
May 2013 Static and Dynamic Verification of Concurrent Programs

Static and Dynamic Verification of Concurrent Programs

Aarti Gupta

Systems Analysis & Verification

NEC Labs America, Princeton, USA

Third Summer School on Formal Techniques

May 20 – 24, 2013

www.nec-labs.com

May 2013 Static and Dynamic Verification of Concurrent Programs

Acknowledgements

 Vineet Kahlon*, Chao Wang*, Nishant Sinha*, Pallavi Joshi (NEC Labs)

 Akash Lal (Microsoft Research, India)

 Madanlal Musuvathi (Microsoft Research)

 Kedar Namjoshi (Alcatel-Lucent)

 Chang-Seo Park (UC Berkeley, now at Google)

 Andrey Rybalchenko, Ashutosh Gupta, Corneliu Poppea (TU Munich),

Alexander Malkis (Imdea)

 Arnab Sinha (Princeton University, now at Microsoft)

 Tayssir Touili (LIAFA)

2

May 2013 Static and Dynamic Verification of Concurrent Programs

Motivation

 Key Computing Trends

– Multi-core platforms everywhere

– Need parallel, multi-threaded
programming

– Distributed systems

 Parallel/Multi-threaded Programming

– Difficult to program

• Dependencies due to shared data

• Subtle effects of synchronizations

– Difficult to debug

• too many interleavings of threads

• hard to reproduce bugs
Mobile Server Gaming

Low Power, High Performance

Data centers, Cloud platforms

3

Therac-25 medical radiation

device (1985) malfunction due

to SW race, at least 5 deaths

Nasdaq's Facebook glitch came from 'race conditions'
Nasdaq may pay out as much as $13 million due to a

hard-to-find software bug

2003 Northeast Blackout

Cost: $4 billion

May 2013 Static and Dynamic Verification of Concurrent Programs

What will I (try to) cover?

4

 Basic elements

– Model of concurrency

• Asynchronous interleaving model (unlike synchronous hardware)

• Explosion in interleavings

– Synchronization & Communication

• Shared variables: between threads or shared memory for processes

• Locks, semaphores: for critical sections, producer/consumer scenarios

• Atomic blocks: for expressing atomicity (non-interference)

• Pair-wise rendezvous

• Asynchronous rendezvous

• Broadcast: one-to-many communication

– On top of other features of sequential programs

• Recursive procedures, Loops, Heaps, Pointers, Objects, …

• (Orthogonal concerns and techniques)

 Will cover Static and Dynamic verification techniques

– Model checking, Abstract interpretation, Systematic testing, …

May 2013 Static and Dynamic Verification of Concurrent Programs

What I will not be able to cover

 Active topics of research

– Theorem-proving , type systems, runtime monitoring

– Separation logic: pointers & heaps, local reasoning

– Parallel programs: Message-passing (e.g. MPI libraries), HPC

applications

– Memory models: Relaxed memory models (e.g.TSO), Transactional

memories

– Synthesis/Optimization of locks/synchronizations

– Concurrent data structures/libraries: Lock-free structures

– Object-based verification: Linearizability checking

5

May 2013 Static and Dynamic Verification of Concurrent Programs

Models for Verifying Concurrent Programs

 Finite state systems

– Asynchronous composition of processes, including buffers/channels for

messages, no recursion

– Usage: Inline procedures up to some bound to get finite models

– Techniques: Bounded verification

 Sequential programs

– Recursive procedures and other features, no synchronization or

communication, no interleavings

– Usage: add synchr-comm, interleavings (thread interference)

– Techniques: Bounded as well as unbounded verification

 Pushdown system models

– Stack of a pushdown system (PDS) models recursion, finite control, data is

finite or infinite (with abstractions)

– Usage: System of interacting PDSs, interactions may be restricted

– Techniques: PDS-based model checking

6

May 2013 Static and Dynamic Verification of Concurrent Programs 7

 Model Checking

– Exhaustive state space exploration

– Maintains a representation of visited states (explicit states, symbolic states, …)

– Expensive, needs abstractions and approximations

 Bounded Model Checking

– State space search for bugs (counterexamples) or inputs for test cases

– Typically does not maintain representation of visited states

– Less expensive, but needs good search heuristics

Model Checking

Model Checking AG p

Does the set of states

reachable from s0

contain a bad state(s)?
s0 !p

Bounded Model Checking

Is there is a path from

the initial state s0

to the bad state(s)?

TR

Step 1

TR

Step 2

TR

Step 4

TR

Step 3

!p?

May 2013 Static and Dynamic Verification of Concurrent Programs

Outline

 Introduction

 PDS-based Model Checking

– Theoretical results

 Static Verification

– Reduction: Partial order reduction

– Abstraction and Composition: Static analysis, Thread-modular reasoning

– Bounding: Context-bounded analysis, Memory Consistency-based analysis

 Dynamic Verification

– Preemptive Context Bounding

– Predictive Analysis

– Active Testing

– Coverage-guided Systematic Testing

 Summary & Challenges

8

May 2013 Static and Dynamic Verification of Concurrent Programs

Pushdown System (PDS) Model

 Each thread is modeled as a PDS

– Finite Control : models control flow in a thread (data is abstracted)

– Stack : models recursion, i.e., function calls and returns

 PDS Example

 States: {s,t,u,v}

 Stack Symbols: {A,B,C,D}

 Transition Rules: <s,A>  < t, e >

 <s,A>  < t, B >

 <s,A>  < t, C B >

9

If the state is s, and A is the

symbol at the top of the stack,

then transit to state t, pop A,

and push B, C on the stack

PDS1

May 2013 Static and Dynamic Verification of Concurrent Programs

PDS-based Model Checking

 Close relationship between Data Flow Analysis for sequential programs

and the model checking problem for Pushdown Systems (PDS)

– The set of configurations satisfying a given property is regular

– Has been applied to verification of sequential Boolean programs

[Bouajjani et al., Walukeiwicz, Esparza et al.]

 Analogous to the sequential case, dataflow analysis for concurrent

program reduces to the model checking problem for interacting PDSs

 Problems of Interest: To study multi-PDSs interacting via the standard

synchronization primitives

– Locks

– Pairwise and Asynchronous Rendezvous

– Broadcasts

10

May 2013 Static and Dynamic Verification of Concurrent Programs

Interacting PDSs

 Problem: For multi-PDS systems, the set of configurations satisfying a

given property is not regular, in general

 Recall: Set of configurations is regular for individual PDS

 Strategy: Compute locally reachable configurations of individual PDS, and

leverage cases of “loose coupling”

11

(A, B)
Automaton A capturing

locally reachable

configurations of PDS1

Automaton B capturing

locally reachable

configurations of PDS2

PDS1

Key Challenge
Capture interaction based on synchronization patterns

PDS2

May 2013 Static and Dynamic Verification of Concurrent Programs

Capturing Interaction in presence of Synchronizations

 Key primitive: Static Reachability

– A global control state t is statically reachable from state s

 if there exists a computation from s to t that respects the constraints imposed

by synchronization primitives,

 e.g., locks, wait/notifies, …

 However, static reachability is undecidable

– for pairwise rendezvous [Ramalingam 00]

– for arbitrary lock accesses [Kahlon et al. 05]

– Undecidability hinges on a close interaction between synchronization and

recursion

– (Note: Even for finite data abstractions)

 How to get around this undecidability?

