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verified programming

• goal: write code 
– that is mechanically verified to satisfy its specs
– without compromising on performance
– (this means that you can change the code, but you 

shouldn’t change the binary substantially)

• approach: verified (sequential, concurrent, 
hybrid) C code

• why C? because most of the software that 
matters is in C(++)
– e.g.: OS kernels, compilers, language runtimes, 

embedded controllers,…



tool

• we will be programming in C, using VCC (Verified 
Concurrent C)
– today, this requires Windows/Visual Studio to run
– alternately, you can run it batchwise on rise4fun

• VCC is not a production-quality tool, but it has been used to 
successfully verify highly concurrent code (100KLOC, mostly 
from products)

• if you don’t know C, you should (especially if you want to 
build tools)

• if you know an imperative programming language (e.g. 
Java, C#) you should be able to pick it up what you need 
from the lectures (ask friends for help if you need it)



getting started with VCC

• if you have a windows machine, follow instructions at 
vcc.codeplex.com to install the software 
– please do this *before* your lab session

• if you want to use VCC over the web, go to rise4fun.com
– you will miss out on a lot of nice features though

• in either case, the best way to start is by working through 
the tutorial

• if you are hoping to use VCC to verify something 
interesting, you should talk to me (or email me at 
ernie.cohen@acm.org)

• if you get stuck on something for more than 5-10 minutes, 
ask someone for help; success correlates strongly with 
having an experienced user to talk to

mailto:ernie.cohen@acm.org


objects and invariants
• assume fixed

– a set of objects Ob, each with a unique name
– a set of field names F
– a set of Values V

• states: St = Ob->F->V
• an execution is an infinite sequence of states
• transitions: Tr = St x St

– the transitions of an execution are the consecutive pairs of states

• object invariants: assume a fixed \inv2: Ob -> Tr -> \bool
– if \inv2(o)(s,t), we say the transition from s to t satisfies the invariant of o
– \inv(o)(s) = \inv2(o)(s,s)

• a transition (s,t) updates o iff for some field f, s(o)(f) != t(o)(f)
• (s,t) is legal iff (\forall o: (s,t) updates o ==> \inv2(o)(s,t))
• (s,t) is good iff (\forall o: \ inv2(o)(s,t))

– s is good iff (s,s) is good
– an execution is good if all of its states and transitions are good

• o is admissible iff
(\forall s,t: good(s)  /\ (s,t) legal => 

\inv2(o)(s,t)) /\ ((s,t) good => \inv(o)(t))
• thm: if the first state and every transition of an execution is good, and ever object 

is admissible, then every state and every transition of the execution is good



verification approach

• to prove something about the world,
– model the world as a collection of objects
– show that all of the object invariants are admissible
– show that state changes consistent with natural law 

(e.g. physics, operational semantics of C, …) are legal

• to verify software, do this while matching 
software structure

• key enablers: 
– admissibility is normally monotonic (and follows 

scoping)
– legality check is local



admissible and inadmissible invariants

• a: \old(a->x) <= a->x
• b: a->x < 5
• c: a->x > 10
• d: d->x == \old(d->x) || a->x == 2
• e: \unchanged(e->x) || \inv2(f)
• f: e->x == 5
• g: g->x > \old(g->x)
• h: \inv2(h)
• i: !\inv2(i)



writing invariants

• \old(e) in an object invariant means e 
evaluated in the prestate

• \unchanged(e) == (\old(e) == e)

• \inv2() and \inv() can appear in object 
invariants, but only with positive polarity



approval

\approves(o,x) == \unchanged(x) || \inv2(o)

a: \approves(o,a->x)

• this is always admissible
• corresponds to giving o “deny” permission on a->x
• finer-grained permissions can also be expressed, e.g. 

b: \unchanged(b->x) || b->x != 7 || \inv2(o)
c: \unchanged(c->x) || \old(c->x) <= c->x || \inv2(o)



ownership

a: \approves(o,a->x)



ownership

a: \approves(o,a->x)

problem: we want to be able to transfer 
ownership of a to a new owner



ownership

a: \approves(a->\owner, a->x)



ownership

a: \approves(a->\owner, a->x)

problem: ownership of a can be “stolen” from o



ownership

a: \approves(a->\owner, a->x)

a: \approves(\old(a->\owner), a->\owner)



ownership

a: \approves(a->\owner, a->x)

a: \approves(\old(a->\owner), a->\owner)

problem: what if the new owner doesn’t want 
ownership?



ownership

a: \approves(a->\owner, a->x)

a: \approves(\old(a->\owner), a->\owner)

a: \approves(a->\owner, a->\owner)



ownership

a: \approves(a->\owner, a->x)

a: \approves(\old(a->\owner), a->\owner)

a: \approves(a->\owner, a->\owner)

problem: we want to transfer ownership of a 
without having to check the invariant of a



ownership

a: \approves(a_o->\owner, a->x)

a_o: \approves(\old(a_o->\owner), a_o->\owner)

a_o: \approves(a_o->\owner, a_o->\owner)



ownership

a: \approves(a->\owner, a->x)
a_o: \approves(\old(a->\owner), a->\owner)
a_o: \approves(a->\owner, a->\owner)

(to avoid clutter, we declare a_o as a “group” of a and label 
\owner field of a as really being a field of a_o) 

• can generalize this to having multiple “owners” with 
rights to different actions on a

• can use a level of indirection, so that each right is given 
to the owner of a corresponding ghost object



abstract data

s: \approves(s->\owner, s->val)
s:  coupling_invariant(s->val,s->rep)
o: s->\owner == o
o: p(s->val, o->data)

• o talks about the abstract value of s (s->val)
• the representation of s->val is given by an invariant of s, which can 

be hidden from o
• o can’t change s->val directly (since he doesn’t know about the 

internals of s), but can use functions that know these internals to 
update s. these functions are spec’d using s->val.

• also possible: o doesn’t approve s->val, but depends on other 
invariants restricting its behavior



devices

d: \approves(d->\owner, d->on)

d: \unchanged(d->count)

|| (d->count == d->count+1 && d->on)

• owner can turn the device on and off, but 
doesn’t control the actual counting



forward simulation

abs: beh(abs->val)

abs: \approves(concr, abs->val)

concr: coupling_invariant(abs->val, concr->data)

• operations on concr->data are obliged to maintain 
– the coupling invariant with abs->val

– the beh invariant of abs->val

• the resulting proof shows that concr “simulates” abs

• (note that, like a device, abs can include other fields 
not under control of concr)



time

t: \unchanged(t->val) || t->val == t->val + 1
t: \unchanged(t->val) 

|| \forall \object o; t->timed[o] ==> \inv2(o)
t: \old(t->\timed[o]) ==> timed[o]

plane: t->timed[plane]
plane: \unchanged(t->val) || 

(plane->pos == \old(plane->pos) + plane->vel))

• only “timed” objects can force God to change their state when He 
moves time forward

• note: this usually depends on the granularity of time being small 
enough to not miss catastrophies in the middle of a discrete time 
jump



linearizable operations

ob: \unchanged(ob->val) || (\exists op:

op == ob->curr_op

&& ob->op[op] 

&& !\old(op->done)

&& op->done

&& happens(op,ob->val))

…

• the operations (which are normally ghost) serve 
as “tickets” allowing update to ob->val



open and closed objects

• most objects don’t start out initialized
– e.g. concrete data in C
– invariants normally hold only after initialization
– coupling invariants don’t hold in the middle of 

(sequential) updates

• convention: 
– each object has a Boolean field \closed
– by default, an object invariant inv in o means

\old(o->\closed) || o->\closed ==> inv
– for any nonvolatile field f, there is an implicit invariant

\unchanged(o->f)



is this admissible?

typedef struct S S, *PS;

typedef struct S {

volatile PS pred;

volatile PS succ;

_(invariant pred ==> pred->succ == \this)

_(invariant succ ==> succ->pred == \this)

} S;

.



?

typedef struct S S, *PS;

typedef struct S {

volatile PS pred;

volatile PS succ;

_(invariant \on_unwrap(\this,\false))

_(invariant pred ==> pred->succ == \this)

_(invariant succ ==> succ->pred == \this)

} S;

.



?

typedef struct S S, *PS;

typedef struct S {

volatile PS pred;

volatile PS succ;

_(invariant \on_unwrap(\this,\false))

_(invariant pred ==> pred->succ == \this)

_(invariant succ ==> succ->pred == \this)

_(invariant \this->\closed && pred ==> pred->\closed)

_(invariant \this->\closed && succ ==> succ->\closed)

} S;

.



?

typedef struct S S, *PS;

typedef struct S {

volatile PS pred;

volatile PS succ;

_(invariant \on_unwrap(\this,\false))

_(invariant pred ==> pred->succ == \this)

_(invariant succ ==> succ->pred == \this)

_(invariant \this->\closed && pred ==> pred->\closed)

_(invariant \this->\closed && succ ==> succ->\closed)

_(invariant \unchanged(pred) || !\old(pred) || \inv(\old(pred)))

_(invariant \unchanged(succ) || !\old(succ) || \inv(\old(succ)))

} S;

.



why verify software?

• without verification, you can’t write correct software
• with verification, you can write correct software
• ex: as homework, try to write a correct binary search

size_t bsrch(int *p, size_t len, int val)
// return an index i < len s.t. p[i] == val, or len if none exists

• hopefully, you learned about binary search in school
• how many of you think you could program a correct binary search? 
• how long would it take you to do it?
• how sure would you be that it was correct?
• how much time would it take you to document it? how precise 

would your documentation be?
• how much work would it be for you to test it thoroughly?



cautionary tale: binary search

• algorithm first published in 1946, but first correct version didn’t appear until 
1962

• in 1988, a survey of 20 textbooks on algorithms found that at least 15 of 
them had errors

• Bentley reports giving it as a programming problem to over 100 professional 
programmers from Bell Labs and IBM, with 2 hours to produce a correct 
program. At least 90% of the solutions were wrong. Dijkstra reported similar 
statistics in experiments he performed at many institutions. Bentley 
reported similar numbers for incoming CMU CS graduate students.

• Bentley published a CACM “programming pearl” on binary search and 
proving it correct, expanded to 14 pages in “Programming Pearls” (1986). 

• Joshua Bloch used Bentley’s code as a basis for the binary search 
implementation in the JDK, in 1997.

• in 2006, a bug was found in the JDK code, the same bug that was in Bentley’s 
code, which nobody had noticed for 20 years. The same bug was in the C 
code Bentley published for the second edition of his book in 2000.

• these are not exactly your average programmers



Bloch’s conclusion

“…The general lesson that I take away from this bug is humility: It is 
hard to write even the smallest piece of code correctly, and our whole 
world runs on big, complex pieces of code.”

(correct)

“We programmers need all the help we can get, and we should never 
assume otherwise. Careful design is great. Testing is great. Formal 
methods are great. Code reviews are great. Static analysis is great. But 
none of these things alone are sufficient to eliminate bugs: They will 
always be with us. A bug can exist for half a century despite our best 
efforts to exterminate it. We must program carefully, defensively, and 
remain ever vigilant.”

(incorrect)



cautionary tale: Chord

• a distributed (ring) hash table algorithm, developed at MIT
• the 4th most cited paper in computer science, according to 

Citeseer; won SIGCOMM “Test of Time” award in 2011.
• from the paper: “Three features that distinguish Chord 

from many other peer-to-peer lookup protocols are its 
simplicity, provable correctness, and provable 
performance.”

