
Software Verification with
Satisfiability Modulo Theories

Nikolaj Bjørner
Microsoft Research

SSFT 2014, Menlo Park

Contents

A primer on SMT with Z3

SMT & Verification by Assertion Checking

- Boogie GC, Quantifiers, Theories

SMT & Verification by Assertion Inference
- Symbolic Software Model Checking,

Horn Clauses

Verifying Compilers

Annotated
Program

Verification
Condition F

pre/post conditions

invariants

and other annotations

Programs as Logic in Disguise

Verifying Compilers

http://rise4fun.com/Boogie

http://rise4fun.com/Dafny

http://rise4fun.com/Boogie
http://rise4fun.com/Dafny

A Verified GC

http://rise4fun.com/Boogie/wFAV

A more sophisticated collector

Boogie Command language

• x := E
– x := x + 1

– x := 10

• havoc x

• S ; T

• assert P

• assume P

• S  T

Hoare triple: { P } S { Q }
Starting in P, either S diverges, or

Terminates safely in a state satisfying Q

Weakest precondition:
{ wp(S, Q) } S { Q }, and

If { P } S { Q } then P  wp(S, Q)

wp(x := E, Q) =

wp(havoc x, Q) =

wp(assert P, Q) =

wp(assume P, Q) =

wp(S ; T, Q) =

wp(S  T, Q) =

Q[E / x]

(x  Q)

P  Q

P  Q

wp(S, wp(T, Q))

wp(S, Q)  wp(T, Q)

if E then S else T end =

assume E; S



assume ¬E; T

While loop with loop invariant

while E
invariant J

do
S

end

= assert J;
havoc x; assume J;
(assume E; S; assert J; assume false
 assume ¬E
)

where x denotes the

assignment targets of S

“fast forward” to an arbitrary

iteration of the loop

check that the loop invariant holds initially

check that the loop invariant is

maintained by the loop body

Verification conditions: Structure

BIG

and-or

tree

(ground)

 Axioms

(non-ground)

Control & Data

Flow

procedure Chunker.NextChunk(this: ref where $IsNotNull(this, Chunker)) returns ($result: ref where $IsNotNull($result, System.String));
// in-parameter: target object
free requires $Heap[this, $allocated];
requires ($Heap[this, $ownerFrame] == $PeerGroupPlaceholder || !($Heap[$Heap[this, $ownerRef], $inv] <: $Heap[this, $ownerFrame]) ||

$Heap[$Heap[this, $ownerRef], $localinv] == $BaseClass($Heap[this, $ownerFrame])) && (forall $pc: ref :: $pc != null && $Heap[$pc, $allocated]
&& $Heap[$pc, $ownerRef] == $Heap[this, $ownerRef] && $Heap[$pc, $ownerFrame] == $Heap[this, $ownerFrame] ==> $Heap[$pc, $inv] ==
$typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc));

// out-parameter: return value
free ensures $Heap[$result, $allocated];
ensures ($Heap[$result, $ownerFrame] == $PeerGroupPlaceholder || !($Heap[$Heap[$result, $ownerRef], $inv] <: $Heap[$result, $ownerFrame]) ||

$Heap[$Heap[$result, $ownerRef], $localinv] == $BaseClass($Heap[$result, $ownerFrame])) && (forall $pc: ref :: $pc != null && $Heap[$pc,
$allocated] && $Heap[$pc, $ownerRef] == $Heap[$result, $ownerRef] && $Heap[$pc, $ownerFrame] == $Heap[$result, $ownerFrame] ==>
$Heap[$pc, $inv] == $typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc));

// user-declared postconditions
ensures $StringLength($result) <= $Heap[this, Chunker.ChunkSize];
// frame condition
modifies $Heap;
free ensures (forall $o: ref, $f: name :: { $Heap[$o, $f] } $f != $inv && $f != $localinv && $f != $FirstConsistentOwner && (!IsStaticField($f) ||

