Software Verification with
Satisfiability Modulo Theories

Nikolaj Bjgrner

Microsoft Research
SSFT 2014, Menlo Park

Contents

A primer on SMT with Z3

SMT & Verification by Assertion Checking
- Boogie GC, Quantifiers, Theories

SMT & Verification by Assertion Inference
- Symbolic Software Model Checking,
Horn Clauses

Verifying Compilers

Annotated Verification

Program Condition F

Programs as Logic in Disguise

Program 1.2.1 A recursion-free program with bounded loops and an SSA

unfolding.
int Main(int x, int y)
{
it (x < y)
X =X + y;
for (int 1 = 0; 1 < 3; ++i) {
y = x + Next(y);
¥
return x + v;

}

int Next(int x) {
return x + 1;:

}

int Main(int x0, int y0)
i
int x1:
if (x0 < y0)
xl = x0 + vO;
else
x1l = x0;
int vl = x1 + v0 + 1;
int v2 = x1 + vl + 1;
int yv3 = x1 + y2 + 1;
return x1 + y3;
1

(xo <yo = z1=z0+v0) N (=(zo <wyo) = z1 =z0) A

EI:E] s Y1, Y2,Y3
result = 1 + ys

n=z1+yw+1l AN yp=xri1+n+l ANy=z1+y2+1A

Verifying Compilers

http://rise4fun.com/Boogie

http://rise4fun.com/Dafny

http://rise4fun.com/Boogie
http://rise4fun.com/Dafny

A Verified GC

http://rise4fun.com/Boogie/wFAV

A more sophisticated collector

6 e €7 hitp://singularity.codeplex.com/SourceControl/latestdverify/src/Checked/Nucleus/GC/MarkSweepCollector.beat

P~a|€d Singularity RDK - Source Co..,

C O de Plex Project Hosting for Open Source Software Register | Signn

Singularity RDK

Files | History | Patches

» base
» BuildProcessTemplates
b docs
v-uurﬂy
» build
¥ SIC
w Checked
» Apps
» Drivers
» Kernel
b Libraries
¥ Nucleus
» Base
» GC

BitVectors.bpl
BitVectors_i.bpl

Search all projects Q

DOCUMENTATION DISCUSSIONS ISSUES PEOPLE LICENSE

#% Connect | *= Upload Patch | %) Download | ¥ Follow (162) Subscribe

MarkSweepCollector.beat Compare with other versions:| Select version V‘ = 4
/1

// Copyright (c) Microsoft Corporation. All rights reserwved.

I

// Verified mark-sweep garbage collector

I
// medium term goal: support more Bartok array-of-struct and vector-of-struct object layouts

// long term goal: support various other features: threads, pinning, stack markers, etc.

// Imports:

'y - Trusted.bpl

I - VerifiedBitVectors.bpl
J/ Includes:

7 - VerifiedCommon.bpl

// \Spec#\bin\Boogie.exe /noinfer Trusted.bpl VerifiedBitVectors.bpl VerifiedCommon.bpl VerifiedMarkSw

N NER Y

o lIF MIFERE—TF S T e FE T NS 37

Boogie Command language

* Xx:=E * assertP
— X:=x+1
* assume P
— x:=10
e SLIT
* havoc X

e ST

Reasoning about execution traces

e Hoare triple: {P} S {Q}
e Starting in P, either S diverges, or
e Terminates safely in a state satisfying Q

© Weakest precondition:

= {wp(S,Q)}s{Q} and
e If{P}S{Q}then P= wp(S, Q)

\Weakest preconditions

wp(x:=E, Q)= Q[E/x]

wp(havoc x, Q) = (Vxe Q)

wp(assert P, Q) = PAQ

wp(assume P, Q) = P=Q

wp(S;T, Q)= wp(S, wp(T,Q))

wp(STT, Q)= wp(S,Q)Awp(T, Q)

Structured if statement

if EthenSelseTend =

assumekE; S
[]
assume -=E; T

While loop with loop invariant

while E

Invariant J where x denotes the
do assignment targets of S

S
end

. check that the loop invariant holds initially
= assert];
“fast forward” to an arbitrary

havoc x; assume J; iteration of the loop

(assume E; S; assert); assume false

1 assume -E !

