
λ-Calculus:
Enumeration Operators and Types

Dana S. Scott

University Professor, Emeritus
Carnegie Mellon University

Visiting Scholar in Mathematics
University of California, Berkeley

December, 2014

(A report on work in progress.)

Church's λ-Calculus

Note that third axiom will be dropped in
favor of a theory employing properties

of a partial ordering.

α-conversion
 λX.[...X...] = λY.[...Y...]

! (λX.[...X...])(T) = [...T...]

 λX.F(X) = F

β-conversion

η-conversion

Definition. λ-calculus — as a formal theory — has
rules for the explicit definition of functions

via equational axioms:

The basic syntax has one binary operation
of application and one variable-binding operator

of abstraction. These are the "logical"
notions of the theory, but we can add other

constants for special operators.

The Graph Model

NOTE: This model could easily have been
defined in 1957, and it satisfies the rules of

α, β-conversion (but not η).
(Some historical comments can be found

at the end of these notes.)

Definition. The enumeration operator model is
given by these definitions on sets of integers:

Application

! F(X) = { m | ∃n ∈ X*.(n,m) ∈ F }

Abstraction

! λX.[...X...] =

! ! {0}∪{ (n,m) | m ∈ [... set(n)...] }

Definitions. (1). Pairing: (n,m) = 2n(2m+1).

(2). Sequence numbers:〈〉 = 0 and

 〈n0,n1,...,nk-1,nk〉= (〈n0,n1,...,nk-1〉, nk).

(3). Sets: set(0) = ∅ and set((n,m))= set(n)∪{ m }.

(4). Kleene star: X* = { n | set(n) ⊆ X }, for sets X ⊆ .

What is the Secret?

(1) The powerset P() = { X|X⊆ }is a topological
space with the sets Un = { X|n ∈ X*} as a basis for

the topology.

(2) Functions Φ:P()n ⟶ P() are continuous iff, for all
 integers, m ∈ Φ(X0,X1,…,Xn-1) iff there are ki ∈ Xi*
for all i<n, such that m ∈ Φ(set(k0),…, set(kn-1)).

(3) The application operation F(X) is continuous as a
function of two variables.

(4) If Φ(X0,X1,…,Xn-1) is continuous, then the
abstraction λX0.Φ(X0,X1,…,Xn-1) is continuous in all

of the remaining variables.

(5) If Φ(X) is continuous, then λX.Φ(X) is the largest
set F such that for all sets T, we have F(T)= Φ(T).

(6) And, note, therefore, that generally F ⊆ λX.F(X).

Some Lambda Properties

 Theorems.
 • All pure λ-terms define computable operators.

 • If Φ(X) is continuous and we let ∇ = λX.Φ(X(X)),
 then P = ∇(∇) is the least fixed point of Φ.
 • The least fixed point of a computable operator is
 always computable.

Definition. A continuous operator Φ(X0,X1,…,Xn-1)
is computable iff in the model this set is RE:

F = λX0λX1…λXn-1.Φ(X0,X1,…,Xn-1).

For all sets of integers F and G we have:

λX.F(X) ⊆ λX.G(X) ⟺ ∀X.F(X) ⊆ G(X),

λX.(F(X)∩ G(X)) = λX.F(X) ∩ λX.G(X),

and

λX.(F(X)∪ G(X)) = λX.F(X) ∪ λX.G(X).

 Succ(X)={n+1|n ∈ X }, Pred(X)={n|n+1 ∈ X }, and
 Test(Z)(X)(Y)= {n ∈ X|0 ∈ Z }∪{m ∈ Y|∃ k.k+1 ∈ Z },

 with λ-calculus, suffice for defining all RE sets.

Gödel Numbering

Lemma. There is a computable V = λX. V(X) where

 (i) V({0}) = λY.λX. Y,

	

 (ii) V({1}) = λZ.λY.λX. Z(X)(Y(X)),

 (iii) V({2}) = Test,
 (iv) V({3}) = Succ,

 (v) V({4}) = Pred, and

 (vi) V({4 + (n,m)}) = V({n})(V({m})).

Theorem. Every recursively enumerable set
is of the form V({n}).

Definition. Modify the definition of V via finite approximations:

 (i) Vk({n}) = V({n})∩{i|i < k} for n < 5, and
 (ii) Vk({4 + (n,m)}) = Vk({n})(Vk({m})).

