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Church's λ-Calculus

Note that third axiom will be dropped in 
favor of a theory employing properties 

of a partial ordering.

α-conversion
 λX.[...X...] = λY.[...Y...]

! (λX.[...X...])(T) = [...T...]

  λX.F(X) = F

β-conversion

η-conversion

   

Definition.  λ-calculus — as a formal theory — has 
rules for the explicit definition of functions 

via equational axioms:

   

The basic syntax has one binary operation 
of application and one variable-binding operator

of abstraction.  These are the "logical"
notions of the theory, but we can add other

constants for special operators.



The Graph Model

   

NOTE: This model could easily have been 
defined in 1957, and it satisfies the rules of  

α, β-conversion (but not η). 
(Some historical comments can be found 

at the end of these notes.)

    

Definition.  The enumeration operator model is 
given by these definitions on sets of integers:
 

Application
     

! F(X) = { m | ∃n ∈ X*.(n,m) ∈ F }
     

Abstraction
     

! λX.[...X...] = 

! ! {0}∪{ (n,m) | m  ∈ [... set(n)...] }

    

Definitions. (1). Pairing: (n,m) = 2n(2m+1).

(2).  Sequence numbers:〈〉 = 0 and 

  〈n0,n1,...,nk-1,nk〉= (〈n0,n1,...,nk-1〉, nk).

(3). Sets: set(0) = ∅ and  set((n,m))= set(n)∪{ m }.  

(4). Kleene star: X* = { n | set(n) ⊆ X }, for sets X ⊆ .



What is the Secret?
  

(1)  The powerset  P( )  = { X|X⊆  }is a topological 
space with the sets  Un = { X|n ∈ X*} as a basis for 
    

the topology.
   

(2)  Functions Φ:P( )n ⟶  P( ) are continuous iff, for all
 integers, m ∈ Φ(X0,X1,…,Xn-1) iff there are ki ∈ Xi* 
for all i<n, such that m ∈ Φ(set(k0),…, set(kn-1)).

   
   

(3)  The application operation F(X) is continuous as a 
function of two variables. 
   

(4)  If  Φ(X0,X1,…,Xn-1) is continuous, then the 
abstraction λX0.Φ(X0,X1,…,Xn-1) is continuous in all 

of the remaining variables. 
      
(5)  If Φ(X) is continuous, then λX.Φ(X) is the largest 
set  F such that for all sets T,  we have F(T)= Φ(T).

(6)  And, note, therefore, that generally  F ⊆ λX.F(X).



Some Lambda Properties

     

  Theorems.
  •  All pure λ-terms define computable operators.

  •  If Φ(X) is continuous and we let ∇ = λX.Φ(X(X)), 
     then P = ∇(∇) is the least fixed point of Φ.
  •  The least fixed point of a computable operator is  
     always computable.

Definition.  A continuous operator Φ(X0,X1,…,Xn-1) 
is computable iff in the model this set is RE: 

F = λX0λX1…λXn-1.Φ(X0,X1,…,Xn-1).

    

For all sets of integers F and G we have:

λX.F(X) ⊆ λX.G(X) ⟺  ∀X.F(X) ⊆ G(X),
   

λX.(F(X)∩ G(X)) = λX.F(X) ∩ λX.G(X),  

and 

λX.(F(X)∪ G(X)) = λX.F(X) ∪ λX.G(X). 

       

  Succ(X)={n+1|n ∈ X }, Pred(X)={n|n+1 ∈ X }, and
 Test(Z)(X)(Y)= {n ∈ X|0 ∈ Z }∪{m ∈ Y|∃ k.k+1 ∈ Z },  

 with λ-calculus, suffice for defining all RE sets.



Gödel Numbering
   

Lemma.  There is a computable V = λX. V(X) where

  (i)    V({0}) =  λY.λX. Y,

	

 (ii)   V({1}) =  λZ.λY.λX. Z(X)(Y(X)),

 (iii)  V({2}) =  Test,
 (iv)  V({3}) =  Succ,

 (v)    V({4}) =  Pred,  and

 (vi)   V({4 + (n,m)})  =  V({n})(V({m})).

Theorem. Every recursively enumerable set 
is of the form V({n}).

    

Definition.  Modify the definition of V via finite approximations:
    

 (i)    Vk({n})  =  V({n})∩{i|i < k}  for n < 5,  and
 (ii)    Vk({4 + (n,m)})  =  Vk({n})(Vk({m})). 

