Trusting Outsourced Components
in Flight-Critical Systems

Temesghen Kahsai

NASA Ames / CMU




Joint work with ...

Dr. Kasper Luckow Dr.Arie Gurfinkel

(CMU)

(SEI / CMU)

Prof. Cesare Tinelli Dr.Adrien Champion

(The University of lowa)

(The University of lowa)

Wednesday, May 20, 15



Outsourcing in the aerospace industry

Wednesday, May 20, 15



Outsourcing in the aerospace industry

The Boeing 787 Dreamliner’s flight critical,
embedded software is build on the

WRS ARINC 653 system and is assembled
from software components by multiple subcontractors

Mitsubishi

Boeing Australia

Latecoere

Alenia

\ —-

Boeing US
r l Alenia b

Rolls Royce
Goodrich KAL ASD

Source: Boeing / Reuters

Wednesday, May 20, 15



Outsourcing in the aerospace industry

BOEING STRUCTURE SUPPLIERS

B Parts built by the |AM union of Boeing workers

737 Classic 747 series
0 First flight: 1969 '

First flight: 1967

Boeing 737 and 747 = 35-50%

gear

doors Qing structur
787 DREAMLINER First flight: 2009
et T Movable Horlzontal  Tail fin
trailing edge stabilizer Boeing/U.S.
Wingtips Australia Alenia ltaly l
KAA/Korea : ‘ Rear fuselage
Fixed & movable — | Yougwu . o
leading edge | ‘
body fairing l
Boeing/U.S.
Wing oeing/U.

MitsubishiAdapan

Passenger
entry doors
Centre fuselage Latecoere/France
Alenia/ltaly
Fixed trailing edge
Kawaski/Japan

Boeing 787 = 70%

-
.
)
»®
o
N
.
o

fuselage
Kawasaki/Japan

OTHERS
© Main landing

Forward Centre Engine gear wheel well
fuselage wing box nacelles Kawasaki/Japan
Spirit/U.S.  Fuji‘Japan Goodrich/U.S. Wing/body fairing
Boeing/Canada
Landing gear structure Engine
Messier-Dowty/U.K. Rolls-Royce/U.K. Cargo access doors
Saab/Sweden
Note: diagrams not fo scale
Sources. Internalional Association of Mactinists, Boeing (=% REUTERS

Wednesday, May 20, 15



Outsourcing in the aerospace industry

® The delivery date was pushed back 4 times and was late more than 4 years

® The aft fuselage consisted of 6,000 components, and many of those
components failed to conform to Boeing’s specified tolerances, resulting in
significant cost and schedule delays

® The first Dreamliner to arrive at the company’s assembly place was missing
tens of thousands of parts

Wednesday, May 20, 15



Outsourcing in the aerospace industry

Wednesday, May 20, 15



Outsourcing in the aerospace industry

® January 201 3:50 Dreamliner was grounded due to issues with the lithium-
ion batteries.

® On balance with just under 60 aircraft in service, the 787 has had 6 reported
mechanical incidents in 201 3.

® All the individual parts worked in isolation. But, together, under certain
circumstances, the parts failed.

Wednesday, May 20, 15



Outsourcing in the aerospace industry

“While we can’t completely eliminate failures, the answer lies
in system engineering. This involves a process of careful
design and architecture ... as well as a staged integration of
the entire system, and extensive qualification, verification and
validation testing.” Prof.S. Eppinger (MIT)

* http://executive.mit.edu/blog/will-risk-result-in-reward-for-boeings-dreamliner

Wednesday, May 20, 15


http://executive.mit.edu/blog/will-risk-result-in-reward-for-boeings-dreamliner
http://executive.mit.edu/blog/will-risk-result-in-reward-for-boeings-dreamliner

This talk .... :

... outsourcing in flight critical software

. virtual integration of outsourced components

Wednesday, May 20, 15



Assurance of Flight Critical Systems (FCS)
Aim:

® Develop multidisciplinary V&V tools and techniques that advance safety
assurance and certification

® Flight-critical systems: any systems that directly controls the safe
conduct of an aircraft’s flight, i.e. air and ground systems

Technical Challenges:

|. Argument-based safety assurance
2. Integrated distributed systems

3. Authority and Autonomy

4. Software intensive systems

5. Assessment environments

Wednesday, May 20, 15



Assurance of Flight Critical Systems (FCS)
Aim:

® Develop multidisciplinary V&V tools and techniques that advance safety
assurance and certification

® Flight-critical systems: any systems that directly controls the safe
conduct of an aircraft’s flight, i.e. air and ground systems

Technical Challenges:

|. Argument-based safety assurance

2. Integrated distributed systems

3. Authority and Autonomy

4. Software intensive systems

5. Assessment environments

Wednesday, May 20, 15



Assurance of Flight Critical Systems (FCS)

Topic: “Support for verification of black-box FCS”

Wednesday, May 20, 15



Assurance of Flight Critical Systems (FCS)

Topic: “Support for verification of black-box FCS”

Context:

® More and more design and implementation of FCS is contracted out to
external companies

® Example: FAA contracts out the implementation of most of the air traffic
systems

® |ntegration of FCS from Commercial Off-The-Shelf (COTS) components
® Current technique is based on black-box testing
® Many of those systems have been first prototyped in-house

® Example: Many FAA systems has been prototyped by MIT Lincoln Lab,
NASA etc. (e.g. TCAS, ACAS-X, TSAFE, etc.)

Wednesday, May 20, 15



Assurance of Flight Critical Systems (FCS)

Topic: “Support for verification of black-box FCS”

In house prototyping

System
Design
Model

Component
prototype imp.
(JAVA)

System Level Properties

Component Design
Model
(Simulink/Stateflow)

Component
prototype imp.
(C/C++)

-------------

: Component

' Requirement :

-------------

Component
Outsourced For
Implementation

Wednesday, May 20, 15



Assurance of Flight Critical Systems (FCS)

Topic: “Support for verification of black-box FCS”

In house prototyping

Component System Level Properties

prototype imp.
(JAVA)

-------------

________ — : 5 Component
System Component Design  Conpenmn Outsourced For

Design : .Model : Requirement : :
Model (Simulink/Stateflow) : : Implementatlon

1 1
] Y ettt cccaoe ’
"""" g Component
prototype imp.
(C/C++)

In house assembling

Black Box Testing

® e
® e
.

Black-box
el Component
Black-box Component
. Implementation .
- Delivery

Testing
Environment

Wednesday, May 20, 15



Contract-based Compositional verification
for outsourced FCS (CoCo) (i

CRITICAL
Ly GENERATION

SYSTEMS INFERENGE MRSHT MODEL

AUTOMATA = CONTRACT
FORMAL

GUARANTEE
SIMUL INK




Qutline

® Two stage solution for virtual integration
® |st stage: contract generation
® )nd stage: contract compliance

® Flight critical system case studies

Wednesday, May 20, 15



Two Stage solution for virtual integration

Wednesday, May 20, 15



Two Stage solution for virtual integration

In house prototyping

Component System Level Properties

prototype imp.
(JAVA)

-------------

________ : Component
< s Componank Desien ; Component Outsourced For

Design . .M0d3| : Requirement : -
Model (Simulink/Stateflow) Implementatlon

-—----
N Nammmm=

I | Y ettt cccaoe
"""" " Component
prototype imp.
(C/C++)

