
Speaking Logic

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

May 27, 2012

Why Logic?

Computing, like mathematics, is the study of reusable
abstractions.

Abstractions in computing include numbers, lists, channels,
processes, protocols, and programming languages.

These abstractions have algorithmic value in designing,
representing, and reasoning about computational processes.

Logic is the calculus of computing — it is used to delineate
the precise meaning and scope of these abstractions, and to
calculate at the abstract level.

N. Shankar FMSchool 2012 2/1

The Unreasonable Effectiveness of Logic in Computing

Logic has been unreasonably effective in computing, with an
impact that spans

Theoretical computer science
Hardware design and verification
Software verification
Computer security
Programming languages
Artificial intelligence.
Databases

Our course is about the effective use of logic in computing.

N. Shankar FMSchool 2012 3/1

Speaking Logic

In mathematics, logic is studied as a source of interesting
(meta-)theorems, but the reasoning is typically informal.

In philosophy, logic is studied as a minimal set of foundational
principles from which knowledge can be derived.

Computing involves using rigorous, possibly formal, logical
reasoning.

Logic is a medium for problem specification and an aid to
creative problem solving.

We will examine how logic is used to formulate problems, find
solutions, and build proofs.

We will also examine useful metalogical properties of logics, as
well as algorithmic methods for effective inference.

N. Shankar FMSchool 2012 4/1

Course Schedule

The course is spread over six hours:

10AM-noon: Propositional Logics
1PM-3PM: First and Higher-Order Logic
3.30PM-5.30PM: Automated Tools

The goal is to learn how to speak logic fluently through the
use of propositional, modal, equational, first-order, and
higher-order logic.

This will serve as a background for the more sophisticated
ideas in the main lectures.

N. Shankar FMSchool 2012 5/1

A Small Puzzle [Wason]

Given four cards laid out on a table as: D , 3 , F , 7 , where
each card has a letter on one side and a number on the other.

Which cards should you flip over to determine if every card
with a D on one side has a 7 on the other side?

N. Shankar FMSchool 2012 6/1

A Small Problem

Given a bag containing some black balls and white balls, and a
stash of black/white balls. Repeatedly

1 Remove a random pair of balls from the bag

2 If they are the same color, insert a white ball into the bag

3 If they are of different colors, insert a black ball into the bag

What is the color of the last ball?

+

−

+

−

+

−

N. Shankar FMSchool 2012 7/1

Truthtellers and Liars [Smullyan]

You are confronted with two gates.

One gate leads to the castle, and the other leads to a trap

There are two guards at the gates: one always tells the truth,
and the other always lies.

You are allowed to ask one of the guards on question with a
yes/no answer.

What question should you ask in order to find out which gate
leads to the castle?

N. Shankar FMSchool 2012 8/1

The Monty Hall Problem

There are three doors with a car behind one, and goats behind the
other two.

You have chosen one door.

Monty Hall, knowing where the car is hidden, opens one of the
other two doors to reveal a goat.

He allows you to switch your choice to the other closed door.

If you want to win the car, should you switch?

N. Shankar FMSchool 2012 9/1

Mr. S and Mr. P

Two integers m and n are picked from the interval [2, 99].

Mr. S is given the sum m + n. and Mr. P is given the product
mn.

They then have the following dialogue:

S: I don’t know m and n.
P: Me neither.
S: I know that you don’t.
P: In that case, I do know m and n.
S: Then, I do too.

How would you determine the numbers m and n?

N. Shankar FMSchool 2012 10/1

Gilbreath’s Card Trick

Start with a deck consisting of a stack of quartets, where the
cards in each quartet appear in suit order ♠,♥,♣,♦:

〈5♠〉, 〈3♥〉, 〈Q♣〉, 〈8♦〉,
〈K♠〉, 〈2♥〉, 〈7♣〉, 〈4♦〉,
〈8♠〉, 〈J♥〉, 〈9♣〉, 〈A♦〉

Cut the deck, say as 〈5♠〉, 〈3♥〉, 〈Q♣〉, 〈8♦〉, 〈K♠〉 and
〈2♥〉, 〈7♣〉, 〈4♦〉, 〈8♠〉, 〈J♥〉, 〈9♣〉, 〈A♦〉.
Reverse one of the decks as 〈K♠〉, 〈8♦〉, 〈Q♣〉, 〈3♥〉, 〈5♠〉.
Now shuffling, for example, as

〈2♥〉, 〈7♣〉, 〈K♠〉, 〈8♦〉,
〈4♦〉, 〈8♠〉, 〈Q♣〉, 〈J♥〉,
〈3♥〉, 〈9♣〉, 〈5♠〉, 〈A♦〉

Each quartet contains a card from each suit. Why?

