
May 2013 Static and Dynamic Verification of Concurrent Programs

Static and Dynamic Verification of Concurrent Programs

LAB Session

Aarti Gupta

Systems Analysis & Verification

NEC Labs America, Princeton, USA

Third Summer School on Formal Techniques

May 20 – 24, 2013

www.nec-labs.com

May 2013 Static and Dynamic Verification of Concurrent Programs

Lab Session

 CalFuzzer

– http://srl.cs.berkeley.edu/~ksen/calfuzzer/

Other publicly available tools

 Related tool: Thrille for UPC (Unified Parallel C)

– http://upc.lbl.gov/thrille

 Threader

– http://www.model.in.tum.de/~popeea/research/threader.html

 Model Checking: Java PathFinder

– http://ti.arc.nasa.gov/tech/rse/vandv/jpf/

 Systematic testing: CHESS

– http://research.microsoft.com/en-us/projects/chess/

 Static Analysis: Chord

– http://pag.gatech.edu/chord

 Dynamic Analysis: RoadRunner

– http://dept.cs.williams.edu/~freund/rr/

 Intel Thread Checker

– http://software.intel.com/en-us/articles/intel-thread-checker-documentation

2

http://srl.cs.berkeley.edu/~ksen/calfuzzer/
http://srl.cs.berkeley.edu/~ksen/calfuzzer/
http://upc.lbl.gov/thrille
http://upc.lbl.gov/thrille
http://www.model.in.tum.de/~popeea/research/threader.html
http://www.model.in.tum.de/~popeea/research/threader.html
http://ti.arc.nasa.gov/tech/rse/vandv/jpf/
http://ti.arc.nasa.gov/tech/rse/vandv/jpf/
http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/
http://pag.gatech.edu/chord
http://pag.gatech.edu/chord
http://dept.cs.williams.edu/~freund/rr/
http://dept.cs.williams.edu/~freund/rr/
http://dept.cs.williams.edu/~freund/rr/
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation
http://software.intel.com/en-us/articles/intel-thread-checker-documentation

May 2013 Static and Dynamic Verification of Concurrent Programs

CalFuzzer Tool

 Thanks

– Prof. Koushik Sen (UC Berkeley)

– Pallavi Joshi (UC Berkeley, now at NEC Labs)

– Chang-Seo Park (UC Berkeley, now at Google)

 Highlights

– Incorporates many techniques we discussed

• Static/dynamic analysis: to find “potential violation”

• Testing: to find real violation, based on above

– Extensible – add your own analysis and checker!

3

May 2013 Static and Dynamic Verification of Concurrent Programs

Getting started …

 Download CalFuzzer 2.0

http://srl.cs.berkeley.edu/~ksen/calfuzzer/

 Build using ant

 Small examples in: test/benchmarks/testcases

 To build and run an individual example (already included in run.xml)

 To try a new example, add build commands to run.xml (similar to above)

• See example from Gidon Ernst (ConcurrentStack.java, on SSFT13 website)

4

tar zxvf calfuzzer2.tar.gz

cd calfuzzer

ant

ant -f run.xml racefuzzer

ant -f run.xml deadlockfuzzer

ant -f run.xml test_race1

http://srl.cs.berkeley.edu/~ksen/calfuzzer/
http://srl.cs.berkeley.edu/~ksen/calfuzzer/
http://srl.cs.berkeley.edu/~ksen/calfuzzer/

An Extensible Active Testing
Framework for Concurrent

Programs

Pallavi Joshi *

Mayur Naik‡
Chang-Seo Park

Koushik Sen

 Par Lab, EECS, UC Berkeley ‡ Intel Research

Presentation of CalFuzzer Tool at CAV 2009

Goal

• Build a tool to test and debug concurrent
programs
– More Practical: That works for large programs

– Efficient

– No false alarms

– Finds many bugs quickly

– Reproducible

6

• Static program analysis (e.g., Engler et al.; Naik et al.)
Examines all possible program behavior
Often reports many false positives

• Type systems (e.g., Boyapati et al., Flanagan and Qadeer)
Annotation burden often significant

• Model checking (e.g., SPIN, Verisoft, Java Pathfinder)
Does not currently scale beyond few KLOC
Not “directed” towards finding bugs

• Dynamic program analysis (e.g. Eraser, Atomizer)
Usually reports lesser false positives
Has false negatives

• Testing
Scales to large programs and no false positives
False negatives and poor coverage

Related Work: Concurrent Program Analysis

7

Observation

• Static and dynamic program analyses have
false positives

• Testing is simple
– No false positives

– But, may miss subtle thread schedules that result
in concurrency bugs

8

Observation

• Static and dynamic program analyses have
false positives

• Testing is simple
– No false positives

– But, may miss subtle thread schedules that result
in concurrency bugs

• Can we leverage program analysis to make
testing quickly find real concurrency bugs?