In house assembling

Black Box Testing

Testing
Environment

Black-box
el Component
Black-box Component
Implementation .
- Delivery

Wednesday, May 20, 15



Two Stage solution for virtual integration

Pre-Delivery Stage

Component
Outsourced For
Implementation

Post-Delivery stage

Black-box
Component
Delivery

Wednesday, May 20, 15



Two Stage solution for virtual integration

Pre-Delivery Stage

System
Design
Model

Component Design
Model
(JAVA)

System Level Properties

Component Design
Model
(Simulink/Stateflow)

Component
prototype imp.
(C/C++)

)

Post-Delivery stage

Component
Outsourced For
Implementation

Black-box
Component
Delivery

Wednesday, May 20, 15



Two Stage solution for virtual integration

Pre-Delivery Stage

J‘ .I' System Level Properties

Generation Implementation

Automated Component
Contract Outsourced For

Post-Delivery stage

Black-box
Component
Delivery

Wednesday, May 20, 15



Two Stage solution for virtual integration

Pre-Delivery Stage

J‘ .I' System Level Properties

-------------

Model Contract Requirement Outsourced For
Implementation

System | “ ! : :
Dcugn ' ' Automated EComponentE > Component

Post-Delivery stage

Black-box
Component
Delivery

Wednesday, May 20, 15



Two Stage solution for virtual integration

Pre-Delivery Stage

Jl — System Level Properties

System : ;

Design - Nl | i Component : Component

Model Contract ; Requirement Outsourced For
Generation Implementation

Black-box
Component
Black-box Component
Implementation .
Delivery

Wednesday, May 20, 15



Pre-delivery verification stage

Wednesday, May 20, 15



Pre-delivery Verification Stage

How to generate formal contracts from models and prototypical code!

|. Define a notion of a component contract
® system property based
® allows obtain a higher degree of assurance
2. Design a uniform intermediate modeling formalism
® to facilitate the integration of different techniques
® to target heterogeneous in-house system prototypes

3. Develop (semi)-automated techniques to generate contract from models and
prototypical code

Wednesday, May 20, 15



Notion of a Formal Contract

® Contracts as a method to organize and integrate component-based systems

® Specify precisely the information necessary to reason about a component
Interactions

® Contracts specify I/O behavior of a component:

® Define the component guarantees provided that its environment obey
certain assumptions.

Wednesday, May 20, 15



Notion of a Formal Contract

® Contracts as a method to organize and integrate component-based systems

® Specify precisely the information necessary to reason about a component
Interactions

® Contracts specify I/O behavior of a component:

® Define the component guarantees provided that its environment obey
certain assumptions.

Different notions of formal contract, e.g.:

® Othello: Trace-based contract framework [Tonetta et. al.]

® AGREE: Contract language for AADL [Cofer et.al.

o ACSL, JML,SPARK, etc : Contract in Programming Languages.

Wednesday, May 20, 15



ooooooooooooooooooooooooo

Compositional Verification

Check P on entire system: too complicated (e.g. many states)

Use system’s natural decomposition into components to break-up the ver-
ification task

Check components in isolation: M; = P?

... typically a component is designed to satisfy its requirements in specific
contexts

Wednesday, May 20, 15



Compositional Verification

Check P on entire system: too complicated (e.g. many states)

Use system’s natural decomposition into components to break-up the ver-
ification task

Check components in isolation: M; = P?

... typically a component is designed to satisfy its requirements in specific
contexts

Wednesday, May 20, 15



Compositional Verification

e Check P on entire system: too complicated (e.g. many states)

e Use system’s natural decomposition into components to break-up the ver-
ification task

e Check components in isolation: M; = P?

e ... typically a component is designed to satisty its requirements in specific

contexts
M, e Assume-Guarantee reasoning
{F o Misra & Chandy 81, Jones 83, Pnueli 84, Pasareanu 01

Wednesday, May 20, 15



Compositional Verification

Check P on entire system: too complicated (e.g. many states)

Use system’s natural decomposition into components to break-up the ver-
ification task

Check components in isolation: M; = P?

... typically a component is designed to satisfy its requirements in specific
contexts

e Assume-Guarantee reasoning

o Misra & Chandy 81, Jones 83, Pnueli 84, Pasareanu 01

e introduces assumption A representing M;’s context

Wednesday, May 20, 15



Compositional Verification

(A) M (P) is true if whenever M

is part of a system that satisfies A,
then the system must also guarantee P

Simplest assume-guarantee rule (Asym)
1. (A) M, (P)
2. (true) Mo (A)
(true) My ||Ms (P)

Wednesday, May 20, 15



.
ooooooooooooooooooooooooo

Compositional Verification

(A) M (P) is true if whenever M

is part of a system that satisfies A,
then the system must also guarantee P

Simplest assume-guarantee rule (Asym)
1. (A) M, (P)
2. (true) Mo (A)
(true) My ||Ms (P)

* Cobleigh et. al “Learning assumption for compositional verification”. TACAS'O
* Emmi et. al “Assume Guarantee Verification for Interface Automata”. FM’08
* Giannakopoulou et. al “Symbolic Learning of component interfaces”. SAS’ |2

* Howar et. al “Hybrid learning: interface generation through static, dynamic, and
symbolic analysis” ISSTA’| 3.

Wednesday, May 20, 15



Compositional Verification

Example of assumptions (*)

® no file“close” before “open”
® access to shared variable “X” must be protected by lock “L”

® (rover executive) whenever thread “T” reads variable “V”, no other
thread can read “V’ before thread “T” clears it first

® (spacecrdaft flight phases) a docking maneuver can only be invoked if
the launch abort system has previously been jettisoned from the
spacecraft

(*) C. Pasareanu slides on compositional verification from SSFT 2012

Wednesday, May 20, 15



Two Stage solution for virtual integration

Pre-Delivery Stage

Jl — System Level Properties

System : ;

Design - Nl | i Component : Component

Model Contract ; Requirement Outsourced For
Generation Implementation

Black-box
Component
Black-box Component
Implementation .
Delivery

Wednesday, May 20, 15



Two Stage solution for virtual integration

-------------

Nidelriee | i Component : Component
Contract ; Requirement Outsourced For:

Generation Implementation;

Black-box
Component
Black-box Component
Implementation .
Delivery

Wednesday, May 20, 15



Pre-delivery Verification Stage

Our current approach:

Simulink/
Statetiow
Sarety
Lustre C/C++ JAVA Froperties

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

v v

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec 'i

Wednesday, May 20, 15



Pre-delivery Verification Stage

Our current approach:

Integrated Simulink 2 Lustre
Modular Compiler

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

LLVM-based

languages
Sarety
Lustre C/C++ JAVA Froperties

v v

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec 's

Wednesday, May 20, 15



Pre-delivery Verification Stage

Our current approach:

Simulink/

S 'Hu\»(/

Uniform intermediate
verification language

Integrated Simulink 2 Lustre
Modular Compiler

LLVM-based

languages
Sarety
C/CtF JAVA Froperties

Different techniques

for automated Generalized PDR, Concolic Execution, Automata Learning ...

contract generation

Assume/Guarantee
contract

\ 4

CoCoSpec
uSoCospes 3

Wednesday, May 20, 15



Lustre

® Declarative and deterministic specification language

® |ustre programs = systems of equational constraints between
input and output streams

node therm_control (actual: real; up, dn: bool )
returns (heat, cool : bool)
var desired, margin : real;
let
margin = 1.5;
desired = 21.0 — if dn then (pre desired) — 1.0
else if up then (pre desired) + 1.0
else (pre desired);
(actual — desired) > margin;
(actual — desired) < —margin;

cool
heat
tel

Wednesday, May 20, 15



Lustre

® A Lustre program models an |/O automaton

Inputs step function outputs
(transition)
memory
(state)
Implementing a Lustre program
* Read inputs
* Compute next state and outputs Repeat at every trigger
* Write outputs (external event)
* Update state