– Special cases of programming patterns: Nested Locks, Bounded Lock Chains

– Place restrictions on synchronization and communication

12

May 2013 Static and Dynamic Verification of Concurrent Programs

Programming Pattern: Nested Locks

Nested Locks:

Along every computation, each thread can only release that lock which it

acquired last, and that has not yet been released

 Example:

 f() { g(){ h(){

 acquire(b) ; acquire(a); acquire(c);

 g (); release(a); release(b);

 // h (); release(b); }

 release(c); acquire(c);

 } }

 Programming guidelines typically recommend that programmers use
locks in a nested fashion

 Multiple locks are enforced to be nested in Java1.4 and C#

13

f calls g: nested locks

f calls h: non-nested locks

May 2013 Static and Dynamic Verification of Concurrent Programs

Programming Pattern: Lock Chains

 Lock Chains

 Nested Locks: Chains of length one

 Most lock usage is nested

 Non-nested usage occurs in niche applications, often bounded chains

– Serialization, e.g. 2-phase commit protocol uses chains of length 2

– Interaction of mutexes with synchronization primitives like wait/notify

– Traversal of shared data structures, e.g. length of a statically-allocated array

14

May 2013 Static and Dynamic Verification of Concurrent Programs

Interacting PDSs with Locks

15

(A, B)

PDS1 PDS2

Key Challenge: Capture interaction based on synchronization patterns

General Problem for arbitrary lock patterns: Undecidable [Kahlon et al. CAV 2005]

For nested locks and bounded lock chains: Decidable
 [Kahlon et al. POPL 07,LICS 09,CONCUR 11]

• Tracks lock access patterns thread-locally as regular automata
• Incorporates a consistency check in the acceptance condition

May 2013 Static and Dynamic Verification of Concurrent Programs

 Restrict Synchronization & Communication: Example

16

Reachability is decidable for PDS Networks with: [Atig et al. 08]

 - acyclic communication graph

 - lossy FIFO channels

May 2013 Static and Dynamic Verification of Concurrent Programs

PDS-based Model Checking: Summary

Reachability Problem

 Undecidable for Pairwise Rendezvous [Ramalingam 00]

 Undecidable for PDSs interacting via Locks [Kahlon et al. CAV 05]

 Decidable for PDSs interacting via Nested Locks [Kahlon et al. CAV 05]

 Decidable for PDSs interacting via Bounded Lock Chains

 [Kahlon LICS 09, CONCUR 11]

Reachability/Model Checking is Decidable under Other Restrictions

– Constrained Dynamic Pushdown Networks [Bouajjani et al. TACAS 07]

– Asynchronous Dynamic Pushdown Network [Bouajjani et al. FSTTCS 05]

– Reachability of Acyclic Networks of Pushdown Systems

 [Atig et al. CONCUR 08]

– Context-bounded analysis for concurrent programs with dynamic creation of

threads [Atig et al. TACAS 09]

17

May 2013 Static and Dynamic Verification of Concurrent Programs

 Hard to apply PDS-based methods directly

– Huge gap between model and modern programming languages

 In addition to state space explosion due to data (as in finite state systems

and sequential programs)

 the complexity bottleneck is exhaustive exploration of interleavings

 The next section describes various strategies to tackle this in practice

– Reduce number of interleavings to consider

• Partial Order Reduction (POR)

– Use program abstractions and compositional techniques

• Static analysis

• Thread-modular reasoning

– Bound the problem

• Context-bounded analysis

• Memory Consistency-based analysis

Practical Verification of Concurrent Programs

18

May 2013 Static and Dynamic Verification of Concurrent Programs

Some Preliminaries

 What is checked in practice?

 Common concurrency bugs

– Dataraces, deadlocks, atomicity violations

 Standard runtime bugs

– Null pointer dereferences

– Memory safety bugs

 Properties

– Safety, e.g. mutual exclusion

– Liveness, e.g. absence of starvation

19

May 2013 Static and Dynamic Verification of Concurrent Programs

Common Concurrency Bugs

/*--- Thread 1 ----*/

 . . .

 Write (globalVar);

 . . .

/*--- Thread 2 ----*/

. . .

Read (globalVar);

. . .

• Race Condition: simultaneous memory access (at least one write)

• Deadlock: hold-and-wait cycles

/*--- Thread 1 ---*/

 lock(A);

 . . .

 lock(B);

/*--- Thread 2 ---*/

 lock(B);

 . . .

 lock(A);

• Atomicity violation: interference from other threads/processes

/*--- Thread 1 ----*/

 if (account_ptr != NULL) {

 ...

 account_ptr -> amount -= debit;

 }

/*--- Thread 2 ---*/

if (account_ptr != NULL) {

 free(account_ptr);

 account_ptr = NULL;

}

20

May 2013 Static and Dynamic Verification of Concurrent Programs

 Data Race: If two conflicting memory accesses happen concurrently

 Two memory accesses conflict if

– They target the same location

– They are not both read operations

 Data races may reveal synchronization errors

– Typically caused because programmer forgot to take a lock

– Many programmers tolerate “benign” races

– Racy programs risk obscure failures caused by memory model relaxations in

the hardware and the compiler

Data Race Detection

May 2013 Static and Dynamic Verification of Concurrent Programs

Data Race Detection: Basics (1)

 Two popular approaches for datarace detection

 Lockset analysis [Savage et al. 97, ERASER]

– Definition

• Lockset(l): The set of locks held at program location l

– Method

• Compute locksets for all locations in a program (statically or

dynamically)

• Race: When there are conflicting accesses from program locations

with disjoint locksets

– Gives too many false warnings, since program locations may not be

reachable concurrently

 Opportunity for more precise analysis (discussed in static analysis)

22

May 2013 Static and Dynamic Verification of Concurrent Programs

Happens-Before Order

 Use logical clocks and timestamps to define a partial order called happens-before
on events in a concurrent system

 States precisely when two events are logically concurrent (abstracts away real time)

 Distributed Systems: Cross-edges from send to receive events

 Shared Memory Systems: Cross-edges represent ordering effects of synchronization

– Edges from lock release to subsequent lock acquire

– Long list of primitives that may create edges: Semaphores, Waithandles,
Rendezvous, System calls (asynchronous IO)

1

2

3

1

2

3

1

2

3

(0,0,1)
 Cross-edges from send events to

receive events

 (a1, a2, a3) happens before (b1, b2, b3)

 iff a1 ≤ b1 and a2 ≤ b2 and a3 ≤ b3

(2,1,0) (1,0,0)

(0,0,2) (2,2,2) (2,0,0)

(0,0,3) (2,3,2) (3,3,2)

[Lamport]

May 2013 Static and Dynamic Verification of Concurrent Programs

Data Race Detection: Basics (2)

 Happens-Before (HB) analysis

– Happens-Before order: a partial order over synchronization events

 [Lamport 77]

– Method:

• Observe HB order during dynamic execution

• Race: If conflicting accesses are not ordered by HB

– This is precise, but dynamic executions have limited coverage

 Opportunity for improving coverage over alternate schedules

(discussed later in predictive analysis)

24

May 2013 Static and Dynamic Verification of Concurrent Programs

Outline

 Introduction

 PDS-based Model Checking

 Theoretical results

 Static Verification

– Reduction: Partial order reduction

– Abstraction and Composition: Static analysis, Thread-modular reasoning

– Bounding: Context-bounded analysis, Memory Consistency-based analysis

 Dynamic Verification

– Preemptive Context Bounding

– Predictive Analysis

– Active Testing

– Coverage-guided Systematic Testing

 Summary & Challenges

25

26

Partial Order Reduction (POR)

Thread 1 Thread 2

0,0,0

1,0,0 0,1,0

1,1,0 1,0,2

1,1,2

1,1,4 1,1,2

1,1,0

0,1,0

x=1

g=g+2

y=1

g=g*2

x=1

y=1

y=1

x=1

g=g+2 y=1

g=g+2

g=g*2 g=g+2

x=1 g=g*2

g=g*2

State label: (x,y,g)
Consider the following thread executions.