Theorem. Each Vk({n}) ⊆ Vk+1({n}) is finite,

the predicate j ∈ Vk({n}) is recursive, and we have:

 V({n}) = ⋃ Vk({n}).
 k < ∞

Theorem. The sets L0 and L1 are recursively enumerable,

disjoint, and recursively inseparable:

 L0 = {n|∃ j [0 ∈ Vj({n})({n}) ∧ 1 ∉ Vj({n})({n})]}

 L1 = {n|∃ k [1 ∈ Vk({n})({n}) ∧ 0 ∉ Vk({n})({n})]}

What is a Type?
Definition. Using pairing functions we may regard

P() = P() × P(), and for A ⊆ P() we write

X	 A	 	 Y iff (X,Y) ∈ A.

Note: It is better NOT to pass to equivalence classes
and the corresponding quotient spaces.

But we can THINK in those terms if we like,
as this is a very common construction.

Definition. For subspaces ⊆ P(), write
[] = {(X,X)| X ∈ },

so that we may regard subspaces as types.

Definition. By a type over P() we understand

a partial equivalence relation A ⊆ P() where,

for all X,Y,Z ∈ P(), we have

X	 A	 Y implies Y	 A	 X, and
X	 A	 Y and Y	 A	 Z imply X	 A	 Z.

Additionally we write X:A iff X	 A	 X.

The Category of Types

Note: Types do form a category — expanding
the topological category of subspaces — but

we wish to prove much, much more.

Definition. The product of types A,B ⊆ P()
is defined as that relation where

X(A × B)Y iff Fst(X)A	 Fst(Y) and Snd(X)	 B	 Snd(Y).

Theorem. The product of two types is again a type,
and we have

X:(A × B) iff Fst(X):A and Snd(X):B	 .

Definition. The exponentiation of types A,B ⊆ P()
is defined as that relation where

F(A ￫ B)G iff ∀X,Y. X A	 Y implies F(X)	 B	 G(Y).

Theorem. The exponentiation (= function space) of two
types is again a type, and we have

F:A ￫ B implies ∀X. X:A implies F(X):B.

Isomorphism of Types

Definition. The sum of types A,B ⊆ P()
is defined as that relation where X(A + B)Y iff

either ∃X0,Y0[X0A	 Y0 & X = (0,X0) & Y = (0,Y0)]

 or ∃X1,Y1[X1B	 Y1 & X = (1,X1) & Y = (1,Y1)].

Theorem. The sum of two types is again a type,
and we have

X:(A + B) iff either Fst(X) = 0 & Snd(X):A
 or Fst(X) = 1 & Snd(X):B.

Definition. Two types A,B ⊆ P() are isomorphic,
in symbols A ≅ B, provided there are

F:A ￫ B and G:B ￫ A	 where

∀X:A. X A	 G(F(X)) and ∀Y:B. Y B	 F(G(Y)).

Theorem. If types A0 ≅ B0	 and A1 ≅ B1, then

 (A0 × A1) ≅ (B0 × B1), and

 (A0 + A1) ≅ (B0 + B1), and

 (A0 ￫ A1) ≅ (B0 ￫ B1).

Dependent Types
Definition. Let T be the class of all types on the

powerset space P(). For A ∈ T, an A-indexed family

of types is a function B:	 P() ￫ T, such that

∀X0,X1. X0 A	 X1 implies B(X0) = B(X1).

Definition. The dependent product of an A-indexed
family of types, B, is defined as that relation such that

F0(∏X:A.B(X))F1 iff

∀X0,X1. X0 A	 X1 implies F0(X0)	 B(X0) F1(X1).

Definition. The dependent sum of an A-indexed
family of types, B, is defined as that relation such that

Z0(∑X:A.B(X))Z1 iff

∃X0,Y0,X1,Y1[X0A	 X1 &	 Y0B(X0)Y1 &

Z0 = (X0,Y0) & Z1 = (X1,Y1)]

Theorem. The dependent products and
dependent sums of indexed families of types

are again types.

Systems of Dependent Types

Note: Clearly the definition can be extended
to systems of any number of terms.

Definition. We say that A,B,C,D form

a system of dependent types iff
• ∀X0,X1.[X0 A X1 ⇒ B(X0) = B(X1)], and

• ∀X0,X1,Y0,Y1.[X0 A X1 & Y0 B(X0) Y1 ⇒

C(X0,Y0) = C(X1,Y1)], and

• ∀X0,X1,Y0,Y1,Z0,Z1.[X0 A X1 & Y0 B(X0) Y1 &

Z0 C(X0,Y0) Z1 ⇒ D(X0,Y0,Z0) = D(X1,Y1,Z1)],

provided that A ∈ T, and B,C,D	 are functions on P()

to T of the indicated number of arguments.