Wednesday, May 20, 15



Lustre

A Lustre program is a collection of nodes: L = [Ny, N1,..., Ny,

Wednesday, May 20, 15



Lustre

A Lustre program is a collection of nodes: L = [Ny, N1,..., Ny,

N; = (Z;, O;, L;, Init;, Trans;)

e 7,,0;,L;: set of input/output/local vars

e Init;, I'rans; : set of formulas for the initial states and transition relation

Wednesday, May 20, 15



Lustre

A Lustre program is a collection of nodes: L = [Ny, N1,..., Ny,

N; = (Z;, O;, L;, Init;, Trans;)

e 7,,0;,L;: set of input/output/local vars

e Init;, I'rans; : set of formulas for the initial states and transition relation

/\ v; = p(8;)

ieN
o v, € O;UL; and Vars(st) CZ; UO; UL,
e s, arbitrary Lustre expression including node calls N;(uq, ..., up)
e p function maps expression to expression

a in Init;

a — b is projected as { b in Trans;

Wednesday, May 20, 15



Lustre

A Lustre program is a collection of nodes: L = [Ny, N1,..., Ny,

N; = (Z;, O;, L;, Init;, Trans;)

e 7,,0;,L;: set of input/output/local vars

e Init;, I'rans; : set of formulas for the initial states and transition relation
/\ vi = p(si)
iEN

o v, € O;UL; and Vars(st) CZ; UO; UL,

e s, arbitrary Lustre expression including node calls N;(uq, ..., up)

e p function maps expression to expression

a in Init;

a — b is projected as { b in Trans;

e A safety property P is any Lustre expression over the main node N

Wednesday, May 20, 15



Pre-delivery Verification Stage

Our current approach:

Simulink/
Statetiow
Sarety
Lustre C/C++ JAVA Froperties

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

v v

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec 'i

Wednesday, May 20, 15



Pre-delivery Verification Stage

Our current approach:

&

(Vs

imulink/

Safety
C/Ct+ JAVA Froperties

Uniform intermediate

verification language Constrained Horn Clauses

| v ¢
Different techniques
for automated Generalized PDR, Concolic Execution, Automata Learning ...

contract generation
contract oL oopec

Wednesday, May 20, 15



Assume-Guarantee contracts

consist of
@ an assumption A: how the component must be used

o a guarantee G: how the component must behave, assuming A

Wednesday, May 20, 15



Assume-Guarantee contracts

consist of
@ an assumption A: how the component must be used

o a guarantee G: how the component must behave, assuming A

If (A, G) is a contract for component C, then if A is always true so is G:

(OA) = (OG) holds for C

In practice, usually weakened to
(hist A) = G is an invariant of C

Wednesday, May 20, 15



Assume-Guarantee contracts

consist of
@ an assumption A: how the component must be used

o a guarantee G: how the component must behave, assuming A

If (A, G) is a contract for component C, then if A is always true so is G:

(OA) = (OG) holds for C

In practice, usually weakened to
(hist A) = G is an invariant of C

If component C’ uses C, then A (A at call site) must always be true:
Acs is an invariant of ('

Wednesday, May 20, 15



Assume-Guarantee contracts

Improves scalability of the verification of hierarchical
systems by abstracting components by their contract.

The analysis is bottom-up:

o leaves are analyzed as usual, which can succeed or
fail.

o for nodes, we first abstract the subcomponents,
which can succeed, or fail.
In case of failure we can restart the analysis after
(soundly) refining the abstraction, possibly several
times.

O ®

Wednesday, May 20, 15



Assume-Guarantee contracts

Improves scalability of the verification of hierarchical
systems by abstracting components by their contract. {

The analysis is bottom-up:

o leaves are analyzed as usual, which can succeed or
fail.

o for nodes, we first abstract the subcomponents,

which can succeed, or fail. @ @

In case of failure we can restart the analysis after
(soundly) refining the abstraction, possibly several
times.

Implemented in Kind2: a multi engine .
model checker for Lustre programs

http://kindZ-mc.github.io/kindZ//

Wednesday, May 20, 15


http://kind2-mc.github.io/kind2/
http://kind2-mc.github.io/kind2/

CoCoSpec

® An Assume/Guarantee-based Contract Language on top of Lustre

A CocoSpec contract is a pair (A, G)

Assumption — how the component must be used:

A

V  (require;)

Guarantee — how the component behaves:
G = A (require; = ensure;)

Wednesday, May 20, 15



CoCoSpec

® An Assume/Guarantee-based Contract Language

node component(nil, n2:int; chaos:bool)
returns (out: bool; corrupted, warning:bool) ;
--!contract : contr -

let
-- Implementation.
tel

contract contr(nl, n2:int; chaos:bool)

returns (out: bool; corrupted, warning:bool) ;

let
require (-7 <= nl1) and (7 <= n1); -- nl1 legal input
require (-11 <= n2) and (11 <= n2); -- n2 legal input
ensure (-42 <= out) and (42 <= out); -- out is bounded
tel

AR

Wednesday, May 20, 15



CoCoSpec

® An Assume/Guarantee-based Contract Language

returns (out: bool; corrupted, warning:bool) ;
. —-lcontract : contr -

' let
-- Implementation.

contract contr(nl, n2:int; chaos:bool)

returns (out: bool; corrupted, warning:bool) ;

let
require (-7 <= n1) and (7 <= n1); -- nl legal input
require (-11 <= n2) and (11 <= n2); -- n2 legal input
ensure (-42 <= out) and (42 <= out); -- out is bounded
tel

R ————

Wednesday, May 20, 15



CoCoSpec

® An Assume/Guarantee-based Contract Language

‘node component(nl, n2:int; chaos:bool) f
returns (out: bool; corrupted, warning:bool) ;
i --lcontract : contr - '
mR
‘let
-- Implementation.
tel
: contract contr(nl, n2:int: chaos:bool)

returns (out: bool; corrupted, warning:bool) ;
let

require (-7 <= nl1) and (7 <= n1); -- nl1 legal input
require (-11 <= n2) and (11 <= n2); -- n2 legal input
ensure (-42 <= out) and (42 <= out); -- out is bounded

R ———

Wednesday, May 20, 15



CoCoSpec

® An Assume/Guarantee-based Contract Language

node component(on, off: bool) returns (active: bool) ;
--lcontract : nop -
--!lcontract : inhibited ;
let
-- Implementation.
tel

contract inhibited(on, off: bool) returns (active: bool) ;
var
Act. . raise: Dool  lapf.sct.raige: iIint ;
let
active_raise

false -> active and not pre active ;

last_act_raise = 0 -> if pre active_raise then 1
else 1 + pre last_act_raise ;
require last_act_raise <= n ;
ensure active ;
tel

DR —

Wednesday, May 20, 15



CoCoSpec

® An Assume/Guarantee-based Contract Language

node component(on, off: bool) returns (active: bool) ;
--lcontract : nop -

--lcontract : inhibited ;

let h iabl
-- Implementation. 8 ost variable
tel

contract inhibited(on, off: bool) returnss(active: bool) ;

» var :

....act.raise: bool ; last.act.raise: iRt ... a
let

. active_raise = false -> active and not pre active ; |

i last_act_raise = 0 -> if pre active_raise then 1 E

: else 1 + pre last_act_raise ; E

require last_act_raise <= n ;
ensure active ;
tel

DR —

Wednesday, May 20, 15



Pre-delivery Verification Stage

Our current approach:

Simulink/
Stateflow.

