gurfinkel,T. Kahsai, ]. Navas, :“SeaHorn:A framework for verifying C programs (competition contribution)”. In SYVCOMP
(TACAS-2015).

A. Gurfinkel , T. Kahsai, A. Komuravelli, J. Navas, :“The SeaHorn Verification Framework”. In CAV 2015.
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SeaHorn
Dr. Arie Gurfinkel

A framework for verifying LLVM-based programs (SEIT.CMU)

Program

+ Safety properties SAFE

+ Certificate

caW : =
gt -

UNSAFE
+ CEX

NB. (i) Current version targets C programs
(i) and does not generate CoCoSpec

A. Gurfinkel, T. Kahsai, J. Navas, :“Algorithmic Logic-based verification”. In ACM-SIGLOG, April 2015.

A. Gurfinkel,T. Kahsai, ]. Navas, :“SeaHorn:A framework for verifying C programs (competition contribution)”. In SYVCOMP
(TACAS-2015).

A. Gurfinkel , T. Kahsai, A. Komuravelli, J. Navas, :“The SeaHorn Verification Framework”. In CAV 2015.
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Post-delivery verification stage
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Two Stage solution for virtual integration

Pre-Delivery Stage

Jl — System Level Properties

System : ;

Design - Nl | i Component : Component

Model Contract ; Requirement Outsourced For
Generation Implementation

Black-box
Component
Black-box Component
Implementation .
Delivery
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Two Stage solution for virtual integration

Pre-Delivery Stage

J‘C e System Level Properties

System | “ . .

Design Nzl | : Component : Component

Model Contract ; Requirement Outsourced For
________ ,[ Generation Implementation

Post-Delivery stage

’ Black-box
Component
Black-box Component
Implementation .
Delivery
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Post-delivery Verification Stage

Component

Black-box COCOSPGC ¥
Implementation PR—

Contract-based test generation

® Test generation via Bounded Model Checking
® (Coverage and mutation oriented

® JestEAS: test execution and analysis system
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Test generation via BMC

Components are represented as transition systems:

o s is the vector of state variables of the system
o I(sp) is the init predicate, true if sp is initial

o T(sj,si+1) is the transition predicate, true if s;,1 is a successor of s;

Given a test objective O(s), we can query an SMT solver for a trace of k
states leading to it:

Z(s0) AT (s0,51) A+ AT (Sk—255k—1) A O(8k—-1)
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Test generation via BMC

Components are represented as transition systems:

o s is the vector of state variables of the system
o I(sp) is the init predicate, true if sp is initial

o T(sj,si+1) is the transition predicate, true if s;,1 is a successor of s;

Given a test objective O(s), we can query an SMT solver for a trace of k

states leading to it:

Z(s0) AT (s0551) A=+ AT (Sk—255k—1) A O(Sk—-1)

o Coverage-oriented: the set of test cases are generated to realize
some coverage criterion on the source file, e.g. (O)MC/DC.

o Mutation-based: alter the syntax of the source code and generate
test cases failing on (killing) the mutants.
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Post-delivery Integration testing

Post-Delivery stage

. . | Black-box
omponent
Contract - Based Black-box Component
Integration Testing Implementation Delive ry

A. Cimatti et al :“A property-based proof system for contract based design”. In SEAA 2012.

W. Damm et al :“Using contract-based component specifications for virtual integration and architecture design”. In DATE 201 1.
E. Kesseler et al :“Assessing COTS software in a certifiable safety-critical domain”. In Information Systems Journal 2008.

A. Benveniste et al :“Multiple Viewpoint Contract-based Specification and Design”. In FMCO 2007.
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Post-delivery integration testing

o pre-delivery:

o contract-based test generation for all components,

O
® &

prototype

pre-delivery post-delivery
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Post-delivery integration testing

o pre-delivery:
o contract-based test generation for all components,
o compile complex components without their subcomponents,

Jb

prototype integration harness

(compiled)

pre-delivery post-delivery
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Post-delivery integration testing

o pre-delivery:
o contract-based test generation for all components,
o compile complex components without their subcomponents,

o post-delivery:

o unit testing of the binaries,

G g
'I \\‘
® G ®

prototype integration harness unit testing
(compiled)

pre-delivery post-delivery
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Post-delivery integration testing

o pre-delivery:
o contract-based test generation for all components,
o compile complex components without their subcomponents,

o post-delivery:

o unit testing of the binaries,
o integration testing using the compiled prototype component.

G :cest ........
@ 3 ® ® g%

prototype integration harness unit testing integration testing
(compiled)

pre-delivery post-delivery
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Post-delivery integration testing

o pre-delivery:
o contract-based test generation for all components,
o compile complex components without their subcomponents,

o post-delivery:

o unit testing of the binaries,
o integration testing using the compiled prototype component.

