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Motivation 

 Key Computing Trends 

 

 

 

 

 

 

 

– Multi-core platforms everywhere 

– Need parallel, multi-threaded 
programming 

 

 

 

– Distributed systems 

 

 

 Parallel/Multi-threaded Programming 

– Difficult to program 

• Dependencies due to shared data 

• Subtle effects of synchronizations 

– Difficult to debug 

• too many interleavings of threads 

• hard to reproduce bugs 
Mobile Server Gaming 

Low Power, High Performance 

Data centers, Cloud platforms 

3 

Therac-25 medical radiation 

device (1985) malfunction  due 

to SW race, at least 5 deaths 

Nasdaq's Facebook glitch came from 'race conditions' 
Nasdaq may pay out as much as $13 million due to a  

hard-to-find  software bug 

2003 Northeast Blackout 

Cost: $4 billion  
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What will I (try to) cover? 
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 Basic elements 

– Model of concurrency 

• Asynchronous interleaving model (unlike synchronous hardware) 

• Explosion in interleavings 

– Synchronization & Communication 

• Shared variables: between threads or shared memory for processes 

• Locks, semaphores: for critical sections, producer/consumer scenarios 

• Atomic blocks: for expressing atomicity (non-interference) 

• Pair-wise rendezvous 

• Asynchronous rendezvous 

• Broadcast: one-to-many communication 

 

– On top of other features of sequential programs 

• Recursive procedures, Loops, Heaps, Pointers, Objects, … 

• (Orthogonal concerns and techniques) 

 

 Will cover Static and Dynamic verification techniques 

– Model checking, Abstract interpretation, Systematic testing, …  
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What I will not be able to cover 

 Active topics of research  

 

– Theorem-proving , type systems, runtime monitoring 

– Separation logic: pointers & heaps, local reasoning 

 

– Parallel programs: Message-passing (e.g. MPI libraries), HPC 

applications 

– Memory models: Relaxed memory models (e.g.TSO), Transactional 

memories 

 

– Synthesis/Optimization of locks/synchronizations 

– Concurrent data structures/libraries: Lock-free structures 

– Object-based verification: Linearizability checking 

5 
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Models for Verifying Concurrent Programs 

 Finite state systems  

– Asynchronous composition of processes, including  buffers/channels for 

messages, no recursion 

– Usage: Inline procedures up to some bound to get finite models 

– Techniques: Bounded verification 

 

 Sequential programs 

– Recursive procedures and other features, no synchronization or 

communication, no interleavings  

– Usage: add synchr-comm, interleavings (thread interference) 

– Techniques: Bounded as well as unbounded verification 

 

 Pushdown system models 

– Stack of a pushdown system (PDS) models recursion, finite control, data is 

finite or infinite (with abstractions) 

– Usage: System of interacting PDSs, interactions may be restricted 

– Techniques: PDS-based model checking 
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 Model Checking 

– Exhaustive state space exploration 

– Maintains a representation of visited states (explicit states, symbolic states, … ) 

– Expensive, needs abstractions and approximations 

 Bounded Model Checking 

– State space search for bugs (counterexamples) or inputs for test cases 

– Typically does not maintain representation of visited states 

– Less expensive, but needs good search heuristics 

 

 

 

 

 

 

Model Checking   

Model Checking AG p 

Does the set of states 

reachable from s0 

contain a bad state(s)? 
s0 !p 

Bounded Model Checking 

Is there is a path from  

the initial state s0  

to the bad state(s)? 

TR 

Step 1 

TR 

Step 2 

TR 

Step 4 

TR 

Step 3 

!p? 
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Outline 

 Introduction 

 

 PDS-based Model Checking 

– Theoretical results 

 

 Static Verification  

– Reduction: Partial order reduction 

– Abstraction and Composition: Static analysis, Thread-modular reasoning 

– Bounding: Context-bounded analysis, Memory Consistency-based analysis 

 

 Dynamic Verification 

– Preemptive Context Bounding 

– Predictive Analysis 

– Active Testing 

– Coverage-guided Systematic Testing 

 

 Summary & Challenges 

 

 
8 



May 2013 Static and Dynamic Verification of Concurrent Programs 

Pushdown System (PDS) Model 

 Each thread is modeled as a PDS  

– Finite Control : models control flow in a thread (data is abstracted) 

–  Stack : models recursion, i.e., function calls and returns 

 

 PDS Example 

  States: {s,t,u,v} 

  Stack Symbols: {A,B,C,D} 

  Transition Rules:    <s,A>      < t, e > 

                                    <s,A>      < t, B > 

                                    <s,A>      < t, C B > 
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If the state is s, and A is the 

symbol at the top of the stack, 

then transit to state t, pop A, 

and push B, C on the stack 

PDS1 
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PDS-based Model Checking 

 Close relationship between Data Flow Analysis for sequential programs 

and the model checking problem for Pushdown Systems (PDS) 

– The set of configurations satisfying a given property is regular 

– Has been applied to verification of sequential Boolean programs              

[Bouajjani et al., Walukeiwicz, Esparza et al. ] 

 

 Analogous to the sequential case, dataflow analysis for concurrent 

program reduces to the model checking problem for interacting PDSs 

 

 Problems of Interest: To study multi-PDSs interacting via the standard 

synchronization primitives 

– Locks 

– Pairwise and Asynchronous Rendezvous  

– Broadcasts 

10 
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Interacting PDSs 

 Problem: For multi-PDS systems, the set of configurations satisfying a 

given property is not regular, in general 

 Recall: Set of configurations is regular for individual PDS 

 Strategy: Compute locally reachable configurations of individual PDS, and 

leverage cases of “loose coupling”  

11 

(A, B) 
Automaton A capturing 

locally reachable 

configurations of PDS1 

Automaton  B capturing 

locally reachable 

configurations of PDS2 

PDS1 

Key Challenge 
Capture interaction based on synchronization patterns 

PDS2 
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Capturing Interaction in presence of Synchronizations 

 Key primitive: Static Reachability 

– A global control state t is statically reachable from state s 

 if there exists a computation from s to t that respects the constraints imposed 

by synchronization primitives,  

 e.g., locks, wait/notifies, … 

 

 However, static reachability is undecidable  

– for pairwise rendezvous        [Ramalingam 00] 

– for arbitrary lock accesses      [Kahlon et al. 05] 

– Undecidability hinges on a close interaction between synchronization and 

recursion  

– (Note: Even for finite data abstractions) 

 

 How to get around this undecidability? 