• the proofs in the paper (and the protocol itself) are buggy;  
not one of the 7 invariants given in the paper is an invariant 

• this is not an isolated example; many published journal 
concurrent/distributed algorithms are incorrect



cautionary tale: crypto protocols

• in 1995, people finally got around to model-
checking and verifying crypto protocols 
(assuming perfect cryptography)

– these are basically 2-10 line distributed programs

• more than half of the published 
authentication protocols were buggy



some takeaways

• people can’t write correct software

• many eyes looking at code doesn’t guarantee 
correctness

• it’s not good enough to verify algorithms; you 
have to verify code

• deductive verification is not free, but neither 
is testing; a typical software shop spends 
more on trying to eliminate bugs than they 
spend on writing the code



algorithms vs programs

• when reasoning about an algorithm, you can 
assume you get to see the whole global state

• when reasoning about a program, you are obliged 
to follow the scoping rules
– in particular, you can’t see the software that hasn’t 

been written yet

• reasoning about algorithms hasn’t changed 
substantially in 30 years

• reasoning about programs has undergone 
massive changes in the past decade



invariants

• we’re going to prove things  about programs by 
constructing a big fact F about the program

• we prove F by proving that it is true initially, and that it 
can never go from being true to being false; we then 
say F is an “invariant”

• F is the conjunction of many separate statements 
about the program; these will be of the form “this is 
true here”:
– “this is true whenever control reaches this location”
– “this is always true for each instance of this data structure”

• these annotations will be sprinkled throughout the 
code



unsigned add(unsigned x, unsigned y)

{

unsigned i = x;

unsigned j = y;

while (i > 0)

{

i--;

j++;

}

return j;

}



unsigned add(unsigned x, unsigned y)

_(requires x + y <= UINT_MAX)

{

unsigned i = x;

unsigned j = y;

while (i > 0)

{

i--;

j++;

}

return j;

}



unsigned add(unsigned x, unsigned y)

_(requires x + y <= UINT_MAX)

{

unsigned i = x;

unsigned j = y;

while (i > 0)

_(invariant i + j == x + y)

{

i--;

j++;

}

return j;

}



unsigned add(unsigned x, unsigned y)

_(requires x + y <= UINT_MAX)

_(ensures \result == x + y)

{

unsigned i = x;

unsigned j = y;

while (i > 0)

_(invariant i + j == x + y)

{

i--;

j++;

}

return j;

}



unsigned add(unsigned x, unsigned y)

_(requires x + y <= UINT_MAX)

_(ensures \result == x + y)

_(decreases 0)

{

unsigned i = x;

unsigned j = y;

while (i > 0)

_(invariant i + j == x + y)

{

i--;

j++;

}

return j;

}



unsigned add(unsigned x, unsigned y)

_(requires x + y <= UINT_MAX)

_(ensures \result == x + y)

_(decreases 0)

{

unsigned i = x;

unsigned j = y;

while (i > 0)

_(invariant i + j == x + y)

_(decreases i)

{

i--;

j++;

}

return j;

}



_(pure) 

unsigned add(unsigned x, unsigned y)

_(requires x + y <= UINT_MAX)

_(ensures \result == x + y)

_(decreases 0)

{

unsigned i = x;

unsigned j = y;

while (i > 0)

_(invariant i + j == x + y)

_(decreases i)

{

i--;

j++;

}

return j;

}



_(requires p)

p holds on entry to the function

(i.e. p is a precondition of the function)

_(ensures p)

p holds on return from the function

(i.e., p is a postcondition of the function)

\result is the value returned from the function

_(invariant p)

p holds whenever control reaches the top of the loop (before 

evaluating the loop test)

_(decreases e1,e2, ...)

the function terminates, with any call out to a function that (possibly) 

calls back to this one having measure smaller than <fn,e1,e2,...>

if on a loop, <e1,e2,...> is decreased by the loop body

\result

the value returned from the function



reasoning with a function spec

_(pure) 

unsigned add(unsigned x, unsigned y)

_(requires x + y <= UINT_MAX)

_(ensures \result == x + y)

;

_(pure) 

unsigned add3(unsigned x, unsigned y, unsigned z)

_(requires x + y + z <= UINT_MAX)

_(ensures \result == x + y + z)

{

unsigned i = add(x,y);

// i == x + y

return add(i,z);

}



modular verification

• the  _(requires) and _(ensures) annotations provide the specification (or 
contract) for the function add

• when reasoning about a call to a function, we will use only its 
specification, not its implementation
– when you call a function, you must prove that its preconditions will be 

satisfied
– on return from the function, you can assume its postconditions
– in a real project, you put the specifications in the header files

• this has several big advantages:
– it hides irrelevant detail from the reasoner (man or machine)
– you can verify the functions separately
– if you change the body of a function without changing its specification, you 

know the change won’t break client code
– the header can serve as the documentation of the function
– you can program to the specification of a function that hasn’t been written yet



reading the heap

int valOf(int *p)

_(ensures \result == *p)

{

return *p;

}



reading the heap

int valOf(int *p)

_(requires \thread_local(p))

_(ensures \result == *p)

{

return *p;

}



reading the heap

typedef struct Int {

int val;

} Int;

int valOf(Int *p)

_(requires \thread_local(p))

_(ensures \result == p->val)

{

return p->val;

}



reading the heap

typedef struct Int {

int val;

} Int;

int valOf(Int *p)

_(requires \thread_local(&p->val))

_(ensures \result == p->val)

{

return p->val;

}



size_t find(int v, int *a, size_t len)

{

for (size_t i = 0; i < len; i++)

{

if (a[i] == v) return i;

}

return len;

}



size_t find(int v, int *a, size_t len)

_(requires \thread_local_array(a,len))

{

for (size_t i = 0; i < len; i++)

{

if (a[i] == v) return i;

}

return len;

}



size_t find(int v, int *a, size_t len)

_(requires \thread_local_array(a,len))

{

for (size_t i = 0; i < len; i++)

_(invariant \forall size_t j; j < i ==> a[j] != v)

{

if (a[i] == v) return i;

}

return len;

}

.



size_t find(int v, int *a, size_t len)

_(requires \thread_local_array(a,len))

_(ensures \result <= len)

_(ensures \forall size_t i; i < \result ==> a[i] != v)

_(ensures \result < len ==> a[\result] == v)

{

for (size_t i = 0; i < len; i++)

_(invariant \forall size_t j; j < i ==> a[j] != v)

{

if (a[i] == v) return i;

}

return len;

}



\thread_local_array(a,len)

a points (at least) len items with type that of *a

these items are all “owned” by this thread

\forall T v; p

\exists T v; p

universal/existential quantification

p ==> q

p <== q

p <==> q

p “only if” / “if” / “iff and only iff” q



framing

void test() {

int a[10];

_(assume a[3] == 3)

find(a,10,7);

_(assert a[3] == 3)

}

• should this verify? (presumably yes)

• but how do we know that lsearch doesn’t change a[3]?

• rule: a function has to declare (in its spec) anything that might 
change, if the caller might otherwise “remember” something about it

• the function doesn’t have to declare changes to state that the caller 
either doesn’t know about (e.g. memory allocated by the callee) or is 
obliged to forget about (e.g. state that he doesn’t control)



writing the heap

void copy(int *from, int *to)

{

*to = *from;

}



writing the heap

void copy(int *from, int *to)

_(requires \thread_local(from))

{

*to = *from;

}



writing the heap

void copy(int *from, int *to)

_(requires \thread_local(from))

_(writes to)

{

*to = *from;

}



writing the heap

void copy(int *from, int *to)

_(requires \thread_local(from))

_(writes to)

_(ensures *to == \old(*from))

{

*to = *from;

}



void replace(int *p, size_t len, int target, int replacement)

_(writes \array_range(p,len))

_(ensures \forall size_t i; i < len ==> 

p[i] == ((\old(p[i]) == target) ? replacement : \old(p[i])))

_(decreases 0)

{

size_t i = 0;

for (i = 0; i < len; i++)

_(invariant \forall size_t j; j < len ==>  

p[j] == ((\old(p[j])== target) && j < i ? replacement : \old(p[j])))

{

if (p[i] == target) p[i] = replacement;

}

}



_(assume p)

ignore executions in which p does not hold 

(or, more operationally)

wait until p holds

_(assert p)

try to prove that p holds at this point, and assume p afterward

\old(e)

the value that e had on entry to the function

_(writes p,q,…)

requires that the objects/fields pointed to by p,q,… are 
writable, and that a call to this function is allowed to change 
these fields/object

\array_range(p,len)

the set of objects {&p[i] s.t. i < len}



(approximate) semantics of a function 
call

• check that the preconditions hold

• in the poststate of the call,

– assume that the state agrees on all data owned by 
the calling thread, except for data listed in the 
writes clauses of the function

– assume all postconditions of the call



termination

• to prove that a function terminates, you need to prove two things:
– no infinite loops
– no infinite recursion

• you prove absence of an infinite loop by giving a measure that 
decreases on each iteration through the loop

• you prove absence of an infinite recursion by giving a lexicographic 
measure that decreases on each function call
– VCC implicitly adds a highest-order measure of the “rank” of the 

function in the call graph, for functions whose bodies it sees
– in practice, this means that you can just write _(decreases 0) for any 

nonrecursive function
– mututally recursive functions must be declared so in their specs (see 

the manual for details)



termination examples

void test(unsigned x)

_(decreases x)

{

for (unsigned i = 0; i<x; i++)

_(decreases x-i)

{

test(i);

}

}

_(\natural Ackermann(\natural m, \natural n)

_(decreases m, n)

{

if (m == 0) return n + 1;

else if (n == 0) return Ackermann(m - 1, 1);

else return Ackermann(m - 1, Ackermann(m, n - 1));

})



objects and pointers

• a program text defines a fixed set of objects
• each object o == <\addr(o),\typeof(o),\ghost(o)>

– the type of an object determines its fields and their types
– each field is either concrete or ghost
– each concrete field occupies a set of byte addresses in memory

• \state == ObjectsFieldnameValues
• note: the objects are logically disjoint
• a pointer is either an object or a pair <o,f> where f is a field name

– \embedding(<o,f>) == o
– \is_primitive_ptr(<o,f>) == \true;  
– \is_primitive_ptr(o) == \false
– &(o->f) == <o,f>;  *<o,f> in state S == S(o)(f)

• \object is (for the moment) the type of pointers, rather than the 
type of objects 



validity and aliasing

• each object has a ghost \bool field \valid, which determines 
whether it is one of the “current” objects

• two objects overlap iff they have overlapping concrete fields
• VCC forces programs to maintain the invariant that \valid objects 

don’t alias
– you can only make an object o valid if you simultaneously make invalid 

a set of objects whose concrete fields cover the concrete fields of ob

• proof obligations guarantee that all reads and writes are of fields of 
\valid objects

• these conditions allow reads and writes of concrete fields to be 
implemented by reads and writes to shared memory
– maintain the global invariant that concrete fields of \valid objects 

agree with their corresponding bytes in memory

• so these conditions immediately eliminate all “crazy” aliasing in C



closed objects and ownership

• each object has a \bool field \closed
– only valid objects are \closed

• each object has an \object field \owner (which must be an object)
– only threads can own open objects
– only the owner of an object can open or close it

• in the context of a thread, 
\wrapped(o)

means o is a closed object owned by \me

\mutable(o)

means o is open object owned by \me, or o == <o’,f> and \mutable(o’)
\thread_local(o)

means o is transitively owned by \me, or o==<o’,f> and \thread_local(o’)
_(wrap o)

closes o

_(unwrap o)

opens o



ghost data

• we make heavy use of ghost data
– ghost variables in functions
– ghost fields in objects
– ghost parameters to functions

• ghost data is used to facilitate verification, but is not 
part of the compiled program

• ghost data can have some additional types
– \natural, \integer, \object, \state
– maps
– records (structs, but pure values without identity)
– inductive data types
– (a few others)



#define ONE  ((\natural) 1)

#define RADIX (UINT_MAX + ONE)

#define DBL_MAX \

(UINT_MAX + UINT_MAX * RADIX)

typedef struct Double {

// abstract value

_(ghost \natural val)

// implementation

unsigned low;

unsigned high;

//coupling invariant

_(invariant val == low + high * RADIX)