!IsDirectlyModifiableField($f)) && $o != null && old($Heap)[$o, $allocated] && (old($Heap)[$o, $ownerFrame] == $PeerGroupPlaceholder ||
!(old($Heap)[old($Heap)[$o, $ownerRef], $inv] <: old($Heap)[$o, $ownerFrame]) || old($Heap)[old($Heap)[$o, $ownerRef], $localinv] ==
$BaseClass(old($Heap)[$o, $ownerFrame])) && old($o != this || !(Chunker <: DeclType($f)) || !$IncludedInModifiesStar($f)) && old($o != this || $f
!= $exposeVersion) ==> old($Heap)[$o, $f] == $Heap[$o, $f]);

// boilerplate
free requires $BeingConstructed == null;
free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { $Heap[$o, $inv] } $o != null && !old($Heap)[$o, $allocated] && $Heap[$o, $allocated] ==>

$Heap[$o, $inv] == $typeof($o) && $Heap[$o, $localinv] == $typeof($o));
free ensures (forall $o: ref :: { $Heap[$o, $FirstConsistentOwner] } old($Heap)[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] ==

$Heap[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] ==> old($Heap)[$o, $FirstConsistentOwner] == $Heap[$o,
$FirstConsistentOwner]);

free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { $Heap[$o, $inv] } old($Heap)[$o, $allocated] ==> old($Heap)[$o, $inv] == $Heap[$o, $inv] &&
old($Heap)[$o, $localinv] == $Heap[$o, $localinv]);

free ensures (forall $o: ref :: { $Heap[$o, $allocated] } old($Heap)[$o, $allocated] ==> $Heap[$o, $allocated]) && (forall $ot: ref :: { $Heap[$ot,
$ownerFrame] } { $Heap[$ot, $ownerRef] } old($Heap)[$ot, $allocated] && old($Heap)[$ot, $ownerFrame] != $PeerGroupPlaceholder ==>
old($Heap)[$ot, $ownerRef] == $Heap[$ot, $ownerRef] && old($Heap)[$ot, $ownerFrame] == $Heap[$ot, $ownerFrame]) &&
old($Heap)[$BeingConstructed, $NonNullFieldsAreInitialized] == $Heap[$BeingConstructed, $NonNullFieldsAreInitialized];

Equality-Matching

(∀𝑥 𝑓 𝑔 𝑐, 𝑥 = 𝑥)

∧ 𝑎 = 𝑔 𝑏, 𝑏
∧ 𝑏 = 𝑐
∧ 𝑓 𝑎 ≠ 𝑐

∧ ∀𝑥 𝑓 𝑔 𝑐, 𝑥 = 𝑥 → 𝑓 𝑔 𝑐, 𝑏 = 𝑏

𝑔 𝑐, 𝑥 matches 𝑔 𝑏, 𝑏
with substitution 𝑥 ↦ 𝑏
modulo 𝑏 = 𝑐 [de Moura, B. CADE 2007]

𝑝(∀ …)

∧ 𝑎 = 𝑔 𝑏, 𝑏
∧ 𝑏 = 𝑐
∧ 𝑓 𝑎 ≠ 𝑐

∧ 𝑝(∀𝑥 ...) → 𝑓 𝑔 𝑐, 𝑏 = 𝑏

http://rise4fun.com/Z3/msle9

struct cell {

int data;

cell* next;

};

void 𝑧𝑒𝑟𝑜 𝑐𝑒𝑙𝑙 ∗ 𝑐 {
𝐰𝐡𝐢𝐥𝐞 𝑐 𝑐 → 𝑑𝑎𝑡𝑎 = 0; 𝑐 = 𝑐 → 𝑛𝑒𝑥𝑡;

𝐚𝐬𝐬𝐞𝐫𝐭 ∀𝑑 ∈ 𝑐𝑜𝑙𝑑 →
∗
𝑛𝑒𝑥𝑡 . 𝑑 = 𝑛𝑢𝑙𝑙 ∨ 𝑑 → 𝑑𝑎𝑡𝑎 = 0 ;

}

[Itzhaky et.al. CAV 13, CAV 14, POPL 14]

void 𝑧𝑒𝑟𝑜 𝑐𝑒𝑙𝑙 ∗ 𝑐 {
𝐰𝐡𝐢𝐥𝐞 𝑐 𝑐 → 𝑑𝑎𝑡𝑎 = 0; 𝑐 = 𝑐 → 𝑛𝑒𝑥𝑡;