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

Lustre C/C++

v

Generalized PDR, Concolic Execution, Automata Learning ...

4

CoCoSpec
CoCospes_}

Wednesday, May 20, 15



Pre-delivery Verification Stage

Our current approach:

Simulink/

Stateflow

Sarety
- Lustre C/C++ JAVA Froperties &
P I. cmmmmmea - ........................................................ fommmmmm e nns '

Zustre<g

Uniform intermediate
verification language

Constrained Horn Clauses

l

v v
Different techniques
for automated Generalized PDR, Concolic Execution, Automata Learning ...

contract generation

Assume/Guarantee COCOSPEC 1
tract .
contrac r_, - 4

Wednesday, May 20, 15



Zustre

A verification engine and CoCoSpec generator for Lustre program

Lustre + safety property

Modular .
compiler M Lustre2Horn

Horn clauses:

Generalized SPACER

Property-based
Reachability
}
Unsafe E/ Safe
(CEX)

T. Kahsai, PL. Garoche, A. Gurfinkel:*“Synthesizing modular invariants for synchronous code”. In HCVS 2014.

Wednesday, May 20, 15



Zustre

A verification engine and CoCoSpec generator for Lustre program

Lustre + safety property

Modular .
compiler Lustre2Horn NB. Currently it only

5 infers guarantees
Horn clauses:

Generalized SPACER
Property-based : ;
Reachability CoCoSpec *
e ‘ -------------------------- ' ’— -
} N A
Unsafe VSafe B> .mod.ular
(CEX) Invariants ;

T. Kahsai, PL. Garoche, A. Gurfinkel:*“Synthesizing modular invariants for synchronous code”. In HCVS 2014.

Wednesday, May 20, 15



Constrained Horn Clause

Wednesday, May 20, 15



Constrained Horn Clause

e A fragment of First Order Logic.

e A uniform way to represent transition systems for verification.

F . set of tfunction symbols
P . set of predicate symbols
)V :  set of variables

Constrained Horn Clause (CHC) is a formula:

YV (o Ap1| X1 A Apn| X, — A X]), forn >0

0 . constraint over F UV with respect to some background theory
e.¢. arithmetic, arrays, SMT

X;, X CV : (possibly empty) vectors of variables
P1,...,Pn,h : n-ary predicates

i | X;] . application p(tq,...,t,) of an n-ary predicate symbol

Wednesday, May 20, 15



Example |

node therm_control (actual: real; up, dn: bool )
returns (heat, cool : bool)
var desired, margin : real;
let
margin = 1.5;
desired = 21.0 — if dn then (pre desired) — 1.0
else if up then (pre desired) + 1.0
else (pre desired);
(actual — desired) > margin;
(actual — desired) < —margin;

cool
heat
tel

Wednesday, May 20, 15



Example |

node therm_control (actual: real; up, dn: bool )
returns (heat, cool : bool)
var desired, margin : real;
let
margin = 1.5;
desired = 21.0 — if dn then (pre desired) — 1.0
else if up then (pre desired) + 1.0

else (pre desired);
(actual — desired) > margin;

cool =
heat = (actual — desired) < —margin;
tel
' [ margin = 1.5 :
v A desired = 21.0 i |n|t|a| states

: A cool = actual — desired > margin
i A heat = ...] = TCipnit(actual, up, dn, heat, cool, desired)

[ margin=15 N .
. A\ desired’ = ite(dn (desired — 1.0) (ite...)) ETransmon relation

i A\ cool = actual — desired’ > margin
: A heat = ...| = TCirans(actual, up, dn, heat, cool, desired, desired’ )

' T'Clinit(actual, up, dn, heat, cool, desired) = Loop(actual, up, dn, heat, cool, desired);

Loop(actual’,up’, dn’, heat’, cool’, desired) ;LOOP
/\ TClrans(actual, up, dn heat cool, desired, desired’) :
E = Loop(actual, up, dn, heat, cool, deszred’ ) 5

Wednesday, May 20, 15



Zustre

A verification engine and CoCoSpec generator for Lustre program

Lustre + safety property

Lustre2Horn

e N(Z,0,8,8") = A\ ¢ : an invariant for a node N
Horn clauses:

e Modular invariants : invariants for each node

SPACER

g CoCoSpec
""" I " :

Wednesday, May 20, 15



From Horn Clauses to CoCoSpec

node Sofar( X : bool ) returns ( Y : bool );
let

Y = (true -> pre Y) and X;
tel

node Store( Delta : int ) returns ( Total : int );
var Prev : int;
let

Prev = @ -> pre Total;

Total = if Delta < @ and Prev > @ then Prev+Delta
else if Delta > @ and Prev < 10 then Prev+Delta
else Prev;

tel

node top( Delta : int ) returns ( OK : bool );
var Total : int;
S: bool;

let

Total‘= Store( Delta );

| S = Sofar( -1 <= Delta and Delta <= 1 );
OK = S = @ <= Total and Total <= 20;

tel

Wednesday, May 20, 15



From Horn Clauses to CoCoSpec

node Sofar( X : bool ) returns ( Y : bool );
let

Y = (true -> pre Y) and X;
tel

node Store( Delta : int ) returns ( Total : int );
var Prev : int;
let

Prev = @ -> pre Total;

Total = if Delta < @ and Prev > @ then Prev+Delta
else if Delta > @ and Prev < 10 then Prev+Delta
else Prev;

tel

node top( Delta : int ) returns ( OK : bool );
var Total : int;
S: bool;

let

Total‘= Store( Delta );

| S = Sofar( -1 <= Delta and Delta <= 1 );
OK = S = @ <= Total and Total <= 20;

tel

Wednesday, May 20, 15



From Horn Clauses to CoCoSpec

node Sofar( X : bool ) returns ( Y : bool );
let And(Not(Not(Sofar.__Sofar_2_x) == Sofar.X),
Y = (true -> pre Y) and X; Not(Not(Sofar.Y) == Sofar.X))
tel And(Not(Sofar.Y == Or(Not(Sofar.__Sofar_2_c), Not(Sofar.X))),
Not(Not(Sofar.__Sofar_2_x) == Sofar.Y))

node Store( Delta : int ) returns ( Total : int );
var Prev : int;
let

Prev = 0 -> pre Total;

Total = if Delta < @ and Prev > @ then Prev+Delta
else if Delta > @ and Prev < 10 then Prev+Delta
else Prev;

tel

node top( Delta : int ) returns ( OK : bool );
var Total : int;

S: bool;
let e

-

Total = Store( Delta );

| S = Sofar( -1 <= Delta and Delta <= 1 );
OK = S => @ <= Total and Total <= 20;

- : AN

tel

Wednesday, May 20, 15



From Horn Clauses to CoCoSpec

node Sofar( X : bool ) returns ( Y : bool );
let

Y = (true -> pre Y) and X;
tel

And(Not(Not(Sofar.__Sofar_2_x) == Sofar.X),
Not(Not(Sofar.Y) == Sofar.X))

And(Not(Sofar.Y == Or(Not(Sofar.__Sofar_2_c), Not(Sofar.X))),
Not(Not(Sofar.__Sofar_2_x) == Sofar.Y))

node Store( Delta : int ) returns ( Total : int );
var Prev : int;
let

Prev @ -> pre Total;