    

Theorem. Each Vk({n}) ⊆ Vk+1({n}) is finite, 

the predicate j ∈ Vk({n}) is recursive, and we have:

   V({n}) = ⋃ Vk({n}).
    k < ∞ 

   
Theorem. The sets L0 and L1 are recursively enumerable, 

disjoint, and recursively inseparable:
    

  L0 = {n|∃ j [0 ∈ Vj({n})({n}) ∧ 1 ∉ Vj({n})({n})]}

 L1 = {n|∃ k [1 ∈ Vk({n})({n}) ∧ 0 ∉ Vk({n})({n})]}



What is a Type?
Definition.  Using pairing functions we may regard

P( ) = P( ) ×  P( ), and for A ⊆ P( ) we write

X	 A	 	 Y iff (X,Y) ∈ A.

   

Note: It is better NOT to pass to equivalence classes 
and the corresponding quotient spaces.  

But we can THINK in those terms if we like,
as this is a very common construction.

   

Definition.  For subspaces  ⊆ P( ), write
[ ] = {(X,X)| X ∈  },   

so that we may regard subspaces as types.

Definition. By a type over P( ) we understand

a partial equivalence relation A ⊆ P( ) where, 

for all X,Y,Z ∈ P( ), we have 

X	 A	 Y implies Y	 A	 X, and
X	 A	 Y and Y	 A	 Z imply X	 A	 Z.

Additionally we write X:A iff X	 A	 X.



The Category of Types

Note: Types do form a category — expanding 
the topological category of subspaces — but 

we wish to prove much, much more.

Definition. The product of types A,B ⊆ P( ) 
is defined as that relation where 

X(A  × B)Y iff Fst(X)A	 Fst(Y) and  Snd(X)	 B	 Snd(Y).

     

Theorem. The product of two types is again a type, 
and we have 

X:(A  × B) iff Fst(X):A and Snd(X):B	 .

Definition. The exponentiation of types A,B ⊆ P( ) 
is defined as that relation where 

F(A  ￫ B)G iff ∀X,Y. X A	 Y implies F(X)	 B	 G(Y).

   

Theorem. The exponentiation (= function space) of two 
types is again a type, and we have 

F:A  ￫ B implies ∀X. X:A implies F(X):B.



Isomorphism of Types

Definition. The sum of types A,B ⊆ P( ) 
is defined as that relation where X(A  + B)Y iff

either ∃X0,Y0[X0A	 Y0 & X = (0,X0) & Y = (0,Y0)]

 or                            ∃X1,Y1[X1B	 Y1 & X = (1,X1) & Y = (1,Y1)].

     

Theorem. The sum of two types is again a type, 
and we have 

X:(A  + B) iff either Fst(X) = 0 & Snd(X):A 
              or Fst(X) = 1 & Snd(X):B.

Definition. Two types A,B ⊆ P( ) are isomorphic, 
in symbols A ≅ B, provided there are 

F:A  ￫ B and G:B  ￫ A	 where

∀X:A. X A	 G(F(X)) and ∀Y:B. Y B	 F(G(Y)). 

Theorem. If types A0 ≅ B0	 and A1 ≅ B1, then

    (A0 × A1) ≅ (B0  × B1), and 

    (A0  + A1) ≅ (B0  + B1), and 

 (A0 ￫ A1) ≅ (B0  ￫ B1).



Dependent Types
Definition.  Let T be the class of all types on the 

powerset space P( ).  For A ∈ T, an A-indexed family 

of types is a function B:	 P( ) ￫ T, such that 

∀X0,X1. X0 A	 X1 implies B(X0) = B(X1).
   

Definition. The dependent product of an A-indexed
family of types, B, is defined as that relation such that

F0(∏X:A.B(X))F1 iff

∀X0,X1. X0 A	 X1 implies F0(X0)	 B(X0) F1(X1).

   

Definition. The dependent sum of an A-indexed
family of types, B, is defined as that relation such that

Z0(∑X:A.B(X))Z1 iff

∃X0,Y0,X1,Y1[X0A	 X1 &	 Y0B(X0)Y1 & 

Z0 = (X0,Y0) & Z1 = (X1,Y1)]

     

Theorem. The dependent products and
dependent sums of indexed families of types 

are again types.



Systems of Dependent Types

Note: Clearly the definition can be extended
to systems of any number of terms.

    

   

Definition. We say that A,B,C,D form  

a system of dependent types iff
• ∀X0,X1.[X0 A  X1 ⇒ B(X0) = B(X1)], and 

• ∀X0,X1,Y0,Y1.[X0 A  X1 & Y0 B(X0) Y1 ⇒ 

C(X0,Y0) = C(X1,Y1)], and

• ∀X0,X1,Y0,Y1,Z0,Z1.[X0 A  X1 & Y0 B(X0) Y1 &

Z0 C(X0,Y0) Z1 ⇒ D(X0,Y0,Z0) = D(X1,Y1,Z1)],

provided that A ∈ T, and B,C,D	 are functions on P( ) 

to T of the indicated number of arguments.