– Special cases of programming patterns: Nested Locks, Bounded Lock Chains 

– Place restrictions on synchronization and communication 
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Programming Pattern: Nested Locks 

Nested Locks: 

Along every computation, each thread can only release that lock which it 

acquired last, and that has not yet  been released 

 

 Example:  

 f( ) {                             g( ){                        h( ){ 

              acquire(b) ;               acquire(a);              acquire(c); 

              g ( );                           release(a);          release(b); 

  // h ( );        release(b);          }  

  release(c);       acquire(c);             

           }                                  }                             

 

 Programming guidelines typically recommend that programmers use 
locks in a nested fashion 

 

 Multiple locks are enforced to be nested in Java1.4  and C# 
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f calls g: nested locks 

f calls h: non-nested locks 
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Programming Pattern: Lock Chains 

 Lock Chains 

 

 

 

 

 Nested Locks: Chains of length one 

 

 

 

 

 Most lock usage is nested 

 Non-nested usage occurs in niche applications, often bounded chains 

– Serialization, e.g. 2-phase commit protocol uses chains of length 2 

– Interaction of mutexes with synchronization primitives like wait/notify 

– Traversal of shared data structures, e.g. length of a statically-allocated array 
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Interacting PDSs with Locks 

15 

(A, B) 

PDS1 PDS2 

Key Challenge: Capture interaction based on synchronization patterns 
 
General Problem for arbitrary lock patterns: Undecidable   [Kahlon et al. CAV 2005] 
 
For nested locks and bounded lock chains: Decidable    
                   [Kahlon et al. POPL 07,LICS 09,CONCUR 11] 

• Tracks lock access patterns thread-locally as regular automata 
• Incorporates a consistency check in the acceptance condition  
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 Restrict Synchronization & Communication: Example 

16 

Reachability is decidable for PDS Networks with:                       [Atig et al. 08] 

 -  acyclic communication graph 

 -  lossy FIFO channels 
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PDS-based Model Checking: Summary 

Reachability Problem 

 Undecidable for Pairwise Rendezvous   [Ramalingam 00] 

 Undecidable for PDSs interacting via Locks            [Kahlon et al. CAV 05] 

 Decidable for PDSs interacting via Nested Locks    [Kahlon et al. CAV 05] 

 Decidable for PDSs interacting via Bounded Lock Chains    

                                                                               [Kahlon LICS 09, CONCUR 11] 

 

Reachability/Model Checking is Decidable under Other Restrictions 

– Constrained Dynamic Pushdown Networks         [Bouajjani et al. TACAS 07] 

– Asynchronous Dynamic Pushdown Network       [Bouajjani et al. FSTTCS 05] 

– Reachability of Acyclic Networks of Pushdown Systems     

                                                                                       [Atig et al. CONCUR 08] 

– Context-bounded analysis for concurrent programs with dynamic creation of 

threads                                                                     [Atig et al. TACAS 09] 
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 Hard to apply PDS-based methods directly 

– Huge gap between model and modern programming languages 

 

 In addition to state space explosion due to data (as in finite state systems 

and sequential programs) 

 the complexity bottleneck is exhaustive exploration of interleavings 

 

 The next section describes various strategies to tackle this in practice  

– Reduce number of interleavings to consider 

• Partial Order Reduction (POR)  

– Use program abstractions and compositional techniques 

• Static analysis  

• Thread-modular reasoning 

– Bound the problem 

• Context-bounded analysis 

• Memory Consistency-based analysis 

 

 

 

Practical Verification of Concurrent Programs 

18 
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Some Preliminaries 

 What is checked in practice? 

 

 Common concurrency bugs 

– Dataraces, deadlocks, atomicity violations 

 

 Standard runtime bugs 

– Null pointer dereferences 

– Memory safety bugs 

 

 Properties 

– Safety, e.g. mutual exclusion 

– Liveness, e.g. absence of starvation 

19 
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Common Concurrency Bugs 

/*--- Thread 1 ----*/ 

 . . .  

 Write (globalVar); 

 . . .  

/*--- Thread 2 ----*/ 

. . . 

Read (globalVar); 

. . . 

•  Race Condition: simultaneous memory access (at least one write) 

•  Deadlock: hold-and-wait cycles 

/*--- Thread 1 ---*/ 

 lock(A); 

 . . . 

 lock(B); 

/*--- Thread 2 ---*/ 

 lock(B); 

 . . . 

 lock(A); 

• Atomicity violation: interference from other threads/processes 

/*--- Thread 1 ----*/ 

 if (account_ptr != NULL) { 

   ... 

   account_ptr -> amount -= debit; 

 } 

/*--- Thread 2 ---*/ 

if (account_ptr != NULL) { 

  free(account_ptr); 

  account_ptr = NULL; 

}  

20 
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 Data Race: If two conflicting memory accesses happen concurrently  

 

 Two memory accesses conflict if 

– They target the same location 

– They are not both read operations 

 

 Data races may reveal synchronization errors 

– Typically caused because programmer forgot to take a lock 

– Many programmers tolerate “benign” races 

– Racy programs risk obscure failures caused by  memory model relaxations in 

the hardware and the compiler 

 

 

 

 

 

Data Race Detection 
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Data Race Detection: Basics (1) 

 Two popular approaches for datarace detection 

 

 Lockset analysis      [Savage et al. 97, ERASER] 

– Definition 

• Lockset(l): The set of locks held at program location l 

– Method 

• Compute locksets for all locations in a program (statically or 

dynamically) 

• Race: When there are conflicting accesses from program locations 

with disjoint locksets 

 

– Gives too many false warnings, since program locations may not be 

reachable concurrently 

 

 Opportunity for more precise analysis (discussed in static analysis) 
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Happens-Before Order 

 Use  logical clocks and timestamps to define a partial order called happens-before 
on events in a concurrent system 

 

 States precisely when two events are logically concurrent (abstracts away real time) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Distributed Systems: Cross-edges from send to receive events 

 

 Shared Memory Systems: Cross-edges represent ordering effects of synchronization 

– Edges from lock release to subsequent lock acquire 

– Long list of primitives that may create edges: Semaphores, Waithandles, 
Rendezvous, System calls (asynchronous IO) 

 

 

1 

2 

3 

1 

2 

3 

1 

2 

3 

(0,0,1) 
 Cross-edges from send events to 

receive events 

 (a1, a2, a3) happens before (b1, b2, b3)  

 iff a1 ≤ b1 and a2 ≤ b2 and a3 ≤ b3  

(2,1,0) (1,0,0) 

(0,0,2) (2,2,2) (2,0,0) 

(0,0,3) (2,3,2) (3,3,2) 

[Lamport] 
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Data Race Detection: Basics (2) 

 Happens-Before (HB) analysis 

 

– Happens-Before order: a partial order over synchronization events   

       [Lamport 77] 

 

– Method: 

• Observe HB order during dynamic execution 

• Race: If conflicting accesses are not ordered by HB 

 

– This is precise, but dynamic executions have limited coverage 

 

 Opportunity for improving coverage over alternate schedules 

(discussed later in predictive analysis) 
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Outline 

 Introduction 

 

 PDS-based Model Checking 

 Theoretical results 

 

 Static Verification  

– Reduction: Partial order reduction 

– Abstraction and Composition: Static analysis, Thread-modular reasoning 

– Bounding: Context-bounded analysis, Memory Consistency-based analysis 

 

 Dynamic Verification 

– Preemptive Context Bounding 

– Predictive Analysis 

– Active Testing 

– Coverage-guided Systematic Testing 

 

 Summary & Challenges 
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Partial Order Reduction (POR)  

Thread 1 Thread 2 

0,0,0 

1,0,0 0,1,0 

1,1,0 1,0,2 

1,1,2 

1,1,4 1,1,2 

1,1,0 

0,1,0 

x=1 

g=g+2 

y=1 

g=g*2 

x=1 

y=1 

y=1 

x=1 

g=g+2 y=1 

g=g+2 

g=g*2 g=g+2 

x=1 g=g*2 

g=g*2 

State label: (x,y,g) 
Consider the following thread executions. 