N. Shankar FMSchool 2012 11/1

Pigeonhole Principle

Why can’t you park n + 1 cars in n parking spaces, if each car
needs its own space?

N. Shankar FMSchool 2012 12/1

Hard Sudoku [Wikipedia/Algorithmics of Sudoku]

N. Shankar FMSchool 2012 13/1

What is Logic?

Logic is the art and science of effective reasoning.

How can we draw general and reliable conclusions from a
collection of facts?

Formal logic: Precise, syntactic characterizations of
well-formed expressions and valid deductions.

Formal logic makes it possible to calculate consequences so
that each step is verifiable by means of proof.

Computers can be used to automate such symbolic
calculations.

N. Shankar FMSchool 2012 14/1

Logic Basics

Logic studies the trinity between language, interpretation, and
proof.

Language circumscribes the syntax that is used to construct
sensible assertions.

Interpretation ascribes an intended sense to these assertions
by fixing the meaning of certain symbols, e.g., the logical
connectives, equality, and delimiting the variation in the
meanings of other symbols, e.g., variables, functions, and
predicates.

An assertion is valid if it holds in all interpretations.

Checking validity through interpretations is not always
efficient and often, not even possible, so proofs in the form
axioms and inference rules are used to demonstrate the
validity of assertions.

N. Shankar FMSchool 2012 15/1

Propositional Logic

Propositional logic can be more accurately described as a
logic of conditions – propositions are always true or always
false. [Couturat, Algebra of Logic]
A condition can be represented by a propositional variable,
e.g., p, q, etc., so that distinct propositional variables can
range over possibly different conditions.
The conjunction, disjunction, and negation of conditions are
also conditions.
The syntactic representation of conditions is using
propositional formulas:

φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2

P is a class of propositional variables: p0, p1,
Examples of formulas are p, p ∧ ¬p, p ∨ ¬p, (p ∧ ¬q) ∨ ¬p.
Define the operation of substituting a formula A for a variable
p in a formula B, i.e., B[p 7→ A]. Is the result always a
well-formed formula? Can the variable p occur in B[p 7→ A]?

N. Shankar FMSchool 2012 16/1

Meaning

In logic, the meaning of an expression is constructed
compositionally from the meanings of its subexpressions.

The meanings of the symbols are either fixed, as with ¬, ∧,
and ∨, or allowed to vary, as with the propositional variables.

An interpretation (truth assignment) M assigns truth values
{>,⊥} to propositional variables: M(p) = > ⇐⇒ M |= p.

M[[A]] is the meaning of A in M and is computed using truth
tables:

φ p q ¬p p ∨ q p ∧ q

M1(φ) ⊥ ⊥ > ⊥ ⊥
M2(φ) ⊥ > > > ⊥
M3(φ) > ⊥ ⊥ > ⊥
M4(φ) > > ⊥ > >

N. Shankar FMSchool 2012 17/1

Truth Tables

We can use truth tables to evaluate formulas for
validity/satisfiability.

p q (¬p ∨ q) (¬(¬p ∨ q) ∨ p) ¬(¬(¬p ∨ q) ∨ p) ∨ p

⊥ ⊥ > ⊥ >
⊥ > > ⊥ >
> ⊥ ⊥ > >
> > > > >

How many rows are there in the truth table for a formula with n
distinct propositional variables?

N. Shankar FMSchool 2012 18/1

Defining New Connectives

How do you define ∧ in terms of ¬ and ∨?

Give the truth table for A⇒ B and define it in terms of ¬
and ∨.

Define bi-implication A ⇐⇒ B in terms of ⇒ and ∧ and
show its truth table.

An n-ary Boolean function maps {>,⊥}n to {>,⊥}
Show that every n-ary Boolean function can be defined using
¬ and ∨.

Using ¬ and ∨ define an n-ary parity function which evaluates
to > iff the parity is odd.

Define an n-ary function which determines that the unsigned
value of the little-endian input p0, . . . , pn−1 is even?

Define the NAND operation, where NAND(p, q) is ¬(p ∧ q)
using ¬ and ∨.