Total = if Delta < @ and Prev > @ then Prev+Delta
else if Delta > @ and Prev < 10 then Prev+Delta
else Prev;

tel

node top( Delta : int ) returns ( OK : bool );
var Total : int;
S: bool;

veLcta._const .

contract Sofar (X:bool) returns (Y:bool);
let

ensure (Y = X) -> (Y = (pre(Y) and X));
tel

let

Total = Store( Delta );

| S = Sofar( -1 <= Delta and Delta <= 1 );
OK = S => @ <= Total and Total <= 20;

NB.We use Z3 tactics to simplify
(manipulate) formulas

Wednesday, May 20, 15



Pre-delivery Verification Stage

Our current approach:

Simulink/
Stateflow
Safety
: Lustre C/C++ JAVA Properties
R I. Emmmmm——. - ........................................................ 1 ................ '

Zustre<gt

Uniform intermediate
verification language

Constrained Horn Clauses

l

v v
Different techniques
for automated Generalized PDR, Concolic Execution, Automata Learning ...

contract generation

Assume/Guarantee -
contract COCO S’PeC i
r—'

Wednesday, May 20, 15



Our current approach: Integrated Analysis

Pre-delivery Verification Stage

&4\ MathWorks

Simulink/
Stateflow.

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

Sarety
Lustre C/C++ JAVA Properties

............ e Ml CTEETEE S SRR DR

Zustre<st

Constrained Horn Clauses

l

v

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec 'i

Wednesday, May 20, 15



(Info)[genecode]

useful,

(Info)[genecode)
(Info)[genecode]
(Info)[genecode)
(Info)[genecode)
(Info)[genecode]
(Info)[genecode)
(Info)[genecode)
(Info)[genecode]

(Info)[genecode)
(Info)[genecode)

zustre =

> |

<@ " 51 4 LI/ » Users » teme » Documents » BitBucket » coco-simulink » tools » gac »
>> coco('../../test/gac/properties/property 3 test.mdl’)

Integrated Analysis Framework

MATLAB R2013a

Welcome to the CoCo -- Contract generation and verification of Simulink models

MATLAB Sim2Preludelustre is free software: you can redistribute it
and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

MATLAB Sim2PreludeLustre is distributed in the hope that it will be

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCEANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the CNU Ceneral Public License.

Generating Lustre code from Simulink model: ../../test/gac/properties/property 3 _test.ndl
Internal representation building

Printing original dataflow model

Flattening of virtual SubSytems

Printing flattened dataflow model

Internal representation browsing for implicit data type conversions detection

Printing flattened-type-converted dataflow model

Code printing

(Warning)[write_code) A Terminator block have been found. No code will be generated for it:
property_3_test/Terminator

End of code generation
Cleaning temporary files

/Users/teme/Documents/CitHub/zustre/src/

(Info)[Zustre property checking)] Zustre result for property node [property_3_test_observer): SAFE

4\ MathWorks

: - *, New Variable Analyze Cod b - | ¢4 Commun
3 o2 U . Find Files & B — & : iw - (©) Preferences \2) e i
.2 Open Variable » 7 Run and Time e 9 Request Support
New New Open . Compare Import Save o Simulink  Layout |  SetPath Help
Script v - Data Workspace - Clear Workspace v ) Clear Commands ~  Library - v G Add-Ons v
FILE VARIABLE CODE | SIMUUNK ENVIRONMENT RESOURCES

(Info)[Traceability] Traceability data generated in file: ../../test/gac/properties/src_property 3 _test/property 3 _test.trace
(Info)[CGeneration result) Lustre code generated in file: ../../test/gac/properties/src_property 3 test/property 3 test.lus
(Info)[Safety)] Running Zustre

Wednesday, May 20, 15



Integrated Analysis Framework ‘ MathWorks:

e 00 MATLAB R2013a 800 ’i;wopeny;lJtst
File Ect View Display Diagram Sinmwlaton Analysis Code Tools Help
v us @& v o » b = @ [0 1 2@
|yt (T] (2 NewVarisble Garie e = B~ 8 = 6 ®» | ©~ |
L3 S \J (5 FindFiles & g e = Heisn o O g
.2 Open Variable » 7 Run and Time e
New New Open . Compare Import Save us> Simulink Layout -
ScIit. =~ Data Workspace - Clear Workspace v ) Clear Commands v  Library - @
e FILE | VARIABLE | CODE | SIMUUNK ENVIR( > Chotrsr Block ! 'IEI
<@ " 51 34 [/ » Users » teme » Documents » BitBucket » coco-simulink » tools » gac » Q [‘ Terminator
>> coco('../../test/gac/properties/property 3 test.mdl’) 4
(Info)[genecode] Welcome to the CoCo -- Contract generation and verification of Simulink mod Cj:}f
MATLAB Sim2PreludelLustre is free software: you can redistribute it = 1
and/or modify it under the terms of the GNU General Public License & ks < A
as published by the Free Software Foundation, either version 3 of > =§;;)
the License, or (at your option) any later version. Operanor
MATLAB Sim2PreludeLustre is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of C;;>
MERCEANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. » =x
You should have received a copy of the CNU Ceneral Public License. ) 'g;;)
(Info)[genecode) Generating Lustre code from Simulink model: ../../test/gac/properties/prope e

(Info)[genecode] Internal representation building
(Info)[genecode) Printing original dataflow model
(Info)[genecode] Flattening of virtual SubSytems
(Info)[genecode] Printing flattened dataflow model
(Info)[genecode) Internal representation browsing for implicit data type conversions detecti
(Info)[genecode] Printing flattened-type-converted dataflow model
(Info)[genecode)] Code printing
(Warning)[write_code) A Terminator block have been found. No code will be generated for it:
property_3_test/Terminator
(Info)[genecode) End of code generation
(Info)[genecode) Cleaning temporary files »
(Info)[Traceability)] Traceability data generated in file: ../../tost/qac/propoztioa/src_propR.u” 100% VariabieStepDiscrete
(Info)[Ceneration result)] Lustre code generated in file: ../../test/gac/properties/src_proplivy v _rivwwrpivpvivy_o_cvewsaus
(Info)[Safety) Running Zustre

zustre =
/Users/teme/Documents/CitHub/zustre/src/

(Info)[Zustre property checking)] Zustre result for property node [property_3_test_observer): SAFE
> |

Specify safety properties
using synchronous observers

Wednesday, May 20, 15



Integrated Analysis Framework ‘ MathWorks:

800 MATLAB R2013a

EsEs) TR A

View Display Diagram Simulaton Analysis Code Tools Help

-3 40P

: L (1] - New Variable Analyze Code o -
L3 92 \J (5FindFiles & a = = 1) R
.2 Open Variable » L7 Run and Time
New New Open . Compare Import Save us> Simulink  Layout
Script - - Data Workspace - Clear Workspace ~ | Clear Commands ~  Library -
FILE VARIABLE CODE SIMULINK
=] » Users » teme » Documents » BitBucket » coco-simulink » tools » gac »
>>jcoco(’'../../test/gac/properties/property 3 test.mdl’)
(I FUTTTONt FrTUT e e - : oTe on and verification of Simulink mod
MATLAB Sim2PreludelLustre is free software: you can redistribute it 1
and/or modify it under the terms of the GNU General Public License ks < A >
as published by the Free Software Foundation, either version 3 of > Ag;;)
the License, or (at your option) any later version. Operanor
MATLAB Sim2PreludeLustre is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of C;;>
MERCEANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. » =x
You should have received a copy of the CNU Ceneral Public License. ) 'g;;)
(Info)[genecode) Generating Lustre code from Simulink model: ../../test/gac/properties/prope e
(Info)[genecode] Internal representation building
(Info)[genecode) Printing original dataflow model
(Info)[genecode] Flattening of virtual SubSytems