The full-blown state-space can be large. 

Good news: the order of independent 
events does not affect the state that is 
reached.  
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Partial Order Reduction (POR)  

Thread 1 Thread 2 

0,0,0 

1,0,0 0,1,0 

1,1,0 1,0,2 

1,1,2 

1,1,4 1,1,2 

1,1,0 

0,1,0 

x=1 

g=g+2 

y=1 

g=g*2 

x=1 

y=1 

y=1 

x=1 

g=g+2 y=1 

g=g+2 

g=g*2 g=g+2 

x=1 g=g*2 

g=g*2 

State label: (x,y,g) 
Consider the following thread executions. 

The full-blown state-space can be large. 

Good news: the order of independent 
events does not affect the state that is 
reached.  

It suffices to explore only one representative 
from each equivalence class. 

Different orders of independent events 
constitute an equivalence class 
(Mazurkiewicz trace equivalence). 
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Partial Order Reduction (POR)  

Thread 1 Thread 2 
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Good news: the order of independent 
events does not affect the state that is 
reached.  

It suffices to explore only one representative 
from each equivalence class. 

Different orders of independent events 
constitute an equivalence class 
(Mazurkiewicz trace equivalence). 

The full-blown state-space can be large. 
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POR in Model Checking 

 POR in explicit-state model checking / stateless search 
– Persistent sets, stubborn sets, sleep sets 

 [Godefroid 1996], [Peled 1993], [Valmari 1990], … 
– Dynamic POR (uses HB to derive precise conflict sets), Cartesian POR 

 [Flanagan & Godefroid, POPL 2005], [Gueta et al, SPIN 2007] 
 

 POR in Software Model Checkers 
 SPIN [Holzmann], VeriSoft [Godefroid], JPF [Visser et al., Stoller et al.] 

• Pioneering efforts on model checking concurrent programs 
 

 POR in symbolic model checking / bounded model checking 
– In BDD based model checking 

 [Alur et al, 2001], [Theobald et al, 2003],… 
– In SAT/SMT based BMC 

 [Cook, Kroening, Sharygina, 2005],  
 [Grumberg, Lerda, Strichman, Theobald, 2005],  
 [Kahlon et al. 2006], [Wang et al. 2008], [Kahlon et al. 2009] 
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Classic Notion of Independence 

 Independence relation     [Katz & Peled, 1992] [Godefroid and Pirottin, 1993] 

 
 

 
 
 
 
 
 

 Mainly of semantic use (not practical to check) 
 

 Extended to “conditional dependence relation”  
– With respect to “a single state s”, rather than “for all s in S” 
– Well suited for explicit-state algorithms (Adaptive Search), 

but not for symbolic algorithms 
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Motivating Example 

Combining classic POR methods with symbolic algorithms is non-trivial  

 

• dependence needs to be defined respect to a set of states (vs. a state) 

• need an efficient symbolic encoding 
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How to exploit this type of PO reductions symbolically? 

Motivating Example (cont’d) 
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Guarded Independence Relation 

 Independence relation                    [Katz & Peled, 1992] [Godefroid and Pirottin, 1993] 

 
 

 

 
 

 Guarded by predicates (representing sets of states)         [Wang et al. TACAS 08] 
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Guarded Independence Relation (GIR) for POR 

 Notation 

 

 
 

 

 Collect GIR with a simple traversal of the program structure 
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Outline 

 Introduction 

 

 PDS-based Model Checking 

 Theoretical results 

 

 Static Verification  

 Reduction: Partial order reduction 

 Abstraction and Composition: Static analysis, Thread-modular reasoning 

– Bounding: Context-bounded analysis, Memory Consistency-based analysis 

 

 Dynamic Verification 

– Preemptive Context Bounding 

– Predictive Analysis 

– Active Testing 

– Coverage-guided Systematic Testing 

 

 Summary & Challenges 
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 void Alloc_Page ( ) { 

   a = c; 

   pt_lock(&plk); 

   if (pg_count  >= LIMIT) { 

       pt_wait (&pg_lim, &plk); 

       incr (pg_count); 

       pt_unlock(&plk); 

       sh1 = sh; 

   } else { 

       pt_lock (&count_lock); 

       pt_unlock (&plk); 

       page = alloc_page(); 

       sh = 5; 

       if (page) 

           incr (pg_count); 

       pt_unlock(&count_lock); 

    end-if 

    b = a+1; 

  } 

 void Dealloc_Page ( )  

   pt_lock(&plk); 

   if (pg_count  == LIMIT) { 

       sh = 2;  

       decr (pg_count); 

       sh1 = sh; 

       pt_notify (&pg_lim, &plk); 

       pt_unlock(&plk); 

   } else { 

       pt_lock (&count_lock); 

       pt_unlock (&plk); 

       decr (pg_count); 

       sh = 4; 

       pt_unlock(&count_lock); 

    end-if 

  } 

Motivating Example for Static Analysis 

36 

Consider all possible pairs of locations 

where shared variables are accessed 

(e.g. for checking data races) 
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Motivating Example: Lockset Analysis 

37 

 void Alloc_Page ( ) { 

   a = c; 

   pt_lock(&plk); 

   if (pg_count  >= LIMIT) { 

       pt_wait (&pg_lim, &plk); 

       incr (pg_count); 

       pt_unlock(&plk); 

       sh1 = sh; 

   } else { 

       pt_lock (&count_lock); 

       pt_unlock (&plk); 

       page = alloc_page(); 

       sh = 5; 

       if (page) 

           incr (pg_count); 

       pt_unlock(&count_lock); 

    end-if 

    b = a+1; 

  } 

 void Dealloc_Page ( )  

   pt_lock(&plk); 

   if (pg_count  == LIMIT) { 

       sh = 2;  

       decr (pg_count); 

       sh1 = sh; 

       pt_notify (&pg_lim, &plk); 

       pt_unlock(&plk); 

   } else { 

       pt_lock (&count_lock); 

       pt_unlock (&plk); 

       decr (pg_count); 

       sh = 4; 

       pt_unlock(&count_lock); 

    end-if 

  } 

Lockset Analysis: Compute the set of locks at location l  

Here, lock plk is held in both locations. 

Hence, these locations are simultaneously unreachable. 

Therefore, there is no datarace.  
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 void Dealloc_Page ( )  

   pt_lock(&plk); 

   if (pg_count  == LIMIT) { 

       sh = 2;  

       decr (pg_count); 

       sh1 = sh; 

       pt_notify (&pg_lim, &plk); 

       pt_unlock(&plk); 

   } else { 

       pt_lock (&count_lock); 

       pt_unlock (&plk); 

       decr (pg_count); 

       sh = 4; 

       pt_unlock(&count_lock); 

    end-if 

  } 

 void Alloc_Page ( ) { 

   a = c; 

   pt_lock(&plk); 

   if (pg_count  >= LIMIT) { 

       pt_wait (&pg_lim, &plk); 

       incr (pg_count); 

       pt_unlock(&plk); 

       sh1 = sh; 

   } else { 

       pt_lock (&count_lock); 

       pt_unlock (&plk); 

       page = alloc_page(); 

       sh = 5; 

       if (page) 

           incr (pg_count); 

       pt_unlock(&count_lock); 

    end-if 

    b = a+1; 

  } 

Motivating Example: Synchronization Constraints 

38 

These locations are simultaneously unreachable 

due to wait-notify ordering constraint. 