9

Our Approach

• Active Testing

• Phase 1: Use imprecise static or dynamic
program analysis to find “abstract” states
where a potential concurrency bug can happen

• Phase 2: “Direct” testing (or model checking)
based on the “abstract” states obtained from
phase 1

10

Active Testing Cartoon: Phase I

11

Potential

Collision

Active Testing Cartoon: Phase II

12

Abstract Buggy States

• A predicate on the program state

• Race:  threads t1, t2 s.t. t1 and t2 are about to execute
statements s1 and s2, respectively, and access the same
memory location and one of the accesses is a write

• Deadlock:  t1, t2 s.t. t1 holds lock L1 and about to
acquire lock L2 at statement s1 and t2 holds lock L2 and
about to acquire lock L1 at statement s2

• Atomicity:  t1, t2 s.t. t1 is inside an atomic block at s1
and t2 is about to access the same memory location at s2

• Extensible: Define your abstract buggy state and
implement custom active tester

13

Abstract Buggy State and Active Testing

• A predicate on the program state

– User defined

• Active Testing: Use your favorite model checker
– But whenever a thread satisfies the abstract state

predicate “partly”
• Non-deterministically decide either to pause the thread or

continue

– We use a randomized model checker
• But one can use Java Pathfinder or CHESS

• Summary: Add extra intelligence to your favorite model
checker so that bugs get created quickly

14

Why it works? Simplified explanation

• Consider 2 threads each
with n instructions

15

Why it works? Simplified explanation

• Consider 2 threads each
with n instructions

• Traditional model
checker explores
(2n)!/(n!n!) paths
– Worst case probability of

reaching bad state is
(n!n!)/(2n)!: exponentially
low

16
A Path Bad State

Why it works? Simplified explanation

• Consider 2 threads each
with n instructions

• Traditional model
checker explores
(2n)!/(n!n!) paths
– Worst case probability of

reaching bad state is
(n!n!)/(2n)!: exponentially
low

17
A Path Bad State

Why it works? Simplified explanation

• Consider 2 threads each
with n instructions

• 1-context switch
bounded model checking
explores 2n paths
– Worst case probability of

reaching bad state is
1/(2n): still low

18
Bad State A Path

Why it works? Simplified explanation

• Consider 2 threads each
with n instructions

• 1-context switch
bounded model checking
explores 2n paths
– Worst case probability of

reaching bad state is
1/(2n): still low

19
Bad State A Path

Why it works? Simplified explanation

• Consider 2 threads each
with n instructions

• 1-context switch
bounded model checking
explores 2n paths
– Worst case probability of

reaching bad state is
1/(2n): still low

20
Bad State A Path

Why it works? Simplified explanation

• Consider 2 threads each
with n instructions

• 1-context switch
bounded model checking
explores 2n paths
– Worst case probability of

reaching bad state is
1/(2n): still low

21
Bad State A Path

Why it works? Simplified explanation

• Consider 2 threads each
with n instructions

• 1-context switch
bounded model checking
explores 2n paths
– Worst case probability of

reaching bad state is
1/(2n): still low

• Active testing with
abstraction of potential
bug explores 1 schedule
– Directed by the bug

22

Abstract

Bad State

Pause Blue

Thread

Why it works? Simplified explanation

• Consider 2 threads each
with n instructions

• 1-context switch
bounded model checking
explores 2n paths
– Worst case probability of

reaching bad state is
1/(2n): still low

• Active testing with
abstraction of potential
bug explores 1 schedule
– Directed by the bug

23

Abstract

Bad State

Reach

Bug

Extensible Tool

• CALFUZZER for Java Programs
– Effective random testing [ASE 07]

– Race Directed Active Testing [PLDI 08]

– Atomicity Violation Directed Active Testing [FSE 08]

– Deadlock Directed Active Testing [PLDI 09]

– User-specified pre-emption points [CAV 09]

– Application to checking determinism [FSE 09]

• Applied to real-world programs

• Easy to implement dynamic analyses
– Eraser, Atomizer, vector clock library, lockset, etc.

• Coming soon: THRILLE for C/C++

24

Summary of Bugs Found

• Races, deadlocks, atomicity violations in
– Java Collections Framework

• Data Races found in
– Jigsaw web server
– weblech, hedc, Java Grande Forum Benchmark Suite

(HPC)

• Deadlocks found and reproduced in
– Jigsaw web server
– Java Swing GUI framework
– Java Database Connectivity (JDBC)

• Atomicity violations in
– Apache Commons Collections

25

CalFuzzer in Action

26

Tool for Java available for download [CAV 09]

• http://srl.cs.berkeley.edu/~ksen/calfuzzer/

27

Teaching Module based on CALFUZZER

• http://sp09.pbworks.com/RaceFuzzer-Homework

28

Conclusion

• Parallel computing will become wide-spread
– Need testing and debugging tools
– Because testing is what real developers use to find

bugs and improve quality

• Trick is to make testing “directed” using
imprecise program analyses
– And not to make it exhaustive

• Active Testing makes concurrency testing directed
– Confirms real bugs
– Reproducibility is easy
– Efficient
– Scales really well
– Effective

29