𝐚𝐬𝐬𝐞𝐫𝐭 ∀𝑑 ∈ 𝑐𝑜𝑙𝑑 →
∗
𝑛𝑒𝑥𝑡 . 𝑑 = 𝑛𝑢𝑙𝑙 ∨ 𝑑 → 𝑑𝑎𝑡𝑎 = 0 ;

}

Classical memory model:

𝑁𝑒𝑥𝑡: 𝐶𝑒𝑙𝑙 → 𝐶𝑒𝑙𝑙
𝐷𝑎𝑡𝑎: 𝐶𝑒𝑙𝑙 → 𝐢𝐧𝐭

𝑤𝑝 𝑐 = 𝑐 → 𝑛𝑒𝑥𝑡, 𝑄 ≔ 𝑄[𝑁𝑒𝑥𝑡(𝑐)/𝑐]

𝑁𝑒𝑥𝑡∗: 𝐶𝑒𝑙𝑙 × 𝐶𝑒𝑙𝑙 → 𝐵𝑜𝑜𝑙 ≔ 𝑇𝐶(𝑁𝑒𝑥𝑡)

void 𝑧𝑒𝑟𝑜 𝑐𝑒𝑙𝑙 ∗ 𝑐 {

𝐰𝐡𝐢𝐥𝐞 𝑐 𝑐 → 𝑑𝑎𝑡𝑎 = 0; 𝑐 = 𝑐 → 𝑛𝑒𝑥𝑡;

𝐚𝐬𝐬𝐞𝐫𝐭 ∀𝑑 ∈ 𝑐𝑜𝑙𝑑 →
∗
𝑛𝑒𝑥𝑡 . 𝑑 = 𝑛𝑢𝑙𝑙 ∨ 𝑑 → 𝑑𝑎𝑡𝑎 = 0 ;

}
Memory model based on 𝑁𝑒𝑥𝑡∗

𝑁𝑒𝑥𝑡∗: 𝐶𝑒𝑙𝑙 × 𝐶𝑒𝑙𝑙 → 𝐵𝑜𝑜𝑙
𝐷𝑎𝑡𝑎: 𝐶𝑒𝑙𝑙 × 𝐢𝐧𝐭 → 𝐵𝑜𝑜𝑙

𝑁𝑒𝑥𝑡∗ is Transitive, Reflexive, Linear , Anti-symmetric for acyclic lists
𝑁𝑒𝑥𝑡+ 𝑐, 𝑑 ≔ 𝑐 ≠ 𝑑 ∧ 𝑁𝑒𝑥𝑡∗ 𝑐, 𝑑
𝑁𝑒𝑥𝑡! 𝑐, 𝑑 ≔ 𝑁𝑒𝑥𝑡+ 𝑐, 𝑑 ∧ ∀𝑒. 𝑁𝑒𝑥𝑡+ 𝑐, 𝑒 → 𝑁𝑒𝑥𝑡∗ 𝑑, 𝑒

𝑤𝑝 𝑑 = 𝑐 → 𝑛𝑒𝑥𝑡, 𝑄 ≔ ∀𝑒 𝑁𝑒𝑥𝑡! 𝑐, 𝑒 → 𝑄[𝑒/𝑑]

𝑁𝑒𝑥𝑡∗ is Transitive, Reflexive, Linear, Anti-symmetric
𝑁𝑒𝑥𝑡+ 𝑐, 𝑑 ≔ 𝑐 ≠ 𝑑 ∧ 𝑁𝑒𝑥𝑡∗ 𝑐, 𝑑
𝑁𝑒𝑥𝑡! 𝑐, 𝑑 ≔ 𝑁𝑒𝑥𝑡+ 𝑐, 𝑑 ∧ ∀𝑒.𝑁𝑒𝑥𝑡+ 𝑐, 𝑒 → 𝑁𝑒𝑥𝑡∗ 𝑑, 𝑒

𝑤𝑝 𝑑 = 𝑐 → 𝑛𝑒𝑥𝑡, 𝑄 ≔
∀𝑒 .𝑁𝑒𝑥𝑡! 𝑐, 𝑒 → 𝑄[𝑒/𝑑] ∧ 𝑎𝑙𝑙𝑜𝑐 𝑐 ∧ 𝑐 ≠ 𝑛𝑢𝑙𝑙

𝑤𝑝 𝑐 → 𝑛𝑒𝑥𝑡 = 𝑛𝑢𝑙𝑙, 𝑄 ≔
𝑄[𝜆𝑎𝑏.𝑁𝑒𝑥𝑡∗ 𝑎, 𝑏 ∧ (𝑁𝑒𝑥𝑡∗ 𝑎, 𝑐 → 𝑁𝑒𝑥𝑡∗ 𝑏, 𝑐)/𝑁𝑒𝑥𝑡∗]