Therefore, no datarace. 
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Motivating Example 

 void Alloc_Page ( ) { 

   a = c; 

   pt_lock(&plk); 

   if (pg_count  >= LIMIT) { 

       pt_wait (&pg_lim, &plk); 

       incr (pg_count); 

       pt_unlock(&plk); 

       sh1 = sh; 

   } else { 

       pt_lock (&count_lock); 

       pt_unlock (&plk); 

       page = alloc_page(); 

       sh = 5; 

       if (page) 

           incr (pg_count); 

       pt_unlock(&count_lock); 

    end-if 

    b = a+1; 

  } 

39 

 void Dealloc_Page ( )  

   pt_lock(&plk); 

   if (pg_count  == LIMIT) { 

       sh = 2;  

       decr (pg_count); 

       sh1 = sh; 

       pt_notify (&pg_lim, &plk); 

       pt_unlock(&plk); 

   } else { 

       pt_lock (&count_lock); 

       pt_unlock (&plk); 

       decr (pg_count); 

       sh = 4; 

       pt_unlock(&count_lock); 

    end-if 

  } 

Data race? 

NO, due to invariants at these locations 

     pg_count is in (-inf, LIMIT) in T1 

     pg_count is in [LIMIT, +inf) in T2 

Therefore, these locations are not simultaneously reachable 

How do we get these invariants? 

By using abstract interpretation, model checking, … 
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Symbolic Verification of Programs 

 Abstract Interpretation                                                          [Cousot & Cousot 77] 

 

– State sets are not exact, but over-approximations (for sound analysis) 

 

– Abstract post operation 

 

 

 

 

 

 

– Over-approximate fixpoint computation 

 

 

 

 

 

 Popular for generating inductive invariants for Sequential Programs 

– Abstract domains: intervals, octagons, polyhedra, … 

 

 

Abstract description  

Set of states 

Abstract post 

Join operation 
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Concurrent Programs: Static Analysis 

 Intuitively, one can reason similarly for concurrent programs 

– Not all product (global) control states, but only the statically reachable states 

– Transaction Graph:  

• Each node is a statically reachable global control state, 

• Each edge is a transaction, i.e. an uninterruptible sequence of actions by a 

single thread 

 

 Two main (inter-related) problems 

– How to find which global control states (nodes) are reachable? 

– How to find (large) transactions? 

• Larger the transactions, smaller the number of interleavings to consider 

 

 Refinement Approach                                                      [Kahlon et al. TACAS 09] 

– At any stage, the transaction graph over-approximates the set of thread 

interleavings for sound static analysis or model checking 

– Iteratively refine the transaction graph by computing invariants 
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Transaction Graph Example 

p1 

        p0 

pos > SLOTS 

full? 

pos <= SLOTS 

pos > 0 

pos += 1 

emp! 

s2 

s0 

s1 
repeat (forever){ 
  lock(posLock); 
  while ( pos > SLOTS){ 
      unlock(posLock); 
      wait(full); 
      lock(posLock); 
  } 
  data[pos++] := ...; 
  if (pos > 0){ 
     signal(emp); 
  } 
   unlock(posLock); 
} 

p0,q0 

p1,q0 
p0,q1 

p1,q1 

t2 

t1 

t0 

s1 s0 

s2 

Nodes where context  

switches to be considered 
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Refining Transactions 

 Initial Transaction Graph 

– Make this as small as possible 

– Use static partial order reduction (POR) to consider non-redundant interleavings 

• Over control states only, but need to consider CFL-reachability 

– Use synchronization constraints to eliminate statically unreachable nodes 

• Recall: Static reachability wrt synchronization operations 

• Precise analysis for nested locks, bounded lock chains, locks with wait-notify 

             [Kahlon et al. 05, Kahlon 08, Kahlon & Wang 10] 

 

 Iterative Refinement of Transaction Graph 

   Repeat 

– Compute invariants over the transaction graph using abstract interpretation 

• Abstract domains: range, octagons, polyhedra             [Cousot & Cousot, Miné. …] 

– Use invariants to prove nodes unreachable, and simplify graph 

– Re-compute transactions (POR, synchronization analysis) 

Until  transactions cannot be refined further. 
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[Kahlon et al. TACAS 09] 
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Application: Detection of Data Races 

 Implemented in NEC’s CoBe (Concurrency Bench) tool 

 

 Phase 1: Static Warning Generation 

– Shared variable detection, Lockset analysis 

– Generate warnings at global control states (c1, c2) when  

• The same shared variable is accessed, at least one access is a write, and 

• Locksets at c1 and c2 are disjoint 

 

 Phase 2: Static Warning Reduction (for improved precision) 

– Create a Transaction Graph, and generate sound invariants 

• POR reductions, synchronization analysis, abstract interpretation 

– If (c1, c2) is proved unreachable, then eliminate the warning 

 

 Phase 3: Model Checking 

– Otherwise, create a model for model checking reachability of (c1, c2) 

• Slicing, constant propagation, enforcing invariants: lead to smaller models 

• Makes bounded model checking viable 

• Provides a concrete error trace 

44 
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CoBe: Experiments 

 Linux device drivers with known data race bugs 

45 

After Phase 1 (Warning Generation) 

After Phase 2 (Warning Reduction) 

After Phase 3 (Model Checking) 

Linux Driver KLOC #Sh Vars #Warnings Time # After Time #Witness #Unknown

(sec) Invariants (sec) MC

pci_gart 0.6 1 1 1 1 4 0 1

jfs_dmap 0.9 6 13 2 1 52 1 0

hugetlb 1.2 5 1 4 1 1 1 0

ctrace 1.4 19 58 7 3 143 3 0

autofs_expire 8.3 7 3 6 2 12 2 0

ptrace 15.4 3 1 15 1 2 1 0

raid 17.2 6 13 2 6 75 6 0

tty_io 17.8 1 3 4 3 11 3 0

ipoib_multicast 26.1 10 6 7 6 16 4 2

TOTAL 99 24 21 3

decoder 2.9 4 256 5min 15 22min

bzip2smp 6.4 25 15 18 12 35
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CoBe: Experiments 

 Linux device drivers with known data race bugs 

 

 

 

 

 

 

 

 

 

 

 

 

 Successfully applied to medium-sized Linux device drivers 

 How about scalability on industry projects?  