) check that the loop invariant is

maintained by the loop body

Verification conditions: Structure

vV Axioms +
(non-ground)

4

Control & Data
Flow

Spec Chunker.NextChunk translation

procedure Chunker.NextChunk(this: ref where $IsNotNull(this, Chunker)) returns ($result: ref where $IsNotNull($result, System.String));

/Il in-parameter: target object

free requires $Heaplthis, $allocated];

requires ($Heap[this, $ownerFrame] == $PeerGroupPlaceholder || |($Heap[$Heap[this, $ownerRef], $inv] <: $Heap[this, $ownerFrame]) ||
$Heap[$Heap[this, $ownerRef], $localinv] == $BaseClass($Heap[this, $ownerFrame])) && (forall $pc: ref :: $pc = null && $Heap[$pc, $allocated]
&& $Heap[$pc, $ownerRef] == $Heaplthis, $ownerRef] && $Heap[$pc, $ownerFrame] == $Heap[this, SownerFrame] ==> $Heap[$pc, $inv] ==
$typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc));

/I out-parameter: return value

free ensures $Heap[$result, $allocated];

ensures ($Heap[$result, SownerFrame] == $PeerGroupPlaceholder || !($Heap[$Heap[$result, SownerRef], $inv] <: $Heap[$result, SownerFrame]) ||
$Heap[$Heap[$result, SownerRef], $localinv] == $BaseClass($Heap[$result, SownerFrame])) && (forall $pc: ref :: $pc != null && $Heap[$pc,
$allocated] && $Heap[$pc, $ownerRef] == $Heap[$result, SownerRef] && $Heap[$pc, $ownerFrame] == $Heap[$result, SownerFrame] ==>
$Heap[$pc, $inv] == $typeof($pc) && $Heap[$pc, $localinv] == $typeof($pc));

/I user-declared postconditions

ensures $StringLength($result) <= $Heap[this, Chunker.ChunkSize];

Il frame condition

modifies $Heap;

free ensures (forall $o: ref, $f: name :: { $Heap[$o, $f] } $f I= $inv && $f = $localinv && $f I= $FirstConsistentOwner && (lIsStaticField($f) ||
lIsDirectlyModifiableField($f)) && $o != null && old($Heap)[$o, $allocated] && (old($Heap)[$o, $ownerFrame] == $PeerGroupPlaceholder ||
I(old($Heap)[old($Heap)[$o, SownerRef], $inv] <: old($Heap)[$o, SownerFrame]) || old($Heap)[old($Heap)[$o, SownerRef], $localinv] ==
$BaseClass(old($Heap)[$0, $ownerFrame])) && old($o != this || !(Chunker <: DeclType($f)) || !$IncludedIinModifiesStar($f)) && old($o != this || $f
I= $exposeVersion) ==> old($Heap)[$o, $f] == $Heap[$o, $f]);

/I boilerplate

free requires $BeingConstructed == null;

free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { $Heap[$o, $inv] } $o != null && !old($Heap)[$o, $allocated] && $Heap[$o, $allocated] ==>
$Heap[$o, $inv] == $typeof($0) && $Heap[$o, $localinv] == $typeof($0));

free ensures (forall $o: ref :: { $Heap[$o, $FirstConsistentOwner] } old($Heap)[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] ==
$Heap[old($Heap)[$o, $FirstConsistentOwner], $exposeVersion] ==> old($Heap)[$o, $FirstConsistentOwner] == $Heap[$o,
$FirstConsistentOwner]);

free ensures (forall $o: ref :: { $Heap[$o, $localinv] } { SHeap[$o, $inv] } old($Heap)[$o, Sallocated] ==> old($Heap)[$o, $inv] == $Heap[$o, $inv] &&
old($Heap)[$o, $localinv] == $Heap[$o, $localinv]);

free ensures (forall $o: ref :: { $Heap[$o, $allocated] } old($Heap)[$o, $allocated] ==> $Heap[$o, $allocated]) && (forall $ot: ref :: { $Heap[$ot,
$ownerFrame] } { $Heap[$ot, SownerRef] } old($Heap)[$ot, $allocated] && old($Heap)[$ot, SownerFrame] != $PeerGroupPlaceholder ==>
old($Heap)[$ot, SownerRef] == $Heap[$ot, $ownerRef] && old($Heap)[$ot, $ownerFrame] == $Heap[$ot, $ownerFrame]) &&
old($Heap)[$BeingConstructed, $NonNullFieldsArelnitialized] == $Heap[$BeingConstructed, $NonNullFieldsArelnitialized];