N. Shankar FMSchool 2012 19/1

Satisfiability and Validity

An interpretation M is a model of a formula φ if M |= φ.

If M |= ¬φ, then M is a countermodel for φ.

When φ has a model, it is said to be satisfiable.

If it has no model, then it is unsatisfiable.

If ¬φ is unsatisfiable, then φ is valid, i.e., alway evaluates to
>.

We write φ |= ψ if every model of φ is a model of ψ.

If φ ∧ ¬ψ is unsatisfiable, then φ |= ψ.

N. Shankar FMSchool 2012 20/1

Which Formulas are Satisfiable/Unsatisfiable/Valid?

p ∨ ¬p

p ∧ ¬p

¬p ⇒ p

((p ⇒ q)⇒ p)⇒ p

N. Shankar FMSchool 2012 21/1

Some Valid Laws

¬(A ∧ B) ⇐⇒ ¬A ∨ ¬B

¬(A ∨ B) ⇐⇒ ¬A ∧ ¬B

((A ∨ B) ∨ C) ⇐⇒ A ∨ (B ∨ C)

(A⇒ B) ⇐⇒ (¬A ∨ B)

(¬A⇒ ¬B) ⇐⇒ (B ⇒ A)

¬¬A ⇐⇒ A

A⇒ B ⇐⇒ ¬A ∨ B

¬(A ∧ B) ⇐⇒ ¬A ∨ ¬B

¬(A ∨ B) ⇐⇒ ¬A ∧ ¬B

¬A⇒ B ⇐⇒ ¬B ⇒ A

N. Shankar FMSchool 2012 22/1

What Can Propositional Logic Express?

Constraints over bounded domains can be expressed as
satisfiability problems in propositional logic (SAT).
Define a 1-bit full adder in propositional logic.
The Pigeonhole Principle states that if n + 1 pigeons are
assigned to n holes, then some hole must contain more than
one pigeon. Formalize the pigeonhole principle for four
pigeons and three holes.
Write a propositional formula for checking that a given finite
automaton 〈Q,Σ, q,F , δ〉 with alphabet Σ, set of states S ,
initial state q, set of final states F , and transition function δ
from 〈Q,Σ〉 to Q accepts some string of length 5.
Formalize the statement that a graph of n elements is
k-colorable for given k and n such that k < n.
Formalize and prove the statement that given a symmetric
and transitive graph over 3 elements, either the graph is
complete or contains an isolated point.
Formalize Sudoku and Latin Squares in propositional logic.

N. Shankar FMSchool 2012 23/1

Cook’s Theorem

A Turing machine consists of a finite automaton reading (and
writing) symbols from a tape.
The finite automaton reads the symbol at the current position
of the head, and

1 Writes a new symbol at the head position
2 Moves the head by a step either to the left or right of the

current position
3 Transitions to the next state of the finite automaton

A Turing machine is nondeterministic if the transition function
computes a set of states.

Show that SAT is solvable in polynomial time (in the size of
the input) by a nondeterministic Turing machine.

Show that for any nondeterministic Turing machine and
polynomial bound p(n) for input tape of size n, one can (in
polynomial time) construct a propositional formula which is
satisfiable iff there is a terminating computation of the Turing
machine on the input.

N. Shankar FMSchool 2012 24/1

Proof Systems

There are three basic styles of proof systems.

These are distinguished by their basic judgement.
1 Hilbert systems: A formula is provable.
2 Natural deduction: A formula is provable from a set of

formulas.
3 Sequent Calculus: Some consequent formula is a consequence

of the antecedent formulas.

N. Shankar FMSchool 2012 25/1

Hilbert System (H) for Propositional Logic

The basic judgement here is ` A asserting that a formula is
provable.

We can pick ⇒ as the basic connectives

The axioms are

`A⇒A
`A⇒(B⇒A)

(`A⇒(B⇒C))⇒((A⇒B)⇒(A⇒C))

A single rule of inference (Modus Ponens) is given

` A ` A⇒ B

` B

Can you prove ((p ⇒ q)⇒ p)⇒ p using the above system?

N. Shankar FMSchool 2012 26/1

Deduction Theorem

We write Γ ` A for a set of formulas Γ, if ` A can be proved
given ` B for each B ∈ Γ.

Deduction theorem: Show that if Γ,A ` B, then Γ ` A⇒ B,
where Γ,A is Γ ∪ {A}.
A derived rule of inference has the form

P1, . . . ,Pn

C

where there is a derivation in the base logic from the premises
P1, . . . ,Pn to the conclusion C .

