Static and Dynamic Verification of Concurrent Programs

LAB Session

Aarti Gupta
Systems Analysis & Verification
NEC Labs America, Princeton, USA

Third Summer School on Formal Techniques
May 20 — 24, 2013

NEC lahorator_ies
America

Relentless passion for innovation

www.nec-labs.com

May 2013 Static and Dynamic Verification of Concurrent Programs

d CalFuzzer

— http://srl.cs.berkeley.edu/~ksen/calfuzzer/

Other publicly available tools
U Related tool: Thrille for UPC (Unified Parallel C)
— http://upc.lbl.gov/thrille
O Threader
— http://www.model.in.tum.de/~popeeal/research/threader.html
0 Model Checking: Java PathFinder
— http://ti.arc.nasa.gov/tech/rse/vandv/jpf/
0 Systematic testing: CHESS
— http://research.microsoft.com/en-us/projects/chess/
O Static Analysis: Chord
— http://pag.gatech.edu/chord
O Dynamic Analysis: RoadRunner
— http://dept.cs.williams.edu/~freund/rr/
O Intel Thread Checker
— http://software.intel.com/en-us/articles/intel-thread-checker-documentation

May 2013 Static and Dynamic Verification of Concurrent Programs 2

http://srl.cs.berkeley.edu/~ksen/calfuzzer/
http://srl.cs.berkeley.edu/~ksen/calfuzzer/
http://upc.lbl.gov/thrille
http://upc.lbl.gov/thrille
http://www.model.in.tum.de/~popeea/research/threader.html
http://www.model.in.tum.de/~popeea/research/threader.html
http://ti.arc.nasa.gov/tech/rse/vandv/jpf/
http://ti.arc.nasa.gov/tech/rse/vandv/jpf/
http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/
http://pag.gatech.edu/chord
http://pag.gatech.edu/chord
http://dept.cs.williams.edu/~freund/rr/
http://dept.cs.williams.edu/~freund/rr/
http://dept.cs.williams.edu/~freund/rr/
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation

CalFuzzer Tool

d Thanks
— Prof. Koushik Sen (UC Berkeley)
— Pallavi Joshi (UC Berkeley, now at NEC Labs)
— Chang-Seo Park (UC Berkeley, now at Google)

4 Highlights
— Incorporates many techniques we discussed
« Static/dynamic analysis: to find “potential violation”
« Testing: to find real violation, based on above
— Extensible — add your own analysis and checker!

May 2013 Static and Dynamic Verification of Concurrent Programs 3

Getting started ...

O Download CalFuzzer 2.0

http://srl.cs.berkeley.edu/~ksen/calfuzzer/

O Build using ant

tar zxvf calfuzzer2Z2.tar.gz

cd calfuzzer

ant

ant —-f run.xml racefuzzer

ant —-f run.xml deadlockfuzzer

O Small examples in: test/benchmarks/testcases

O To build and run an individual example (already included in run.xml)

ant -f run.xml test racel

O To try a new example, add build commands to run.xml (similar to above)
« See example from Gidon Ernst (ConcurrentStack.java, on SSFT13 website)

May 2013 Static and Dynamic Verification of Concurrent Programs 4

http://srl.cs.berkeley.edu/~ksen/calfuzzer/
http://srl.cs.berkeley.edu/~ksen/calfuzzer/
http://srl.cs.berkeley.edu/~ksen/calfuzzer/

[Presentation of CalFuzzer Tool at CAV 2009 J

An Extensible Active Testing
Framework for Concurrent
Programs

Pallavi Joshi *
Mayur Naik*
Chang-Seo Park*
Koushik Sen*

* Par Lab, EECS, UC Berkeley T Intel Research

Goal

» Build a tool to test and debug concurrent
programs
- More Practical: That works for large programs
- Efficient
- No false alarms
- Finds many bugs quickly
- Reproducible

Related Work: Concurrent Program Analysis

 Static program analysis (e.g., Engler et al.; Naik et al.)
& Examines all possible program behavior
% Often reports many false positives

+ Type systems (e.g., Boyapati et al., Flanagan and Qadeer)
% Annotation burden often significant

* Model checking (e.g., SPIN, Verisoft, Java Pathfinder)

% Does not currently scale beyond few KLOC
% Not "directed” towards finding bugs

» Dynamic program analysis (e.g. Eraser, Atomizer)
® Usually reports lesser false positives
% Has false negatives

» Testing
® Scales to large programs and no false positives
% False negatives and poor coverage 7

Observation

» Static and dynamic program analyses have
false positives

+ Testing is simple
- No false positives

- But, may miss subtle thread schedules that result
in concurrency bugs

Observation

» Static and dynamic program analyses have
false positives

+ Testing is simple
- No false positives
- But, may miss subtle thread schedules that result

in concurrency bugs

» Can we leverage program analysis to make

testing quickly find real concurrency bugs?