Equality-Matching

fla) #c
Pwx.) ™ f(g(c,b)) =b

> > > >

g(c,x) matches g(b, b)
with substitution [x — b}
mOdUIO b = C [de Moura, B. CADE 2007]

http://rise4fun.com/Z3/msle9

Reachability and EPR

struct cel//{
int data;
cell* next;

1

void zero(cell = ¢) {
while(c){ c —» data = 0;c = ¢ - next;}

assert (Vd € Coid Snext.d =nullvd - data = O);

[Iltzhaky et.al. CAV 13, CAV 14, POPL 14]

Reachability and EPR

void zero(cell = c) {
while(c){ c — data = 0;¢c = ¢ - next;}

assert (Vd € Coid S next.d =nullvd - data = O);

}

Classical memory model:
Next: Cell — Cell
Data: Cell — int
wp(c = ¢ —» next, Q) = Q[Next(c)/c]

Next*:Cell X Cell - Bool =TC(Next)

Reachability and EPR

void zero(cell * c) {
while(c){ ¢ - data = 0;¢c = ¢ - next;}

assert (Vd € Coid Snext.d =nullvd - data = O);

}

Memory model based on Next™

Next*: Cell X Cell - Bool
Data: Cell X int - Bool

Next™ is Transitive, Reflexive, Linear , Anti-symmetric for acyclic lists

Next*(c,d) == c #= d A Next*(c,d)
Next'(c,d) == Next™(c,d) AVe.Nextt(c,e) = Next*(d,e)

wp(d = ¢ - next, Q) := Ve Next'(c,e) — Q[e/d]

Reachability and EPR

Next™ is Transitive, Reflexive, Linear, Anti-symmetric
Next®(c,d) := c # d A Next*(c,d)
Next'(c,d) == Nextt(c,d) AVe.Nextt(c,e) - Next*(d,e)

wp(d = ¢ - next, Q) =
Ve.Next'(c,e) - Q[e/d] A alloc(c) Ac # null

wp(c = next = null,Q) =
Q[Aab.Next*(a,b) A (Next*(a,c) - Next*(b,c))/Next™]

wp(c - next =d, Q) =
Q[Aab.Next*(a,b) V (Next*(a,c) A Next*(d,b))/Next™]
Assuming ¢ = next = d; is preceded by c — next = null

Reachability and EPR

e Verification

— Python exercise: implement wp for Next™

* Synthesizing Inductive Invariants

— [Itzhaky et.al CAV 14] uses Predicate Abstraction
for EPR.

Verification by Assertion
Inference

Horn Clauses

mc(x) = x-10 if x> 100
mc(x) = mc(mc(x+11)) if x <100

assert (x < 101 —»mc(x) =91)

vX. X > 100> mc(X,X — 10)
VX,Y,R. X < 100 Amc(X + 11,Y) Amc(Y, R) > mc(X, R)
VX,R. mc(X, RINX<101->R= 91

Solver finds solution for mc

[Hoder, B. SAT 2012]

../tutorial/rec.smt2
../tutorial/mc.smt2

Transition System

e V - program variables
* init(V) - initial states
e step(V, V') - transition relation

e safe(V) - safe states

Safe Transition System

Jdinv.

¢ VV.init(V) » Inv(V)
* VYV V. Inv(V) Astep(V, V) - Inv(V)
¢ VV.safe(V)- Inv(V)

— [Rybalchenko et.al. PLDI 2012, POPL 2014] Termination
and reactivity are also handled in framework of solving
systems of logical formulas.

