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For a General History: F. Cardone and  J.R. Hindley. 


“Lambda-Calculus and Combinators in the 20th Century.”  



In: Volume 5, pp. 723-818, of Handbook of the History of Logic, 
Dov M. Gabbay and John Woods eds., 


North-Holland/Elsevier Science, 2009



Symbols of Princeton

�2

          Traditional          From the Graduate Alumni 
                                          (to encourage ecology) 

     

The λ-calculus was begun by A. Church


at Princeton, but it has been recycled 

every decade after the 1930s


in new and useful ways.
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What is the λ-Calculus?
The calculus gives rules for the explicit definition 
of functions; however, this type-free version also 

permits recursion and self-replication.

α-conversion
 λX.[...X...] = λY.[...Y...]     

β-conversion
(λX.[...X...])(T) = [...T...]  

η-conversion
 λX.F(X) = F     
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The names of the rules are due to H.B. Curry.  


The last rule fails in many interpretations, and 
special efforts are needed to make it valid.

Church’s original system (1932) also had rules for logic, 
but that was the system his students Kleene & Rosser 

proved inconsistent (1936).  Church also proposed his 
calculus as giving a definition of computability.  But 

K. Gödel objected and later preferred Turing’s definition.



�4

Church vs. Turing

Alonzo Church 
Born: 14 June 1903 in Washington, D.C., USA. 
Died: 11 Aug 1995 in Hudson, Ohio, USA. 
Ph.D.:  Princeton University, 1927, USA

Alan Turing 
Born: 23 June 1912, Maida Vale, London, UK. 
Died: 7 June 1954, Wilmslow, Cheshire, UK. 
Ph.D.: Princeton University, 1938, USA.

Alonzo Church, “An Unsolvable Problem in Elementary Number Theory,” 
American J. of Mathematics, vol. 5 (1936), pp. 345-363.
     

Alonzo Church, “A Note on the Entscheidungsproblem,” J. of Symbolic Logic, 
vol. 1 (1936) pp. 40-41. Correction: ibid, pp. 101-102.
     

Alan Turing,“On Computable Numbers with an Application to the 
Entscheidungsproblem,” Proc. of the London Math. Soc., vol. 42 (1936), pp. 
230-267. Correction: vol. 43 (1937), pp. 544-546.
     

Alan Turing,“Computability and λ-definability,” J. Symbolic Logic,  vol. 2 
(1937), pp. 153-163.

The work of Church and Turing in 1936 was 


done independently.

http://en.wikipedia.org/wiki/Maida_Vale
http://en.wikipedia.org/wiki/Wilmslow
http://en.wikipedia.org/wiki/Maida_Vale
http://en.wikipedia.org/wiki/Wilmslow
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Haskell Brooks Curry

Born: 12 Sept 1900 in Millis, MA, USA. 
Died: 1 Sept 1982 in State College, PA, USA. 
Ph.D.:  Göttingen Universität, 1930, Germany. 
Thesis: Grundlagen der kombinatorischen Logik

Stephen Cole Kleene

Born: 5 Jan 1909 in Hartford, CN, USA. 
Died: 25 Jan 1994 in Madison, WI, USA. 
Ph.D.: Princeton University, 1934, USA. 
Thesis: A Theory of Positive Integers in Formal Logic

Born: 6 Dec 1907 in Jacksonville, FL, USA. 
Died: 5 Sept 1989 in Madison, WI, USA. 
Ph.D.: Princeton University, 1934, USA. 
Thesis: A Mathematical Logic without Variables

J. Barkley Rosser

It seems, sadly, that Alan Turing never had a chance 


to meet these people or Kurt Gödel.

Three Other Pioneers
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The Connection to Computability

  0 = λF.λX.X
n+1 = λF.λX.F(n(F)(X))
n+m = λF.λX.n(F)(m(F)(X))
n×m = λF.n(m(F))
  mn = n(m)
   

n-1 = [a little harder]

   



Kleene and Turing independently proved 


this in different ways.

Theorem. For every partial recursive function g(n), 
there is a constant λ-term G such that 

G(n) = g(n) , for all n. 
    

Y = λF.(λX.F(X(X)))(λX.F(X(X)))
Y(F) = F(Y(F))

Fixed-Point Combinator

Church Numerals
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Some λ-Definitions

 test = λN.λU.λV.snd(N(shft(λX.X))(pair(V)(U))) 

mult = λN.λM.λF.N(M(F))
 fact = λN.test(N)(1)(mult(N)(fact(pred(N))))

 fact = Y(λF.λN.test(N)(1)(mult(N)(F(pred(N)))))

  pair = λX.λY.λF. F(X)(Y)  

    fst = λP.P(λX.λY. X)

 snd = λP.P(λX.λY. Y)

succ = λN.λF.λX.F(N(F)(X))
 shft = λS.λP. pair(S(fst(P)))(fst(P))

pred = λN. snd(N(shft(succ))(pair(0)(0)))

Kleene’s “trick” here is to introduce pairs as a data 

structure, and then apply iteration to get 



a sequence of pairs.