} Double;

void dblNew(Double *d)

_(requires \extent_mutable(d))

_(writes \extent(d))

_(ensures \wrapped(d) && d->val == 0)

{

d->low = 0;

d->high = 0;

_(ghost d->val = 0)

_(wrap d)

}

void dblDestroy(Double *d)

_(requires \wrapped(d))

_(writes d)

_(ensures \extent_mutable(d))

{

_(unwrap d)

}

void dblInc(Double *d)

_(maintains \wrapped(d))

_(writes d)

_(requires d->val + 1 < DBL_MAX)

_(ensures d->val == \old(d->val) + 1)

{

_(unwrapping d) {

if (d->low == UINT_MAX) {

d->high++;

d->low = 0;

} else

d->low++;

_(ghost d->val = d->val + 1)

}

}



_(ghost …)

ghost code or data declaration

\natural

type of natural numbers

\span(d)

union of d and pointers to all d’s primitive fields

\extent(d)

union of \span(d) and the extents of d’s nonprimitive fields

\mutable(d)

d is open and owned by \me

\extent_mutable(d)

\extent(d) is open and owned by \me

\wrapped(d)

d is closed and owned by \me

_(wrap d)

set d->\closed to true

_(unwrap d)

set d->\closed to false

_(unwrapping d1, d2, ) { … }

sugar for _(unwrap d1)  _(unwrap d2) …  _(wrap d2) _(wrap d1)



objects owning objects

• each object has a field \owns (a set of objects)
– when o->\closed, o->\owns gives the objects owned by o

• _(unwrap o) transfers ownership of all objects in o->\owns 
from o->\owner to \me
– this involves a check that they are all \wrapped and writable

• _(wrap o) transfers ownership of all objects in o->\owns 
from \me to o->\owner

• by default, o->\owns is static and is computed from the 
invariant of o

• if a type is marked _(dynamic_owns), o->\owns is 
maintained manually (in ghost code)

• if a type is marked _(volatile_owns), o->\owns can change 
even while the object is closed (subject to o’s invariants)



#define DRADIX (DBL_MAX + ONE)

#define QUAD_MAX \

(DBL_MAX + DBL_MAX * DRADIX)

typedef struct Quad {

// abstract value

_(ghost \natural val)

Double low;

Double high;   

_(invariant \mine(&low) && \mine(&high))

//coupling invariant

_(invariant val ==

low.val + high.val * DRADIX)

} Quad;

void quadNew(Quad *q)

_(requires \extent_mutable(q))

_(writes \extent(q))

_(ensures \wrapped(q) && q->val == 0)

{

dblNew(&q->low);

dblNew(&q->high);

_(ghost q->val = 0)

_(wrap q)

}

void quadDestroy(Quad *q)

_(requires \wrapped(q))

_(writes q)

_(ensures \extent_mutable(q))

{

_(unwrap q)

_(unwrap &q->low)

_(unwrap &q->high)

}

void quadInc(Quad *q)

_(maintains \wrapped(q))

_(writes q)

_(requires q->val + 1 < QUAD_MAX)

_(ensures q->val == \old(q->val) + 1)

{

_(assert \inv(&d->low))

_(unwrapping q) {

if (isDblMax(&q->low)) {

dblInc(&q->high);

dblZero(&q->low);

} else

dblInc(&q->low);

_(ghost q->val = q->val + 1)

}

}



objects are not fields

• a struct or union nested inside another struct or 
union is logically a completely separate object, 
one that just happens to have an arithmetically 
related address

• therefore, the low and high members of a Quad 
are not actually fields of the Quad

• in particular, if the invariants of the Quad type 
had allowed it, low and high could be owned by 
another object, and could change while the Quad 
is closed



admissibility

• the invariant of Quad talks about low.val and high.val…
• …but these are fields of completely separate objects!
• what stops someone from modifying these fields and 

falsifying the invariant?
• answer: the Quad has an invariant that it owns &low and 

&high
• for every type, VCC checks that the invariant of an object o 

of that type cannot be broken (while o is closed) by a legal 
change to the state
– if Quad o is closed and the state changes without changing o, 

then by the invariant of o, o.low is owned by o. Since o is not a 
thread, o.low is closed. A legal update cannot change a 
nonvolatile field of a closed object, so o.low.val doesn’t change.



framing

• on a function call, the caller forgets everything he knew about the state, 
except for the “version” of those objects that he (\me) owns
– the values in the fields of o, and the versions of the objects owned by o,  are a 

(fixed) function of the version of o
– if o is not written, the values of all objects transitively owned by o are also a 

function of the version of o, so they are also unchanged 

• the _(writes) specifications in a function contract are there to tell the 
caller what additional information he has to forget

• therefore,  the _(writes) clauses don’t have to mention any objects that 
were not owned by \me, or fields of objects that were not \mutable, when 
the function is called

• conversely, if you want to remember more about the state, you need to 
get ownership of additional objects whose invariants give the information 
you want to move “into the future” (perhaps by creating them yourself); 
we’ll see a lot of this starting in the next lecture



model fields

• the alternative to representing the abstract state with ghost fields is to use 
a function of the concrete state

• these are sometimes called model fields, because they are materialized as 
fields in some systems

• advantages  vs. ghost fields:
– you don’t have to manually update the ghost state
– in a concurrent setting, the model fields automatically change instantaneously 

when the concrete state changes, so other objects that 

• disadvantages:
– sometimes the abstract state is related only relationally to the concrete state
– if the abstract state is a function of the state of other objects, and is subject to 

further invariants, admissibility has to be proved for every possible update to 
the other objects, rather than just the ones actually invoked in code. (this isn’t 
a problem if the concrete state is all owned by the object with the invariants)

– with a ghost field, the verifier can more easily take advantage of parts of the 
abstract value that doesn’t change (since it is reflected syntactically rather 
than semantically)

– it is harder to prove admissibility for invariants that use model fields
– reads clauses don’t take into account model fields



#define RADIX (UINT_MAX + ONE)

#define DBL_MAX \

(UINT_MAX + UINT_MAX * RADIX)

typedef struct Double {

// abstract value

_(ghost \natural val)

// implementation

unsigned low;

unsigned high;

//coupling invariant

_(invariant val == low + high * RADIX)

} Double;

void dblNew(Double *d)

_(requires \extent_mutable(d))

_(writes \extent(d))

_(ensures \wrapped(d) && d->val == 0)

{

d->low = 0;

d->high = 0;

_(ghost d->val = 0)

_(wrap d)

}

void dblDestroy(Double *d)

_(requires \wrapped(d))

_(writes d)

_(ensures \extent_mutable(d))

{

_(unwrap d)

}

void dblInc(Double *d)

_(maintains \wrapped(d))

_(writes d)

_(requires d->val + 1 < DBL_MAX)

_(ensures d->val == \old(d->val) + 1)

{

_(unwrapping d) {

if (d->low == UINT_MAX) {

d->high++;

d->low = 0;

} else

d->low++;

_(ghost d->val = d->val + 1)

}

}



#define RADIX (UINT_MAX + ONE)

#define DBL_MAX \

(UINT_MAX + UINT_MAX * RADIX)

typedef struct Double {

unsigned low;

unsigned high;

} Double;

_(def \natural dblVal(Double *d) {

return d->low + d->high * RADIX;

})

void dblNew(Double *d)

_(requires \extent_mutable(d))

_(writes \extent(d))

_(ensures \wrapped(d) && dblVal(d) == 0)

{

d->low = 0;

d->high = 0;

_(wrap d)

}

void dblDestroy(Double *d)

_(requires \wrapped(d))

_(writes d)

_(ensures \extent_mutable(d))

{

_(unwrap d)

}

void dblInc(Double *d)

_(maintains \wrapped(d))

_(writes d)

_(requires dblVal(d) < DBL_MAX)

_(ensures dblVal(d) == 

\old(dblVal(d)) + 1)

{

_(unwrapping d) {

if (d->low == UINT_MAX) {

d->high++;

d->low = 0;

} else d->low++;

}

}



#define DRADIX (DBL_MAX + ONE)

#define QUAD_MAX \

(DBL_MAX + DBL_MAX * DRADIX)

typedef struct Quad {

Double low;

Double high;

_(invariant \mine(&low) && \mine(&high))

} Quad;

_(def \natural qval(Quad *q) {

return dblVal(&q->low)

+ dblVal(&q->high) * DRADIX;

})

void quadNew(Quad *q)

_(requires \extent_mutable(q))

_(writes \extent(q))  

_(ensures \wrapped(q) && qval(q) == 0)

{

dblNew(&q->low);

dblNew(&q->high);

_(wrap q)

}

void quadDestroy(Quad *q)

_(requires \wrapped(q))

_(writes q)

_(ensures \extent_mutable(q))

{

_(unwrap q)

_(unwrap &q->low)

_(unwrap &q->high)

}

void quadInc(Quad *q)

_(requires \wrapped(q))

_(writes q)

_(requires qval(q) + 1 < QUAD_MAX)

_(ensures qval(q) == \old(qval(q)) + 1)

{

_(unwrapping q) {

_(assert \inv(&q->low))

if (isDblMax(&q->low)) {

dblInc(&q->high);

dblZero(&q->low);

} else dblInc(&q->low);

}

}



maps and records

_(typedef \bool UnsSet[unsigned])

_(typedef \bool NatSet[\natural])

_(typedef \bool UnsSetSet[UnsSet])

_(typedef _(record) struct FinNatSetSeq {

NatSet vals[\natural];

\natural len;

} FinNatSeq;)

_(void test() {

\natural squares[\natural];

squares = (\lambda \natural n; n*n);

FinNatSeq s;

s.len = 1000;

s.vals = (\lambda \natural n;

(\lambda \natural m; m < n));

})



typedef int Val;

typedef struct Set {

// abstract value of the set

_(ghost \bool mem[Val])

// concrete representation

Val data[SIZE];

size_t len;

_(invariant len <= SIZE)

_(invariant \forall Val v; mem[v] <==>

\exists size_t j; j < len && data[j] == v)

} Set;

void setNew(Set *s)

_(requires \mutable(s))

_(writes \extent(s))

_(ensures \wrapped(s))

_(ensures \forall Val v; !s->mem[v])

{

s->len = 0;

_(ghost s->mem = \lambda Val v; \false)

_(wrap s)

}     

_(pure) BOOL setMem(Set *s, Val v)

_(requires \wrapped(s))

_(reads s)

_(ensures \result == s->mem[v])

{

for (size_t i = 0; i < s->len; i++)

_(invariant \forall size_t j; j < i

==> s->data[j] != v)

{

if (s->data[i] == v) return TRUE;

}

return FALSE;

}

BOOL setAdd(Set *s, Val v)

_(maintains \wrapped(s))

_(writes s)

_(ensures \forall Val x; s->mem[x] ==

\old(s->mem[x]) || (\result && x == v))

{

if (s->len == SIZE) return FALSE;

_(unwrapping s) {

s->data[s->len] = v;

s->len++;

_(ghost s->mem[v] = \true)

}

return TRUE;

}



typedef int Val;

_(typedef \bool valSet[Val])

typedef struct Set {

Val data[SIZE];

size_t len;

_(invariant len <= SIZE)

} Set;

_(def valSet setMem(Set *s) {

return \lambda Val v; \exists size_t i;

i < s->len && s->data[i] == v;

})

void setNew(Set *s)

_(requires \mutable(s))

_(writes \extent(s))

_(ensures \wrapped(s))

_(ensures \forall Val v; !setMem(s)[v])

{

s->len = 0;

_(wrap s)

}

_(pure) BOOL setMem(Set *s, Val v)

_(requires \wrapped(s))

_(reads s)

_(ensures \result == setMem(s)[v])

{

for (size_t i = 0; i < s->len; i++)

_(invariant \forall size_t j; j < i

==> s->data[j] != v)

{

if (s->data[i] == v) return TRUE;

}

return FALSE;

}

BOOL setAdd(Set *s, Val v)

_(maintains \wrapped(s))  

_(writes s)

_(ensures \forall Val x; setMem(s)[x] ==

\old(setMem(s)[x]) || (\result && x == v))

{

if (s->len == SIZE) return FALSE;

_(unwrapping s) {

s->data[s->len] = v;

s->len++;

}

return TRUE;

}



existential quantification

• proving an existential quantification requires 
searching for an appropriate instance

• resolution provers are pretty good at this, but 
SMT solvers are not (we’ll see why later)

• in proof checking, you would construct a 
suitable witness as part of building the proof

• you can do it in a program annotation by 
maintaining the witness as ghost data



typedef int Val;

typedef struct Set {

// abstract value of the set

_(ghost \bool mem[Val])

// concrete representation

Val data[SIZE];

size_t len;

_(invariant len <= SIZE)

_(invariant \forall Val v; mem[v] <==>

\exists size_t j; j < len && data[j] == v)

} Set;

.