𝑤𝑝 𝑐 → 𝑛𝑒𝑥𝑡 = 𝑑, 𝑄 ≔
𝑄[𝜆𝑎𝑏.𝑁𝑒𝑥𝑡∗ 𝑎, 𝑏 ∨ (𝑁𝑒𝑥𝑡∗ 𝑎, 𝑐 ∧ 𝑁𝑒𝑥𝑡∗ 𝑑, 𝑏)/𝑁𝑒𝑥𝑡∗]

Assuming 𝑐 → 𝑛𝑒𝑥𝑡 = 𝑑; is preceded by 𝑐 → 𝑛𝑒𝑥𝑡 = 𝑛𝑢𝑙𝑙

• Verification

– Python exercise: implement wp for 𝑁𝑒𝑥𝑡∗

• Synthesizing Inductive Invariants

– [Itzhaky et.al CAV 14] uses Predicate Abstraction
for EPR.

Verification by Assertion
Inference

Horn Clauses

[Hoder, B. SAT 2012]

∀𝑿. 𝑿 > 𝟏𝟎𝟎 mc(𝑿,𝑿 − 𝟏𝟎)

∀𝑿, 𝒀, 𝑹. 𝑿 ≤ 𝟏𝟎𝟎  mc(𝑿 + 𝟏𝟏, 𝒀)  mc(𝒀,𝑹)  mc(𝑿,𝑹)

∀𝑿,𝑹. mc(𝑿,𝑹) ∧ 𝑿 ≤ 𝟏𝟎𝟏 → 𝑹 = 𝟗𝟏

Solver finds solution for mc

mc(x) = x-10 if x > 100

mc(x) = mc(mc(x+11)) if x  100

assert (x ≤ 𝟏𝟎𝟏 →mc(x) = 91)

../tutorial/rec.smt2
../tutorial/mc.smt2

Transition System

• V - program variables

• init(V) - initial states

• step(V, V’) - transition relation

• safe(V) - safe states

Safe Transition System

∃𝐼𝑛𝑣.

• ∀V . init(V) → 𝐼𝑛𝑣(V)

• ∀V, V’ . 𝐼𝑛𝑣 V ∧ step(V, V’) → 𝐼𝑛𝑣(V′)

• ∀V . safe(V)→ 𝐼𝑛𝑣(V)

– [Rybalchenko et.al. PLDI 2012, POPL 2014] Termination
and reactivity are also handled in framework of solving
systems of logical formulas.

Formulate as Horn clauses:

∀𝑿. 𝑿 > 𝟏𝟎𝟎 mc(𝑿,𝑿 − 𝟏𝟎)

∀𝑿, 𝒀, 𝑹. 𝑿 ≤ 𝟏𝟎𝟎  mc(𝑿 + 𝟏𝟏, 𝒀)  mc(𝒀, 𝑹)  mc(𝑿,𝑹)

∀𝑿,𝑹. mc(𝑿,𝑹) ∧ 𝑿 ≥ 𝟏𝟎𝟏  𝑹 = 𝟗𝟏

Solve for mc

Recursive Procedures

Formulate as Predicate Transformer:

F (mc)(𝑋,𝑅) =
𝑋 > 100 ∧ 𝑅 = 𝑋 − 10

∨ 𝑋 ≤ 100 ∧ ∃𝑌.mc 𝑋 + 11, 𝑌 ∧mc(𝑌, 𝑅)

Check: μF mc 𝑋,𝑅 ∧ 𝑋 ≥ 101 → 𝑅 = 91

Recursive Procedures

Instead of computing μF mc 𝑋,𝑅 ,

then checking μF mc 𝑋,𝑅 ∧ 𝑋 ≤ 101 → 𝑅 = 91

Suffices to find post-fixed point mc𝒑𝒐𝒔𝒕 satisfying:

∀𝑿,𝑹. F mc𝒑𝒐𝒔𝒕 𝑿,𝑹 → mc𝒑𝒐𝒔𝒕 𝑿,𝑹

∀𝑿,𝑹. mc𝒑𝒐𝒔𝒕 𝑿,𝑹 ∧ 𝑿 ≤ 101 → 𝑹 = 91

Recursive Procedures

Program Verification (Safety)

as Solving fixed-points

as Satisfiability of Horn clauses

Program Verification as SMT
- aka

A Crusade for Hornish Satisfaction

[Bjørner, McMillan, Rybalchenko, SMT workshop 2012]
Hilbert Sausage Factory: [Grebenshchikov, Lopes, Popeea, Rybalchenko, PLDI 2012]

A model checking Example

Abstraction as Boolean Program

b := count == old_count

[SLAM, BLAST, Graf & Saidi, Uribe, ..]

(Predicate) Abstraction/Refinement

• SMT solver used to synthesize (strongest)
abstract transition relation F:

𝜌 𝑥, 𝑥′ ⇒ 𝐹(𝑏1 𝑥 … , 𝑏𝑛 𝑥 , 𝑏1 𝑥′ … , 𝑏𝑛 𝑥′)

Control as Horn Clauses
(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))

(Loop count old_count false)))

; Loop without if test
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (Loop count old_count lock_state) (WhileTest count count true))))

; Loop with if-test
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (Loop count old_count lock_state) (WhileTest (+ 1 count) count false))))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (and (not (= old_count count)) (WhileTest count old_count lock_state))

(Loop count old_count lock_state))))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (and (= old_count count) (WhileTest count old_count lock_state))

(= lock_state true))))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)

(= lock_state false))))

(check-sat)
(get-model)

Loop

While
Test

Solving Horn Clauses

Pre-processing

𝐻𝑜𝑟𝑛𝐶𝑙𝑎𝑢𝑠𝑒𝑠 → 𝐻𝑜𝑟𝑛𝐶𝑙𝑎𝑢𝑠𝑒𝑠′

Search

– Find model M such that 𝑀 ⊨ 𝐻𝑜𝑟𝑛𝐶𝑙𝑎𝑢𝑠𝑒𝑠

Or

– Find refutation proof 𝜋: 𝐻𝑜𝑟𝑛𝐶𝑙𝑎𝑢𝑠𝑒𝑠 ⊢𝜋⊥

Pre-processing

• Cone of Influence

• Simplification

• Subsumption

• Inlining

• Slicing

• Unfolding

Cone of Influence – top down

𝑃 𝑥 ∧ 𝑄 𝑦 → 𝑓𝑎𝑙𝑠𝑒

𝑹 𝒙 ∧ 𝒙 > 𝟎 → 𝑷 𝒙
𝐑 𝒙 ∧ 𝒙 < 𝟎 → 𝑷 𝒙

Q 𝒚 ∧ 𝒚 ≤ 𝒙 → 𝑸 𝒙

P 𝒙 → 𝑺 𝒙
T 𝒙 → 𝑺 𝒙

𝒙 = 𝟐𝒚 → 𝑹 𝒙

S is not used
S 𝑥 ≔ 𝑡𝑟𝑢𝑒

Cone of Influence – bottom up

𝑃 𝑥 ∧ 𝑄 𝑦, 0 → 𝑓𝑎𝑙𝑠𝑒

𝑹 𝒙 ∧ 𝒙 > 𝟎 → 𝑷 𝒙
𝐑 𝒙 ∧ 𝒙 < 𝟎 → 𝑷 𝒙

𝒙 = 𝟐𝒚 → 𝑹 𝒙 Q 𝒚, 𝒛 ∧ 𝒚 ≤ 𝒙 → 𝑸 𝒙, 𝟏

There is no “rule
to produce Q(x,1)”
𝑄 𝑥, 𝑦 ≔ 𝑦 = 1

Inlining
(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))

(Loop count old_count false)))

; Loop without if test
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (Loop count old_count lock_state) (WhileTest count count true))))

; Loop with if-test
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (Loop count old_count lock_state) (WhileTest (+ 1 count) count false))))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (and (not (= old_count count)) (WhileTest count old_count lock_state))