Recursive Procedures

Formulate as Horn clauses:

VX. X > 100 > mc(X, X — 10)
VX, Y,R. X < 100 Amc(X +11,Y) Amc(Y, R) = mc(X, R)
VX,R. m¢(X, R)IAX =101 > R= 91

Solve for mc

Recursive Procedures

Formulate as Predicate Transformer:

X>100AR =X — 10
FMAIKR) =\ X <100 A3Y. mc(X + 11,Y) Ame(Y, R)

Check: p#(mc)(X,R)AX =101 > R =91

Recursive Procedures

Instead of computing nz#(mc)(X,R),
then checking n#z(mc)(X,R) AX <101 - R =91

Suffices to find post-fixed point mc,,,; satisfying:

VX,R. z{mc,,s)(X,R) » mcy,5(X, R)

vX, R. mcpost(X, R)IANX<101->R=091

Program Verification as SMT
- aka
A Crusade for Hornish Satisfaction

Program Verification (Safety)
as Solving fixed-points

as Satisfiability of Horn clauses

[Bj@rner, McMillan, Rybalchenko, SMT workshop 2012]
Hilbert Sausage Factory: [Grebenshchikov, Lopes, Popeea, Rybalchenko, PLDI 2012]

i I

e LD

(g |

oo =] o

11
12
13

A model checking Example

Program 1.4.1 Processing requests using locks.

do {
lock ();
old_count = count;
request = GetNextRequest ();
if (request != NULL) {
ReleaseRequest(request);

unlock ();
ProcessRequest (request);
count = count + 1:

}
}
while (old_count != count);

unlock () ;

pee QA b

=] S

—_ = = e e
[y ST L e = R e T 4

Abstraction as Boolean Program

Program 1.4.2 Processing requests using locks, abstracted.

do {
lock ()
b = true;
if (%) { b := count == old_count
unlock ();
if (b) {
b = false;
}
else {
havoc b;
1
h
}
while (!b);
unlock ();

[SLAM, BLAST, Graf & Saidi, Uribe, ..]

(Predicate) Abstraction/Refinement

 SMT solver used to synthesize (strongest)
abstract transition relation F:

p(x,x") = F(by(x)...,by(x), by (X") ..., b (X))

Control as Horn Clauses

Program 1.4.1 Processing requests

Lo ¢

1

Boo lock ();

3 old_count = count;

4 request = GetNextReq
5 if (request !'= NULL)

6 ReleaseRequest(req
7 unlock ();

8 ProcessRequest (req
9 count = count + 1;:
10

While ! }

while (old_count != count)

unlock ();

|—|.

& &
(7))
=k

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))
(Loop count old_count false)))

; Loop without if test
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state) (WhileTest count count true))))

; Loop with if-test
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state) (WhileTest (+ 1 count) count false))))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=>(and (not (= old_count count)) (WhileTest count old_count lock_state))
(Loop count old_count lock_state))))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=>(and (= old_count count) (WhileTest count old_count lock_state))
(= lock_state true))))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)
(= lock_state false))))

(check-sat)
(get-model)

Solving Horn Clauses

Pre-processing
HornClauses —» HornClauses'

Search

— Find model M such that M = HornClauses

Or
— Find refutation proof m: HornClauses ;1

Pre-processing

Cone of Influence
Simplification
Subsumption
Inlining

Slicing

Unfolding

Cone of Influence — top down

P(x) AQ(y) — false
S is not used

S (x) = true

R(x)Ax>0- P(x)
Rx)Ax<0- P(x)

Q) Ay<x-Q(x)

Cone of Influence — bottom up

P(x) AQ(y,0) - false

There is no “rule

to produce Q(x,1)”
R(x)Ax>0- P(x) . Q(’)

Rx)Ax<0- P(x) Q(X,y) =y = 1

Qy.z2) Ay <x-Q(x1)

Inlining

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)

(set-logic HORN) (declare-fun WhileTest (Int Int Bool) Bool)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool) ; Loop is entered in arbitrary values of count, old_count

(assert (forall ((count Int) (old_count Int))
; Loop is entered in arbitrary values of count, old_count (Loop count old_count false)))

(assert (forall ((count Int) (old_count Int))

(Loop count old_count false))) ; Loop without if test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
; Loop without if test (=>(and (Loop count old_count lock_state) (not (= count count)))
(assert (forall ((count Int) (old_count Int) (lock_state Bool)) (Loop count count true)))

(=> (Loop count old_count lock_state) (WhileTest count count true))))
; Loop without if test + loop exit