BOOL setAdd(Set *s, Val v)

_(maintains \wrapped(s))

_(writes s)

_(ensures \forall Val x; s->mem[x] ==

\old(s->mem[x]) || (\result && x == v))

{

if (s->len == SIZE) return FALSE;

_(unwrapping s) {

s->data[s->len] = v;

s->len++;

_(ghost s->mem[v] = \true)

}

return TRUE;

}

.



typedef int Val;

typedef struct Set {

// abstract value of the set

_(ghost \bool mem[Val])

// concrete representation

Val data[SIZE];

size_t len;

_(invariant len <= SIZE)

// explicit witness

_(ghost size_t idx[Val])

_(invariant \forall size_t i;

i < len ==> mem[data[i]])

// witness for each abstract member

_(invariant \forall Val v; mem[v] ==>

idx[v] < len && data[idx[v]] == v)

} Set;

BOOL setAdd(Set *s, Val v)

_(maintains \wrapped(s))

_(writes s)

_(ensures \forall Val x; s->mem[x] ==

\old(s->mem[x]) || (\result && x == v))

{

if (s->len == SIZE) return FALSE;

_(unwrapping s) {

s->data[s->len] = v;

_(ghost s->mem[v] = \true)

// update the witness

_(ghost s->idx[v] = s->len)

s->len++;

}

return TRUE;

}

.



recursive data structures

• ex: lists, trees, sorted lists, binary search trees, …
• what should the ownership structure be?

– each node  owns its children?
– a master object owns all of the nodes?

• how do we make sure that recursive functions terminate?
• how do we make sure traversal doesn’t miss nodes?
• how should the abstract value be defined?

– ghost field for each node?
– recursively defined model field?
– inductive datatype?
– first-order abstraction?

• other issues
– destructive updates in the middle of data structures
– controlling aliasing within the structure



ownership options

• there are two basic approaches to ownership in linked data 
structures
– you can to keep ownership local; e.g. a list can own its successor

• we saw an example of this with trees
• this works well if you are always operating top-down through the 

structure

– you can have a ghost object own all of the nodes of the 
structure

• this is usually mandatory if you are going to use fine-grained atomic 
operations on the structure

• it is also convenient if you want to destructively update the structure 
in the middle

• finally, it allows you to use “generic” nodes within the structure, 
without having to define a separate type for each kind of structure



inductive datatypes

• if you are writing functional programs (but 
implementing them using concrete data), you can 
work as follows:
– define inductive data types

– define recursive functions on these types, and prove 
properties of them using pure functions with 
postconditions

– show that your concrete data structures implement 
these data types

– show that your concrete code simulates the recursive 
functions 



// inductive datatype

_(datatype Tree {

case Leaf(int val);

case Node(Tree left, Tree right);

})

// functional programming

_(def Tree Reverse(Tree t)

{

switch (t) {

case Leaf(val) : return t;

case Node(l,r):

return Node(Reverse(r),Reverse(l));

}

})

// lemma written as a function

_(def void RevRev(Tree t)   

_(ensures Reverse(Reverse(t)) == t)

{

switch (t) {

case Leaf(v): return;

case Node(l,r): RevRev(l); RevRev(r);

return;

}

})

// concrete implementation of Trees

typedef _(dynamic_owns) struct Tr {

_(ghost Tree val)

BOOL isLeaf;

Tr *l,*r;

int v;    

_(invariant isLeaf ==> val == Leaf(v))

_(invariant !isLeaf ==> \mine(l) &&

\mine(r) &&

val == Node(l->val,r->val))

} Tr;

// concrete in-place Reverse

void Rev(Tr *t)

_(maintains \wrapped(t))

_(writes t)

_(ensures t->val == Reverse(\old(t->val)))

{

if (t->isLeaf) return;

_(unwrapping t) {

Tr *tmp =t->l;

t->l = t->r;

t->r = tmp;

Rev(t->l);

Rev(t->r);

_(ghost t->val = Reverse(t->val))

}

}



// inductive datatype

_(datatype Tree {

case Leaf(int val);

case Node(Tree left, Tree right);

})

// functional programming

_(def Tree Reverse(Tree t)

{

switch (t) {

case Leaf(val) : return t;

case Node(l,r):

return Node(Reverse(r),Reverse(l));

}

})

// lemma written as a function

_(def void RevRev(Tree t)   

_(ensures Reverse(Reverse(t)) == t)

{

switch (t) {

case Leaf(v): return;

case Node(l,r): RevRev(l); RevRev(r);

return;

}

})

// concrete implementation of Trees

typedef _(dynamic_owns) struct Tr {

_(ghost Tree val)

BOOL isLeaf;

Tr *l,*r;

int v;    

_(invariant isLeaf ==> val == Leaf(v))

_(invariant !isLeaf ==> \mine(l) &&

\mine(r) &&

val == Node(l->val,r->val))

} Tr;

// concrete in-place Reverse

void Rev(Tr *t)

_(maintains \wrapped(t))

_(writes t)

_(ensures t->val == Reverse(\old(t->val)))

{

if (t->isLeaf) return;

_(unwrapping t) {

Tr *tmp =t->l;

t->l = t->r;

t->r = tmp;

Rev(t->l);

if (t->l != t->r) Rev(t->r);

_(ghost t->val = Reverse(t->val))

}

}



// inductive datatype

_(datatype Tree {

case Leaf(int val);

case Node(Tree left, Tree right);

})

// functional programming

_(def Tree Reverse(Tree t)

{

switch (t) {

case Leaf(val) : return t;

case Node(l,r):

return Node(Reverse(r),Reverse(l));

}

})

// lemma written as a function

_(def void RevRev(Tree t)   

_(ensures Reverse(Reverse(t)) == t)

{

switch (t) {

case Leaf(v): return;

case Node(l,r): RevRev(l); RevRev(r);

return;

}

})

// concrete implementation of Trees

typedef _(dynamic_owns) struct Tr {

_(ghost Tree val)

BOOL isLeaf;

Tr *l,*r;

int v;   

_(invariant l != r)

_(invariant isLeaf ==> val == Leaf(v))

_(invariant !isLeaf ==> \mine(l) &&

\mine(r) &&

val == Node(l->val,r->val))

} Tr;

// concrete in-place Reverse

void Rev(Tr *t)

_(maintains \wrapped(t))

_(writes t)

_(ensures t->val == Reverse(\old(t->val)))

{

if (t->isLeaf) return;

_(unwrapping t) {

Tr *tmp =t->l;

t->l = t->r;

t->r = tmp;

Rev(t->l);

Rev(t->r);

_(ghost t->val = Reverse(t->val))

}

}



functional programming warning

• resist the temptation to reduce imperative programming to 
functional programming
– use inductive data types as an abstraction only when that is 

really the abstraction you want to expose

• example: what is the right abstraction of a binary search 
tree?
– you can encode these as trees (with a recursive function to test 

for well-formedness)…
– …but that just forces the abstraction to expose more 

information than necessary
– proving that mutations preserve this abstraction just makes your 

job harder
– much simpler: use a set abstraction for each subtree; this makes 

it easy to state the local correctness of the data structure



single owner approach

• the basic goals of invariants on the structure are 
– make sure that searches don’t miss items
– make sure that searches terminate

• reachability approach: maintain the binary reachability relation 
between nodes of the structure
– this allows first-order updates for arbitrary DAG data structures
– also allows many items to be deleted from linear structures in one 

step
– formulating these invariants is often complex 

• indexed approach: make structures ordered
– usually easiest for linear or tree-like structures
– for structures with ordered keys, this comes for free
– otherwise, indices can be maintained with a separate map
– this approach is usually easier to verify



typedef struct Node Node, *PNode;

struct Node {

PNode nxt;

};

typedef _(dynamic_owns) struct Queue {

// abstract value

_(ghost \natural len)

_(ghost PNode seq[\natural])

// implementation 

Node *head;

Node *tail;

// idx is the inverse of seq

_(ghost \natural idx[PNode])

// coupling invariant

_(invariant tail ==

(len == 0 ? NULL : seq[len-1]))

_(invariant head ==

(len == 0 ? NULL : seq[0]))

_(invariant \forall \natural i; {seq[i]}

i < len ==>

idx[seq[i]] == i &&

\mine(seq[i]) &&

seq[i]->nxt ==

(i + 1< len ? seq[i+1] : (PNode) 0))

} Queue, *PQ;

void qInit(PQ q)

_(requires \extent_mutable(q))

_(writes \extent(q))

_(ensures \wrapped(q) && q->len == 0)

{

q->head = NULL;

q->tail = NULL;

_(ghost q->len = 0)

_(ghost q->\owns = {})

_(wrap q)

}

_(pure) BOOL qEmpty(PQ)

_(requires \wrapped(q))

_(reads q)

_(ensures \result == (q->len == 0))

{

return q->head == NULL;

}



typedef struct Node Node, *PNode;

struct Node {

PNode nxt;

};

typedef _(dynamic_owns) struct Queue {

// abstract value

_(ghost \natural len)

_(ghost PNode seq[\natural])

// implementation 

Node *head;

Node *tail;

// idx is the inverse of seq

_(ghost \natural idx[PNode])

// coupling invariant

_(invariant tail ==

(len == 0 ? NULL : seq[len-1]))

_(invariant head ==

(len == 0 ? NULL : seq[0]))

_(invariant \forall \natural i; {seq[i]}

i < len ==>

idx[seq[i]] == i &&

\mine(seq[i]) &&

seq[i]->nxt ==

(i + 1< len ? seq[i+1] : (PNode) 0))

} Queue, *PQ;

void qEnqueue(PQ q, PNode n)

_(maintains \wrapped(q))

_(requires \extent_mutable(n))

_(writes \extent(n), q)

_(ensures q->len == \old(q->len + 1))

_(ensures \forall \natural i; i < q->len ==>

q->seq[i] == (i == \old(q->len) ? n

: \old(q->seq[i])))

{

n->nxt = NULL;

_(wrap n)

_(unwrapping q) {

if (!q->head) q->head = n;

else _(unwrapping q->tail)

q->tail->nxt = n;

q->tail = n;

_(ghost {

q->seq[q->len] = n;

q->idx[n] = q->len;

q->\owns += n;

q->len = q->len + 1;

})

}

}



typedef struct Node Node, *PNode;

struct Node {

PNode nxt;

};

typedef _(dynamic_owns) struct Queue {

// abstract value

_(ghost \natural len)  

_(ghost PNode seq[\natural])

// implementation    

Node *head;

Node *tail;

// idx is the inverse of seq

_(ghost \natural idx[PNode])

// coupling invariant

_(invariant tail ==

(len == 0 ? NULL : seq[len-1]))

_(invariant head ==

(len == 0 ? NULL : seq[0]))

_(invariant \forall \natural i; {seq[i]}

i < len ==>

idx[seq[i]] == i &&

\mine(seq[i]) &&

seq[i]->nxt ==

(i + 1< len ? seq[i+1] : (PNode) 0))