Our Approach

- Active Testing

* Phase 1. Use imprecise static or dynamic
program analysis to find "abstract” states
where a potential concurrency bug can happen

* Phase 2: "Direct” testing (or model checking)
based on the "abstract” states obtained from
phase 1

10

Active Testing Cartoon: Phase I

fPo’ren’rial)
Collision
A"V

><

@

sl
m

O

®

Active Testing Cartoon: Phase IT

Abstract Buggy States

A predicate on the program state

Race: 3 threads 1, t, s.t. t; and t, are about to execute
statements s; and s,, respectively, and access the same
memory location and one of the accesses is a write

Deadlock: 3 t,, t, s.t. t; holds lock L, and about to
acquire lock L, at statement s; and 1, holds lock L, and
about to acquire lock L, at statement s,

Atomicity: 3 1, t, s.t. t; is inside an atomic block at s;
and 1, is about to access the same memory location at s,

Extensible: Define your abstract buggy state and
implement custom active tester

13

Abstract Buggy State and Active Testing

» A predicate on the program state
- User defined

* Active Testing: Use your favorite model checker

- But whenever a thread satisfies the abstract state
predicate “partly”

* Non-deterministically decide either to pause the thread or
continue

- We use a randomized model checker
- But one can use Java Pathfinder or CHESS

+ Summary: Add extra intelligence to your favorite model
checker so that bugs get created quickly

14

Why it works? Simplified explanation

- Consider 2 threads each
with n instructions

15

Why it works? Simplified explanation

|Bc1d S‘ra‘rel

- Consider 2 threads each

with n instructions

- Traditional model

checker explores
(2n)l/(ninl) paths

- Worst case probability of
reaching bad state is
(nln!)/(2n)l: exponentially
low

16

Why it works? Simplified explanation

-
L

|Bc1d S‘ra‘rel

4
(arem

- Consider 2 threads each

with n instructions

- Traditional model

checker explores
(2n)l/(ninl) paths

- Worst case probability of
reaching bad state is
(nln!)/(2n)l: exponentially
low

17

Why it works? Simplified explanation

- Consider 2 threads each
with n instructions

1-context switch
bounded model checking
explores 2n paths

- Worst case probability of
reaching bad state is
1/(2n): still low

SETIN
RN
RPN
5 @l b
0y

Bad State

[-A Path
18

Why it works? Simplified explanation

SN
SO
0y

-
o

Bad State

[-A Path

- Consider 2 threads each

with n instructions

1-context switch
bounded model checking
explores 2n paths

- Worst case probability of
reaching bad state is
1/(2n): still low

19

Why it works? Simplified explanation

- Consider 2 threads each
with n instructions

1-context switch
bounded model checking
explores 2n paths

- Worst case probability of
reaching bad state is
1/(2n): still low

NNNI'EN
*yM'®
2999

Bad State

A Path
20

Why it works? Simplified explanation

NPWI'W
2999

Bad State

A Path

- Consider 2 threads each

with n instructions

1-context switch
bounded model checking
explores 2n paths

- Worst case probability of
reaching bad state is
1/(2n): still low

21

Why it works? Simplified explanation

Abstract
Bad State

Pause Blue
Thread

- Consider 2 threads each

with n instructions

1-context switch
bounded model checking
explores 2n paths

- Worst case probability of
reaching bad state is
1/(2n): still low

Active testing with
abstraction of potential
bug explores 1 schedule

- Directed by the bug

22

Why it works? Simplified explanation

Abstract
Bad State

Reach

Bug

- Consider 2 threads each

with n instructions

1-context switch
bounded model checking
explores 2n paths

- Worst case probability of
reaching bad state is
1/(2n): still low

Active testing with
abstraction of potential
bug explores 1 schedule

- Directed by the bug

23

Extensible Tool

+ CALFUZZER for Java Programs

- Effective random testing [ASE 07]

- Race Directed Active Testing [PLDI 08]

- Atomicity Violation Directed Active Testing [FSE 08]
- Deadlock Directed Active Testing [PLDI 09]

- User-specified pre-emption points [CAV 09]

- Application to checking determinism [FSE 09]

+ Applied to real-world programs

- Easy to implement dynamic analyses
- Eraser, Atomizer, vector clock library, lockset, etc.

* Coming soon: THRILLE for C/C++

24

Summary of Bugs Found

* Races, deadlocks, atomicity violations in
- Java Collections Framework
Data Races found in

- Jigsaw web server

- weblech, hedc, Java Grande Forum Benchmark Suite
(HPC)

Deadlocks found and reproduced in
- Jigsaw web server

- Java Swing GUI framework
- Java Database Connectivity (JDBC)

+ Atomicity violations in
- Apache Commons Collections

25

CalFuzzer in Action

BN ChWindows\system32cmd exe | = ” = |@

analysis—once:
[javal Analysis class jJjavato.activetesting.IGoodlockAnalysis
[javal # of deadlocks detected 4