     

Theorem. Under the above assumptions on

A,B,C,D, we always have

∏X:A	 .∑Y:B(X).∏Z:C(X,Y).	 D(X,Y,Z) ∈ T.



Asserting Propositions

Note: Under this interpretation of logic,
asserting (P × Q) means asserting a conjunction,
asserting (P  + Q) means asserting a disjunction,

 asserting (P ￫ Q) means asserting an implication,
asserting (∏X:A.P(X)) means asserting a 

universal quantification, and
asserting (∑X:A.B(X)) means asserting an 

existential quantification.

Example: Given F:(A ￫ (A ￫ A)), then asserting
∏X:A.∏Y:A.∏Z:A. F(X)(F(Y)(Z)) ≡A F(F(X)(Y))(Z)

means asserting that F is an associative operation.

   

Definition. Every type	 P ∈ T can be regarded
as a proposition where asserting (or proving P) 

means finding evidence E:P.

Definition. For	 A ∈ T the identity type
on A is defined as that relation such that

Z(X≡AY)W iff Z	 A	 X	 A	 Y	 A	 W.



Some Background References
   

There are many approaches to modeling λ-calculus, and expositions and 
historical references can be found in Cardone-Hindley [2009].  In 1972 Plotkin 
wrote an AI report at the University of Edinburgh entitled "A set-theoretical 
definition of application" which remained unpublished until it was incorporated 
into the more extensive paper Plotkin [1993], which discusses many kinds of 
models.  Scott developed his model based on the powerset of the integers 
subsequently, but he only later realized it was basically the same as Plotkin's 
model.  See Scott [1976] for further details where he called the idea The Graph 
Model.

• F. Cardone and  J.R. Hindley. Lambda-Calculus and Combinators in the 20th 
Century. In: Volume 5, pp. 723-818, of Handbook of the History of Logic, Dov M. 
Gabbay and John Woods eds., North-Holland/Elsevier Science, 2009.
   
• Gordon D. Plotkin. Set-theoretical and other elementary models of the λ-
calculus.  Theoretical Computer Science, vol. 121 (1993), pp. 351-409.

• Dana S. Scott. Data types as lattices. SIAM Journal on Computing, vol. 5 (1976), 
pp. 522-587.

Much earlier, enumeration reducibility was introduced by Rogers in lecture notes 
and mentioned by Friedberg-Rogers  [1959] as a way of defining a positive 
reducibility between sets.   Enumeration degrees are discussed at length in Rogers 
[1967].  There is now a vast literature on the subject.  Enumeration operators are 
also studied in Rogers [1967] as well.  Earlier, Myhill-Shepherdson [1955] defined 
functionals on partial functions with similar properties.  Neither team saw that 
their operators possessed an algebra that would model λ-calculus, however.
    

• John Myhill and John C. Shepherdson, Effective operations on partial recursive 
functions, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 
vol. 1 (1955), pp. 310-317.
    

• Richard M. Friedberg and Hartley Rogers jr., Reducibility and Completeness for 
Sets of Integers. Mathematical Logic Quarterly, vol. 5 (1959), pp. 117-125.   Some 
of the results of this paper are presented in abstract, Journal of Symbolic Logic, 
vol. 22 (1957), p. 107.
    
    

• Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability, 
McGraw-Hill, 1967, xix + 482 pp.



More Background References


   	



Some historical remarks on the notion of partial equivalence relations (PERs) as 
an interpretation of types are given by Bruce et al. [1990], where we learn that 
they were introduced by Myhill and Shepherdson [1955] for types of first-order 
functions, and then extended to simple types by Kreisel [1959].  Scott took the use 
of partial equivalence relations from the work of Kreisel and collaborators.  More 
recent material and references can be found in the books by Gunter and Mitchell 
[1994] and Mitchell [1996].  An influential paper to consult is Abadi and Plotkin 
[1990]	

!
 •  K. Bruce, A. A. Meyer, and J. C. Mitchell. The semantics of second-order	


    lambda calculus.   In G. Huet, editor. Logical Foundations of Functional   	


    Programming, pp. 273–284. Addison-Wesley, 1990.	

!
• G. Kreisel. Interpretation of analysis by means of constructive functionals of 

finite type. In A. Heyting, editor, Constructivity in Mathematics, pp. 101–128. 
North-Holland Co., Amsterdam, 1959.	

!

• Carl A. Gunter, and J. C. Mitchell, eds. Theoretical aspects of object-oriented 
programming: types, semantics, and language design. MIT Press, 1994.	

!

•  J. C. Mitchell, John C. Foundations for programming languages. MIT press, 
1996, xix + 846 pp.	

!

• M. Abadi, and G. Plotkin. A per model of polymorphism and recursive types. 
IEEE LICS '90, Proceedings, 1990, pp. 355–365.