– On large code (> 100 kLOC – 1 MLOC), could not create CFG for entry function 
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Linux Driver KLOC #Sh Vars #Warnings Time # After Time #Witness #Unknown

(sec) Invariants (sec) MC

pci_gart 0.6 1 1 1 1 4 0 1

jfs_dmap 0.9 6 13 2 1 52 1 0

hugetlb 1.2 5 1 4 1 1 1 0

ctrace 1.4 19 58 7 3 143 3 0

autofs_expire 8.3 7 3 6 2 12 2 0

ptrace 15.4 3 1 15 1 2 1 0

raid 17.2 6 13 2 6 75 6 0

tty_io 17.8 1 3 4 3 11 3 0

ipoib_multicast 26.1 10 6 7 6 16 4 2

TOTAL 99 24 21 3

decoder 2.9 4 256 5min 15 22min

bzip2smp 6.4 25 15 18 12 35
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CoBe: Layered Analysis 

 Issue 

– For threads executing functions with large CFGs (control flow graphs), the CFG 

construction itself may run out of memory 

 Strategy 

– Trade-off time for space, via Call Graph layering  

– Work with few layers in memory at a time, using files to transfer information 

between layers 

 

 

 

 

 

 

 Implementation   

– First the CFG of the entry function in each thread is created up to some small 

depth cutoff (DC), e.g. DC = 2 includes main and foo above 

– The CFGs of functions called at depth greater than DC (e.g. bar, baz) are built 

on-the-fly, in depth-first order according to call graph of entry function (main) 

– Aliasing and lockset information is passed across layers. 
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main 

foo 

bar baz 
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int sh; 

 

main(){             foo(int *p){        bar(int *q){     baz(int *r){ 

  foo(&sh);           bar(p);               lock(lk);          *r = 0; 

}                          unlock(lk);          *q = 1;        } 

                           baz(p);            } 

                        }                                   

CoBe: Layering Example 

48 

main 

foo 

bar baz 

pass points-to set of p 

pass points-to set of q 

log  the update to *q  

as a shared variable access 

return lock set {lk} 

pass points-to set of r 

log  the update to *r  

as a shared variable access 

return empty lock set  

return empty lock set  
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Thread-Modular Reasoning 

 As we just saw, invariants play a key role in static analysis 

 Compositional verification 

– Proofs rules typically use inductive invariants 

– Advantage: Avoids explicit reasoning over interleavings 

 

 Some Basics 

– An assertion is a set of states 

– Assertion   is invariant if it includes all reachable states 

– Invariance is proved using an auxiliary inductive invariant  

• (initiality)  [ I   ] 

• (inductiveness)  [ next (T,  )     ] 

• (adequacy)  [    ] 

– next( T,  ) is the set of successors of states in    by T 

– R is the strongest inductive invariant  

• but may not need strongest 

49 



𝐻, 𝑒 → 𝐻′, 𝑒′

𝐻, 𝑡 𝑒  → 𝐻′, 𝑡[𝑒′]
 

⊺ 

0 −1 1 

⊺ 

… … 
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Local Proofs                           [Cohen & Namjoshi CAV 07, CAV 08, CAV 10] 

Can handle safety and liveness properties 

Works well on many examples (Bakery, Peterson’s, Szymanski, …) 
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Uses well-known techniques from software model checking (predicate 

abstraction refinement, CEGAR) for automating the proof rules 

[Gupta et al. POPL 11, CAV 11] 
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Outline 

 Introduction 

 

 PDS-based Model Checking 

 Theoretical results 

 

 Static Verification  

 Reduction: Partial order reduction 

 Abstraction and Composition: Static analysis, Thread-modular reasoning 

 Bounding: Context-bounded analysis, Memory Consistency-based analysis 

 

 Dynamic Verification 

– Preemptive Context Bounding 

– Predictive Analysis 

– Active Testing 

– Coverage-guided Systematic Testing 

 

 Summary & Challenges 
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Context-Bounded Analysis 

 Recall  

– The general problem of verifying a concurrent program (recursive procedures 

with synchronization) is undecidable. 

– We have seen various strategies to get around undecidability 

• Exploiting patterns of synchronization 

• Restricting synchronization & communication 

• Ignoring recursion by (bounded) function inlining 

 

 Another key idea: Bound number of context switches 

– Context-bounded analysis of PDSs is decidable      [Qadeer & Rehof, TACAS 05] 

– Note: There can be recursion within each segment between context switches 

 

– In practice, many bugs are found within a small number of context switches 

– Implemented in tools: KISS, CHESS (Microsoft), … 
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Context-Bounded Analysis using Sequentialization 

                                                                                [Lal & Reps, CAV 08]  

 Sequentialization: Reduce CBA to sequential program analysis 
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Concurrent 

Pc 

 

Sequentialization  

Reduction 

Sequential 

Ps 

 

Context Bound 

K 
 
 

• Efficient reduction: 

– PS  has K times more global variables 

– No increase in local variables 

 

• Can borrow all the cool stuff from the sequential world 
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From Concurrent to Sequential 

Model 

Two threads, shared memory, K execution contexts per thread 
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Ti 

 

(s1, l1) (s2, l2) 

Shared Memory 

 

T1 

 

T2 

 

Local Memory 

 

Local Memory 
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From Concurrent to Sequential 

58 

T1 

 

T2 

 

T1 

 

(s1, l1) (s2, l2) 
s2 

l2 

T1 

 

T2 

 

T1 

 

T2 

 

T1 

 

Execution proceeds as: 

T1 

 

T2 

 

T1 

 

(s1, l1) (s2, l2) (s3, l2) 

Guess the effect of T2 Verify the guess 
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Sequentialization: Idea  

 K = number of chances that each thread gets 

 Guess (K-1) global states: s1 = init, s2, …, sK   

59 

T1 processes all contexts first, guesses states of T2 

T2 goes next, using states of T1 
At the end: Check the guesses, i.e. s”

1= s2 and s”
2 = s3, … 

s1 s2 s3 … 

(s1, l1) (s′
1,l2) (s2,l2) (s′

2,l3) (s3,l3) (s′
3,l4) 

T1 

 

(s′
1,m1) (s”

1,m2) (s′
2,m2) (s”

2,m3) (s′
3,m3) (s”

3,m4) 
T2 

 

Symbolic inputs 
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Checker:  assume(W1 == w2); assume(X1 == x2); … 
                 assume(Y2 == y3); assume(Z2 == z3)

 

Reachable! 

Sequentialization Transformation 

 T1 ⟶ T1
s  and T2 ⟶ T2

s  

 (T1 || T2) ⟶ (T1
s;  T2

s ; Checker; assert(no_error) ) 
 

60 

w1 x1  y1  z1 w2 x2  y2  z2 w3 x3  y3  z3  i = 2  i = 3  i = 1 

W1 X1 Y1 Z1 
W2 X2 Y2 Z2 W3 X3 Y3   Z3 

T1
S 

 

T2
S 

 

K copies of the shared memory 
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Sequentialization: Summary 

 Pushes “guesses” about interleaved states into inputs 

 

 T1 ⟶ T1
s  and T2 ⟶ T2

s 

 (T1 || T2) ⟶ (T1
s;  T2

s ; Checker; assert(no_error) ) 
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Main idea:  

Reduce control non-determinism to data non-determinism 



Memory Consistency-based Analysis 

o Interleaving model 
 Partially ordered traces 
 Context-switching, interleaved traces 
 Is control-centric: Control induces data-flow 

 
o Instead, consider a Memory Consistency (MC) model 

 e.g. Sequential Consistency (SC), Total Store Order (TSO), …. 
 MC model specifies rules under which a read may observe some write 

 
o Data Nondeterminism in MC model 

 Reason about read-write interference directly 
 No need to have a scheduler 
 Is data-centric : data-flow induces control-flow 
 Examples: Nemos, Checkfence, x86-TSO, Memsat, Staged Analysis 
 Symbolic exploration using SAT/SMT solvers avoids explicit enumeration 

of interleavings 
 

 