[stopwatch] [timer: B.467 sec]

active—loop:
[echo]l Iteration:
[echol
[echo]l Sub—iteration:

analysis—once:
[javal Analysis class javato.activetesting.DeadlockFuzzerAnalysis
[javal cycle [[5, Y1, [5,. 711
[Javal #ffiddddiddgiaiddaiiidgiaiddgiiidgiiiddgiiid it a iy
[javal Real Deadlock Detected
[Javal #ffddadiddaiaiiddaiiidgiaiddgiiidaiiidg gt ga i i g g iy
[javal ##fddaaiddaiasaddaiiddai g i i aa i gt i aa i i da g i a i d g a4
[javal Thread and lock sets:ThreadlThread-6.5.mainl
[javal Thread: 7>
[javal Thread: <13
[javal Lock <62> at bhenchmarks- testcases-TestDeadlockd. javalido
[javal Lock (82> at henchmarks- testcasessTestDeadlocks. javalid?
[javal Thread: <14
[javal Lock (8> henchmarks testcasessTestDeadlockd. javalidb
[javal Lock <62 henchmarks testcases TestDeadlocks. javalid?
[javal Thread: <19
[javal Lock <62 henchmarks testcasessTestDeadlocks. javalidb
[javal Java BResult: 1

[stopwatch] [timer: B.J6H secl

26

Tool for Java available for download [CAV 09]

http://srl.cs.berkeley.edu/~ksen/calfuzzer/

) Mozilla Firefox = |
Menu <= = = & B0 fy |] | ttp: fisel, s, berkeley, eduj~ksenjcalfuzzer] v| |v Foogle ¢Q|
BT Most wisited C|t|® [(lae [Jboa [Jtech €%fid bwt .dt Olde [oa .dsea &) fw @slick Elw '-"lG [gmai sthksen #o slash @tai Bty uiris ch »

CalFuzzer: An Extensible Active Testing Framework for
Concurrent Programs

Introduction

Active testing has recently been intraduced to effectively test concurrent pragrams, Adive testing
can quickly discover real data races, deadlocks, and atomicity violations, Adtive testing works in
two phases, It first uses imprecise off-the-shelf static or dynamic prograrn analyses to identify
potential concurrency bugs, such as data races, deadlocks, and atomicity violations, In the

second phase, active testing uses the reports from these imprecise analyses to explicitly control

the underlying scheduler of the concurrent pragram to accurately and quickly discover real
concurrency bugs, if any, with very high probability and little overhead. CalFuzzer implements an

extensible framewark for active testing of Java programs,

Download

Fallow this link ta downlaad CalFuzzer,

System Requirements

Apple’s latest JDK for Mac ¥, ou also need Apache’s ANT (http.ﬁant.apache.orgf) far

building and running your code,

Installation

Download CalFuzzer from hbtp: /i sl ez berkeley, eduf ~kzenfcalfuzzer/ calfuzzer.tar. gz, Make sure

that jawa, javac, and ant are in your PATH, Invoke the following commands to install CalFuzzer,

tar sxwf calfuszer._tar.gs E‘

& o

Teaching Module based on CALFUZZER

* http://sp09.pbworks.com/RaceFuzzer-Homework

2 sp09 / RaceFuzzer Homework - Mozilla Firefox

Menu <= = = {S} e @ | FB | tbp: i fspi0a, om/R.aceFuzzer-Homework - | |v Google p|
B&) Most Visited Citi@ [(Nae [Tboa [ltech €¥rid I:nwt dt (lde [era dsea @Fw @slick Ot '-']G [gmail ﬁnksen #4 slash mtai b “iris ch »

o Spog Anonymous

Create an account or Lag in

YIEW et 4 Login FrontPage
Pagez 2 Files
RaceFuzzer Homework Help
last edited by 3 Koushik Sen 2 mas ago =) Page history Search Pages
RaceFuzzer Hom 'EWDI'I(,_,? To join this workspace, reguest
ACCESS.
Intruductiﬂn already have an account? Log in!
Active testing has recently been introduced to effectively test concurrent programs, Active testing works in two phases, It first Navigator a
uses imprecise off-the-shelf static ar dynamic program analyses to identify potential concurrency bugs, such as data races, | homewarks »
deadlacks, and atormicity vialations, In the second phase, active testing uses the repaorts fram these imprecise analyses to) N
Fewlaws

explicitly cantral the underlying scheduler of the cancurrent program to accurately and quickly discaver real concurrency bugs, if .
any, with very high probability and little averhead. In this harmewaork, you will be implementing the RaceFuzzer algorithm feth Unfiled Ttems ¥
described in the following paper:
K. Sen, "Race Directed Randomized Testing of Concurrent Programs,” in Proc, ACM SIGPLAN Conference on Pragramming
Language Design and Implementation (PLDT'OS), 2008, pp. L1-21,
Requirements

SideBar A

Windaws or Linux or Mac 05X, You need pre-installzd Sun’s JDK L5 for Windaows ar Linwe or Apple’s latest JDK for Mac 05K,

W - . .
‘4 Start € POUEE

L) R® 8§ sappm

Conclusion

* Parallel computing will become wide-spread
- Need testing and debugging tools

- Because testing is what real developers use to find
bugs and improve quality

» Trick is To make testing "directed"” using

imprecise program analyses
- And not to make it exhaustive

+ Active Testing makes concurrency testing directed
- Confirms real bugs
- Reproducibility is easy
- Efficient
- Scales really well
- Effective

29