R 8
® &

prototype integration harness unit testing integration testing

(compiled)

pre-delivery post-delivery
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FCS Case Studies
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Transport Class Model (TCM)

The TCM — a twin-engine tube and wings
configuration aircraft simulation,
scaled up from the Generic Transport Model (GTM).
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Transport Class Model (TCM)

The TCM — a twin-engine tube and wings
configuration aircraft simulation,
scaled up from the Generic Transport Model (GTM).

UAV-sized (wingspan ~6ft) version
of a plane with geometry similar to
a transport -class aircraft

Intended as an experimental
platform for controls and health
management system
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Transport Class Model (TCM)

The TCM — a twin-engine tube and wings
configuration aircraft simulation,
scaled up from the Generic Transport Model (GTM).

UAV-sized (wingspan ~6ft) version
of a plane with geometry similar to
a transport -class aircraft

Intended as an experimental
platform for controls and health
management system

Simulink simulator for the avionics
(transport delay), actuators,
engines, landing gear, aero,
sensors (including noise) ...
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TCM Autopilot

1!
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TCM Autopilot

Inputs from MCP Altitude Controller

and pilot (pitch)

. » , Flight Path Angle
S s =" Controller

s Wy & i o3 't:f';—;:y _
| = | e == Pitch Inner Loop

| - P - < ol . ___-j“j»‘ i
i | . e TV o P R
R . . .- ..‘f S Heading Controller

Inputs from pilot 'W roll limit ________._-_—_-.:-_-_:'.'—'--‘ _n Roll Inner Loop

(roll and yaw) rmm MCP ) | __’__;____._-_-;::—--' '___:_______._._-_-:;
= . b __. °- ‘—,—J—‘{:{:‘_.____._-__..- ___-_-:.':::::.'—‘-""-"‘—
= ) D — == P ) Outputs -

LEEE
\

. commands to
= = [TY > actuators

e —
- 1 — & o e
- ——
- — . .. *
gy | Np— b—— -" -_I ‘/
- | e B ¢ |
Sensors pp— :

. . 3 R — > Autothrottie

- ]
- . -~ v} .
- = |

Inputs from MCPU

R R
g -

Kahsai et. al.“Verifying the safety of a flight critical software”. FM’15.

* Safety verification via model checking
* Manual decomposition of ‘hard’ safety properties
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NextGen Air-Traffic Control

Loss of
Po&ehfziat sepa\ra&i.ov\ delour

conflict N\ I /

@@ ||
S S &

e NextGen. New national airspace system in the US.

o Air-Traffic Control. Separation assurance: resolution of
potential future conflicts between aircrafts.

e | 0ss of Separation. Two airplanes come closer than a
specified safe distance (horizontally or vertically)

Y
S
N
— - — -
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NextGen Air-Traffic Control

e : ‘U
l::> b ' ' g is v ...........

Unresolved conflict Resolved conflict

e Air-traffic control. Provides separation assurance by resolving potential
future conflicts between aircraft

e Loss of separation. Airplanes come closer than a specified safe distance
(horizontally and vertically)
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NextGen Air-Traffic Control

NextGen component. 3-20 min time AutoResolver B
horizon 3-20 minutes prior to LoS

Java prototype developed at NASA Ames V
o 2,500 classes, 150kloc (w/ ACES) TSAFE
o 1580 classes, 65kloc (w/o ACES) 0-3 minutes prior to LoS
o (+ NASA Worldwind, etc.) I
TCAS
<1 minute prior to LoS
y
Pilot Visual Avoidance
Last resort

automated separation
assurance implemented in
the ground system

Collision avoidance
implemented in the aircraft
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Summary




This talk ....

... outsourcing in flight critical software

. virtual integration of outsourced components

Wednesday, May 20, 15



Two Stage solution for virtual integration

Pre-Delivery Stage

Jl — System Level Properties

System : ;

Design - Nl | i Component : Component

Model Contract ; Requirement Outsourced For
Generation Implementation

Black-box
Component
Black-box Component
Implementation .
Delivery
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tools tools and tools

SlMmulink/

Stateflow

Sarety

Lustre C/C++ JAVA Froperties

| | | "
Z u %t re (,(“ ’ S ea I:l orn f(f b

Constrained Horn Clauses

\/
Generalized PDR, Concolic Execution, Automata Learning ...

Component I

| BIIack-btoi(. COCOS eC E
mplementation '., - y
f J Kind-2<¢

Psycho««:

Contract-based
testing
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Thank you




Contact information

Temesghen Kahsali

Research Scientist @ RSE (Code TI) NASA Ames / CMU
email: temesghen.kahsaiazene @nasa.gov

web (work): http://ti.arc.nasa.gov/profile/tkahsaia/

web (personal): http://www.lememta.info/
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