The full-blown state-space can be large.

Good news: the order of independent
events does not affect the state that is
reached.

27

Partial Order Reduction (POR)

Thread 1 Thread 2

0,0,0

1,0,0 0,1,0

1,1,0 1,0,2

1,1,2

1,1,4 1,1,2

1,1,0

0,1,0

x=1

g=g+2

y=1

g=g*2

x=1

y=1

y=1

x=1

g=g+2 y=1

g=g+2

g=g*2 g=g+2

x=1 g=g*2

g=g*2

State label: (x,y,g)
Consider the following thread executions.

The full-blown state-space can be large.

Good news: the order of independent
events does not affect the state that is
reached.

It suffices to explore only one representative
from each equivalence class.

Different orders of independent events
constitute an equivalence class
(Mazurkiewicz trace equivalence).

28

Partial Order Reduction (POR)

Thread 1 Thread 2

0,0,0

1,0,0 0,1,0

1,1,0 1,0,2

1,1,2

1,1,4 1,1,2

1,1,0

0,1,0

x=1

g=g+2

y=1

g=g*2

x=1

y=1

y=1

x=1

g=g+2 y=1

g=g+2

g=g*2 g=g+2

x=1 g=g*2

g=g*2

State label: (x,y,g)
Consider the following thread executions.

Good news: the order of independent
events does not affect the state that is
reached.

It suffices to explore only one representative
from each equivalence class.

Different orders of independent events
constitute an equivalence class
(Mazurkiewicz trace equivalence).

The full-blown state-space can be large.

29

POR in Model Checking

 POR in explicit-state model checking / stateless search
– Persistent sets, stubborn sets, sleep sets

 [Godefroid 1996], [Peled 1993], [Valmari 1990], …
– Dynamic POR (uses HB to derive precise conflict sets), Cartesian POR

 [Flanagan & Godefroid, POPL 2005], [Gueta et al, SPIN 2007]

 POR in Software Model Checkers
 SPIN [Holzmann], VeriSoft [Godefroid], JPF [Visser et al., Stoller et al.]

• Pioneering efforts on model checking concurrent programs

 POR in symbolic model checking / bounded model checking
– In BDD based model checking

 [Alur et al, 2001], [Theobald et al, 2003],…
– In SAT/SMT based BMC

 [Cook, Kroening, Sharygina, 2005],
 [Grumberg, Lerda, Strichman, Theobald, 2005],
 [Kahlon et al. 2006], [Wang et al. 2008], [Kahlon et al. 2009]

30

Classic Notion of Independence

 Independence relation [Katz & Peled, 1992] [Godefroid and Pirottin, 1993]

 Mainly of semantic use (not practical to check)

 Extended to “conditional dependence relation”
– With respect to “a single state s”, rather than “for all s in S”
– Well suited for explicit-state algorithms (Adaptive Search),

but not for symbolic algorithms

31

Motivating Example

Combining classic POR methods with symbolic algorithms is non-trivial

• dependence needs to be defined respect to a set of states (vs. a state)

• need an efficient symbolic encoding

32

How to exploit this type of PO reductions symbolically?

Motivating Example (cont’d)

33

Guarded Independence Relation

 Independence relation [Katz & Peled, 1992] [Godefroid and Pirottin, 1993]

 Guarded by predicates (representing sets of states) [Wang et al. TACAS 08]

34

Guarded Independence Relation (GIR) for POR

 Notation

 Collect GIR with a simple traversal of the program structure

May 2013 Static and Dynamic Verification of Concurrent Programs

Outline

 Introduction

 PDS-based Model Checking

 Theoretical results

 Static Verification

 Reduction: Partial order reduction

 Abstraction and Composition: Static analysis, Thread-modular reasoning

– Bounding: Context-bounded analysis, Memory Consistency-based analysis

 Dynamic Verification

– Preemptive Context Bounding

– Predictive Analysis

– Active Testing

– Coverage-guided Systematic Testing

 Summary & Challenges

35

May 2013 Static and Dynamic Verification of Concurrent Programs

 void Alloc_Page () {

 a = c;

 pt_lock(&plk);

 if (pg_count >= LIMIT) {

 pt_wait (&pg_lim, &plk);

 incr (pg_count);

 pt_unlock(&plk);

 sh1 = sh;

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 page = alloc_page();

 sh = 5;

 if (page)

 incr (pg_count);

 pt_unlock(&count_lock);

 end-if

 b = a+1;

 }

 void Dealloc_Page ()

 pt_lock(&plk);

 if (pg_count == LIMIT) {

 sh = 2;

 decr (pg_count);

 sh1 = sh;

 pt_notify (&pg_lim, &plk);

 pt_unlock(&plk);

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 decr (pg_count);

 sh = 4;

 pt_unlock(&count_lock);

 end-if

 }

Motivating Example for Static Analysis

36

Consider all possible pairs of locations

where shared variables are accessed

(e.g. for checking data races)

May 2013 Static and Dynamic Verification of Concurrent Programs

Motivating Example: Lockset Analysis

37

 void Alloc_Page () {

 a = c;

 pt_lock(&plk);

 if (pg_count >= LIMIT) {

 pt_wait (&pg_lim, &plk);

 incr (pg_count);

 pt_unlock(&plk);

 sh1 = sh;

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 page = alloc_page();

 sh = 5;

 if (page)

 incr (pg_count);

 pt_unlock(&count_lock);

 end-if

 b = a+1;

 }

 void Dealloc_Page ()

 pt_lock(&plk);

 if (pg_count == LIMIT) {

 sh = 2;

 decr (pg_count);

 sh1 = sh;

 pt_notify (&pg_lim, &plk);

 pt_unlock(&plk);

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 decr (pg_count);

 sh = 4;

 pt_unlock(&count_lock);

 end-if

 }

Lockset Analysis: Compute the set of locks at location l

Here, lock plk is held in both locations.

Hence, these locations are simultaneously unreachable.

Therefore, there is no datarace.

May 2013 Static and Dynamic Verification of Concurrent Programs

 void Dealloc_Page ()

 pt_lock(&plk);

 if (pg_count == LIMIT) {

 sh = 2;

 decr (pg_count);

 sh1 = sh;

 pt_notify (&pg_lim, &plk);

 pt_unlock(&plk);

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 decr (pg_count);

 sh = 4;

 pt_unlock(&count_lock);

 end-if

 }

 void Alloc_Page () {

 a = c;

 pt_lock(&plk);

 if (pg_count >= LIMIT) {

 pt_wait (&pg_lim, &plk);

 incr (pg_count);

 pt_unlock(&plk);

 sh1 = sh;

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 page = alloc_page();

 sh = 5;

 if (page)

 incr (pg_count);

 pt_unlock(&count_lock);

 end-if

 b = a+1;

 }

Motivating Example: Synchronization Constraints

38

These locations are simultaneously unreachable

due to wait-notify ordering constraint.

Therefore, no datarace.