Sequential Consistency (SC) based Verification 

o Three steps 
1. Obtain an Interference Skeleton (IS) from (unrolled) Program 

• Global read and write events and their program order 

• Encoded as IS 

2. SC axioms for reads/writes in IS 

• Quantified first-order logic formula   

3. Encode Property as a formula P 

• data race, assertion violation, … 

 

o Check IS     P  for satisfiability (using an SMT solver) 
 

 

 

Bounded 

[Sinha & Wang POPL 11] 



Sequential Consistency Axioms 

o Axioms of Sequential Consistency (SC) 
 each read must observe (link with) some write 
 read must link with most recent write in execution order 

 
o Specified in typed first-order logic 

 read r, write w: Access type 

o Link Predicate: link (r,w) 
 holds if read r observes write w in an execution 
 Exclusive : link (r,w) =>  w’.  link (r,w’) 

o Must-Happen-before Predicate : hb (w,r) 
 w must happen before r in the execution 
 strict partial order 

 

o These axioms are added to the Program precisely encoded using 
reads/writes and program order 



Example 

 

 

 

 

c = true; 
 
if (c) { 
 
  *p = 0; 
} 
else … 

c = false; 
 
....... 
 
p = 0;  
 

Goal: Detect NULL pointer access violation  
 
- so rp must be enabled   
- en (rp) = (en (rc)  val(rc) = true) 
en(rp)  en (rc)                  (Path conditions) 
and, en(rp)  val (rc) = true             (*) 
 
Because en(rp), so link(rp,wp)          () 

So, hb (wp,rp)                                       () 
       
link (rc, wc1)  link (rc, wc2)                () 

Try link (rc, wc1)  
    so, val (rc) = val(wc1) = false            () 
    Contradicts with (*) 
 

so, link (rc, wc2)  
so, hb (wc2, rc)                                       () 
Check () for rc:  intruding write wc1  

so, Add hb(wc1, wc2) 

linearize to obtain a feasible trace 

wp rp 

rc 

wc1 wc2 

rc 

wc1 

wc2 

wp 

rp 
… 

Thread 1 Thread 2 

wc1 

wc2 

rc 

wp 

rp 
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 Introduction 

 

 PDS-based Model Checking 

 Theoretical results 

 

 Static Verification 

 Reduction: Partial order reduction 

 Abstraction: Unbounded context analysis, Thread-modular reasoning 

 Bounding: Context-bounded analysis , Memory Consistency-based analysis  

 

 Dynamic Verification 

– Preemptive Context Bounding 

– Predictive Analysis 

– Active Testing 

– Coverage-guided Systematic Testing 

 

 Summary & Challenges 

 

 

Outline 
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PDS-based model checking, Static Verification  

• May not scale to large programs 

• Too many false warnings 

• Difficult to apply in multi-process or distributed settings 

 

Interest in Dynamic Verification based on executions  
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Main 

thread 

Multithreaded C/C++ Program 

Heap (storing shared objects) 

T1 T 2 T3 

Test 
Input 

POSIX Threads Library (Pthreads) 

Rest of the Linux OS 

 

User expectation:  

If the program fails the given test, 

the user wants to see the bug  

 

The reality: 

Even if the program may fail (under 

a certain schedule),  

the user likely won’t see it 

 

Why?  

Thread scheduling is controlled by 

the OS and the Pthreads library  

Testing Multi-threaded Programs 

67 

Tools: VeriSoft, Chess, Fusion, Inspect 

Take control of the scheduler to  

execute alternate schedules 
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x = 1; 

  … 

  … 

  … 

  … 

  …   

y = k; 

CHESS: Heisenbugs and State space explosion 

x = 1; 

  … 

  … 

  … 

  … 

  … 

y = k; 

… 

n threads 

k steps  
 each 

 Number of executions  

                 = O( nnk )  

 

 Exponential in both n and k 

– Typically:  n < 10,  k > 100 

 

 Limits scalability to large 

programs 

 

 

Goal:  Scale CHESS to large programs (large k) 

[Musuvathi et al. PLDI 07, OSDI 08] 
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x = 1; 

  … 

  … 

  … 

  … 

  …   

y = k; 

x = 1; 

  … 

  … 

  … 

  … 

  …   

y = k; 

x = 1; 

  … 

  … 

  … 

  … 

  … 

y = k; 

x = 1; 

  … 

  … 

  … 

  … 

  … 

y = k; 

CHESS: Preemptive Context Bounding (PCB) 

 Terminating program with fixed inputs and deterministic threads 

– n threads, k steps each, c preemptions 

– Preemptions are context switches forced by the scheduler  

 

 Number of executions <= nkCc . (n+c)!  

                                              = O( (n2k)c. n! ) 

                               Exponential in n and c, but not in k 

• Choose c preemption points 

• Permute n+c atomic blocks 

Many bugs found in a small 

number of preemptions 

[Musuvathi et al. PLDI 07, OSDI 08] 
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Formal 
  

Verification 

Trace Based Verification 

Concurrent program 

Large 
state-space 

Alternate approaches 

Collect shared 
  

access footprint 

Concurrent program Trace 

Monitoring problem 

Full formal verification is often intractable 

Tractable and no false alarms. 

Predictive Analysis problem 

Larger set of interleavings is 
explored. 

Online/offline 
monitoring of trace 

Predict errors in  
alternate interleavings 

e.g. model checking 

Will not talk about this 

Next  



Recall: Atomicity Violations 

 Atomicity is a desired correctness criterion for concurrent programs. 

– Non-interference on shared accesses from code residing outside and 
inside an atomic region. 

– Serializability is a notion that checks atomicity. 

 

 

 

 

 

 
 

 A recent study  shows 69% of concurrency bugs due to atomicity violations 
[Lu et al. ASPLOS’08] 
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read x 

read y 

write x 

write y read x 

read y 

write x 

write y 

read x 

read y 

write x 

write y 



72 

Predictive Analysis: Motivating Example 

Thread T1 Thread T2 

atomic{ 
e2:  b := p; 
e3:  if (b ≠ 0) 
e4:    *(p) := 10; 
} 

e1: p := &a; 
 
 
 
 
 
e5: p := 0; 

e2: RD (p) 
 

e3: 
 
 

e4: RD (p) 

e1: WR (p) 
 
 
 
 
 
 
 
e5: WR (p) 

Time 

Original trace is bug-free. 

An alternate interleaving can be buggy. 
 
 
However, if a read is mismatched (not 
reading from the original write), the 
alternate trace might be infeasible    
(since control flow could be altered).   

We are checking for potential serializability violations. 
Thread T1 Thread T2 

e1: WR (p) 
 
 
 
 

 
e5: WR (p) 

e2: RD (p) 
 
e3: 
 
 
e4: RD (p) 

e1: WR (p) 
 
 
 
 
 
 
e5: WR (p) 

(a) Unserializable and feasible. 