} Queue, *PQ;

PNode qDeque(PQ q)

_(maintains \wrapped(q))

_(requires !qEmpty(q))

_(writes q)

_(ensures \result == \old(q->seq[0]))

_(ensures \extent_mutable(\result))

_(ensures q->len == \old(q->len) - 1)

_(ensures \forall \natural i; i <q->len ==>

q->seq[i] == \old(q->seq[i+1]))

{

PNode res = q->head;

_(unwrapping q) {

_(ghost {

q->\owns -= q->head;

q->len = q->len – 1;

q->seq =

\lambda \natural i; q->seq[i+1];

q->idx = \lambda PNode n;

(q->idx[n] > 0) ? q->idx[n] - 1 : 0;

})         

q->head = q->head->nxt;

}

_(unwrap res)

return res;

}



typedef struct Node Node, *PNode;

struct Node {

PNode nxt;

};

typedef _(dynamic_owns) struct Queue {

// abstract value

_(ghost \natural len)  

_(ghost PNode seq[\natural])

// implementation    

Node *head;

Node *tail;

// idx is the inverse of seq

_(ghost \natural idx[PNode])

// coupling invariant

_(invariant tail ==

(len == 0 ? NULL : seq[len-1]))

_(invariant head ==

(len == 0 ? NULL : seq[0]))

_(invariant \forall \natural i; {seq[i]}

i < len ==>

idx[seq[i]] == i &&

\mine(seq[i]) &&

seq[i]->nxt ==

(i + 1< len ? seq[i+1] : (PNode) 0))

} Queue, *PQ;

PNode qDeque(PQ q)

_(maintains \wrapped(q))

_(requires !qEmpty(q))

_(writes q)

_(ensures \result == \old(q->seq[0]))

_(ensures \extent_mutable(\result))

_(ensures q->len == \old(q->len) - 1)

_(ensures \forall \natural i; i <q->len ==>

q->seq[i] == \old(q->seq[i+1]))

{

PNode res = q->head;

_(unwrapping q) {

_(ghost {

q->\owns -= q->head;

q->len = q->len – 1;

q->seq =

\lambda \natural i; q->seq[i+1];

q->idx = \lambda PNode n;

(q->idx[n] > 0) ? q->idx[n] - 1 : 0;

})         

q->head = q->head->nxt;

if (!q->head) q->tail = NULL;

}

_(unwrap res)

return res;

}



how about a model field?

• we could have written the abstract value as a model field…
• …but the resulting function would be recursive

– it’s very hard to tell how an update to a data structure changes 
the value of a recursive function on that data structure (it 
typically requires a separate proof)

– once you start going down the road of recursive functions, you 
quickly end up having to prove lots of inductive lemmas 

• we strongly prefer to reason with first-order formulas 
instead of recursive functions
– first-order == local

• in particular, don’t try to replace quantification with 
recursion



non-hierarchical data structures

• consider a graph; there is no natural internal ownership 
structure

• sequentially, we could just put everything we know about it 
into a big global invariant
– but this is unlikely to scale as the graph gets more 

heterogeneous

• we’d like nodes to have local information about their 
neighbors, but then how do we change the nodes without 
opening up the whole structure?

• ultimately, the problem becomes one of sharing 
information without an ownership relationship

• this is exactly the problem we will address when we study…



concurrency



what does concurrency have to do 
with sequential programming?

• concurrency is not about parallelization of 
activity

– changing the state safely is easy

• concurrency is about sharing information

– maintaining accurate knowledge about the state is 
hard

• message: keep paying attention, even if you 
only care about sequential programming



invariants and updates

• invariant admissibility is independent of how 
the program updates the state

• admissibility depends only on the invariants of 
the objects

• thus, admissibility can be checked based only 
on the type definitions, without looking at the 
function bodies

• in VCC, admissibility checking obeys C scoping 
rules (except for textual ordering)



reading and writing

• to read data sequentially, you must prove that it is not 
changing
– normally you prove this by proving it is a nonvolatile field of a 

closed object

• to write data sequentially, it must be mutable (owned by 
you and open)

• to read data atomically, you must prove that it is a field of a 
closed object
– you prove this using invariants from objects in your sequential 

domain

• to write data atomically, you must prove that it is a volatile 
field of an object that is closed, and the action must be 
legal



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = cnt->val; 

}

.

volatile fields



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

}

atomic actions



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

int y = _(atomic_read cnt) cnt->val;

_(assert x <= y) 

}

atomic actions



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

_(typedef struct O {

Counter *c; 

int x;

_(invariant c->\closed && x <= c->val)

} O;)

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

_(ghost O o)

_(ghost o.c = cnt)

_(ghost o.x = x) 

_(wrap &o)

int y = _(atomic_read cnt) cnt->val;

_(assert \inv(&o))

_(assert x <= y)

_(unwrap &o)

}

atomic actions



implicit reduction

• the only time other threads seem to run is just 
before a non-ghost atomic action

- when other threads run, you lose all 
information about the state, except for the 
versions of the objects you own

- because non-pure functions can engage in 
atomic actions without reporting them, 
function calls also lose this information



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

_(typedef struct O {

Counter *c; 

int x;

_(invariant c->\closed && x <= c->val)

} O;)

.

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

_(ghost O o)

_(ghost o.c = cnt)

_(ghost o.x = x) 

_(wrap &o)

int y = _(atomic_read cnt) cnt->val;

_(assert \inv(&o))

_(assert x <= y)

_(unwrap &o)

}

this works, but is a bit verbose…



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

_(ghost \claim c = \make_claim({}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c) cnt->val;

_(assert x <= y)

_(unwrap &o)

}

.

using claims



claims

• a \claim is a ghost object with no data, created only for its invariant
• a \claim c is characterized by

– the objects it claims 
– its invariant

• the objects claimed by a claim claims must be of types marked 
_(claimable)
– claimable objects keep a (ghost) count \claim_count of the number of claims 

that claim it, and have an invariant that they cannot be unwrapped while this 
count is nonzero

– \wrapped0(o) == \wrapped(o) && o->\claim_count == 0

• the invariant of the claim must hold at the time it is formed, and be 
admissible
– the invariant includes implicitly that all of the claimed objects are closed
– this check is done inline where the claim is formed, rather than in a separate 

type definition

• claims serve as first-class chunks of knowledge; they can be assigned to 
variables, stored in data structures, passed in and out as parameters



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

void test(Counter *cnt)

_(requires \wrapped(cnt))

{

int x = _(atomic_read cnt) cnt->val;

_(ghost \claim c = \make_claim({}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c) cnt->val;

_(assert x <= y)

_(unwrap &o)

}

.

owning the subject is a bit unrealistic…



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

_(invariant \on_unwrap(\this,\false)) 

} Counter;

void test(Counter *cnt)

_(requires cnt->\closed)

{

_(ghost \claim c = \make_claim({}, cnt->\closed))

int x = _(atomic_read c) cnt->val;

_(ghost c = \make_claim({}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c) cnt->val;

_(assert x <= y)

}

.

claim what you know



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val) 

} Counter;

void test(Counter *cnt)

_(requires cnt->\closed)

{

_(ghost \claim c = \make_claim({}, cnt->\closed)) // no longer admissible

int x = _(atomic_read cnt) cnt->val;

_(ghost c = \make_claim({}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c) cnt->val;

_(assert x <= y)

}

.

what if the subject can go away?



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

} Counter;

void test(Counter *cnt _(ghost \claim c))

_(always c, cnt->\closed)

_(maintains \wrapped0(c))

_(writes c)

{

int x = _(atomic_read c, cnt) cnt->val;

_(ghost \claim c1 = \make_claim({c}, cnt->\closed && x <= cnt->val))

int y = _(atomic_read c1, cnt) cnt->val;

_(assert x <= y)

_(ghost \destroy_claim(c1,{c}))

}

.

passing knowledge through a 
parameter



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

} Counter;

void test(Counter *cnt _(ghost \claim c))

_(always c, cnt->\closed)

_(maintains \wrapped0(c))

_(writes c)

{

int x = _(atomic_read c, cnt) cnt->val;

if (x == INT_MAX) return;

_(atomic c, cnt) {

if (cnt->val == x) cnt->val = x+1;

}

}

writing



typedef struct Counter {

volatile int val;

_(invariant \old(val) <= val)

} Counter;

void test(Counter *cnt _(ghost \claim c))

_(always c, cnt->\closed)

_(maintains \wrapped0(c))

_(writes c)

{

int x = _(atomic_read c, cnt) cnt->val;

if (x == INT_MAX) return;

_(atomic c, cnt) {

cmpXchg(&cnt->val, x,x+1);

}

}

_(atomic_inline) int cmpXchg(int *loc, int cmp, int xchg)

{

if (*loc == cmp) {

*loc = xchg;

return cmp;

}

else return *loc;

}



atomic actions

• an atomic action has the form 
_(atomic l) stmt

where l is a closed object list, such that 
– every field read in stmt is either \thread_local or a field of an object 

of l
– every field written in stmt is either writable or a volatile field of an 

object of l not marked _(read_only)
– the entire atomic statement preserves the invariants of all of the 

objects listed in l and not marked _(read_only)

• VCC will warn you if there is more than one access that is neither 
ghost nor \thread_local, but it is up to you to make sure that 
compiler treats these accesses as atomic.

• you can define _(atomic_inline) functions giving the semantics of 
atomic compiler intrinsics



ghost atomic actions

_(ghost_atomic o1, o2, … {stmt})

• this is just like an ordinary atomic action, 
except

– there is no scheduler boundary

– only ghost fields can be modified



ex: a lock-free set
void setNew(Set *s)

_(requires \mutable(s))  

_(writes \extent(s))

_(ensures \wrapped(s))

_(ensures \forall Val v; !s->mem[v])

{

s->len = 0;

_(ghost s->mem = \lambda Val v; \false)

_(wrap s)

}

.

typedef struct Set {

// abstract value of the set

_(ghost volatile \bool mem[Val])

// abstract behavior of the set

_(invariant \forall Val v;

\old(mem[v]) && \this->\closed

==> mem[v])

// concrete representation

VVal data[SIZE];

volatile size_t len;

_(ghost volatile size_t idx[Val])

_(invariant len <= SIZE)

_(invariant \forall size_t i; i < len

==> mem[data[i]])

_(invariant \forall Val v; mem[v] <==>

idx[v] < len && data[idx[v]] == v)

_(invariant \old(len) <= len)

_(invariant \forall size_t i;

i < \old(len) ==> \unchanged(data[i]))

} Set;

.



ex: a lock-free set
typedef struct Set {

// abstract value of the set

_(ghost volatile \bool mem[Val])

// abstract behavior of the set

_(invariant \forall Val v;

\old(mem[v]) && \this->\closed

==> mem[v])

// concrete representation

VVal data[SIZE];

volatile size_t len;

_(ghost volatile size_t idx[Val])

_(invariant len <= SIZE)

_(invariant \forall size_t i; i < len

==> mem[data[i]])

_(invariant \forall Val v; mem[v] <==>

idx[v] < len && data[idx[v]] == v)

_(invariant \old(len) <= len)

_(invariant \forall size_t i;

i < \old(len) ==> \unchanged(data[i]))

} Set;

.

BOOL setAdd(Set *s, Val v

_(ghost \claim c))

_(always c, s->\closed)

_(maintains \wrapped0(c))

_(writes c)

_(ensures \result ==> s->mem[v])

{

BOOL result;

_(atomic c,s) {

result = (s->len != SIZE);

if (result) {

s->data[s->len] = v;

_(ghost s->idx[v] = s->len)

s->len++;

_(ghost s->mem[v] = \true)

}

}

return result;

}

.