The factorial function must be the most overdefined 


function in the history of mankind!
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Church-Turing Thesis


accepted with the help of Kleene



after Turing explained his machines.

Effectively computable functions 
of natural numbers can be identified with 

those definable by: 
    

• λ-calculus 
• Herbrand-Gödel equations 
• Partial-recursive schemata 

• Turing-Post machine programs

If Gödel had stayed in Princeton, and



If Church and Kleene had argued better


for data structures in the λ-calculus,



Then surely Gödel would have accepted


λ-calculus as a foundation much earlier.



Note that Kleene proved the equivalence with 

Herbrand-Gödel computability before Turing’s work.
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Kleene’s Complaint
     

I myself, perhaps unduly influenced by rather chilly 
receptions from audiences around 1933-35 to disquisitions 
on λ-definability, chose, after general recursiveness had 
appeared, to put my work in that format.  I did later publish 
one paper 1962 on λ-definability in higher recursion 
theory. 

I thought general recursiveness came the closest to 
traditional mathematics. It spoke in a language familiar  
to mathematicians, extending the theory of special 
recursiveness, which derived from formulations of 
Dedekind and Peano in the mainstream of mathematics. 

I cannot complain about my audiences after 1935, 
although whether the improvement came from switching I 
do not know. In retrospect, I now feel it was too bad I did 
not keep active in λ-definability as well. So I am glad that 
interest in λ-definability has revived, as illustrated by Dana 
Scott’s 1963 communication.

Were the truth to be known, Kleene translated much 


of what he had done in λ-calculus into working with 

integers.  Indeed, the application operation {e}(n)



defines a partial combinatory algebra with many 
properties similar to the work of Curry and Rosser.



�10

Does λ-Calculus have Models?

(n,m) = 2n(2m+1)
   

set(0) = ∅ 
  

set((n,m)) = set(n) ∪ { m } 

X* = { n | set(n) ⊆ X }

  

Application
     

F(X) = { m | ∃n ∈ X*.(n,m) ∈ 
 

F }       

      
Abstraction
      
 λX.[...X...] =        

{0}∪{ (n,m) | m ∈ [... set(n)...] }          

Every set of integers can be used as an 
enumeration operator.  The operator is computable 

if the set is r.e.  Many compound contexts do 
define enumeration operators.

Yes! There is a calculus for enumeration operators! 
First we need some simple definitions on  

integers and sets of integers:
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Turing’s Only Student

Born:  23 September 1919, Peppard, Oxon., UK. 
Died:  20 November 1995, Oxford, UK. 
Ph.D.:  Cambridge, 1953. 
Thesis:  On axiomatic systems in Mathematics  
               and theories in Physics. 
Supervisor:  Alan Turing. 
Reader:  Oxford University, Wolfson College, 
               1969-1986. 
Students:  26 and 126  descendants.

Robin Oliver Gandy 

    



It is interesting to note that both the teams of



Myhill and Shepherdson 


and, later, 



Friedberg and Rogers



defined enumeration operators without seeing they 



had models for the λ-calculus. 

Another pioneer, Gandy, later became a key contributor 

to the development of Recursive Function Theory.



http://en.wikipedia.org/wiki/Wilmslow
http://en.wikipedia.org/wiki/Wilmslow
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Church’s Solution

Theorem. Only a finite number of axioms are 
needed to define a non-recursive set of integers.

R.M.Robinson’s Arithmetic
(1) ∀ x ∀ y [ x = y ⟺ Sx = Sy ]   

(2) ∀ x [ x = 0 ⟺ ¬∃y. x = Sy ]

(3) ∀ x ∀ y [ (x + 0) = x & (x + Sy) = S(x + y) ]

(4) ∀ x ∀ y [ (x × 0) = 0 & (x × Sy) = ((x × y) + x) ]

After the solution of Hilbert’s 10th Problem,


the applicability of this theory



became even easier.

What is the Entscheidungsproblem?

To determine whether a formula of 
the first-order predicate calculus  

is provable or not.
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Turing’s Solution
Theorem. Only a finite number of axioms are 

needed to define the Universal Turing Machine.

Minskyizing the UTS
Starting with Claude Shannon in 1956, many people — 

often in competition with Marvin Minsky — proposed very 
small UTMs (but their operation requires extensive coding 

of patterns).  But, axiomatically, they do not require 


as many axioms as Turing did.