; Loop with if-test (assert (forall ((count Int) (old_count Int) (lock_state Bool))
(assert (forall ((count Int) (old_count Int) (lock_state Bool)) (=> (and (Loop count old_count lock_state) (= count count))
(=> (Loop count old_count lock_state) (WhileTest (+ 1 count) count false)))) (=true true)))
(assert (forall ((count Int) (old_count Int) (lock_state Bool)) ; Loop with if-test + repeat loop
(=>(and (not (= old_count count)) (WhileTest count old_count lock_state)) (assert (forall ((count Int) (old_count Int) (lock_state Bool))
(Loop count old_count lock_state)))) (=> (and (Loop count old_count lock_state) (not (= (+ 1 count) count))

(Loop (+ 1 count) count false)))
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=>(and (= old_count count) (WhileTest count old_count lock_state)) ; Loop with if-test + loop exit
(= lock_state true)))) (assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=>(and (Loop count old_count lock_state) (= (+ 1 count) count)
(assert (forall ((count Int) (old_count Int) (lock_state Bool)) (= false true)))
(=> (Loop count old_count lock_state)
(= lock_state false)))) (assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)
(check-sat) (= lock_state false))))
(get-model)

(check-sat)
(get-model)

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))
(Loop count old_count false)))

; Loop without if test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (and (Loop count old_count lock_state) (not (= count count)))
(Loop count count true)))

; Loop without if test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (and (Loop count old_count lock_state) (= count count))
(= truetrue)))

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= (+ 1 count) count))

(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=>(and (Loop count old_count lock_state) (= (+ 1 count) count)
(= false true)))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)
(= lock_state false))))

(check-sat)
(get-model)

Simplification

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))
(Loop count old_count false)))

; Loop without if test + repeat loop

; Loop without if test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)
(= true true)))

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)
(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)

(= lock_state false))))

(check-sat)
(get-model)

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))
(Loop count old_count false)))

; Loop without if test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (and (Loop count old_count lock_state) (not (= count count)))
(Loop count count true)))

; Loop without if test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (and (Loop count old_count lock_state) (= count count))
(= truetrue)))

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= (+ 1 count) count))

(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=>(and (Loop count old_count lock_state) (= (+ 1 count) count)
(= false true)))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)
(= lock_state false))))

(check-sat)
(get-model)

Simplification

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))
(Loop count old_count false)))

; Loop without if test + repeat loop

; Loop without if test + loop exit

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)
(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count true)

false)))

(check-sat)
(get-model)

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))
(Loop count old_count false)))

; Loop without if test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (and (Loop count old_count lock_state) (not (= count count)))
(Loop count count true)))

; Loop without if test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (and (Loop count old_count lock_state) (= count count))
(= truetrue)))

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= (+ 1 count) count))

(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=>(and (Loop count old_count lock_state) (= (+ 1 count) count)
(= false true)))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)
(= lock_state false))))

(check-sat)
(get-model)

Cone of Influence

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))
(Loop count old_count false)))

; Loop without if test + repeat loop

; Loop without if test + loop exit

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)
(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count true)

false)))

(check-sat)
(get-model)

Result

(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count
(assert (forall ((count Int) (old_count Int))
(Loop count old_count false)))

; Loop without if test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (and (Loop count old_count lock_state) (not (= count count)))
(Loop count count true)))

; Loop without if test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (and (Loop count old_count lock_state) (= count count))
(= truetrue)))

; Loop with if-test + repeat loop
(assert (forall ((count Int) (old_count Int) (lock_state Bool))

(=> (and (Loop count old_count lock_state) (not (= (+ 1 count) count))

(Loop (+ 1 count) count false)))

; Loop with if-test + loop exit
(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=>(and (Loop count old_count lock_state) (= (+ 1 count) count)
(= false true)))

(assert (forall ((count Int) (old_count Int) (lock_state Bool))
(=> (Loop count old_count lock_state)
(= lock_state false))))

(check-sat)
(get-model)

(set-logic HORN)
(declare-fun Loop (Int Int Bool) Bool)
(declare-fun WhileTest (Int Int Bool) Bool)

; Loop is entered in arbitrary values of count, old_count

; Loop without if test + repeat loop

; Loop without if test + loop exit

; Loop with if-test + repeat loop

; Loop with if-test + loop exit

(check-sat)
(get-model)