An admissible rule of inference is one where the premises
P1, . . . ,Pn must be provable for C to be provable.

N. Shankar FMSchool 2012 27/1

Natural Deduction for Propositional Logic

In natural deduction (ND), the basic judgement is Γ ` A.

The rules are classified according to the introduction or
elimination of connectives from A in Γ ` A.

The axiom, introduction, and elimination rules of natural
deduction are

Γ,A`A
Γ1`A Γ2`A⇒B

Γ1∪Γ2`B
Γ,A`B

Γ`A⇒B
Use ND to prove the axioms of the Hilbert system.

A proof is in normal form if no introduction rule appears
above an elimination rule. Can you ensure that your proofs
are always in normal form? Can you write an algorithm to
convert non-normal proofs to normal ones.

N. Shankar FMSchool 2012 28/1

Sequent Calculus (LK) for Propositional Logic

The basic judgement is Γ ` ∆ asserting that
∧

Γ⇒
∨

∆, where Γ
and ∆ are sets (or bags) of formulas.

Left Right

Ax
Γ,A ` A,∆

¬ Γ ` A,∆

Γ,¬A ` ∆

Γ,A ` ∆

Γ ` ¬A,∆

∨ Γ,A ` ∆ Γ,B ` ∆

Γ,A ∨ B ` ∆

Γ ` A,B,∆

Γ ` A ∨ B,∆

∧ Γ,A,B ` ∆

Γ,A ∧ B ` ∆

Γ ` A,∆ Γ ` B,∆

Γ ` A ∧ B,∆

⇒ Γ,B ` ∆ Γ ` A,∆

Γ,A ⇒ B ` ∆

Γ,A ` B,∆

Γ ` A ⇒ B,∆

Cut
Γ ` A,∆ Γ,A ` ∆

Γ ` ∆

N. Shankar FMSchool 2012 29/1

Peirce’s Formula

A sequent calculus proof of Peirce’s formula
((p ⇒ q)⇒ p)⇒ p is given by

p ` p, q
Ax

` p, p ⇒ q
`⇒

p ` p
Ax

(p ⇒ q)⇒ p ` p
⇒`

` ((p ⇒ q)⇒ p)⇒ p
`⇒

The sequent formula that is introduced in the conclusion is
the principal formula, and its components in the premise(s)
are side formulas.

N. Shankar FMSchool 2012 30/1

Metatheory

Metatheorems about proof systems are useful in providing
reasoning short-cuts.

The deduction theorem for H and the normalization theorem
for ND are examples.

Prove that the Cut rule is admissible for the LK . (Difficult!)

A bi-implication is a formula of the form A ⇐⇒ B, and it is
an equivalence when it is valid. Show that the following is a
derived inference rule.

A ⇐⇒ B

C [p 7→ A] ⇐⇒ C [p 7→ B]

State a similar rule for implication where

A⇒ B

C [p 7→ A]⇒ C [p 7→ B]

N. Shankar FMSchool 2012 31/1

Normal Forms

A formula where negation is applied only to propositional
atoms is said to be in negation normal form (NNF).

A literal l is either a propositional atom p or its negation ¬p.

A clause is a multiary disjunction of a set of literals
∨n

i=1 li .

A multiary disjunction of n formulas A1, . . . ,An is
∧n

i=1 Ai .

A formula that is a multiary conjunction of multiary
disjunctions of literals is in conjunctive normal form (CNF).

A formula that is a multiary disjunction of multiary
conjunctions of literals is in disjunctive normal form (DNF).

Show that every propositional formula built using ¬, ∨, and ∧
is equivalent to one in NNF, CNF, and DNF. Define
algorithms for conversion to these normal forms.

N. Shankar FMSchool 2012 32/1

Soundness

A proof system is sound if all provable formulas are valid, i.e.,
` A implies |= A.