BOOL setMem(Set *s, Val v

_(ghost \claim c))

_(requires v)

_(maintains \wrapped0(c))

_(always c, s->\closed)

_(writes c)

_(ensures \result ==> s->mem[v])

_(ensures !\result ==>

!\old(s->mem[v]))

.

{

_(ghost size_t idx = s->idx[v])

_(ghost \bool isMem = s->mem[v])

_(ghost \claim cl = \make_claim({c},

s->\closed &&

(isMem ==> idx < s->len && s->data[idx] == v)))

size_t len = _(atomic_read cl,s) s->len;

_(ghost \destroy_claim(cl,{c}))

_(ghost cl = \make_claim({c},

s->\closed && len <= s->len &&

(isMem ==> idx < len && s->data[idx] == v)))

for (size_t i = 0; i < len; i++)

_(writes cl,c)

_(invariant \wrapped0(cl))

_(invariant idx < i ==> !isMem)

_(invariant \wrapped(c)

&& c->\claim_count == 1)

{

if (_(atomic_read cl,s) s->data[i] == v) {

_(ghost \destroy_claim(cl,{c}))

return TRUE;

}

}

_(ghost \destroy_claim(cl,{c}))

return FALSE;

}



approval

struct S {

volatile int x;

_(ghost \object o)

_(invariant \unchanged(x) || \inv2(o))

} s;

• changes to s->x are guaranteed to not break the invariant of of s->o

• thus, s->o can freely talk about s->x 

• as far as s->o can observe, s->x never changes except when “he” changes it

• this is like s->o having a read permission on s->x

• since there are no other invariants restricting change to s->x, this is almost like s-
>o owning s->x; the only difference is that s->o cannot give away his rights to 
another owner without opening up s

• in a lock free data structure, the abstract value is typically owner-approved



exercise: break up element insertion

• use 0 as a “not yet filled” value

• maintain a ghost table of values to be filled in 
(values don’t change below len)

• use a cmpXchg to increase the len field

– if it succeeds, assign to the ghost table the value 
you are inserting

– use the ghost table to prove that you are not 
overwriting a nonzero value in the real data array



locking

• coarse-grained locking looks a lot like sequential 
programming
– a lock is just like a container
– its exclusivity comes from the exclusivity of ownership

• the only differences between reasoning with locks and 
reasoning about ordinary containers are
– you have to share the container with other objects, so instead 

of owning it, you have evidence that it is closed (typically a 
claim)

– instead of unwrapping a container to get its contents out, you 
call functions to get the contents out and put it back

• because a lock is just a container, any “real” 
synchronization depends on what you do with what you 
take out of the lock



typedef _(volatile_owns) struct Lock {

_(ghost \object ob)

….

} Lock

;

void lockCreate(Lock *l _(ghost \object ob))

_(requires \extent_mutable(l))

_(requires \wrapped(ob))

_(writes ob, \extent(l))

_(ensures \wrapped(l) && l->ob == ob)

;

void lockDestroy(Lock *l _(ghost \object ob))

_(requires \wrapped(l))

_(writes l)

_(ensures \extent_mutable(l))

;

void lockAcquire(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(ensures \wrapped(l->ob) && \fresh(l->ob))

;

void lockRelease(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(requires \wrapped(l->ob))

_(writes l->ob)

;



// a type requiring lock protection

typedef struct S {

int x, y;

_(invariant x==y)

} S;

// a lock-protected S

typedef struct AtomicS {

Lock l;

S s;

_(invariant \mine(&l) && l.ob == &s)

} AtomicS;

// do an atomic update on s

void sOp(AtomicS *s _(ghost \claim c))

_(always c, s->\closed)

{

lockAcquire(&s->l _(ghost c));

_(unwrapping &s->s) {

s->s.x = 0;

s->s.y = 0;

}

lockRelease(&s->l _(ghost c));

}

typedef _(volatile_owns) struct Lock {

_(ghost \object ob)

….

} Lock

;

void lockCreate(Lock *l _(ghost \object ob))

_(requires \extent_mutable(l))

_(requires \wrapped(ob))

_(writes ob, \extent(l))

_(ensures \wrapped(l) && l->ob == ob)

;

void lockDestroy(Lock *l _(ghost \object ob))

_(requires \wrapped(l))

_(writes l)

_(ensures \extent_mutable(l))

;

void lockAcquire(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(ensures \wrapped(l->ob) && \fresh(l->ob))

;

void lockRelease(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(requires \wrapped(l->ob))

_(writes l->ob)

;



typedef _(volatile_owns) struct Lock {

volatile BOOL locked;

_(ghost \object ob)

_(invariant locked || \mine(ob))

} Lock;

void lockCreate(Lock *l _(ghost \object ob))

_(requires \extent_mutable(l))

_(requires \wrapped(ob))

_(writes ob, \extent(l))

_(ensures \wrapped(l) && l->ob == ob)

{

l->locked = FALSE;

_(ghost l->ob = ob)

_(ghost l->\owns = {ob})

_(wrap l)

}

void lockDestroy(Lock *l)

_(requires \wrapped(l))

_(writes l)

_(ensures \extent_mutable(l))

{

_(unwrap l)

}

void lockAcquire(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(ensures \wrapped(l->ob) && \fresh(l->ob))

{

BOOL done;

do

{

_(atomic c,l) {

done = !cmpxchg(&l->locked, 0, 1);

_(ghost if (done) l->\owns -= l->ob)

}

} while (!done);

}

void lockRelease(Lock *l _(ghost \claim c))

_(always c, l->\closed)

_(requires c != l->ob)

_(requires \wrapped(l->ob))  

_(writes l->ob)

{

_(atomic c,l) {

l->locked = FALSE;

_(ghost l->\owns += l->ob)

}

}



lock destruction

• when destroying a lock, there is no guarantee that you will 
find the protected object inside
– the last person to acquire the lock might have not bothered to 

give it back

• how should this evil be detected?
– the person who used their right to use the lock shouldn’t have 

been able to “give back” that right without unlocking

• solution: force lock acquirers to place a claim that the lock 
is closed “on deposit” in the lock

• the lock invariant is changed so that when the lock is 
locked, it owns a claim that claims it is closed

• thus, if you every open a lock, the lock invariant guarantees 
you get the protected object back!



reader-writer locks

• a reader lock on an object is essentially a claim that it is closed
• since the object itself might not be claimable, you need a separate, 

claimable dummy object that owns the protected object when its 
claim count is nonzero

• the lock keeps a concrete volatile count that is equal to the claim 
count on the dummy object

• to acquire a writer lock,  check that the (concrete) claim count is 
zero; if it is, take ownership of the protected object from the 
dummy object

• when a reader lock is released, you need to return the claim on the 
dummy object to decrease its claim count

• to prevent a reader from giving back a lesser claim, the lock 
maintains the set of outstanding claims it has given out, and 
requires that a thread releasing a reader lock give up one of these 
claims



void init(RwLock *r _(ghost \object ob))

_(writes \extent(r), ob)

_(requires \wrapped(ob))

_(ensures \wrapped(r) && r->ob == ob)

{

r->cnt = 0; // no readers or writers

_(ghost r->ob = ob;)

_(wrap &r->token)

_(wrap &r->claimCnt)

_(ghost r->\owns = 

{ &r->token, ob, &r->claimCnt })

_(wrap r)

}

_(typedef struct Token {} Token)

_(typedef _(claimable) struct Dmy {} Dmy)

typedef _(volatile_owns) struct RwLock {

volatile unsigned cnt;

_(ghost \object ob)

_(ghost Token token)

_(ghost Dmy claimCnt)

_(invariant ob != &claimCnt)

_(invariant ob != &token)

_(invariant \mine(&claimCnt))

_(invariant (&claimCnt)->\claim_count

== cnt >> 1)

_(invariant \on_unwrap(\this, !(cnt>>1)))

_(invariant \mine(&token) || \mine(ob))

_(invariant (cnt & 1) || \mine(&token))

_(invariant (cnt == 1) || \mine(ob))

} RwLock;



_(typedef struct Token {} Token)

_(typedef _(claimable) struct Dmy {} Dmy)

typedef _(volatile_owns) struct RwLock {

volatile unsigned cnt;

_(ghost \object ob)

_(ghost Token token)

_(ghost Dmy claimCnt)

_(invariant ob != &claimCnt)

_(invariant ob != &token)    

_(invariant \mine(&claimCnt))

_(invariant (&claimCnt)->\claim_count

== cnt >> 1)

_(invariant \on_unwrap(\this, !(cnt>>1)))

_(invariant \mine(&token) || \mine(ob))    

_(invariant (cnt & 1) || \mine(&token))

_(invariant (cnt == 1) || \mine(ob))

} RwLock;

void acquire_read(

RwLock *r 

_(ghost \claim c) 

_(out \claim ret)

)

_(always c, r->\closed)

_(ensures \claims_object(ret, &r->claimCnt))

_(ensures \claims(ret, r->ob->\closed))

_(ensures \wrapped0(ret) && \fresh(ret))

{

unsigned v, n;

for (;;) {

_v = (atomic_read c, r) r->cnt; 

// if writer or too many readers, spin

if (v & 1 || v > UINT_MAX-2) continue;

// try to bump the reader count

_(atomic c, r) {

n = cmpXchg(&r->cnt, v + 2, v);

_(ghost if (v == n) 

ret = \make_claim({&r->claimCnt}, 

r->\closed && r->cnt >> 1 > 0 

&& r->ob->\closed))

}

if (v == n) return;

}

}



_(typedef struct Token {} Token)

_(typedef _(claimable) struct Dmy {} Dmy)

typedef _(volatile_owns) struct RwLock {

volatile unsigned cnt;

_(ghost \object ob)

_(ghost Token token)

_(ghost Dmy claimCnt)

_(invariant ob != &claimCnt)

_(invariant ob != &token)    

_(invariant \mine(&claimCnt))

_(invariant (&claimCnt)->\claim_count

== cnt >> 1)

_(invariant \on_unwrap(\this, !(cnt>>1)))

_(invariant \mine(&token) || \mine(ob))    

_(invariant (cnt & 1) || \mine(&token))

_(invariant (cnt == 1) || \mine(ob))

} RwLock;

void release_read(RwLock *r 

_(ghost \claim c) _(ghost \claim handle))

_(always c, r->\closed)

_(requires \claims_object(handle, &r->claimCnt) 

_(requires \wrapped0(handle))

_(requires c != handle)

_(writes handle)

{

unsigned v, n;

for (;;)

_(writes handle)

_(invariant \wrapped0(handle))

{

v = _(atomic_read c, r) r->cnt;

_(assert \active_claim(handle) && v >= 2)

_(atomic c, r) {

n = cmpXchg(&r->cnt, v - 2, v);

_(ghost if (v == n) 

\destroy_claim(handle, {&r->claimCnt}))

}

if (v == n) break;

}

}



_(typedef struct Token {} Token)

_(typedef _(claimable) struct Dmy {} Dmy)

typedef _(volatile_owns) struct RwLock {

volatile unsigned cnt;

_(ghost \object ob)

_(ghost Token token)

_(ghost Dmy claimCnt)

_(invariant ob != &claimCnt)

_(invariant ob != &token)    

_(invariant \mine(&claimCnt))

_(invariant (&claimCnt)->\claim_count

== cnt >> 1)

_(invariant \on_unwrap(\this, !(cnt>>1)))

_(invariant \mine(&token) || \mine(ob))    

_(invariant (cnt & 1) || \mine(&token))

_(invariant (cnt == 1) || \mine(ob))

} RwLock;

void acquire_write(RwLock *r _(ghost \claim c))

_(always c, r->\closed)

_(ensures \wrapped(r->ob))

{

// grab the token

for (;;) {

unsigned v,n; 

v = _(atomic_read c, r) r->cnt;

// if there is already a read lock, spin

if (v & 1) continue;

// try to set the writer bit

_(atomic c, r) {

n = cmpXchg(&r->cnt, v|1, v);