IC3/PDR: Property Directed
Reachability

The IC3 Algorithm for Symbolic Model Checking by Aaron Bradley

Procedures Regular vs. Push Down systems
As a Conflict-driven solver for
recursive Horn clauses

Beyond Linear Real Arithmetic
Propositional - Timed Automata Decision Procedure
Logic - Interpolants from models

[SAT 2012. Krystof Hoder & Nikolaj Bjgrner]

PDR — the algorithm

Objective Is to solve for R such that
7(R)(X) » R(X), R(X) - Safe(X), VX

Key elements of PDR algorithm:

Over-approximate reachable states

R, = w(false),R; > R, - --- > Ry:= true
Propagate back from =Safe

Resolve conflicts

Strengthen/propagate using induction

PDR — the algorithm

Objective Is to solve for R such that

#(R)(X) » R(X), R(X) - Safe(X), vX

Safe R, = true

Initialize: N\ 7 N

Main invariant: N N

A digression

Dualities — Recurring Theme

$J00.d

Models

Core DPLL(T) engine

Fixed Points engine

Nonlinear solver

Linear Integer solver

Core Engine in Z3: Modern DPLL/CDCL

Initialize €| F F is a set of clauses

/" Decide M|F =>M+? | F ? is unassigned
Propagate M|F,Cv¢ = M+t | F,Cve C is false under M

_ Sat M|F =M F true under M

4 Conflict M|F,C =M | F,C|C C is false under M
Learn M|F|C=M]| F,C|C

_ Unsat M| F|@ = Unsat o
Backjump MM’|F|CV€=>M{’CV{)| F - eM, Mn _ICN/
Resolve M|F|C'V-f{=M]| F|C'VC 1Vt e M
Restart M|F= €| F
Forget M|F,C=M | F C is a learned clause

[Nieuwenhuis, Oliveras, Tinelli J.ACM 06] customized

DPLL(T) solver interaction

T-Propagate M |F,cv¢ = M, ¢Vt | F,Cv¢ Cis falseunderT + M

T- Conflict M|F=M| F|-M M' € M and M'is false under T

T- Propagate a>b,b>c | F,a<cvb<d =

a>bb> c,b<d*=VP=¢d | Fa<cvb<d

T- Conflict M| F= M| F,a<bVb<cvVc<a

wherea > b,b > c,a<cE M

Search: Mile-high perspective

Modern SMT solver

DECISIGHSS Conflict

ASSIONIERYr Resolution

Fixedpoint solver

Conflict

Resolution

Conflict resolution with arthmetic

initially y, := yo := 0;

]Dﬂp forever do]]cu:tp forever do]
[l iy =y + 1 [y ys =y + 1
P hhrawait yo =0V iy < yo; || || Pex| | 6 rawait y1 =0V y2 < yp;
{5 : eritical: {5 : eritical;
iy =0 1 |l Yy =0 1
R(0,0,0,0). Mutual Exclusion
T(L,M,Y1,Y2,L’,M’,Y1",Y2)AR(L,M,Y1,Y2) - R(L’,M |
R(2,2,Y1,Y2) — false <

Step(LL"YLY2YT) > TLMYLY2 UMy Ty2) clauses have model

Step(M,M’,Y2,Y1,Y2’) > T(L,M,Y1,Y2,L,M°,Y1,Y2’) P, takes a step
Step(0,1,Y1,Y2,Y2+1). Yo:y =y +1;goto
(YL<Y2VvY2=0)—> Step(1,2,Y1,Y2,Y1). ?1:awaity =0Vvy <Yy;gotot,
Step(2,3,Y1,Y2,Y1). ?5: critical ; goto {3

Step(3,0,Y1,Y2,0). ?3:y = 0; goto ¥,

Search: Mile-high perspective

I e

Conflict Re Couflict)Propagatior Propagation

PDR(T): Conflict Resolution

initially y, := yo :=0;
[loop forever do
botyr =y + 1

Py Bt - await y2 = 0V y1 < yo:
{5 : eritical;
| | Gzt =0,
= /L N
g M=1 | 8
yZe=\)

Conflict Resolution

Y2>Y1+1AY1>0)