Demonstrate the soundness of the proof systems shown so far,
i.e.,

1 Hilbert system H
2 Natural deduction ND
3 Sequent Calculus LK

N. Shankar FMSchool 2012 33/1

Completeness

A proof system is complete if all valid formulas are provable,
i.e., |= A implies ` A.
A countermodel M of Γ ` ∆ is one where either M |= A for
all A in Γ, and M |= ¬B for all B ∈ ∆.
In LK , any countermodel of some premise of a rule is also a
countermodel for the conclusion.
We can then show that a non-provable sequent Γ ` ∆ has a
countermodel.
Each non-Cut rule has premises that are simpler than its
conclusion.
By applying the rules starting from Γ ` ∆ to completion, you
end up with a set of premise sequents {Γ1 ` ∆2, . . . , Γn ` ∆n}
that are atomic, i.e., that contain no connectives.
If an atomic sequent Γi ` ∆i is unprovable, then it has a
countermodel, i.e., one in which each formula in Γi holds but
no formula in ∆i holds.
Hence, Γ ` ∆ has a countermodel.

N. Shankar FMSchool 2012 34/1

Completeness, More Generally

A set of formulas Γ is consistent, i.e., Con(Γ) iff there is no
formula A in Γ such that Γ ` ¬A is provable.

If Γ is consistent, then Γ ∪ {A} is consistent iff Γ ` ¬A is not
provable.

If Γ is consistent, then at least one of Γ ∪ {A} or Γ ∪ {¬A}
must be consistent.

A set of formulas Γ is complete if for each formula A, it
contains A or ¬A.

N. Shankar FMSchool 2012 35/1

Completeness

Any consistent set of formulas Γ can be made complete as Γ̂.

Let Ai be the i ’th formula in some enumeration of PL
formulas. Define

Γ0 = Γ

Γi+1 = Γi ∪ {Ai}, if Con(Γi ∪ {Ai})
= Γi ∪ {¬Ai}, otherwise.

Γ̂ = Γω =
⋃
i

Γi

Ex: Check that Γ̂ yields an interpretation MΓ̂ satisfying Γ.

Is it enough to just enumerate as Ai , the propositional
variables in Γ?

If Γ ` ∆ is unprovable, then Γ ∪∆ is consistent, and has a
model.

N. Shankar FMSchool 2012 36/1

Compactness

A logic is compact if any set of sentences Γ is satisfiable if all
finite subsets of it are.

Propositional logic is compact.

If Γ is not satisfiable, then it is not consistent.

The completeness argument can be adapted to a proof of
compactness by replacing Con(Γ) by finite satisfiability.

Then the set Γ̂ yields a complete finitely satisfiable set and
hence it does not contain both A and ¬A for any A.

Since Γ̂ is a superset of Γ, the latter is also satisfiable.

Alternately, we can use completeness so show that if Γ is
unsatisfiable, then there is a proof of Γ ` ¬A for some A ∈ Γ.

Since proofs are finite, there is some finite subset Γ′ such that
Γ′,A ` ¬A is provable, but Γ′ ∪ {A} is satisfiable,
contradicting soundness.

N. Shankar FMSchool 2012 37/1

Interpolation

Craig’s interpolation property states that given two sets of
formulas Γ1 and Γ2 in propositional variables Σ1 and Σ2,
respectively, Γ1 ∪ Γ2 is unsatisfiable iff there is a formula A in
propositional variables Σ1 ∩ Σ2 such that Γ1 |= A and Γ2,A is
unsatisfiable.

An alternative statement of interpolation is that if
Γ1, Γ2 ` ∆1,∆2, then there is a formula C in the intersection
of vars(Γ1 ∪∆1) ∩ vars(Γ2 ∪∆2)) such that Γ1 ` C ,∆1 and
Γ2,C ` ∆2.

Show a way of annotating a sequent proofs so that each
sequent has an interpolant.

N. Shankar FMSchool 2012 38/1

Inference System

An inference system I for a Σ-theory T is a Σ[X]-inference
structure 〈Ψ,Λ,`〉 that is

1 Conservative: Whenever ϕ `I ϕ′, Λ(ϕ) and Λ(ϕ′) are
T -equisatisfiable.

2 Progressive: The reduction relation `I should be
well-founded, i.e., infinite sequences of the form
〈ϕ0 ` ϕ1 ` ϕ2 ` . . .〉 must not exist.

3 Canonizing: A state is irreducible only if it is either ⊥ or is
T -satisfiable.

For any class of Σ[X]-formulas Ψ, if there is a mapping ν
from Ψ to Φ such that Λ(ν(A)) ⇐⇒ A, then a T -inference
system is a sound and complete inference procedure for
T -satisfiability in Ψ.

A computable function f such that κ ` f (κ) whenever there is
a κ′ such that κ ` κ′, is a decision procedure for satisfiability.