May 2013 Static and Dynamic Verification of Concurrent Programs

Motivating Example

 void Alloc_Page () {

 a = c;

 pt_lock(&plk);

 if (pg_count >= LIMIT) {

 pt_wait (&pg_lim, &plk);

 incr (pg_count);

 pt_unlock(&plk);

 sh1 = sh;

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 page = alloc_page();

 sh = 5;

 if (page)

 incr (pg_count);

 pt_unlock(&count_lock);

 end-if

 b = a+1;

 }

39

 void Dealloc_Page ()

 pt_lock(&plk);

 if (pg_count == LIMIT) {

 sh = 2;

 decr (pg_count);

 sh1 = sh;

 pt_notify (&pg_lim, &plk);

 pt_unlock(&plk);

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 decr (pg_count);

 sh = 4;

 pt_unlock(&count_lock);

 end-if

 }

Data race?

NO, due to invariants at these locations

 pg_count is in (-inf, LIMIT) in T1

 pg_count is in [LIMIT, +inf) in T2

Therefore, these locations are not simultaneously reachable

How do we get these invariants?

By using abstract interpretation, model checking, …

May 2013 Static and Dynamic Verification of Concurrent Programs 40

Symbolic Verification of Programs

 Abstract Interpretation [Cousot & Cousot 77]

– State sets are not exact, but over-approximations (for sound analysis)

– Abstract post operation

– Over-approximate fixpoint computation

 Popular for generating inductive invariants for Sequential Programs

– Abstract domains: intervals, octagons, polyhedra, …

Abstract description

Set of states

Abstract post

Join operation

May 2013 Static and Dynamic Verification of Concurrent Programs

Concurrent Programs: Static Analysis

 Intuitively, one can reason similarly for concurrent programs

– Not all product (global) control states, but only the statically reachable states

– Transaction Graph:

• Each node is a statically reachable global control state,

• Each edge is a transaction, i.e. an uninterruptible sequence of actions by a

single thread

 Two main (inter-related) problems

– How to find which global control states (nodes) are reachable?

– How to find (large) transactions?

• Larger the transactions, smaller the number of interleavings to consider

 Refinement Approach [Kahlon et al. TACAS 09]

– At any stage, the transaction graph over-approximates the set of thread

interleavings for sound static analysis or model checking

– Iteratively refine the transaction graph by computing invariants

41

May 2013 Static and Dynamic Verification of Concurrent Programs

Transaction Graph Example

p1

 p0

pos > SLOTS

full?

pos <= SLOTS

pos > 0

pos += 1

emp!

s2

s0

s1
repeat (forever){
 lock(posLock);
 while (pos > SLOTS){
 unlock(posLock);
 wait(full);
 lock(posLock);
 }
 data[pos++] := ...;
 if (pos > 0){
 signal(emp);
 }
 unlock(posLock);
}

p0,q0

p1,q0
p0,q1

p1,q1

t2

t1

t0

s1 s0

s2

Nodes where context

switches to be considered

42

May 2013 Static and Dynamic Verification of Concurrent Programs

Refining Transactions

 Initial Transaction Graph

– Make this as small as possible

– Use static partial order reduction (POR) to consider non-redundant interleavings

• Over control states only, but need to consider CFL-reachability

– Use synchronization constraints to eliminate statically unreachable nodes

• Recall: Static reachability wrt synchronization operations

• Precise analysis for nested locks, bounded lock chains, locks with wait-notify

 [Kahlon et al. 05, Kahlon 08, Kahlon & Wang 10]

 Iterative Refinement of Transaction Graph

 Repeat

– Compute invariants over the transaction graph using abstract interpretation

• Abstract domains: range, octagons, polyhedra [Cousot & Cousot, Miné. …]

– Use invariants to prove nodes unreachable, and simplify graph

– Re-compute transactions (POR, synchronization analysis)

Until transactions cannot be refined further.

 43

[Kahlon et al. TACAS 09]

May 2013 Static and Dynamic Verification of Concurrent Programs

Application: Detection of Data Races

 Implemented in NEC’s CoBe (Concurrency Bench) tool

 Phase 1: Static Warning Generation

– Shared variable detection, Lockset analysis

– Generate warnings at global control states (c1, c2) when

• The same shared variable is accessed, at least one access is a write, and

• Locksets at c1 and c2 are disjoint

 Phase 2: Static Warning Reduction (for improved precision)

– Create a Transaction Graph, and generate sound invariants

• POR reductions, synchronization analysis, abstract interpretation

– If (c1, c2) is proved unreachable, then eliminate the warning

 Phase 3: Model Checking

– Otherwise, create a model for model checking reachability of (c1, c2)

• Slicing, constant propagation, enforcing invariants: lead to smaller models

• Makes bounded model checking viable

• Provides a concrete error trace

44

May 2013 Static and Dynamic Verification of Concurrent Programs

CoBe: Experiments

 Linux device drivers with known data race bugs

45

After Phase 1 (Warning Generation)

After Phase 2 (Warning Reduction)

After Phase 3 (Model Checking)

Linux Driver KLOC #Sh Vars #Warnings Time # After Time #Witness #Unknown

(sec) Invariants (sec) MC

pci_gart 0.6 1 1 1 1 4 0 1

jfs_dmap 0.9 6 13 2 1 52 1 0

hugetlb 1.2 5 1 4 1 1 1 0

ctrace 1.4 19 58 7 3 143 3 0

autofs_expire 8.3 7 3 6 2 12 2 0

ptrace 15.4 3 1 15 1 2 1 0

raid 17.2 6 13 2 6 75 6 0

tty_io 17.8 1 3 4 3 11 3 0

ipoib_multicast 26.1 10 6 7 6 16 4 2

TOTAL 99 24 21 3

decoder 2.9 4 256 5min 15 22min

bzip2smp 6.4 25 15 18 12 35

May 2013 Static and Dynamic Verification of Concurrent Programs

CoBe: Experiments

 Linux device drivers with known data race bugs

 Successfully applied to medium-sized Linux device drivers

 How about scalability on industry projects?

– On large code (> 100 kLOC – 1 MLOC), could not create CFG for entry function

46

Linux Driver KLOC #Sh Vars #Warnings Time # After Time #Witness #Unknown

(sec) Invariants (sec) MC

pci_gart 0.6 1 1 1 1 4 0 1

jfs_dmap 0.9 6 13 2 1 52 1 0

hugetlb 1.2 5 1 4 1 1 1 0

ctrace 1.4 19 58 7 3 143 3 0

autofs_expire 8.3 7 3 6 2 12 2 0

ptrace 15.4 3 1 15 1 2 1 0

raid 17.2 6 13 2 6 75 6 0

tty_io 17.8 1 3 4 3 11 3 0

ipoib_multicast 26.1 10 6 7 6 16 4 2

TOTAL 99 24 21 3

decoder 2.9 4 256 5min 15 22min

bzip2smp 6.4 25 15 18 12 35

May 2013 Static and Dynamic Verification of Concurrent Programs

CoBe: Layered Analysis

 Issue

– For threads executing functions with large CFGs (control flow graphs), the CFG

construction itself may run out of memory

 Strategy

– Trade-off time for space, via Call Graph layering

– Work with few layers in memory at a time, using files to transfer information

between layers

 Implementation

– First the CFG of the entry function in each thread is created up to some small

depth cutoff (DC), e.g. DC = 2 includes main and foo above

– The CFGs of functions called at depth greater than DC (e.g. bar, baz) are built

on-the-fly, in depth-first order according to call graph of entry function (main)

– Aliasing and lockset information is passed across layers.