(Loop count old_count lock_state))))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (and (= old_count count) (WhileTest count old_count lock_state))

(= lock_state true))))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)

(= lock_state false))))

(check-sat)
(get-model)

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))

(Loop count old_count false)))

; Loop without if test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= count count)))
(Loop count count true)))

; Loop without if test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (= count count))
(= true true)))

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= (+ 1 count) count))
(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (= (+ 1 count) count)
(= false true)))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)

(= lock_state false))))

(check-sat)
(get-model)

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))

(Loop count old_count false)))

; Loop without if test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= count count)))
(Loop count count true)))

; Loop without if test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (= count count))
(= truetrue)))

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= (+ 1 count) count))
(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (= (+ 1 count) count)
(= false true)))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)

(= lock_state false))))

(check-sat)
(get-model)

Simplification

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))

(Loop count old_count false)))

; Loop without if test + repeat loop

; Loop without if test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (Loop count old_count lock_state)
(= true true)))

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (Loop count old_count lock_state)
(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)

(= lock_state false))))

(check-sat)
(get-model)

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))

(Loop count old_count false)))

; Loop without if test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= count count)))
(Loop count count true)))

; Loop without if test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (= count count))
(= truetrue)))

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= (+ 1 count) count))
(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (= (+ 1 count) count)
(= false true)))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)

(= lock_state false))))

(check-sat)
(get-model)

Simplification

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))

(Loop count old_count false)))

; Loop without if test + repeat loop

; Loop without if test + loop exit

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (Loop count old_count lock_state)
(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count true)

false)))

(check-sat)
(get-model)

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))

(Loop count old_count false)))

; Loop without if test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= count count)))
(Loop count count true)))

; Loop without if test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (= count count))
(= truetrue)))

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= (+ 1 count) count))
(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (= (+ 1 count) count)
(= false true)))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)

(= lock_state false))))

(check-sat)
(get-model)

Cone of Influence

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))

(Loop count old_count false)))

; Loop without if test + repeat loop

; Loop without if test + loop exit

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (Loop count old_count lock_state)
(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count true)

false)))

(check-sat)
(get-model)

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))

(Loop count old_count false)))

; Loop without if test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= count count)))
(Loop count count true)))

; Loop without if test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (= count count))
(= truetrue)))

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= (+ 1 count) count))
(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (= (+ 1 count) count)
(= false true)))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)

(= lock_state false))))

(check-sat)
(get-model)

Result

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count

; Loop without if test + repeat loop

; Loop without if test + loop exit

; Loop with if-test + repeat loop

; Loop with if-test + loop exit

(check-sat)
(get-model)

IC3/PDR: Property Directed
Reachability

The IC3 Algorithm for Symbolic Model Checking by Aaron Bradley

Procedures Regular vs. Push Down systems
As a Conflict-driven solver for
recursive Horn clauses

Beyond Linear Real Arithmetic
Propositional - Timed Automata Decision Procedure
Logic - Interpolants from models

[SAT 2012. Kryštof Hoder & Nikolaj Bjørner]

PDR – the algorithm
Objective is to solve for R such that

F 𝑹 𝑿 → 𝑹 𝑿 , 𝑹 𝑿 → 𝑺𝒂𝒇𝒆 𝑿 , ∀𝑿

Key elements of PDR algorithm:

Over-approximate reachable states
𝑹𝟎 ≔ F 𝐟𝐚𝐥𝐬𝐞 , 𝑹𝟏 → 𝑹𝟐 → ⋯ → 𝑹𝑵≔ 𝐭𝐫𝐮𝐞

Propagate back from ¬𝑺𝒂𝒇𝒆

Resolve conflicts

Strengthen/propagate using induction

PDR – the algorithm

Objective is to solve for R such that

F 𝑹 𝑿 → 𝑹 𝑿 , 𝑹 𝑿 → 𝑺𝒂𝒇𝒆 𝑿 , ∀𝑿

Initialize:

Main invariant:

𝑺𝒂𝒇𝒆 𝑹𝟏 ≔ 𝒕𝒓𝒖𝒆

↖ ↗ ↖
𝑹𝟎 ≔ F 𝒇𝒂𝒍𝒔𝒆 F 𝑹𝟎

𝑺𝒂𝒇𝒆 𝑹𝒊+𝟏

↖ ↗ ↖
𝑹𝒊 F 𝑹𝒊

A digression

Dualities – Recurring Theme

P
ro

o
fs

M
o

d
el

s

Core DPLL(T) engine

Fixed Points engine

Nonlinear solver

Linear Integer solver

Core Engine in Z3: Modern DPLL/CDCL

Initialize 𝜖| 𝐹 𝐹 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑎𝑢𝑠𝑒𝑠

Decide 𝑀 𝐹 ⟹ 𝑀, ℓ 𝐹 ℓ 𝑖𝑠 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑

Propagate 𝑀 𝐹, 𝐶 ∨ ℓ ⟹ 𝑀, ℓ𝐶∨ℓ 𝐹, 𝐶 ∨ ℓ 𝐶 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑀

Sat 𝑀 |𝐹 ⟹ 𝑀 𝐹 𝑡𝑟𝑢𝑒 𝑢𝑛𝑑𝑒𝑟 𝑀

Conflict 𝑀 𝐹, 𝐶 ⟹ 𝑀 𝐹, 𝐶 | 𝐶 𝐶 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 𝑢𝑛𝑑𝑒𝑟 𝑀

Learn 𝑀 𝐹 | 𝐶 ⟹ 𝑀 𝐹, 𝐶 | 𝐶

Unsat 𝑀 𝐹 ∅ ⟹ 𝑈𝑛𝑠𝑎𝑡

Backjump 𝑀𝑀′ 𝐹 | 𝐶 ∨ ℓ ⟹ 𝑀ℓ𝐶∨ℓ 𝐹 ¬ℓ ∈ 𝑀′, 𝑀′∩ ¬𝐶 = ∅

Resolve 𝑀 𝐹 | 𝐶′ ∨ ¬ℓ ⟹ 𝑀 𝐹 | 𝐶′ ∨ 𝐶 ℓ𝐶∨ℓ ∈ 𝑀

Restart 𝑀 𝐹 ⟹ 𝜖 𝐹

Forget 𝑀 𝐹, 𝐶 ⟹ 𝑀 𝐹 𝐶 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑐𝑙𝑎𝑢𝑠𝑒

[Nieuwenhuis, Oliveras, Tinelli J.ACM 06] customized

DPLL(T) solver interaction

Search: Mile-high perspective

Modern SMT solver

Fixedpoint solver

Decisions:

Assignments
Conflict Clauses

← SP 𝑰𝒏𝒊𝒕 ← 𝑰𝒏𝒊𝒕𝑩𝒂𝒅 → WP 𝑩𝒂𝒅 →Conflict

Resolution

Conflict

Resolution

Conflict resolution with arithmetic

R(0,0,0,0). Initial states

T(L,M,Y1,Y2,L’,M’,Y1’,Y2’)R(L,M,Y1,Y2)  R(L’,M’,Y1’,Y2’) Reachable states

R(2,2,Y1,Y2)  false Is unsafe state reachable?

Step(L,L’,Y1,Y2,Y1’)  T(L,M,Y1,Y2,L’,M,Y1’,Y2) P1 takes a step

Step(M,M’,Y2,Y1,Y2’)  T(L,M,Y1,Y2,L,M’,Y1,Y2’) P2 takes a step

Step(0,1,Y1,Y2,Y2+1). ℓ𝟎: 𝒚 ≔ 𝒚 + 𝟏;𝒈𝒐𝒕𝒐 ℓ𝟏
(Y1 ≤ Y2 ∨ Y2 = 0)  Step(1,2,Y1,Y2,Y1). ℓ𝟏: 𝒂𝒘𝒂𝒊𝒕 𝒚 = 𝟎 ∨ 𝒚 ≤ 𝒚 ; 𝒈𝒐𝒕𝒐 ℓ𝟐
Step(2,3,Y1,Y2,Y1). ℓ𝟐: 𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 ; 𝒈𝒐𝒕𝒐 ℓ𝟑
Step(3,0,Y1,Y2,0). ℓ𝟑: 𝒚 ≔ 𝟎;𝒈𝒐𝒕𝒐 ℓ𝟎

Search: Mile-high perspective

F (𝐼)𝐼 F 2(𝐼) B2 ¬𝑆 B ¬𝑆 ¬𝑆
Conflict Resolution Conflict PropagationConflict Propagation