N. Shankar FMSchool 2012 39/1

Ordered Resolution

We have already seen that any propositional formula can be
written in CNF as a conjunction of clauses.

Input K is a set of clauses.

Atoms are ordered by � which is lifted to literals so that
¬p � p � ¬q � q, if p � q.

Literals appear in clauses in decreasing order without
duplication.

Tautologies, clauses containing both l and l , are deleted from
initial input.

Res
K , l ∨ Γ1, l ∨ Γ2

K , l ∨ Γ1, l ∨ Γ2, Γ1 ∨ Γ2

Γ1 ∨ Γ2 6∈ K
Γ1 ∨ Γ2 is not tautological

Contrad
K , l , l

⊥

N. Shankar FMSchool 2012 40/1

Ordered Resolution: Example

(K0 =) ¬p ∨ ¬q ∨ r , ¬p ∨ q, p ∨ r , ¬r

(K1 =) ¬q ∨ r , K0
Res

(K2 =) q ∨ r , K1
Res

(K3 =) r , K2
Res

⊥
Contrad

N. Shankar FMSchool 2012 41/1

Correctness

Progress: Bounded number of clauses in the given literals.
Each application of Res generates a new clause.

Conservation: For any model M, if M |= l ∨ Γ1 and
M |= l ∨ Γ2, then M |= Γ1 ∨ Γ2.

Canonicity: Given an irreducible non-⊥ configuration K in
the atoms p1, . . . , pn with pi ≺ pi+1 for 1 ≤ i ≤ n, build a
series of partial interpretations Mi as follows:

1 Let M0 = ∅
2 If pi+1 is the maximal literal in a clause pi+1 ∨ Γ ∈ K and

Mi 6|= Γ, then let Mi+1 = Mi{pi+1 7→ >}.
3 Otherwise, let Mi+1 = Mi{pi+1 7→ ⊥}.

Each Mi satisfies all the clauses in K in the atoms p1, . . . , pi .

N. Shankar FMSchool 2012 42/1

CDCL Informally

Goal: Does a given set of clauses K have a satisfying
assignment?

If M is a total assignment such that M |= Γ for each Γ ∈ K ,
then M |= K .

If M is a partial assignment at level h, then propagation
extends M at level h with the implied literals l such that
l ∨ Γ ∈ K ∪ C and M |= ¬Γ.

If M detects a conflict, i.e., a clause Γ ∈ K ∪ C such that
M |= ¬Γ, then the conflict is analyzed to construct a conflict
clause that allows the search to be continued from a prior
level.

If M cannot be extended at level h and no conflict is detected,
then an unassigned literal l is selected and assigned at level
h + 1 where the search is continued.

N. Shankar FMSchool 2012 43/1

Conflict-Driven Clause Learning (CDCL) SAT

Name Rule Condition

Propagate
h, 〈M〉,K ,C

h, 〈M, l [Γ]〉,K ,C
Γ ≡ l ∨ Γ′ ∈ K ∪ C
M |= ¬Γ′

Select
h, 〈M〉,K ,C

h + 1, 〈M; l []〉,K ,C
M 6|= l
M 6|= ¬l

Conflict
0, 〈M〉,K ,C

⊥
M |= ¬Γ
for some Γ ∈ K ∪ C

Backjump
h + 1, 〈M〉,K ,C

h′, 〈M≤h′ , l [Γ′]〉,K ,C ∪ {Γ′}

M |= ¬Γ
for some Γ ∈ K ∪ C
〈h′, Γ′〉
= analyze(ψ)(Γ)

for ψ = h, 〈M〉,K ,C

N. Shankar FMSchool 2012 44/1

CDCL Example

Let K be
{p∨q,¬p∨q, p∨¬q, s ∨¬p∨q,¬s ∨p∨¬q,¬p∨ r ,¬q∨¬r}.

step h M K C Γ

select s 1 ; s K ∅
select r 2 ; s; r K ∅
propagate 2 ; s; r ,¬q[¬q ∨ ¬r] K ∅
propagate 2 ; s; r ,¬q, p[p ∨ q] K ∅
conflict 2 ; s; r ,¬q, p K ∅ ¬p ∨ q

N. Shankar FMSchool 2012 45/1

CDCL Example (contd.)

step h M K C Γ

conflict 2 ; s; r ,¬q, p K ∅ ¬p ∨ q

backjump 0 ∅ K q

propagate 0 q[q] K q

propagate 0 q, p[p ∨ ¬q] K q

propagate 0 q, p, r [¬p ∨ r] K q

conflict 0 q, p, r K q ¬q ∨ ¬r

N. Shankar FMSchool 2012 46/1

CDCL Correctness

Progress: Each backjump step adds a new assignment at the
level h′ so that

∑h
i=0 |Mi | ∗ (N + 1)(N−h) increases toward the

bound (N + 1)(N+1) for N = |vars(K)|. In the example,
N = 4, the backjump step goes from a value 1300 in base 5
to the value 10000 which is closer to the bound 40000.