(Info)[genecode] Printing flattened dataflow model

(Info)[genecode) Internal representation browsing for implicit data type conversions detecti

(Info)[genecode] Printing flattened-type-converted dataflow model

(Info)[genecode)] Code printing

(Warning)[write_code) A Terminator block have been found. No code will be generated for it:
property_3_test/Terminator

(Info)[genecode) End of code generation

(Info)[genecode) Cleaning temporary files »

(Info)[Traceability)] Traceability data generated in file: ../../tost/qac/propoztioa/src_propR.u” 100% VariabieStepDiscrete

(Info)[Ceneration result)] Lustre code generated in file: ../../test/gac/properties/src_proplivy v _rivwwrpivpvivy_o_cvewsaus

(Info)[Safety) Running Zustre

zustre =
/Users/teme/Documents/CitHub/zustre/src/

(Info)[Zustre property checking)] Zustre result for property node [property_3_test_observer): SAFE
> |

Specify safety properties
using synchronous observers

Wednesday, May 20, 15



L3 92 \J (5FindFiles

New New Open LhJCompun Import
Script

ML

o/ ftest/gac/properties/property 3 test.mdl’)

Integrated Analysis Framework

MATLAB R2013a

wr ., New Variable & Analyze Code
o .2 Open Variable » L7 Run and Time
Workspace - Clear Workspace v Clear Commands ~
VARIABLE CODE

Y

—

» Users » teme » Documents » BitBucket » coco-simulink » tools » gac »

and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

MATLAB Sim2PreludeLustre is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the CNU

General Public License for more details.
You should have received a copy of the CNU Ceneral Public License.

(Info)[genecode)
(Info)[genecode]
(Info)[genecode)
(Info)[genecode)
(Info)[genecode]
(Info)[genecode)
(Info)[genecode)
(Info)[genecode]

GCenerating Lustre code from Simulink model:
Internal representation building

Printing original dataflow model
Flattening of virtual SubSytems

Printing flattened dataflow model

Internal representation browsing for implicit data type conversions detecti

Printing flattened-type-converted dataflow model
Code printing

4\ MathWorks

—
&8 |
Simulink  Layout
Library -
SMNK

T : e : - on and verification of Simulink meod
MATLAB Sim2Preludelustre is free software: you can redistribute it

o/ /test/gac/properties/prope

(Warning)[write_code) A Terminator block have been found. No code will be generated for it:
property_3_test/Terminator

(Info)[genecode)
(Info)[genecode)

(Info)[Traceability] Traceability data generated in file: ../../test/gac/properties/src_prop
(Info)[CGeneration result) Lustre code genecrated in file: ../../test/gac/properties/src_propesivy_o_w«

End of code generation
Cleaning temporary files

(Info)[Safety)] Running Zustre

zustre =

/Users/teme/Documents/CitHub/zustre/src/

m
MR < AN
Operator
&
» >
w @
800 a property_3_test *

v 3 -3 4P ~ @
_property 3 test
-

10.0 vl

»

(Info)[Zustre

roperty checkin

Zustre result for property node ropert

Specify safety properties
using synchronous observers

3 test observer):

Y :@.
£y "
-
g x N e
SAFE ﬁ Soah
&
[V
kel o ”,

»
Ready 100% VarabieStepDiscreto

Wednesday, May 20, 15



Integrated Analysis Framework ‘ MathWorks:

800 . - MATLAS R2013a . s
e - B B O e ——— TR O L e —
wﬁJQmm& w::'w. ;:.:CT: & D@,Hesdit\ﬁewoiaplayoiagmmSMﬁonAnalyaisCodaToolstb
s:"u ":' 0'-” Lt COmPES .:u:‘ w?m ;oum - umm v Useary e 4 ) — ~ (
P SEIRA T L e D e T el 2L » B _ g O~ B O > = @ 10.0 | » @~

LY
S 03 Ql » Users » teme » Documents » BitBucket » coco-simulink » tools » gac »

ty Dicdhs test.mdl, lise 14681: line does not Rave a paraseter nased 20rder

private/oponsd at

A8 L ‘vt at +9Y
>> 00co( ../ .. teat/qac/propertics/property biobs test.ndl’)
(Info)[gonocode] Welcome to the Colo -~ Conmtract gomoration and verification of Simulink mode
MATLAS Sim2Preludelustre is free software: you can redistribute it > Cbserver Biock -—D@
and/or modify it under the terms of the ONU General Public License ROE i1
an published by the Froe Software Foundation, either version 3 of gy -
the License, or (at your optiom) any later version. cbserver

®

|

MATLAR Sim2Proludelustro is distributed in the hopo that it will be e o

wseful, bat WITHOUT ANY MARRANTY; without evesn the isplied warranty of

MERCHANTAPILITY or FITNESS FOR A PARTICULAR PURPOSE. Sece the GNU

Goneral Public License for more details. = Im

You should have received a copy of the CNU Ceneral Public License. >
(Info)[gonocode] Generating Lustre code from Simulink model: ../../test/gac/properties/proper > »h N\
(Info)[genecode] Iaternal representation building @ > @
(Info)[genccode] Printing original dataflow model — Out1
(Info)[gonecode] Flattening of virtual SubSyte=a Swich
(Info)[genccode] Printing flattened dataflow model m
(Info)[gonocode] Internal representation browsing for isplicit data type conversions detectiocg < E ;
(Info)[genecode] Printing flattened-type-converted dataflow sodel %)
({Info)[genccode] Code printing
(Warning)[write_code] A Terminator block have been found. No code will be generated for it:

property biobs_test/Terminator
(Warning)[writeo_code] A Torminator block have been found. No code will be generated for it: )

. property bicbs_test/Terminatorl —> Observer Biock —b@

(Info)[genccode] End of code generation >
(Info)[genecode] Cleaning temporary filea Torminator
(Info)[Traceability] Traceability data generated inm file: ../../test/gac/properties/src_prope obsarver_bis
(Info)[Cenoration result) Lustro code generated in file: ../../test/gac/properties/src_proper
(Info)[Safety) Running Rustre

zuatre =

/Users/tomo/Documents /GitHub/zustro/src/

(Info)[Zustre property checking) ZTustre result for property node [property_biobs_test_observer): SAFE
(Info)[Zustre property checking) Zuatre result for property node [property biocba_teat_observer_bis): CEX
£ >> |