Time 

e2: RD (p) 
 
e3:  
 
 
e4: RD (p) 

(b) Unserializable and infeasible. 

if (b ≠ 0) 

if (b ≠ 0) if (b ≠ 0) 

Violation path 
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Predictive Analysis: Idea 

 Predictive analysis      [Rosu et al. CAV 07, Farzan et al. TACAS 09, … ] 

 

– Run a test execution and log information about events of interest 

– Generate a predictive model over the events, by relaxing some 

ordering constraints 

– Analyze the predictive model to check alternate interleavings of 

these events 

 

– Note: Does not cover events not observed in the trace 

 

 Examples of predictive models 

– Control State Reachable (CSR) model: simple 

– Maximal Causal Model (MCM): good coverage 
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Control State Reachable (CSR) Predictive Model 

 

shared variables: x=0 initially 

 

t1: RD(x)  

t2: WR(x) 

 

 

 

 

t3: RD(x) 

t4:   nop  

t5: WR(x) 

 

    observe “events” instead of “statements” 

Ignore read-write values, log lock/unlock ops 

This interleaving is “not feasible” 

 

 

But CSR would report it as an error 

 

t1: RD(x)  

 

 

 

 

t2: WR(x)  

 

 

 

t3: RD(x) 

t4:   nop  

t5: WR(x) 

CSR reports a bogus bug 

 [Farzan & Parthasarathy, 2009] 
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Maximal Causal Model (MCM) for Predictive Analysis 

 

shared variables: x=0 initially 

 a := x + 1 
 

t1: RD(x) = 1 

t2: WR(x) = 2 

 

 

 

 

t3: RD(x)=2 

t4:   nop  

t5: WR(x)=5 

 

    observe “events” instead of “statements” 

Values of read and writes must be consistent 

This interleaving is actually “feasible” 

 

(but it would be missed by MCM) 

 

t1: RD(x) = 1 

 

 

 

 

t2: WR(x) = 1 

 

 

 

t3: RD(x)=2 

t4:   nop  

t5: WR(x)=5 

 

MCM misses the real bug 

[Serbanuta, Chen & Rosu, 2008] 
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Symbolic Predictive Analysis 

 

 Symbolic Predictive Analysis                 [Wang et al. FM 09, TACAS 10] 

 

– Generate a precise predictive model by considering constraints due 

to synchronization and dataflow 

• Motivation: No false bugs, no missed bugs 

 

– Symbolically explore all possible thread interleavings of events in 

that trace, using an SMT solver 

• Motivation: Performs better than explicit enumeration  
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C program:  

    multi-threaded,      

    using Pthreads 

Execution trace 

 

 

 

 

 

Concurrent Trace 

Program (CTP) 

 

Predictive Model 

77 

“assume( c )” means the (c)-branch is taken 
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 Build an SMT formula (e.g. linear arithmetic) 

– F_program : encodes all feasible thread interleavings of CTP  

– F_property : encodes the property, e.g. an assertion violation 

 

 

 Solve using an SMT solver 

 ( F_program  F_property ) 

  Sat   found a real error 

  Unsat   no error in any interleaving 

 

 

 Improves  

– Precision over other predictive techniques  

– Covers all possible interleavings of  

 the observed events. 

 

 

 

Symbolic Predictive Analysis using CTP 

78 

[Wang et al. FM 09, TACAS 10] 
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CTP Model: HB (Happens-Before) Constraints 

 Use a uniform HB (happens-before) model to capture constraints 

– Program order constraints 

• e.g. sequential consistency (or weaker memory models …) 

– Synchronization constraints 

• e.g. fork-joins, wait-notify, mutual exclusion using locks, … 

– Correctness violations 

• e.g. assertion violations, data races, serializability violations 

 

 How is HB(t1, t2) implemented? 

– Event t1 happens strictly before t2 

– HB(t1, t2)  :=  t1 <  t2             where t1, t2 are integer variables 

 

 Use an SMT solver to solve the formula 

– Fusion used Yices                                                      [Dutertre & de Moura 06] 

 

 

 

 

 

 

 

79 



May 2013 Static and Dynamic Verification of Concurrent Programs 

F_po:   HB(t0,t1) & HB(t1,t2) & HB(t2,t3) & HB(t3,t4) & HB(t4,t5) 

  HB(t0,t11) & HB(t11,t12) & HB(t12,t13) & HB(t13,t14) & HB(t14,15) & HB(t15,t18) & HB(t18,t5) 

  HB(t1,t21) & HB(t21,t26) & HB(t26,t27) & HB(t27,t28) & HB(t28,t4) 

F_vd:        (x0=0) & (y0=0) &  

  (a1=Y_1) &    & (b1 = X_1) 

  (a1=0) &    & (b1 != 0) 

  (x1=1) &    & (y1 = 0) 

  (a2=X_2) &   

  (x2=a2) 

F_property:      (X_3 == Y_2) 

F_pi: &(  (Y_1=y0) & HB(t11,t27)  OR  

        (Y_1=y1) & HB(t27,t11)  ) 

  & (  (X_1=x0) & HB(t21,t13) OR  

         (X_1=x1) & HB(t13,t21) & HB(t21,t15)  OR 

         (X_1=x2) & HB(t15,t21)  ) 

  & (X_2=x1)  

  & (X_3=x2) 

  & (Y_2=y1) 

Concurrent Static Single Assignment (CSSA) Encoding 

 Functions for  

shared variable “uses” 
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Program order (within thread) 

Variable Definitions (with guards) 

Shared Variable Uses 

Assertion 
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CTP: Modeling Atomicity/Serializability Violations 

 In practice, unserializable patterns cause a large number of concurrency errors  

                    [Lu et al. 2006] 

 Three-access pattern: involves three events (tc, tr, tc’) on a shared variable 

– Two consecutive accesses in the current thread: tc…tc’ 

– In between, one access from a remote thread: tr 

 Eight possible cases 

– Serializable: (R-R-R), (R-R-W), (W-R-R) 

– Un-serializable: (R-W-R), (R-W-W), (W-W-R), (W-W-W), (W-R-W) 

 

 F_property:  HB (tc, tr) && HB (tr, tc’) 
 

Thread1 

   tc: if (buf_index + len < BUFFSIZE) { 

 … 

 … 

   tc’:  memcpy(buf[buf_index],log,len); 

       }   

Thread2 

 

 tr: buf_index += len; 
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CTP: Modeling Context Bounding 

 Let t_first be the start event of the CTP 

 Let t_last be the end event of the CTP 

 Let k be the max number of context switches allowed 

( F_program && F_property ) && (t_last – t_first < k) 
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Predictive Analysis using CTP: Summary 

 CTP (Concurrent Trace Program) model with HB constraints 

– Precise symbolic model derived from a concurrent program trace 

– Models concurrency and synchronization primitives, dataflow, properties 

 

 SMT based symbolic search 

– Based on CSSA (Concurrent Static Single Assignment) encoding 

– Can encode context bounding (e.g. like  [CHESS]) 

 

 Can tune the level of precision in modeling and analysis 

– Use control state reachability to prune warnings           [Kahlon & Wang, CAV 2010] 

– Modular analysis                                  [Sinha & Wang, FSE 2010, POPL 2011] 
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Active Testing: CalFuzzer Tool 

• Phase 1: Use imprecise static or dynamic program 
analysis to find “abstract” states where a potential 
violation can happen (e.g. datarace, deadlock, 
atomicity violation) 

 

• Phase 2: “Direct” testing (by controlling the 
scheduler) based on the “abstract” states obtained 
from phase 1  

 

 

[Joshi, Naik, Park & Sen, CAV 09] 

More details in the Lab Session later today … 



Deadlock Detection: Example 

Thread1 

foo(o1,o2,true) 

Thread2 

foo(o2,o1,false) 

 
void foo(Object l1, Object l2, boolean flag) { 
 
     if(flag) { 
       // Long running computations 
          s1: f1(); 
          s2: f2(); 
      } 
     s3: synchronized(l1){ 
        s4: synchronized(l2){ 
        } 
     } 
 
} 

[Joshi, Park, Sen & Naik, PLDI 09] 
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Thread 1 Thread 2 
Thread1 

foo(o1,o2,true) 

Thread2 

foo(o2,o1,false) 

 
void foo(Object l1, Object l2, boolean flag) { 
 
     if(flag) { 
       // Long running computations 
          f1(); 
          f2(); 
     } 
     synchronized(l1){ 
        synchronized(l2){ 
        } 
     } 
 
} 

Deadlock Directed Testing 

Lock(o2) 

Lock(o1) 

Paused 

f1() 

f2() 

Lock(o1) 

Lock(o2) 

Paused 

Deadlock 
detected ! 