Conflict

Eg.,

g R
[Y2<0 |
\»

loop forever do

borya =1 + 1
{1 rawait y1 =0V y2 < y1:
{5 : eritical:

Resolution
Get Generalization from Farkas Lemma

resolve away blue internal variables

PDR(T): Conflict Resolution

initially y, := yo :=0;

[loop forever do] [loop forever do]
bo iy =12 + L | borya =1 + 1]
P\ gt cawait yo =0V iy < yo: || || Pe | b - await y1 =0V y2 < y1;
{5 : eritical; {5 : eritical:
| | Gzt =0, 1 || bz iy =0 1
o o =N | /L:Z\

E K 3 o 21®
= \ o

IC3/PDR — some observations

Interpolation = Solution to Horn Clauses [Rybalchenko]
— Vx,y.A[x,y] = I(x), Vx,z.1(x) = B|x, 7]

— Instead of mining interpolants from proofs,
PDR uses models and cores

Timed push-down systems = PDR for difference arithmetic

Property Directed Polyhedral Abstraction = PDR + Cute Interpolants
[Ongoing with Arie Gurfinkel]

Shape analysis = PDR with EPR + Predicate Abs/Zipper Interpolants
[Ongoing: Gurfinkel, Itzhaky , Korovin, Lahav, Reps, Talur, Sagiv]

Property + Reachability Directed [CAV 14, Komuravelli, Chaki, Gurfinkel]

High-level Takeaways

* Program Analysis as Solving Logical Formulas

— | presented some samples of encoding analysis
problems into logic.

— | gave a taste of solving algorithms for some
classes of logical formulas.

SMT SOLVING
DPLL(T) BASED APPROACH

SMT : Basic Architecture

S
Theory

@Ivers
/\ e Equality + UF

e Arithmetic
© Bit-vectors

e L LN

Case Analysis

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (PsVvp) p=(x20),p,=(y=x+1),
p35(y> 2), p45(y< 1)

SAT + Theory solvers

Basic Idea
x=>0,y=x+1,(y>2vy<1)
@ Abstract (aka “naming” atoms)

pl) p2/ (p3v p4) plz(XZO), pZE(y=X+ 1)1

@ ps=(y>2), py=(y<1)

SAT
Solver

SAT + Theory solvers

Basic Idea
x=>0,y=x+1,(y>2vy<1)
@ Abstract (aka “naming” atoms)

pl) p2/ (p3v p4) plz(XZO), pZE(y=X+ 1)1

@ ps=(y>2), py=(y<1)

Assignment
SAT
L J i>p1, P2 —P3, Py

Solver

SAT + Theory solvers

Py, Py (P53 V Py

4

Basic Idea

x=>0,y=x+1,(y>2vy<1)
@ Abstract (aka “naming” atoms)

-

SAT
olver

e

p,=(x=0),p,=(y=x+1),

Ps=(y>2), p,=(y<1)

Assignment
pll p21 ﬁp3l p4

=N

V7

x=0,y=x+1,
—(y>2),y<1

SAT + Theory solvers

Py, Py (P53 V Py

@ ps=(y > 2),

Basic Idea

x=>0,y=x+1,(y>2vy<1)
@ Abstract (aka “naming” atoms)

|

SAT
Solver

j\> P1, Py —P3, Py j\>

J Assignment

Unsatisfiable <;
x=20,y=x+1,y<1

plE (X 2 O)I

pzz(y=x+1),
p4E(y<1)
x=0,y=x+1,
—(y>2),y<1

V

Theory
Solver

SAT + Theory solvers

Basic Idea
x=>0,y=x+1,(y>2vy<1)
@ Abstract (aka “naming” atoms)

pll p2; (p3\/ p4) plz(XZO), sz(y=X+ 1)1

@ ps=(y>2), p,=(y<1)
U

SAT Assignment x>0,y=x+1,
j> p1; pz: _'p3; p4 j>

Solver —(y>2),y<1
New Lemma <j Unsatisfiable <; Theory
—P, V=P, V=P, x=20,y=x+1,y<1 Solver

SAT + Theory solvers

New Lemma <j Unsatisfiable <¢ Theory
—p,V—P,V—p, x>0,y=x+1,y<1 Solver
AKA

Theory conflict