PDR(T): Conflict Resolution

𝑳 = 𝟎
𝑴 = 𝟎
𝒀𝟐 = 𝟎
𝒀𝟏 = 𝟎

𝑳 = 𝟏
𝑴 = 𝟐
𝒀𝟐 = 𝟎

𝑳 = 𝟐
𝑴 = 𝟐

Conflict Resolution

𝑳 = 𝟏
𝑴 = 𝟏
𝒀𝟏 = 𝟏
𝒀𝟐 = 𝟎

𝑳 = 𝟎
𝑴 = 𝟏
𝒀𝟐 = 𝟎

∧ ∧

Conflict Resolution

Get Generalization from Farkas Lemma

Eg., resolve away blue internal variables

𝒀𝟐 ≥ 𝒀𝟏 + 𝟏 ∧ 𝒀𝟏 ≥ 𝟎 𝒀𝟐 ≤ 0𝒀𝟐 ≥ 𝟏𝒀𝟐 ≤ 0 ∧

PDR(T): Conflict Resolution

𝑳 = 𝟎
𝑴 = 𝟎
𝒀𝟐 = 𝟎
𝒀𝟏 = 𝟎

𝑳 = 𝟏
𝑴 = 𝟐
𝒀𝟐 = 𝟎

𝑳 = 𝟐
𝑴 = 𝟐

Conflict Resolution

𝑳 = 𝟏
𝑴 = 𝟏
𝒀𝟏 = 𝟏
𝒀𝟐 = 𝟎

𝑳 = 𝟎
𝑴 = 𝟏
𝒀𝟐 = 𝟎

𝑴 = 𝟏
→ 𝒀𝟐 ≥ 𝟏

𝑴 = 𝟏
→ 𝒀𝟐 ≥ 𝟏

𝑴 = 𝟏
→ 𝒀𝟐 ≥ 𝟏

Conflict PropagationConflict Propagation

IC3/PDR – some observations
Interpolation  Solution to Horn Clauses [Rybalchenko]

– ∀𝑥, 𝑦. 𝐴[𝑥, 𝑦] ⇒ 𝐼 𝑥 , ∀𝑥, 𝑧. 𝐼 𝑥 ⇒ 𝐵[𝑥, 𝑧]

– Instead of mining interpolants from proofs,
PDR uses models and cores

Timed push-down systems  PDR for difference arithmetic

Property Directed Polyhedral Abstraction  PDR + Cute Interpolants
[Ongoing with Arie Gurfinkel]

Shape analysis  PDR with EPR + Predicate Abs/Zipper Interpolants

[Ongoing: Gurfinkel, Itzhaky , Korovin, Lahav, Reps, Talur, Sagiv]

Property + Reachability Directed [CAV 14, Komuravelli, Chaki, Gurfinkel]

High-level Takeaways

• Program Analysis as Solving Logical Formulas

– I presented some samples of encoding analysis
problems into logic.

– I gave a taste of solving algorithms for some
classes of logical formulas.

SMT SOLVING
DPLL(T) BASED APPROACH

SAT
Theory

Solvers
SMT

SMT : Basic Architecture

Equality + UF

Arithmetic

Bit-vectors

…

Case Analysis

SAT + Theory solvers

Basic Idea

x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT + Theory solvers

Basic Idea

x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

SAT + Theory solvers

Basic Idea

x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4

SAT + Theory solvers

Basic Idea

x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4

x  0, y = x + 1,

(y > 2), y < 1

SAT + Theory solvers

Basic Idea

x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4

x  0, y = x + 1,

(y > 2), y < 1

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

SAT + Theory solvers

Basic Idea

x  0, y = x + 1, (y > 2  y < 1)

p1, p2, (p3  p4)

Abstract (aka “naming” atoms)

p1  (x  0), p2  (y = x + 1),

p3  (y > 2), p4  (y < 1)

SAT
Solver

Assignment
p1, p2, p3, p4

x  0, y = x + 1,

(y > 2), y < 1

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

New Lemma

p1p2p4

SAT + Theory solvers

Theory
Solver

Unsatisfiable

x  0, y = x + 1, y < 1

New Lemma

p1p2p4

AKA
Theory conflict