Theorem. Under the above assumptions on

A,B,C,D, we always have

∏X:A	 .∑Y:B(X).∏Z:C(X,Y).	 D(X,Y,Z) ∈ T.

Asserting Propositions

Note: Under this interpretation of logic,
asserting (P × Q) means asserting a conjunction,
asserting (P + Q) means asserting a disjunction,

 asserting (P ￫ Q) means asserting an implication,
asserting (∏X:A.P(X)) means asserting a

universal quantification, and
asserting (∑X:A.B(X)) means asserting an

existential quantification.

Example: Given F:(A ￫ (A ￫ A)), then asserting
∏X:A.∏Y:A.∏Z:A. F(X)(F(Y)(Z)) ≡A F(F(X)(Y))(Z)

means asserting that F is an associative operation.

Definition. Every type	 P ∈ T can be regarded
as a proposition where asserting (or proving P)

means finding evidence E:P.

Definition. For	 A ∈ T the identity type
on A is defined as that relation such that

Z(X≡AY)W iff Z	 A	 X	 A	 Y	 A	 W.

Some Background References

There are many approaches to modeling λ-calculus, and expositions and
historical references can be found in Cardone-Hindley [2009]. In 1972 Plotkin
wrote an AI report at the University of Edinburgh entitled "A set-theoretical
definition of application" which remained unpublished until it was incorporated
into the more extensive paper Plotkin [1993], which discusses many kinds of
models. Scott developed his model based on the powerset of the integers
subsequently, but he only later realized it was basically the same as Plotkin's
model. See Scott [1976] for further details where he called the idea The Graph
Model.

• F. Cardone and J.R. Hindley. Lambda-Calculus and Combinators in the 20th
Century. In: Volume 5, pp. 723-818, of Handbook of the History of Logic, Dov M.
Gabbay and John Woods eds., North-Holland/Elsevier Science, 2009.

• Gordon D. Plotkin. Set-theoretical and other elementary models of the λ-
calculus. Theoretical Computer Science, vol. 121 (1993), pp. 351-409.

• Dana S. Scott. Data types as lattices. SIAM Journal on Computing, vol. 5 (1976),
pp. 522-587.

Much earlier, enumeration reducibility was introduced by Rogers in lecture notes
and mentioned by Friedberg-Rogers [1959] as a way of defining a positive
reducibility between sets. Enumeration degrees are discussed at length in Rogers
[1967]. There is now a vast literature on the subject. Enumeration operators are
also studied in Rogers [1967] as well. Earlier, Myhill-Shepherdson [1955] defined
functionals on partial functions with similar properties. Neither team saw that
their operators possessed an algebra that would model λ-calculus, however.

• John Myhill and John C. Shepherdson, Effective operations on partial recursive
functions, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
vol. 1 (1955), pp. 310-317.

• Richard M. Friedberg and Hartley Rogers jr., Reducibility and Completeness for
Sets of Integers. Mathematical Logic Quarterly, vol. 5 (1959), pp. 117-125. Some
of the results of this paper are presented in abstract, Journal of Symbolic Logic,
vol. 22 (1957), p. 107.

• Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability,
McGraw-Hill, 1967, xix + 482 pp.

More Background References

 	

Some historical remarks on the notion of partial equivalence relations (PERs) as
an interpretation of types are given by Bruce et al. [1990], where we learn that
they were introduced by Myhill and Shepherdson [1955] for types of first-order
functions, and then extended to simple types by Kreisel [1959]. Scott took the use
of partial equivalence relations from the work of Kreisel and collaborators. More
recent material and references can be found in the books by Gunter and Mitchell
[1994] and Mitchell [1996]. An influential paper to consult is Abadi and Plotkin
[1990]	

!
 • K. Bruce, A. A. Meyer, and J. C. Mitchell. The semantics of second-order	

 lambda calculus. In G. Huet, editor. Logical Foundations of Functional 	

 Programming, pp. 273–284. Addison-Wesley, 1990.	

!
• G. Kreisel. Interpretation of analysis by means of constructive functionals of

finite type. In A. Heyting, editor, Constructivity in Mathematics, pp. 101–128.
North-Holland Co., Amsterdam, 1959.	

!

• Carl A. Gunter, and J. C. Mitchell, eds. Theoretical aspects of object-oriented
programming: types, semantics, and language design. MIT Press, 1994.	

!

• J. C. Mitchell, John C. Foundations for programming languages. MIT press,
1996, xix + 846 pp.	

!

• M. Abadi, and G. Plotkin. A per model of polymorphism and recursive types.
IEEE LICS '90, Proceedings, 1990, pp. 355–365.