Post-Markov’s Solution
The basic idea of Post (1943) was that a logistic system 



is simply a set of rules specifying how to change 


one string of symbols (antecedent) into another string 



of symbols (consequent).  This leads to:

The Word Problem for Semigroups
(1) ∀ x ∀ y [ x 1 = x = 1 x ]

(2) ∀ x ∀ y ∀ z [ x (y z) = (x y) z ]

Problem: Determine the provability of
    

A0 = B0 & A1 = B1 & ... & An-1 = Bn-1 ⟹ An = Bn .
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Schönfinkel-Curry’s Solution
Schönfinkel in 1924 and then Curry in 1929, both at 

Göttingen, began the study of combinators, which were 
quickly connected with Church’s λ-calculus of 1932.  

From them — with hindsight — we get: 

Another Undecidable Theory
(1) ∀ x ∀ y [ K(x)(y) = x ]   

(2) ∀ x ∀ y ∀ z [ S(x)(y)(z) = x(z)(y(z)) ]

(3)  ¬ K = S

Problem: Determine the provability of T = 0.

The only problem with this theory is that you either 
need models or something like the 



Church-Rosser Theorem 


to know it is consistent.  A weaker theory of 

deterministic reduction can be given a fairly short


     



axiomatization and then be proved consistent 


    



by much simpler means.
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McCarthy, LISP, & λ-Calculus
LISP History according to McCarthy's memory in 1978.  Presented at the ACM 
SIGPLAN History of Programming Languages Conference, June 1-3, 1978. It was 
pubished in History of Programming Languages, edited by Richard Wexelblat, 
Academic Press 1981.  Two quotations: 
     
I spent the summer of 1958 at the IBM Information Research Department at the 
invitation of Nathaniel Rochester and chose differentiating algebraic expressions as a 
sample problem. It led to the following innovations beyond the FORTRAN List 
Processing Language: 
•  •  •  • 
(c) To use functions as arguments, one needs a notation for functions, and it seemed 
natural to use the λ-notation of Church (1941). I didn't understand the rest of his 
book, so I wasn't tempted to try to implement his more general mechanism for 
defining functions. Church used higher-order functionals instead of using conditional 
expressions. Conditional expressions are much more readily implemented on 
computers. 
•  •  •  • 
Logical completeness required that the notation used to express functions used as 
functional arguments be extended to provide for recursive functions, and the LABEL 
notation was invented by Nathaniel Rochester for that purpose. D. M. R. Park pointed 
out that LABEL was logically unnecessary since the result could be achieved using 
only λ — by a construction analogous to Church's Y-operator, albeit in a more 
complicated way.

Other key McCarthy publications: 

Recursive Functions of Symbolic Expressions and their Computation by Machine  
(Part I). The original paper on LISP from CACM, April 1960. Part II, which never 
appeared, was to have had some Lisp programs for algebraic computation. 

A Basis for a Mathematical Theory of Computation, first given in 1961, was published 
by North-Holland in 1963 in Computer Programming and Formal Systems, edited 
by P. Braffort and D. Hirschberg. 

Towards a Mathematical Science of Computation, IFIPS 1962 extends the results of 
the previous paper. Perhaps the first mention and use of abstract syntax. 

Correctness of a Compiler for Arithmetic Expressions with James Painter.  May have 
been the first proof of correctness of a compiler.   Abstract syntax and Lisp-style 
recursive definitions kept the paper short. 

An HTML site concerning Lisp history can be found at: 
      

http://www8.informatik.uni-erlangen.de/html/lisp-enter.html

http://www-formal.stanford.edu/jmc/history/lisp.html
http://www-formal.stanford.edu/jmc/recursive.html
http://www-formal.stanford.edu/jmc/basis.html
http://www-formal.stanford.edu/jmc/towards.html
http://www-formal.stanford.edu/jmc/mcpain.html
http://www-formal.stanford.edu/jmc/recursive.html
http://www-formal.stanford.edu/jmc/basis.html
http://www-formal.stanford.edu/jmc/towards.html
http://www-formal.stanford.edu/jmc/mcpain.html
http://www-formal.stanford.edu/jmc/history/lisp.html
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A Closing Thought from Robert Harper 


For me, I think it is important to stress the overwhelming influence of 
the λ-calculus among all other models of computation:   
      
 • It codifies not only computation, but also the basic principles of          
   human reason (natural deduction).          
      
 • Moreover, it was born fully formed, and is directly and          
   immediately relevant to this day, rather than something that         
   collects dust on the shelf.           

Admittedly Turing's model had the advantage of being explicitly 
psychologically motivated, but on the other hand Church focused 
on one of the greatest achievements of the human mind, the concept 
of a variable (= reasoning under hypotheses).  Church saw that this 
was central, and time has born out the significance of his insight.   

By contrast, no one cares one bit about the details of a Turing 
Machine; for, it fails to address the central issue of modularity (logical 
consequence), which is so important in programming and reasoning.  
And it does not extend to higher-order computation in anything like 
a natural or smooth way.   

λ CONQUERS ALL!



Perhaps my good friend and colleague has spoken a 



little too strongly here, as Turing Machines have 



had many applications, say in Complexity Theory.  



But the study of Programming Languages 



does not seem to need them today.