Preempting threads 

• How do we know where to pause a thread ? 
– Use existing static or dynamic analyses to find 

potential deadlock cycles 
• Note that these analyses may report false deadlock 

cycles 

– Use “information” recorded for a deadlock 
cycle to decide where to pause a thread 

– CalFuzzer uses a modified version of the 
Goodlock algorithm (iGoodlock)  

   [Havelund et al, Agarwal et al] 
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Take a Step Back … 

What is the root cause of a “concurrency bug”? 
– Programmers often make, but fail to enforce, some implicit assumptions 

regarding the concurrency control of the program 

• Certain blocks should be mutually exclusive       data race 

• Certain blocks should be executed atomically     atomicity violation 

• Certain operations should be executed in a fixed order      

 order violation 

 

 To chase “concurrency bugs”, we would like to go 

after the “broken assumptions”… 
– Exhaustively test all concurrency control scenarios 

– But not all possible thread interleavings 
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Coverage-Guided Systematic Testing 

 Coverage metric: “concurrency control scenario” 

– HaPSet (History-aware Predecessor Set) 

 

 How do we use this metric? 

– Use a framework for systematically generating interleavings 

• e.g. stateless model checking 

– Keep track of HaPSets covered so far 

– Instead of DPOR/PCB, use HaPSet to prune away interleavings 

– Idea: Don’t generate an interleaving to test if the “concurrency control 

scenario” (HaPSet) has already been covered 

 Based on PSet (Predecessor Set)      
– Psets were used for enforcing safe executions 

       Jie Yu, Satish Narayanasamy 

    A case for an interleaving constrained shared-memory multi-processor,  

    International Symposium on Computer Architecture, 2009. 

 

[Wang et al. ICSE 2011] 
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PSet (Predecessor Set)         [Yu & Narayanasamy  ISCA 09]  

Thread 1 Thread 2 Thread 3 

R2 

W1 

R1 

R3 

W2 

R4 

W3 

{ W1 } 

{ } 

{ } 

{ W1 } 

{ W2 } 

{ } 

{ R3, R4 } 

Psets are tracked 

for statements in 

code, not for events  

 

PSet (statement):     
the set of      

immediately dependent  

“remote” statements  

 

PSet(W1) = {} 

PSet(R1) = {} 

PSet(R2) = {W1} 

PSet(R3) = {W1} 

PSet(R4) = {} 

PSet(W2) = {R3,R4} 

PSet(W3) = {W2} 
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HaPSet (extension)                          

1. Synchronization statements 

– PSet ignored synchronizations, e.g. lock/unlock, wait/notify 

– HaPSet considers synchronizations – essential for concurrency 

 

2. Context & thread sensitivity 

– PSet (effectively) treats a statement as a (file,line) pair 

– HaPSet treats a “statement” as a tuple (file,line,thr,ctx), where 

• thr = {local_thread, remote_thread} (exploits symmetry) 

• ctx = the truncated calling context       
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Intuition: Why are HaPSets Useful? 

Thread T1 

  … 

 

 

 

 

{ 

 if (p != 0) 

  

   *(p) = 10;  

} 

Thread T2 

 … 

{ 

  p = &a;  

} 

 

… 

 

 

 

{ 

  p = 0; 

} 

  

 

 

 

 

 

 

e2 

 

e3 

  

 

 

e1 

 

 

 

 

 

 

 

e4 

 

 

 

Observations: 

#1. In all good runs, HaPSet[e3] = { } 

#2. In all good runs, e2 is not in HaPSet[e4] 

HaPSet(e1) = {} 

HaPSet(e2) = {e1} 

HaPSet(e3) = {} 

HaPSet(e4) = {e3} 

From the given run 

HaPSet(e1) = {e2} 

HaPSet(e2) = {e1,e4} 

HaPSet(e3) = {} 

HaPSet(e4) = {e3} 

From all good runs 

Need only 2 test runs to 

capture all “good” runs 
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Why are HaPSets Useful? 

Thread T1 

  … 

 

 

 

 

{ 

 if (p != 0) 

  

   *(p) = 10;  

} 

Thread T2 

 … 

{ 

  p = &a;  

} 

 

… 

 

 

 

{ 

  p = 0; 

} 

  

 

 

 

 

 

 

e2 

 

e3 

  

 

 

e1 

 

 

 

 

 

 

 

e4 

 

 

 

Observations: 

#1. In all good runs, HaPSet[e3] = { } 

#2. In all good runs, e2 is not in 

HaPSet[e4] 

HaPSet(e1) = {} 

HaPSet(e2) = {e1} 

HaPSet(e3) = {} 

HaPSet(e4) = {e3} 

From the given run 

HaPSet(e1) = {e2} 

HaPSet(e2) = {e1,e4} 

HaPSet(e3) = {} 

HaPSet(e4) = {e3} 

From all good runs 

HaPSet(e1) = {e2} 

HaPSet(e2) = {e1,e4} 

HaPSet(e3) = {e4} 

HaPSet(e4) = {e3,e2} 

From all (good and bad) runs 

Steer search directly to a “bad” run 
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Does HaPSet Guided Search Work?  

HaPSet  

guided search 

DPOR PCB 

Thrift is a software framework by Facebook, for scalable cross-language 

services development.  

 

The C++ library has 18.5K lines of C++ code. It had a known deadlock. 
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Did not miss bugs in practice 

(many other examples in paper) 
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Summary and Challenges 

 Verifying Concurrent Programs 

– Concurrent programs are difficult to get right  

– Active area of verification research 

• Model checking, Static analysis, Testing/dynamic verification, … 

• Precise analysis requires reasoning about synchronization  

– Exploit programming patterns that are amenable for precise analysis 

• Efficient analysis requires controlling complexity of interleavings 

– Reductions, Implicit search, Abstractions, Compositional proofs 

 

– Precision AND efficiency of analysis are needed for practical impact 

• Applications guided by practical concerns 

– Context-bounding, Coverage-directed testing 

• Advancements in Decision Procedures (SAT/SMT) offer hope 

 

 Related Challenges 

– Multi-core systems, Many-core systems: Bug replay, debugging 

– Distributed systems: Systematic testing 

– Great opportunity due to proliferation of distributed networked services/systems 

 

 

 

 

 