47

main

foo

bar baz

May 2013 Static and Dynamic Verification of Concurrent Programs

int sh;

main(){ foo(int *p){ bar(int *q){ baz(int *r){

 foo(&sh); bar(p); lock(lk); *r = 0;

} unlock(lk); *q = 1; }

 baz(p); }

 }

CoBe: Layering Example

48

main

foo

bar baz

pass points-to set of p

pass points-to set of q

log the update to *q

as a shared variable access

return lock set {lk}

pass points-to set of r

log the update to *r

as a shared variable access

return empty lock set

return empty lock set

May 2013 Static and Dynamic Verification of Concurrent Programs

Thread-Modular Reasoning

 As we just saw, invariants play a key role in static analysis

 Compositional verification

– Proofs rules typically use inductive invariants

– Advantage: Avoids explicit reasoning over interleavings

 Some Basics

– An assertion is a set of states

– Assertion  is invariant if it includes all reachable states

– Invariance is proved using an auxiliary inductive invariant 

• (initiality) [I  ]

• (inductiveness) [next (T, )  ]

• (adequacy) [  ]

– next(T, ) is the set of successors of states in  by T

– R is the strongest inductive invariant

• but may not need strongest

49

𝐻, 𝑒 → 𝐻′, 𝑒′

𝐻, 𝑡 𝑒 → 𝐻′, 𝑡[𝑒′]

⊺

0 −1 1

⊺

… …

50

May 2013 Static and Dynamic Verification of Concurrent Programs 51

May 2013 Static and Dynamic Verification of Concurrent Programs 52

Local Proofs [Cohen & Namjoshi CAV 07, CAV 08, CAV 10]

Can handle safety and liveness properties

Works well on many examples (Bakery, Peterson’s, Szymanski, …)

May 2013 Static and Dynamic Verification of Concurrent Programs 53

Uses well-known techniques from software model checking (predicate

abstraction refinement, CEGAR) for automating the proof rules

[Gupta et al. POPL 11, CAV 11]

May 2013 Static and Dynamic Verification of Concurrent Programs

Outline

 Introduction

 PDS-based Model Checking

 Theoretical results

 Static Verification

 Reduction: Partial order reduction

 Abstraction and Composition: Static analysis, Thread-modular reasoning

 Bounding: Context-bounded analysis, Memory Consistency-based analysis

 Dynamic Verification

– Preemptive Context Bounding

– Predictive Analysis

– Active Testing

– Coverage-guided Systematic Testing

 Summary & Challenges

54

May 2013 Static and Dynamic Verification of Concurrent Programs

Context-Bounded Analysis

 Recall

– The general problem of verifying a concurrent program (recursive procedures

with synchronization) is undecidable.

– We have seen various strategies to get around undecidability

• Exploiting patterns of synchronization

• Restricting synchronization & communication

• Ignoring recursion by (bounded) function inlining

 Another key idea: Bound number of context switches

– Context-bounded analysis of PDSs is decidable [Qadeer & Rehof, TACAS 05]

– Note: There can be recursion within each segment between context switches

– In practice, many bugs are found within a small number of context switches

– Implemented in tools: KISS, CHESS (Microsoft), …

55

May 2013 Static and Dynamic Verification of Concurrent Programs

Context-Bounded Analysis using Sequentialization

 [Lal & Reps, CAV 08]

 Sequentialization: Reduce CBA to sequential program analysis

56

Concurrent

Pc

Sequentialization

Reduction

Sequential

Ps

Context Bound

K

• Efficient reduction:

– PS has K times more global variables

– No increase in local variables

• Can borrow all the cool stuff from the sequential world

May 2013 Static and Dynamic Verification of Concurrent Programs

From Concurrent to Sequential

Model

Two threads, shared memory, K execution contexts per thread

57

Ti

(s1, l1) (s2, l2)

Shared Memory

T1

T2

Local Memory

Local Memory

May 2013 Static and Dynamic Verification of Concurrent Programs

From Concurrent to Sequential

58

T1

T2

T1

(s1, l1) (s2, l2)
s2

l2

T1

T2

T1

T2

T1

Execution proceeds as:

T1

T2

T1

(s1, l1) (s2, l2) (s3, l2)

Guess the effect of T2 Verify the guess

May 2013 Static and Dynamic Verification of Concurrent Programs

Sequentialization: Idea

 K = number of chances that each thread gets

 Guess (K-1) global states: s1 = init, s2, …, sK

59

T1 processes all contexts first, guesses states of T2

T2 goes next, using states of T1
At the end: Check the guesses, i.e. s”

1= s2 and s”
2 = s3, …

s1 s2 s3 …

(s1, l1) (s′
1,l2) (s2,l2) (s′

2,l3) (s3,l3) (s′
3,l4)

T1

(s′
1,m1) (s”

1,m2) (s′
2,m2) (s”

2,m3) (s′
3,m3) (s”

3,m4)
T2

Symbolic inputs

May 2013 Static and Dynamic Verification of Concurrent Programs

Checker: assume(W1 == w2); assume(X1 == x2); …
 assume(Y2 == y3); assume(Z2 == z3)

Reachable!

Sequentialization Transformation

 T1 ⟶ T1
s and T2 ⟶ T2

s

 (T1 || T2) ⟶ (T1
s; T2

s ; Checker; assert(no_error))

60

w1 x1 y1 z1 w2 x2 y2 z2 w3 x3 y3 z3 i = 2 i = 3 i = 1

W1 X1 Y1 Z1
W2 X2 Y2 Z2 W3 X3 Y3 Z3

T1
S

T2
S

K copies of the shared memory

May 2013 Static and Dynamic Verification of Concurrent Programs

Sequentialization: Summary

 Pushes “guesses” about interleaved states into inputs

 T1 ⟶ T1
s and T2 ⟶ T2

s

 (T1 || T2) ⟶ (T1
s; T2

s ; Checker; assert(no_error))

61

Main idea:

Reduce control non-determinism to data non-determinism

Memory Consistency-based Analysis

o Interleaving model
 Partially ordered traces
 Context-switching, interleaved traces
 Is control-centric: Control induces data-flow

o Instead, consider a Memory Consistency (MC) model

 e.g. Sequential Consistency (SC), Total Store Order (TSO), ….
 MC model specifies rules under which a read may observe some write

o Data Nondeterminism in MC model

 Reason about read-write interference directly
 No need to have a scheduler
 Is data-centric : data-flow induces control-flow
 Examples: Nemos, Checkfence, x86-TSO, Memsat, Staged Analysis
 Symbolic exploration using SAT/SMT solvers avoids explicit enumeration

of interleavings

Sequential Consistency (SC) based Verification

o Three steps
1. Obtain an Interference Skeleton (IS) from (unrolled) Program

• Global read and write events and their program order

• Encoded as IS

2. SC axioms for reads/writes in IS

• Quantified first-order logic formula 

3. Encode Property as a formula P

• data race, assertion violation, …

o Check IS    P for satisfiability (using an SMT solver)

Bounded

[Sinha & Wang POPL 11]

Sequential Consistency Axioms

o Axioms of Sequential Consistency (SC)
 each read must observe (link with) some write
 read must link with most recent write in execution order

o Specified in typed first-order logic

 read r, write w: Access type

o Link Predicate: link (r,w)
 holds if read r observes write w in an execution
 Exclusive : link (r,w) =>  w’.  link (r,w’)

o Must-Happen-before Predicate : hb (w,r)
 w must happen before r in the execution
 strict partial order

o These axioms are added to the Program precisely encoded using
reads/writes and program order