// if succesful, grab the token

_(ghost if (v == n) r->\owns -= &r->token)

}

if (v == n) break;

}

// wait for the readers to leave

while (1 != _(atomic_read c, r) r->cnt)

_(writes {})

{}

// exchange the token for the object

_(ghost_atomic c,r,&r->token { 

r->\owns += &r->token;

r->\owns -= r->ob;

})

}



_(typedef struct Token {} Token)

_(typedef _(claimable) struct Dmy {} Dmy)

typedef _(volatile_owns) struct RwLock {

volatile unsigned cnt;

_(ghost \object ob)

_(ghost Token token)

_(ghost Dmy claimCnt)

_(invariant ob != &claimCnt)

_(invariant ob != &token)    

_(invariant \mine(&claimCnt))

_(invariant (&claimCnt)->\claim_count

== cnt >> 1)

_(invariant \on_unwrap(\this, !(cnt>>1)))

_(invariant \mine(&token) || \mine(ob))    

_(invariant (cnt & 1) || \mine(&token))

_(invariant (cnt == 1) || \mine(ob))

} RwLock;

void release_write(RwLock *r _(ghost \claim c))

_(always c, r->\closed)

_(requires c != r->ob)

_(requires \wrapped(r->ob))

_(writes r->ob)

{

_(atomic c, r) {

r->cnt = 0;

_(ghost r->\owns += r->ob)

}

}

.



approval

• an owner-approved field is almost like a mutable variable
– i.e. to the approver, it looks like nobody else can update it

• differences:
– updates to the field must be atomic

– other threads can read it (atomically)

• it would be nice to frame it like a mutable variable
– i.e., force function calls to declare if they update it

• to make this happen, objects with owner-approved fields have a 
volatile version (in addition to their sequential version)
– wrapped objects whose volatile versions change must be listed in a writes 

clause

– updating an owner-approved field requires bumping the volatile version 
(currently)



typedef struct Ob {

volatile int x;

volatile int y;

_(invariant \approves(\this->\owner, 

x))

} Ob;

void op1(Ob *o) 

_(maintains \wrapped(o))

{

_(atomic o) o->y = 1;

_(atomic o) o->x = 1; // fails

}

void op2(Ob *o) 

_(maintains \wrapped(o))

_(writes o)

{

_(atomic o) {

o->x = 1;

_(bump_volatile_version o)

}

}

void test(Ob *o)

_(requires \wrapped(o))

_(writes o)

{

_(assume o->x == 2 && o->y==2)

op1(o);

_(assert o->x ==2)

_(assert o->y == 2) // fails

}



automata

• invariants describe generalized automata

– the invariants on closing an object capture the “initial states”

– the invariants on opening an object capture the “final states”

– the invariant controlling transitions between closed states represent 
the transition relation

• this means that you can take your favorite automata models 
(for safety) and use them inside a program

• because VCC invariants can mention the states of other parts 
of the system, you can also use these automata to capture 
synchronous models like CSP and IO automata



simulation

• in most formalisms, simulation is a relation on automata
• in VCC, (forward) simulation is just an invariant
• just as function calls are spec’d in terms of the effect on abstract state, the 

behavior of an object can be spec’d in terms of the behavior of its 
abstraction

• usual pattern:
– abstract object is described as ghost automaton, with its state changes owner-

approved
– a concrete object owns a volatile abstract object, with a coupling invariant 

relating the two
– because of the coupling invariant, some changes to the concrete state force 

update of the abstract state, which requires a check of the abstraction 
behavior

• the proof obligations match those of forward simulation, but the 
abstraction remains available for use in other invariants

• the code looks just like our previous code for sequential programming 
abstractions, except that the updates are atomic and don’t open the 
object



_(typedef struct AbsClock {

volatile \natural t;

_(invariant \unchanged(t) || t == \old(t) + 1)

_(invariant \approves(\this->\owner,t))

})

typedef struct Clock {

_(ghost AbsClock val)

volatile unsigned low;

_(ghost volatile \natural high)

_(invariant \mine(&val))

_(invariant val.t == low + RADIX*high)

} Clock;

void tick(Clock *c _(ghost \claim cl))

_(always cl, c->\closed)

{

_(atomic cl,c,&c->val) {

if (c->low == UINT_MAX) {

_(ghost c->high=c->high+1)

c->low = 0;

}

else c->low++;

_(ghost c->val.t = c->val.t+1)

}

}



making locked updates appear atomic

• locks have nothing to do with atomicity; they are just a 
mechanism to move ownership around

• often we use locks to implement atomic data types

• if we want to make updates to locked data to appear 
atomic to other threads, we have to couple the 
protected data with its abstract value
– this is the obligation of the client, and it’s type-dependent, 

so it belongs in the invariant of the protected object

• the abstract value itself will remain closed, so that 
clients can have claims on it



_(typedef _(claimable) struct AbsCounter {

_(ghost volatile int val)

_(invariant val >= \old(val))

_(invariant \approves(\this->\owner,val))

} AbsCounter)

typedef struct Counter {

int val;

} Counter;

typedef struct CounterParts {  

_(ghost AbsCounter abs)

Counter impl;

_(invariant \mine(&abs))

_(invariant \mine(&impl))

_(invariant abs.val == impl.val)

} CounterParts;

typedef struct AtomicCounter {

CounterParts parts;

Lock l;

_(invariant \mine(&l))

_(invariant(&l)->ob == &parts)

} AtomicCounter;

void counterNew(AtomicCounter *s)

_(requires \extent_mutable(s))

_(writes \extent(s))

_(ensures \wrapped(s))

{

s->parts.impl.val = 0;

_(wrap &s->parts.impl)

_(ghost s->parts.abs.val = 0;)

_(wrap &s->parts.abs)

_(wrap &s->parts)

lockNew(&s->l _(ghost &s->parts));

_(wrap s)

}

• .

locked atomics



_(typedef _(claimable) struct AbsCounter {

_(ghost volatile int val)

_(invariant val >= \old(val))

_(invariant \approves(\this->\owner,val))

} AbsCounter)

typedef struct Counter {

int val;

} Counter;

typedef struct CounterParts {  

_(ghost AbsCounter abs)

Counter impl;

_(invariant \mine(&abs))

_(invariant \mine(&impl))

_(invariant abs.val == impl.val)

} CounterParts;

typedef struct AtomicCounter {

CounterParts parts;

Lock l;

_(invariant \mine(&l))

_(invariant(&l)->ob == &parts)

} AtomicCounter;

void counterUpdate(AtomicCounter *s

_(ghost \claim c))

_(always c, s->\closed)

{

lockAcquire(&s->l _(ghost c));

CounterParts *parts = &s->parts;

Counter *impl = &parts->impl;

_(ghost AbsCounter ^abs

= &parts->abs;)

_(unwrapping parts, impl) {

if (impl->val < INT_MAX) {

impl->val++;

_(ghost_atomic abs {

abs->val++;

_(bump_volatile_version abs)

})

}

}

lockRelease(&s->l _(ghost c));

}

locked atomics



non-hierarchical invariants

• when operating on a large linked data structure, we often want to operate 
sequentially on a small part of the structure

• this often breaks invariants on the boundry of the updated part 
(admissibility usually requires that your neighbors are closed)

• the obvious solution is to unwrap the whole structure, but this requires 
knowledge of all the different node types

• instead, we can add a volatile ghost Boolean to each edge in each node 
indicating whether the party on the other side is potentially inconsistent 
(and hence not necessarily closed)
– these ghost Booleans are approved by the graph, so that it can keep track of 

which parts of the graph have to be “cleaned up”

• this lets you unwrap only those nodes you have to actually operate on, 
and then clean up the marked edges (by checking the invariants of the 
nodes on the boundary)

• this is a typical example of how invariants on volatile ghost field are useful 
for sequential programming



linearizability

• making an operation linearizable means identifying an external point at 
which the operation appears to occur
– in particular, we have to identify which operation occurs when, to avoid 

attributing the same update to more than one operation

• in a concurrent setting, we can’t do this with pre/post
• instead, we use an explicit ghost operation object with a flag that is set 

exactly when the operation seems to occur
– an invariant of the operation object says how the atomic object must change 

state when he goes from not done to done
– the atomic object has a pointer to the “current” op, to prevent multiple ops 

from simultaneously getting credit for the same update

• the use of explicit ops allows fancy effects, like one thread helping another 
by pushing his atomic operation forward (to avoid blocking)

• the owner of the object can either control creation of new ops or pprove
changes to the abstract state; each has advantages and disadvantages



polymorphism

• there are two principle ways to write polymorphic 
functions/data structures in VCC

• you can take an object, making the function 
polymorphic in the object type (in particular, in its 
invariant)
– we used this for locks

• you can express a type as a characteristic function over 
a fixed supertype, e.g. \object
– this works for all object types
– it even works for tuples of object types, e.g. if you have a 

function from objects to objects, you can express its 
specification as a characteristic function on pairs of objects



rights

• in VCC, the right to modify o.f is just the knowledge that the 
modification won’t break any invariants

• approval of o.f is one way to convey a right to a thread/object

– must be o->\owner

– must approve all changes to o.f

• another is to give the thread/object control of another object r 
with an owner-approved volatile field r.f that must change 
when o.f changes in some particular way

– fine-grained control

– can have many different rights  

– downside: have to frame with an object that owns r



_(typedef struct Right {

volatile \bool dummy;

_(invariant \approves(\this->\owner, dummy))

})

typedef struct S {

volatile int v;

_(ghost Right up)

_(invariant \unchanged(up.dummy) ==> v <= \old(v)))

} S;

void test(S *s _(ghost \claim c))

_(always c, s->\closed)

_(maintains \wrapped(&s->up))

_(writes &s->up)

{

_(atomic c,s,&s->up) {

s->v = 0;

_(ghost s->up.dummy ^= 1)

_(bump_volatile_version &s->up)

}

}



protectors

• approval is usually the preferred way to stop x from changing

• an alternative is to own a dummy object d (“the protector”), and to 
allow the x to change in some way only when !d->\closed

– you can then form a claim that talks about x by claiming d

• downside: 

– you have to use claims (or object invariants) to frame x

– the code is ugly: you open up the protector while atomically updating x, 
then close it again after the atomic but before a scheduler boundary

• upsides:

– you can form a claim on the protector, rather than having to transfer 
ownership of a Right



typedef struct Counter {

volatile int val;

_(ghost _(claimable) struct {} 

up,down)

_(invariant \on_unwrap(\this,\false))

_(invariant \old(val) <= val

|| !(&down)->\closed)

_(invariant val <= \old(val) 

|| !(&up)->\closed)

} Counter;

void counterUp(Counter *c 

_(ghost \claim cl))

_(always cl, c->\closed)

_(writes &c->up)

_(maintains \wrapped0(&c->up))

{

int v = _(atomic_read cl,c) c->val;

if (v < INT_MAX) {

_(ghost \claim c1 = 

\make_claim({&c->up}, 

c->\closed && c->val <= v))

_(atomic cl,c) {

_(assert \active_claim(c1))

_(ghost \destroy_claim(c1,{&c->up}))

_(unwrap &c->up)

_(begin_update)

c->val = v+1;

}

_(wrap &c->up)

} 

}



devices

• the environment can be viewed as concurrent threads
• there are two ways to model the behavior of the world
• as a piece of (concurrently running) code

– “verifying” the device proves that its actions don’t break your invariants
– necessary for “devices” like MMUs that scribble all over memory

• as an abstract object with a transition relation
– usually more convenient 
– can have concrete fields (for a memory-mapped device)
– can use a functional interface to read ghost fields
– (“hybrid” fields another option)
– use approval to distinguish program-controlled volatiles from environment-controlled 

volatiles
– in many practical examples, you can only use the weak form of approval
– you can validate this model with an explicit thread model (perhaps with big atomic 

actions)