Wednesday, May 20, 15



Integrated Analysis Framework

4\ MathWorks

ano MATLAR R2013a ol
HOME ) 2 Se i
0.0 A _______ Pyproperty _biobs_test —
: = ' (1] ', New Variable Analyze Cose L. .
3 00 [ Cnume & O3 W gh“ \bu@,ﬁesdd\ﬁewotaplayooagmmSMuonAnalyasCodeToolsrbb
2 Open Variable + o Time
New  New Open | Compare lport  Save - Sirubnk  Layout |/ § e
o S B o e Y iz [l ~ o~ B ® > = @~ [00
& % 2 23 Bl v Users » teme » Documents » BitBucket » coco-simulink » tools » gac »
-’n.; : teat.sdl, lise 1481: line doea not Rave a paraseter nased 10
1 opered at
>> coeo( of sudteat/qac/properties/property biobs test.adl’') >
(!nto)(qomcodo) Weolcome to the Colo -~ Conmtract gomoration and verification of Simulink mode
MATLAS Sim2Preludelustre is free software: you can redistribute it > Cbserver Biock
and/or modify it under the terms of the ONU General Public License LO% i1 Torminator
an published by the Froe Software Foundation, either version 3 of gy
the License, or (at your option) any later version. — observer
MATLAR Sim2Proludelustro is distributed in the hopo that it will be e o
wseful, bat WITHOUT ANY MARRANTY; without evesn the isplied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Sece the GNU
Goneral Public License for more details. = Im
You should have received a copy of the CNU Ceneral Public License. >
(Info)[gonocode] Generating Lustre code from Simulink model: ../../test/gac/properties/proper > »h N\
(Info)[genecode] Iaternal representation building @ > @
(Info)[genccode] Printing original dataflow model — Out1
(Info)[gonecode] Flattening of virtual SubSyte=a Swich
(Info)[genccode] Printing flattened dataflow model m
(Info)[gonocode] Internal representation browsing for isplicit data type conversions detectiocg < E ;
(Info)[genecode] Printing flattened-type-converted dataflow sodel %)
({Info)[genccode] Code printing
(Warning)[write_code] A Terminator block have been found. No code will be generated for it:
property biobs_test/Terminator
(Warning)[writeo_code] A Torminator block have been found. No code will be generated for it: )
property bicbs_test/Terminatorl —> Observer Biock —b@
(Info)[genccode] End of code generation I~ )
(Info)[genecode] Cleaning temporary filea Torminator
(Info)[Traceability] Traceability data generated inm file: ../../test/gac/properties/src_prope obsarver_bis
(Info)[Cenoration result) Lustro code generated in file: ../../test/gac/properties/src_proper
(Info)[Safety) Running Rustre
zustre =
/Users/tomo/Documents /GitHub/zustro/src/
(Info)[Zustre property checking) ZTustre result for property node [property_biobs_test_observer): SAFE
(Info)[Zustre property checking) Zuatre result for property node [property biocba_teat_observer_bis): CEX
fi>> |
8eno >3 property_biobs_test*
File Edt View anlty Dnom srmhbm Analysis Code Tools Hob
@ <« S-F 4 ® P = @~ [00

B LS o

v 9
H4
9
/

8

Wednesday, May 20, 15



Pre-delivery Verification Stage

Our current approach:

Simulink/
Stateflow
Safety
Lustre C/C++ JAVA Properties
............................ [-.--.--‘-f.--.--.--.--.--.--.--.--.--.--.-..--.--.--.--.--.--.--.-1.--.--.--.--.--J

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

Zustre<gt

Constrained Horn Clauses

l v ¢

Generalized PDR, Concolic Execution, Automata Learning ...

CoCoSpec 'i

Wednesday, May 20, 15



Pre-delivery Verification Stage

Our current approach:

Simulink/
Stateflow.

----------------------------------------------------------------------

Uniform intermediate
verification language

Different techniques
for automated
contract generation

Assume/Guarantee
contract

Lustre C/C++

Constrained Horn Clauses

l

v

v

Generalized PDR, Concolic Execution, Automata Learning ...

v

CoCoSpec
JCoCospee_j

Wednesday, May 20, 15



SeaHorn

A framework for verifying LLVM-based programs

Program
+ Safety properties , Correct

Automated
Analysis

\ oo
! ,.,‘\'.,\\-
\ ': 4‘\‘\ \ I\

Incorrect

NB. (i) Current version targets C programs
(i) and does not generate CoCoSpec

A. Gurfinkel, T. Kahsai, J. Navas, :“Algorithmic Logic-based verification”. In ACM-SIGLOG, April 2015.

A. Gurfinkel,T. Kahsai, ]. Navas, :“SeaHorn:A framework for verifying C programs (competition contribution)”. In SYVCOMP
(TACAS-2015).

A. Gurfinkel , T. Kahsai, A. Komuravelli, J. Navas, :“The SeaHorn Verification Framework”. In CAV 2015.

Wednesday, May 20, 15



SeaHorn

A framework for verifying LLVM-based programs

Program

+ Safety properties SAFE

+ Certificate

A\ .'-\" :
S \\'.,\\ '
\ :- ‘.‘.\ Wo

\

UNSAFE
+ CEX

NB. (i) Current version targets C programs
(i) and does not generate CoCoSpec

A. Gurfinkel, T. Kahsai, J. Navas, :“Algorithmic Logic-based verification”. In ACM-SIGLOG, April 2015.

A. Gurfinkel,T. Kahsai, ]. Navas, :“SeaHorn:A framework for verifying C programs (competition contribution)”. In SYVCOMP
(TACAS-2015).

A. Gurfinkel , T. Kahsai, A. Komuravelli, J. Navas, :“The SeaHorn Verification Framework”. In CAV 2015.

Wednesday, May 20, 15



SeaHorn
Dr. Arie Gurfinkel

A framework for verifying LLVM-based programs (SEIT.CMU)

Program

+ Safety properties SAFE

+ Certificate

caW : =
gt -

UNSAFE
+ CEX

NB. (i) Current version targets C programs
(i) and does not generate CoCoSpec

A. Gurfinkel, T. Kahsai, J. Navas, :“Algorithmic Logic-based verification”. In ACM-SIGLOG, April 2015.

A. Gurfinkel,T. Kahsai, ]. Navas, :“SeaHorn:A framework for verifying C programs (competition contribution)”. In SYVCOMP
(TACAS-2015).

A. Gurfinkel , T. Kahsai, A. Komuravelli, J. Navas, :“The SeaHorn Verification Framework”. In CAV 2015.

Wednesday, May 20, 15



Post-delivery verification stage

Wednesday, May 20, 15



Two Stage solution for virtual integration

Pre-Delivery Stage

Jl — System Level Properties

System : ;

Design - Nl | i Component : Component

Model Contract ; Requirement Outsourced For
Generation Implementation

Black-box
Component
Black-box Component
Implementation .
Delivery

Wednesday, May 20, 15



Two Stage solution for virtual integration

Pre-Delivery Stage

J‘C e System Level Properties

System | “ . .

Design Nzl | : Component : Component

Model Contract ; Requirement Outsourced For
________ ,[ Generation Implementation

Post-Delivery stage

’ Black-box
Component
Black-box Component
Implementation .
Delivery

Wednesday, May 20, 15



Post-delivery Verification Stage

Component

Black-box COCOSPGC ¥
Implementation PR—

Contract-based test generation

® Test generation via Bounded Model Checking
® (Coverage and mutation oriented

® JestEAS: test execution and analysis system

Wednesday, May 20, 15



Test generation via BMC

Components are represented as transition systems:

o s is the vector of state variables of the system
o I(sp) is the init predicate, true if sp is initial

o T(sj,si+1) is the transition predicate, true if s;,1 is a successor of s;

Given a test objective O(s), we can query an SMT solver for a trace of k
states leading to it:

Z(s0) AT (s0,51) A+ AT (Sk—255k—1) A O(8k—-1)

Wednesday, May 20, 15



Test generation via BMC

Components are represented as transition systems:

o s is the vector of state variables of the system
o I(sp) is the init predicate, true if sp is initial

o T(sj,si+1) is the transition predicate, true if s;,1 is a successor of s;

Given a test objective O(s), we can query an SMT solver for a trace of k

states leading to it:

Z(s0) AT (s0551) A=+ AT (Sk—255k—1) A O(Sk—-1)

o Coverage-oriented: the set of test cases are generated to realize
some coverage criterion on the source file, e.g. (O)MC/DC.

o Mutation-based: alter the syntax of the source code and generate
test cases failing on (killing) the mutants.