Example

c = true;

if (c) {

 *p = 0;
}
else …

c = false;

.......

p = 0;

Goal: Detect NULL pointer access violation

- so rp must be enabled
- en (rp) = (en (rc)  val(rc) = true)
en(rp)  en (rc) (Path conditions)
and, en(rp)  val (rc) = true (*)

Because en(rp), so link(rp,wp) ()

So, hb (wp,rp) ()

link (rc, wc1)  link (rc, wc2) ()

Try link (rc, wc1)
 so, val (rc) = val(wc1) = false ()
 Contradicts with (*)

so, link (rc, wc2)
so, hb (wc2, rc) ()
Check () for rc: intruding write wc1

so, Add hb(wc1, wc2)

linearize to obtain a feasible trace

wp rp

rc

wc1 wc2

rc

wc1

wc2

wp

rp
…

Thread 1 Thread 2

wc1

wc2

rc

wp

rp

May 2013 Static and Dynamic Verification of Concurrent Programs

 Introduction

 PDS-based Model Checking

 Theoretical results

 Static Verification

 Reduction: Partial order reduction

 Abstraction: Unbounded context analysis, Thread-modular reasoning

 Bounding: Context-bounded analysis , Memory Consistency-based analysis

 Dynamic Verification

– Preemptive Context Bounding

– Predictive Analysis

– Active Testing

– Coverage-guided Systematic Testing

 Summary & Challenges

Outline

66

PDS-based model checking, Static Verification

• May not scale to large programs

• Too many false warnings

• Difficult to apply in multi-process or distributed settings

Interest in Dynamic Verification based on executions

May 2013 Static and Dynamic Verification of Concurrent Programs

Main

thread

Multithreaded C/C++ Program

Heap (storing shared objects)

T1 T 2 T3

Test
Input

POSIX Threads Library (Pthreads)

Rest of the Linux OS

User expectation:

If the program fails the given test,

the user wants to see the bug

The reality:

Even if the program may fail (under

a certain schedule),

the user likely won’t see it

Why?

Thread scheduling is controlled by

the OS and the Pthreads library

Testing Multi-threaded Programs

67

Tools: VeriSoft, Chess, Fusion, Inspect

Take control of the scheduler to

execute alternate schedules

May 2013 Static and Dynamic Verification of Concurrent Programs

x = 1;

 …

 …

 …

 …

 …

y = k;

CHESS: Heisenbugs and State space explosion

x = 1;

 …

 …

 …

 …

 …

y = k;

…

n threads

k steps
 each

 Number of executions

 = O(nnk)

 Exponential in both n and k

– Typically: n < 10, k > 100

 Limits scalability to large

programs

Goal: Scale CHESS to large programs (large k)

[Musuvathi et al. PLDI 07, OSDI 08]

May 2013 Static and Dynamic Verification of Concurrent Programs

x = 1;

 …

 …

 …

 …

 …

y = k;

x = 1;

 …

 …

 …

 …

 …

y = k;

x = 1;

 …

 …

 …

 …

 …

y = k;

x = 1;

 …

 …

 …

 …

 …

y = k;

CHESS: Preemptive Context Bounding (PCB)

 Terminating program with fixed inputs and deterministic threads

– n threads, k steps each, c preemptions

– Preemptions are context switches forced by the scheduler

 Number of executions <= nkCc . (n+c)!

 = O((n2k)c. n!)

 Exponential in n and c, but not in k

• Choose c preemption points

• Permute n+c atomic blocks

Many bugs found in a small

number of preemptions

[Musuvathi et al. PLDI 07, OSDI 08]

70

Formal

Verification

Trace Based Verification

Concurrent program

Large
state-space

Alternate approaches

Collect shared

access footprint

Concurrent program Trace

Monitoring problem

Full formal verification is often intractable

Tractable and no false alarms.

Predictive Analysis problem

Larger set of interleavings is
explored.

Online/offline
monitoring of trace

Predict errors in
alternate interleavings

e.g. model checking

Will not talk about this

Next

Recall: Atomicity Violations

 Atomicity is a desired correctness criterion for concurrent programs.

– Non-interference on shared accesses from code residing outside and
inside an atomic region.

– Serializability is a notion that checks atomicity.

 A recent study shows 69% of concurrency bugs due to atomicity violations
[Lu et al. ASPLOS’08]

71

read x

read y

write x

write y read x

read y

write x

write y

read x

read y

write x

write y

72

Predictive Analysis: Motivating Example

Thread T1 Thread T2

atomic{
e2: b := p;
e3: if (b ≠ 0)
e4: *(p) := 10;
}

e1: p := &a;

e5: p := 0;

e2: RD (p)

e3:

e4: RD (p)

e1: WR (p)

e5: WR (p)

Time

Original trace is bug-free.

An alternate interleaving can be buggy.

However, if a read is mismatched (not
reading from the original write), the
alternate trace might be infeasible
(since control flow could be altered).

We are checking for potential serializability violations.
Thread T1 Thread T2

e1: WR (p)

e5: WR (p)

e2: RD (p)

e3:

e4: RD (p)

e1: WR (p)

e5: WR (p)

(a) Unserializable and feasible.

Time

e2: RD (p)

e3:

e4: RD (p)

(b) Unserializable and infeasible.

if (b ≠ 0)

if (b ≠ 0) if (b ≠ 0)

Violation path

May 2013 Static and Dynamic Verification of Concurrent Programs

Predictive Analysis: Idea

 Predictive analysis [Rosu et al. CAV 07, Farzan et al. TACAS 09, …]

– Run a test execution and log information about events of interest

– Generate a predictive model over the events, by relaxing some

ordering constraints

– Analyze the predictive model to check alternate interleavings of

these events

– Note: Does not cover events not observed in the trace

 Examples of predictive models

– Control State Reachable (CSR) model: simple

– Maximal Causal Model (MCM): good coverage

73

May 2013 Static and Dynamic Verification of Concurrent Programs

Control State Reachable (CSR) Predictive Model

shared variables: x=0 initially

t1: RD(x)

t2: WR(x)

t3: RD(x)

t4: nop

t5: WR(x)

 observe “events” instead of “statements”

Ignore read-write values, log lock/unlock ops

This interleaving is “not feasible”

But CSR would report it as an error

t1: RD(x)

t2: WR(x)

t3: RD(x)

t4: nop

t5: WR(x)

CSR reports a bogus bug

 [Farzan & Parthasarathy, 2009]

May 2013 Static and Dynamic Verification of Concurrent Programs

Maximal Causal Model (MCM) for Predictive Analysis

shared variables: x=0 initially

 a := x + 1

t1: RD(x) = 1

t2: WR(x) = 2

t3: RD(x)=2

t4: nop

t5: WR(x)=5

 observe “events” instead of “statements”

Values of read and writes must be consistent

This interleaving is actually “feasible”

(but it would be missed by MCM)

t1: RD(x) = 1

t2: WR(x) = 1

t3: RD(x)=2

t4: nop

t5: WR(x)=5

MCM misses the real bug

[Serbanuta, Chen & Rosu, 2008]

May 2013 Static and Dynamic Verification of Concurrent Programs

Symbolic Predictive Analysis

 Symbolic Predictive Analysis [Wang et al. FM 09, TACAS 10]

– Generate a precise predictive model by considering constraints due

to synchronization and dataflow

• Motivation: No false bugs, no missed bugs

– Symbolically explore all possible thread interleavings of events in

that trace, using an SMT solver

• Motivation: Performs better than explicit enumeration

76

May 2013 Static and Dynamic Verification of Concurrent Programs

C program:

 multi-threaded,

 using Pthreads

Execution trace

Concurrent Trace

Program (CTP)

Predictive Model

77

“assume(c)” means the (c)-branch is taken

May 2013 Static and Dynamic Verification of Concurrent Programs

 Build an SMT formula (e.g. linear arithmetic)

– F_program : encodes all feasible thread interleavings of CTP

– F_property : encodes the property, e.g. an assertion violation

 Solve using an SMT solver

 (F_program  F_property)

 Sat  found a real error

 Unsat  no error in any interleaving

 Improves

– Precision over other predictive techniques

– Covers all possible interleavings of

 the observed events.