• note: you need something more for devices with side-effects from reading, or 
from writes that don’t change the value (e.g. make these intrinsics)



typedef struct Dev {

volatile int in;

volatile int output;

} Dev;

void DevDriver(Dev *dev)

{

int in = dev->in;

while (1)

{

int output = dev->output;

if (output == in) {

in = !in;

dev->in = in;

}

}

}



typedef struct Dev {

volatile int in;

volatile int output;

} Dev;

void DevDriver(Dev *dev)

{

int in = dev->in;

while (1)

{

int output = dev->output;

if (output == in) {

in = !in;

dev->in = in;

}

}

}

typedef struct Dev {

volatile int in;

volatile int output;

_(invariant \approves(\this->\owner, in))

_(invariant in==0 || in == 1)

_(invariant output == 0 || output == 1)

_(invariant \unchanged(in) || in != output)

_(invariant \unchanged(output) || in == output)

_(invariant \on_unwrap(\this,\false))

} Dev;



device methodology

• define a protocol that captures what you need to maintain 
about the device to reason about it sequentially

– typically will have owner-approved volatiles mirroring aspects of the 
device

– can use the same ideas as in managing rights

– can have multiple protocols managing the same object if the rights 
can be separated appropriately

• a driver will typically wrap the device inside a protocol object, 
and use the protocol to mediate his access to the device



typedef struct Dev {

volatile int in;

volatile int output;

} Dev;

void DevDriver(Dev *dev)

{

int in = dev->in;

while (1)

{

int output = dev->output;

if (output == in) {

in = !in;

dev->in = in;

}

}

}

typedef struct Dev {

volatile int in;

volatile int output;

_(invariant \unchanged(in) || \inv2(\this-

>\owner))

_(invariant in==0 || in == 1)

_(invariant output == 0 || output == 1)

_(invariant \unchanged(in) || in != output)

_(invariant \unchanged(output) || in == 

output)

_(invariant \on_unwrap(\this,\false))

} Dev;



typedef struct Dev {

volatile int in;

volatile int output;

_(invariant \unchanged(in) || \inv2(\this-

>\owner))

_(invariant in==0 || in == 1)

_(invariant output == 0 || output == 1)

_(invariant \unchanged(in) || in != output)

_(invariant \unchanged(output) || in == output)

_(invariant \on_unwrap(\this,\false))

} Dev;

void DevDriver(Dev *dev)

{

int in = dev->in;

while (1)

{

int output = dev->output;

if (output == in) {

in = !in;

dev->in = in;

}

}

}

_(typedef struct Protocol {

Dev *dev;

volatile int in;

volatile \bool ready;

_(invariant \mine(dev))

_(invariant \approves(\this->\owner,in))

_(invariant \approves(\this->\owner, ready))

_(invariant dev->in == in)

_(invariant ready ==> dev->in == dev->output)

} Protocol)



typedef struct Dev {

volatile int in;

volatile int output;

} Dev;

void DevDriver(Dev *dev)

{

int in = dev->in;

while (1)

{

int output = dev->output;

if (output == in) {

in = !in;

dev->in = in;

}

}

}

_(typedef struct Protocol {

Dev *dev;

volatile int in;

volatile \bool ready;

_(invariant \mine(dev))

_(invariant \approves(\this->\owner,in))

_(invariant \approves(\this->\owner, ready))

_(invariant dev->in == in)

_(invariant ready ==> dev->in == dev->output)

} Protocol)

void DevDriver(Dev *dev)

_(maintains \wrapped(dev))

_(writes dev)

{

int in = _(atomic_read dev) dev->in;

_(ghost Protocol prot)

_(ghost prot.in = in)

_(ghost prot.dev = dev)

_(ghost prot.ready = \false)

_(wrap &prot)

while (1)

_(invariant \wrapped(&prot) && prot.dev == dev)

_(invariant in == prot.in)       

_(writes &prot)

{

int output = _(atomic_read &prot, dev) dev->output;

if (output == in) {

_(ghost_atomic &prot {

prot.ready = \true;

_(bump_volatile_version &prot)

})

in = !in;

_(atomic &prot,dev) {

dev->in = in;

_(ghost prot.in = in)

_(ghost prot.ready = \false)

_(bump_volatile_version &prot)

}

}

}

}



exercise

• define a toy MMIO disk controller

– address, data, read/write, one character at a time

• define a (single-threaded) driver that manages the disk as a big 
virtual map, providing calls to read and write a given address 
(with suitable abstract semantics)

• define on top of the driver a toy file system, where a file is just 
a sequence of characters

– define a block type, sequences of blocks, etc.

– define directories on top of files



hybrid systems

• introduce time as a ghost object with time moving forward
• God keeps track of which objects in the world are “timed”; when moving time 

forward, He is obliged to preserve the invariants of timed objects
• timed objects specify their continuous behavior by invariants expressing what they 

require when time changes (discontinuously)
– e.g., a physical quantity typically is specified to not change without time changing, and change 

according to some function of the previous state when time moves forward

• a deadline is a timed object that prevents time from moving past a specified 
moment

– once a deadline time is reached, time is frozen and the deadline can never be destroyed

• this allows deadlines to be used to prove safety properties of timed and hybrid 
systems

• soundness of the use of deadlines depends on proving that every deadline object 
is successfully destroyed

– one solution: allow deadlines to be created only 

• to prove that deadlines are not reached, you need assumptions that bound how 
long it can take certain sequential pieces of code to execute

• to use discrete time jumps, keep jumps small enough to not miss catastrophes



_(ghost struct Time {

volatile \natural cur; // the current time

volatile \bool timed[\object]; // the set of timed objects

// timed objects remain timed

_(invariant \forall \object o; \old(timed[o]) ==> timed[o])

_(invariant \old(cur) <= cur && cur <= \old(cur) + 1) 

_(invariant \on_unwrap(\this,\false)) // time never ends

// timed objects approve changes to time

_(invariant \unchanged(cur) || \forall \object o; 

timed[o] && o->\closed ==>  \inv2(o))

} time;)

_(axiom (&time)->\closed);

// timed objects are listed in time.timed

#define TIMED _(invariant time.timed[\this]) \

_(invariant (&time)->\closed && \inv2(&time))

#define T (time.cur)

// dT == how far time just moved forward (atomically)

#define dT (time.cur - \old(time.cur))

_(typedef struct Deadline {

TIMED

volatile \integer t;

// keep delta so that we can read or reset the alarm

// without having to be atomic it time

volatile \integer delta;

_(invariant delta + T == t)

_(invariant T <= t)

_(invariant \unchanged(t) || \old(T < t)) // stop time on expiration

_(invariant \on_unwrap(\this, \old(T < t)))

_(invariant \approves(\this->\owner,t))

} Deadline, ^PDeadline;)

_(void DeadlineNew(_(ghost Deadline ^d) _(ghost \natural delta))

_(requires \extent_mutable(d))

_(writes \extent(d))

_(ensures \wrapped(d) && d->delta == delta)

_(ensures \unchanged(T))

_(decreases 0)

{

_(ghost_atomic &time {

d->t = T + delta;

d->delta = delta;

time.timed[d] = \true;})

_(wrap d)

})

#define DeadlineReset(deadline,newDelta) _(ghost {\

deadline->t += newDelta - deadline->delta; \

deadline->delta = newDelta; \

})

#define TIMER(name) _(ghost \integer name) _(ghost name = T)

#define READ_TIMER(name) (T - name)



typedef struct Boiler {

TIMED

volatile int level;

volatile BOOL on;

_(invariant level == 

\old(level) + (\old(on) ? (int) dT : 0-(int) dT))

_(invariant \approves(\this->\owner,on))

} Boiler; 

_(typedef struct BoilerCtrl {

Boiler *b;

_(invariant \mine(b))  

Deadline ^d; 

_(invariant \mine(d))

volatile \integer deadline;

_(invariant deadline == d->t)

_(invariant \approves(\this->\owner,deadline))

_(invariant b->level <= 70 && b->level >= 30)

_(invariant b->on ==> b->level + d->t - T <= 70) 

_(invariant !b->on ==> b->level - d->t + T >= 30)

} BoilerCtrl;)

void boilerDriver(Boiler *b)

_(maintains \wrapped(b))

_(writes b)

_(decreases 0)

{

_(ghost Deadline ctrlDeadline)

_(ghost BoilerCtrl ctrl)

_(ghost ctrl.d = &ctrlDeadline)

_(ghost ctrl.b = b)

TIMER(t0);

_(ghost DeadlineNew(&ctrlDeadline, 15);)

_(assert ctrl.d \in \domain(ctrl.d))

_(ghost_atomic ctrl.d {

ctrl.deadline = ctrl.d->t;

})

// in real code, we would initialize the boilder instead

_(assume b->level == 50)

_(ghost (&ctrl)->\owns = {ctrl.d, b})

_(wrap &ctrl)

for (unsigned i = 0; i < 10000000; i++)

_(writes &ctrl)

_(invariant ctrl.d == &ctrlDeadline)

_(invariant \wrapped(&ctrl) && ctrl.d->delta > 10 && b==ctrl.b)

{

TIMER(t1);

_(assert &ctrl \in \domain(&ctrl))

_(assert ctrl.d \in \domain(&ctrl))

_(atomic &ctrl, ctrl.b, ctrl.d) {

_(assume READ_TIMER(t1) < 5)

b->on = (b->level < 50);

DeadlineReset((ctrl.d), 15);

_(ghost ctrl.deadline = ctrl.d->t)

_(bump_volatile_version &ctrl)

}

}

_(unwrap &ctrl)

_(unwrap &ctrlDeadline)}



assembly code

• embedded code (e.g., hypervisors) typically includes some 
assembly 

• assembly instructions are treated as function calls (i.e., given 
contracts or expressed with inline code)
– these registers are made of special “hybrid” memory that doesn’t have 

an address but from which information is allowed to flow into real 
memory

• when you enter assembly code, the registers satisfy certain 
conditions specified by the platform ABI

• in practice, reasoning about most assembly code is very easy
• this simple view of assembly code works only for code that doesn’t 

stomp on control flow (e.g., thread switch by switching stacks)
– handling nasty control flow within VCC, or any C verifier, is an open 

problem



progress

• VCC doesn’t provide a notion of global progress
• a thread can guarantee its own local progress (in the 

form of termination)
• a thread cannot depend on progress from other 

threads (because there is no place to express such 
progress in shared object invariants)
– ex: if you put <>p in a type spec, who is responsible for 

making this happen?
– can’t use the trick from real-time verification because we 

lack the ordering on time

• a decent framework for “modular progress” is a nice 
research challenge



encoding other disciplines

• many disciplines for concurrency control can be coded up using 
admissible invariants and ghost data, e.g.
– ownership
– CSL
– counting permissions
– fractional permissions
– deny-guarantee
– concurrent abstract predicates

• this means that you can use these disparate mechanisms in a single 
program, or even in a single function/object

• the downside is that you have to explicitly manipulate things in 
ghost code, rather than depending on a fancy logic to do automatic 
programming for you
– doing this in a reasonable way for ghost code might be a good project



refinement

• you can develop your code top-down, 
refinement-wise in several ways

– give functions to contracts, but omit giving 
implementations

– define types with their abstractions and public 
invariants, but omit their concrete 
implementations

– use block contracts to specify chunks of code 
without having to fill in implementations



some applications of VCC to real code

• hypervisors

• OS kernel code

• efficient bignum arithmetic

• crypto code

• lock-free optimistic multiversion concurrency 
control

• lock-free resizable hash tables



conclusion

• admissible invariants and ghost code provide a 
relatively simple foundation for 
– programmers to write verified code
– encoding new programming disciplines

• deductive verification != proof checking
– verification = ghost programming + automatic deduction

• the most important challenges are on the boundary of 
research and engineering
– ex: more predictable and scalable deduction

• verified programming is practical now for experts
• verified programming is on the cusp of being practical 

for ordinary programmers
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