Wednesday, May 20, 15



Post-delivery Integration testing

Post-Delivery stage

. . | Black-box
omponent
Contract - Based Black-box Component
Integration Testing Implementation Delive ry

A. Cimatti et al :“A property-based proof system for contract based design”. In SEAA 2012.

W. Damm et al :“Using contract-based component specifications for virtual integration and architecture design”. In DATE 201 1.
E. Kesseler et al :“Assessing COTS software in a certifiable safety-critical domain”. In Information Systems Journal 2008.

A. Benveniste et al :“Multiple Viewpoint Contract-based Specification and Design”. In FMCO 2007.

Wednesday, May 20, 15



Post-delivery integration testing

o pre-delivery:

o contract-based test generation for all components,

O
® &

prototype

pre-delivery post-delivery

Wednesday, May 20, 15



Post-delivery integration testing

o pre-delivery:
o contract-based test generation for all components,
o compile complex components without their subcomponents,

Jb

prototype integration harness

(compiled)

pre-delivery post-delivery

Wednesday, May 20, 15



Post-delivery integration testing

o pre-delivery:
o contract-based test generation for all components,
o compile complex components without their subcomponents,

o post-delivery:

o unit testing of the binaries,

G g
'I \\‘
® G ®

prototype integration harness unit testing
(compiled)

pre-delivery post-delivery

Wednesday, May 20, 15



Post-delivery integration testing

o pre-delivery:
o contract-based test generation for all components,
o compile complex components without their subcomponents,

o post-delivery:

o unit testing of the binaries,
o integration testing using the compiled prototype component.

G :cest ........
@ 3 ® ® g%

prototype integration harness unit testing integration testing
(compiled)

pre-delivery post-delivery

Wednesday, May 20, 15



Post-delivery integration testing

o pre-delivery:
o contract-based test generation for all components,
o compile complex components without their subcomponents,

o post-delivery:

o unit testing of the binaries,
o integration testing using the compiled prototype component.

R 8
® &

prototype integration harness unit testing integration testing

(compiled)

pre-delivery post-delivery

Wednesday, May 20, 15



FCS Case Studies

Wednesday, May 20, 15



Transport Class Model (TCM)

The TCM — a twin-engine tube and wings
configuration aircraft simulation,
scaled up from the Generic Transport Model (GTM).

Wednesday, May 20, 15



Transport Class Model (TCM)

The TCM — a twin-engine tube and wings
configuration aircraft simulation,
scaled up from the Generic Transport Model (GTM).

UAV-sized (wingspan ~6ft) version
of a plane with geometry similar to
a transport -class aircraft

Intended as an experimental
platform for controls and health
management system

Wednesday, May 20, 15



Transport Class Model (TCM)

The TCM — a twin-engine tube and wings
configuration aircraft simulation,
scaled up from the Generic Transport Model (GTM).

UAV-sized (wingspan ~6ft) version
of a plane with geometry similar to
a transport -class aircraft

Intended as an experimental
platform for controls and health
management system

Simulink simulator for the avionics
(transport delay), actuators,
engines, landing gear, aero,
sensors (including noise) ...

Wednesday, May 20, 15



TCM Autopilot

1!

Wednesday, May 20, 15



TCM Autopilot

Inputs from MCP Altitude Controller

and pilot (pitch)

. » , Flight Path Angle
S s =" Controller

s Wy & i o3 't:f';—;:y _
| = | e == Pitch Inner Loop

| - P - < ol . ___-j“j»‘ i
i | . e TV o P R
R . . .- ..‘f S Heading Controller

Inputs from pilot 'W roll limit ________._-_—_-.:-_-_:'.'—'--‘ _n Roll Inner Loop

(roll and yaw) rmm MCP ) | __’__;____._-_-;::—--' '___:_______._._-_-:;
= . b __. °- ‘—,—J—‘{:{:‘_.____._-__..- ___-_-:.':::::.'—‘-""-"‘—
= ) D — == P ) Outputs -

LEEE
\

. commands to
= = [TY > actuators

e —
- 1 — & o e
- ——
- — . .. *
gy | Np— b—— -" -_I ‘/
- | e B ¢ |
Sensors pp— :

. . 3 R — > Autothrottie

- ]
- . -~ v} .
- = |

Inputs from MCPU

R R
g -

Kahsai et. al.“Verifying the safety of a flight critical software”. FM’15.

* Safety verification via model checking
* Manual decomposition of ‘hard’ safety properties

Wednesday, May 20, 15



NextGen Air-Traffic Control

Loss of
Po&ehfziat sepa\ra&i.ov\ delour

conflict N\ I /

@@ ||
S S &

e NextGen. New national airspace system in the US.

o Air-Traffic Control. Separation assurance: resolution of
potential future conflicts between aircrafts.

e | 0ss of Separation. Two airplanes come closer than a
specified safe distance (horizontally or vertically)

Y
S
N
— - — -

Wednesday, May 20, 15



NextGen Air-Traffic Control

e : ‘U
l::> b ' ' g is v ...........

Unresolved conflict Resolved conflict

e Air-traffic control. Provides separation assurance by resolving potential
future conflicts between aircraft

e Loss of separation. Airplanes come closer than a specified safe distance
(horizontally and vertically)

Wednesday, May 20, 15



NextGen Air-Traffic Control

NextGen component. 3-20 min time AutoResolver B
horizon 3-20 minutes prior to LoS

Java prototype developed at NASA Ames V
o 2,500 classes, 150kloc (w/ ACES) TSAFE
o 1580 classes, 65kloc (w/o ACES) 0-3 minutes prior to LoS
o (+ NASA Worldwind, etc.) I
TCAS
<1 minute prior to LoS
y
Pilot Visual Avoidance
Last resort

automated separation
assurance implemented in
the ground system

Collision avoidance
implemented in the aircraft

Wednesday, May 20, 15



Summary




This talk ....

... outsourcing in flight critical software

. virtual integration of outsourced components

Wednesday, May 20, 15



Two Stage solution for virtual integration

Pre-Delivery Stage

Jl — System Level Properties

System : ;

Design - Nl | i Component : Component

Model Contract ; Requirement Outsourced For
Generation Implementation

Black-box
Component
Black-box Component
Implementation .
Delivery

Wednesday, May 20, 15



tools tools and tools

SlMmulink/

Stateflow

Sarety

Lustre C/C++ JAVA Froperties

| | | "
Z u %t re (,(“ ’ S ea I:l orn f(f b

Constrained Horn Clauses

\/
Generalized PDR, Concolic Execution, Automata Learning ...

Component I

| BIIack-btoi(. COCOS eC E
mplementation '., - y
f J Kind-2<¢

Psycho««:

Contract-based
testing

Wednesday, May 20, 15



Thank you




Contact information

Temesghen Kahsali

Research Scientist @ RSE (Code TI) NASA Ames / CMU
email: temesghen.kahsaiazene @nasa.gov

web (work): http://ti.arc.nasa.gov/profile/tkahsaia/

web (personal): http://www.lememta.info/

Wednesday, May 20, 15


mailto:temesghen.kahsaiazene@nasa.gov
mailto:temesghen.kahsaiazene@nasa.gov
http://ti.arc.nasa.gov/profile/tkahsaia/
http://ti.arc.nasa.gov/profile/tkahsaia/
http://www.lememta.info
http://www.lememta.info