Symbolic Predictive Analysis using CTP

78

[Wang et al. FM 09, TACAS 10]

May 2013 Static and Dynamic Verification of Concurrent Programs

CTP Model: HB (Happens-Before) Constraints

 Use a uniform HB (happens-before) model to capture constraints

– Program order constraints

• e.g. sequential consistency (or weaker memory models …)

– Synchronization constraints

• e.g. fork-joins, wait-notify, mutual exclusion using locks, …

– Correctness violations

• e.g. assertion violations, data races, serializability violations

 How is HB(t1, t2) implemented?

– Event t1 happens strictly before t2

– HB(t1, t2) := t1 < t2 where t1, t2 are integer variables

 Use an SMT solver to solve the formula

– Fusion used Yices [Dutertre & de Moura 06]

79

May 2013 Static and Dynamic Verification of Concurrent Programs

F_po: HB(t0,t1) & HB(t1,t2) & HB(t2,t3) & HB(t3,t4) & HB(t4,t5)

 HB(t0,t11) & HB(t11,t12) & HB(t12,t13) & HB(t13,t14) & HB(t14,15) & HB(t15,t18) & HB(t18,t5)

 HB(t1,t21) & HB(t21,t26) & HB(t26,t27) & HB(t27,t28) & HB(t28,t4)

F_vd: (x0=0) & (y0=0) &

 (a1=Y_1) & & (b1 = X_1)

 (a1=0) & & (b1 != 0)

 (x1=1) & & (y1 = 0)

 (a2=X_2) &

 (x2=a2)

F_property: (X_3 == Y_2)

F_pi: &((Y_1=y0) & HB(t11,t27) OR

 (Y_1=y1) & HB(t27,t11))

 & ((X_1=x0) & HB(t21,t13) OR

 (X_1=x1) & HB(t13,t21) & HB(t21,t15) OR

 (X_1=x2) & HB(t15,t21))

 & (X_2=x1)

 & (X_3=x2)

 & (Y_2=y1)

Concurrent Static Single Assignment (CSSA) Encoding

 Functions for

shared variable “uses”

80

Program order (within thread)

Variable Definitions (with guards)

Shared Variable Uses

Assertion

May 2013 Static and Dynamic Verification of Concurrent Programs

CTP: Modeling Atomicity/Serializability Violations

 In practice, unserializable patterns cause a large number of concurrency errors

 [Lu et al. 2006]

 Three-access pattern: involves three events (tc, tr, tc’) on a shared variable

– Two consecutive accesses in the current thread: tc…tc’

– In between, one access from a remote thread: tr

 Eight possible cases

– Serializable: (R-R-R), (R-R-W), (W-R-R)

– Un-serializable: (R-W-R), (R-W-W), (W-W-R), (W-W-W), (W-R-W)

 F_property: HB (tc, tr) && HB (tr, tc’)

Thread1

 tc: if (buf_index + len < BUFFSIZE) {

 …

 …

 tc’: memcpy(buf[buf_index],log,len);

 }

Thread2

 tr: buf_index += len;

81

May 2013 Static and Dynamic Verification of Concurrent Programs

CTP: Modeling Context Bounding

 Let t_first be the start event of the CTP

 Let t_last be the end event of the CTP

 Let k be the max number of context switches allowed

(F_program && F_property) && (t_last – t_first < k)

May 2013 Static and Dynamic Verification of Concurrent Programs

Predictive Analysis using CTP: Summary

 CTP (Concurrent Trace Program) model with HB constraints

– Precise symbolic model derived from a concurrent program trace

– Models concurrency and synchronization primitives, dataflow, properties

 SMT based symbolic search

– Based on CSSA (Concurrent Static Single Assignment) encoding

– Can encode context bounding (e.g. like [CHESS])

 Can tune the level of precision in modeling and analysis

– Use control state reachability to prune warnings [Kahlon & Wang, CAV 2010]

– Modular analysis [Sinha & Wang, FSE 2010, POPL 2011]

83

[Wang et al. FSE 09, FM 09, TACAS 10]

Active Testing: CalFuzzer Tool

• Phase 1: Use imprecise static or dynamic program
analysis to find “abstract” states where a potential
violation can happen (e.g. datarace, deadlock,
atomicity violation)

• Phase 2: “Direct” testing (by controlling the
scheduler) based on the “abstract” states obtained
from phase 1

[Joshi, Naik, Park & Sen, CAV 09]

More details in the Lab Session later today …

Deadlock Detection: Example

Thread1

foo(o1,o2,true)

Thread2

foo(o2,o1,false)

void foo(Object l1, Object l2, boolean flag) {

 if(flag) {
 // Long running computations
 s1: f1();
 s2: f2();
 }
 s3: synchronized(l1){
 s4: synchronized(l2){
 }
 }

}

[Joshi, Park, Sen & Naik, PLDI 09]

Thread 1 Thread 2
Thread1

foo(o1,o2,true)

Thread2

foo(o2,o1,false)

void foo(Object l1, Object l2, boolean flag) {

 if(flag) {
 // Long running computations
 s1: f1();
 s2: f2();
 }
 s3: synchronized(l1){
 s4: synchronized(l2){
 }
 }

}

Testing

f1()

f2()

Lock(o2)

Lock(o1)

Unlock(o1)

Unlock(o2)

Thread 1 Thread 2
Thread1

foo(o1,o2,true)

Thread2

foo(o2,o1,false)

void foo(Object l1, Object l2, boolean flag) {

 if(flag) {
 // Long running computations
 s1: f1();
 s2: f2();
 }
 s3: synchronized(l1){
 s4: synchronized(l2){
 }
 }

}

Testing

Lock(o1)

Lock(o2)

Unlock(o2)

Unlock(o1)

Lock(o2)

Lock(o1)

Unlock(o1)

Unlock(o2)

f1()

f2()

Thread 1 Thread 2
Thread1

foo(o1,o2,true)

Thread2

foo(o2,o1,false)

void foo(Object l1, Object l2, boolean flag) {

 if(flag) {
 // Long running computations
 s1: f1();
 s2: f2();
 }
 s3: synchronized(l1){
 s4: synchronized(l2){
 }
 }

}

Lock(o1)

Lock(o2)

Unlock(o2)

Unlock(o1)

Lock(o2)

Lock(o1)

Unlock(o1)

Unlock(o2)

f1()

f2()

No deadlock
detected

Testing

Thread 1 Thread 2
Thread1

foo(o1,o2,true)

Thread2

foo(o2,o1,false)

void foo(Object l1, Object l2, boolean flag) {

 if(flag) {
 // Long running computations
 f1();
 f2();
 }
 synchronized(l1){
 synchronized(l2){
 }
 }

}

Deadlock Directed Testing

Lock(o2)

Lock(o1)

Paused

f1()

f2()

Thread 1 Thread 2
Thread1

foo(o1,o2,true)

Thread2

foo(o2,o1,false)

void foo(Object l1, Object l2, boolean flag) {

 if(flag) {
 // Long running computations
 f1();
 f2();
 }
 synchronized(l1){
 synchronized(l2){
 }
 }

}

Deadlock Directed Testing

Lock(o2)

Lock(o1)

Paused

f1()

f2()

Lock(o1)

Lock(o2)

Paused

Thread 1 Thread 2
Thread1

foo(o1,o2,true)

Thread2

foo(o2,o1,false)

void foo(Object l1, Object l2, boolean flag) {

 if(flag) {
 // Long running computations
 f1();
 f2();
 }
 synchronized(l1){
 synchronized(l2){
 }
 }

}

Deadlock Directed Testing

Lock(o2)

Lock(o1)

Paused

f1()

f2()

Lock(o1)

Lock(o2)

Paused

Thread 1 Thread 2
Thread1

foo(o1,o2,true)

Thread2

foo(o2,o1,false)

void foo(Object l1, Object l2, boolean flag) {

 if(flag) {
 // Long running computations
 f1();
 f2();
 }
 synchronized(l1){
 synchronized(l2){
 }
 }

}

Deadlock Directed Testing

Lock(o2)

Lock(o1)

Paused

f1()

f2()

Lock(o1)

Lock(o2)

Paused

Deadlock
detected !

Preempting threads

• How do we know where to pause a thread ?
– Use existing static or dynamic analyses to find

potential deadlock cycles
• Note that these analyses may report false deadlock

cycles

– Use “information” recorded for a deadlock
cycle to decide where to pause a thread

– CalFuzzer uses a modified version of the
Goodlock algorithm (iGoodlock)

 [Havelund et al, Agarwal et al]

May 2013 Static and Dynamic Verification of Concurrent Programs

Take a Step Back …

What is the root cause of a “concurrency bug”?
– Programmers often make, but fail to enforce, some implicit assumptions

regarding the concurrency control of the program

• Certain blocks should be mutually exclusive  data race

• Certain blocks should be executed atomically  atomicity violation

• Certain operations should be executed in a fixed order 

 order violation

 To chase “concurrency bugs”, we would like to go

after the “broken assumptions”…
– Exhaustively test all concurrency control scenarios

– But not all possible thread interleavings

94

May 2013 Static and Dynamic Verification of Concurrent Programs

Coverage-Guided Systematic Testing

 Coverage metric: “concurrency control scenario”

– HaPSet (History-aware Predecessor Set)

 How do we use this metric?

– Use a framework for systematically generating interleavings

• e.g. stateless model checking

– Keep track of HaPSets covered so far

– Instead of DPOR/PCB, use HaPSet to prune away interleavings

– Idea: Don’t generate an interleaving to test if the “concurrency control

scenario” (HaPSet) has already been covered

 Based on PSet (Predecessor Set)
– Psets were used for enforcing safe executions

 Jie Yu, Satish Narayanasamy

 A case for an interleaving constrained shared-memory multi-processor,

 International Symposium on Computer Architecture, 2009.

[Wang et al. ICSE 2011]

95

May 2013 Static and Dynamic Verification of Concurrent Programs

PSet (Predecessor Set) [Yu & Narayanasamy ISCA 09]

Thread 1 Thread 2 Thread 3

R2

W1

R1

R3

W2

R4

W3

{ W1 }

{ }

{ }

{ W1 }

{ W2 }

{ }

{ R3, R4 }

Psets are tracked

for statements in

code, not for events

PSet (statement):
the set of

immediately dependent

“remote” statements

PSet(W1) = {}

PSet(R1) = {}

PSet(R2) = {W1}

PSet(R3) = {W1}

PSet(R4) = {}

PSet(W2) = {R3,R4}

PSet(W3) = {W2}

96

May 2013 Static and Dynamic Verification of Concurrent Programs

HaPSet (extension)

1. Synchronization statements

– PSet ignored synchronizations, e.g. lock/unlock, wait/notify

– HaPSet considers synchronizations – essential for concurrency

2. Context & thread sensitivity

– PSet (effectively) treats a statement as a (file,line) pair

– HaPSet treats a “statement” as a tuple (file,line,thr,ctx), where

• thr = {local_thread, remote_thread} (exploits symmetry)

• ctx = the truncated calling context

97

[Wang et al. ICSE 2011]

May 2013 Static and Dynamic Verification of Concurrent Programs

Intuition: Why are HaPSets Useful?

Thread T1

 …

{

 if (p != 0)

 *(p) = 10;

}

Thread T2

 …

{

 p = &a;

}

…

{

 p = 0;

}

e2

e3

e1

e4

Observations:

#1. In all good runs, HaPSet[e3] = { }

#2. In all good runs, e2 is not in HaPSet[e4]

HaPSet(e1) = {}

HaPSet(e2) = {e1}

HaPSet(e3) = {}

HaPSet(e4) = {e3}

From the given run

HaPSet(e1) = {e2}

HaPSet(e2) = {e1,e4}

HaPSet(e3) = {}

HaPSet(e4) = {e3}

From all good runs

Need only 2 test runs to

capture all “good” runs

98

May 2013 Static and Dynamic Verification of Concurrent Programs

Why are HaPSets Useful?

Thread T1

 …

{

 if (p != 0)

 *(p) = 10;

}

Thread T2

 …

{

 p = &a;

}

…

{

 p = 0;

}

e2

e3

e1

e4

Observations:

#1. In all good runs, HaPSet[e3] = { }

#2. In all good runs, e2 is not in

HaPSet[e4]

HaPSet(e1) = {}

HaPSet(e2) = {e1}

HaPSet(e3) = {}

HaPSet(e4) = {e3}

From the given run

HaPSet(e1) = {e2}

HaPSet(e2) = {e1,e4}

HaPSet(e3) = {}

HaPSet(e4) = {e3}

From all good runs

HaPSet(e1) = {e2}

HaPSet(e2) = {e1,e4}

HaPSet(e3) = {e4}

HaPSet(e4) = {e3,e2}

From all (good and bad) runs

Steer search directly to a “bad” run

99

May 2013 Static and Dynamic Verification of Concurrent Programs

Does HaPSet Guided Search Work?

HaPSet

guided search

DPOR PCB

Thrift is a software framework by Facebook, for scalable cross-language

services development.

The C++ library has 18.5K lines of C++ code. It had a known deadlock.

100

Much faster than Dynamic POR, PCB

Did not miss bugs in practice

(many other examples in paper)

May 2013 Static and Dynamic Verification of Concurrent Programs 101

Summary and Challenges

 Verifying Concurrent Programs

– Concurrent programs are difficult to get right

– Active area of verification research

• Model checking, Static analysis, Testing/dynamic verification, …

• Precise analysis requires reasoning about synchronization

– Exploit programming patterns that are amenable for precise analysis

• Efficient analysis requires controlling complexity of interleavings

– Reductions, Implicit search, Abstractions, Compositional proofs

– Precision AND efficiency of analysis are needed for practical impact

• Applications guided by practical concerns

– Context-bounding, Coverage-directed testing

• Advancements in Decision Procedures (SAT/SMT) offer hope

 Related Challenges

– Multi-core systems, Many-core systems: Bug replay, debugging

– Distributed systems: Systematic testing

– Great opportunity due to proliferation of distributed networked services/systems