Conservation: In each transition from 〈M,K ,C 〉 to
〈M ′,K ′,C ′〉 (or ⊥), the clause sets M0 ∪ K ∪ C and
M0 ∪ K ′ ∪ C ′ are equisatisfiable.

Canonicity: In an irreducible non-⊥ state, M is total
assignment and there is no conflict so for each clause Γ in
K ∪ C , M |= Γ.

N. Shankar FMSchool 2012 47/1

Implementation Notes

The input clauses can be preprocessed by resolution, e.g., to
eliminate a variable, and subsumption to discard a clause
when a subclause is already available.

The selection heuristic can either pick

Propagation uses two-watched literals per clause, so that a
clause is visited only when a watched literal is falsified.

Learned clauses can be deleted when they are unused in the
partial assignment and not recently active in conflicts.

Frequent restarts are good for learning useful short clauses in
order to better direct the search.

All level 0 inferences can be applied permanently.

N. Shankar FMSchool 2012 48/1

CDCL with Proof

We can build compact, easily checkable resolution certificates
since each literal in M0 and each conflict clause in C has an
associated proof

Num. Clause Proof
0 p ∨ q
1 ¬p ∨ q
2 p ∨ ¬q
3 ¬p ∨ r
4 ¬q ∨ ¬r
5 q 0, 1
6 p 5, 2
7 r 3, 6
8 ⊥ 4, 5, 7

N. Shankar FMSchool 2012 49/1

Interpolant

The input clause set K is partitioned into K1 and K2.

If K is unsatisfiable, there is a formula (interpolant) I such
that K1 ⇒ I and K2 ∧ I ⇒ ⊥.

Furthermore, atoms(I) ⊆ atoms(K1) ∩ atoms(K2).

The interpolant for a proof can be constructed from the
interpolant IΓ for each clause Γ in the proof.

Each clause Γ in the proof is partitioned into Γ1 ∨ Γ2 with
atoms(Γ2) ⊆ atoms(K2) and atoms(Γ1) ∩ atoms(K2) = ∅.
The interpolant IΓ has the property that K1 ` ¬Γ1 ⇒ IΓ and
K2 ` IΓ ⇒ Γ2.

N. Shankar FMSchool 2012 50/1

Interpolants from Resolution

For an input clauses κ = κ1 ∨ κ2 in K1, the interpolant
Iκ = κ2.

For input clauses κ2 in K2, the interpolant is >.

When resolving κ′, κ′′ to get κ,

If resolvent p is in κ′1 (i.e., p 6∈ atoms(K2)), then Iκ = Iκ′ ∨ Iκ′′

since ¬(p ∨ κ′1)⇒ Iκ′ and Iκ′ ⇒ κ′2,
and ¬(¬p ∨ κ′′1)⇒ Iκ′′ and Iκ′′ ⇒ κ′′2 .

If resolvent p is in κ′2, then Iκ = Iκ′ ∧ Iκ′′ since
¬(κ′1 ∨ κ′′1)⇒ Iκ and
Iκ ⇒ (p ∨ κ′2) ∧ (¬p ∨ κ′′2) ⇐⇒ κ′2 ∨ κ′′2 .

N. Shankar FMSchool 2012 51/1

Interpolation Example

Let K1 = {a ∨ e[e],¬a ∨ b[b],¬a ∨ c[c]}, and
K2 = {¬b ∨ ¬c ∨ d [>],¬d [>],¬e[>]}, with shared variables
b, c , and e.

The annotated proof is given by

Conc. Interp. Clauses

a [e] a ∨ e[e],¬e[>]

b [e ∨ b] a,¬a ∨ b

c [e ∨ c] ¬a ∨ c , a

¬c ∨ d [e ∨ b] a ∨ e,¬a ∨ b

d [(e ∨ b) ∧ (e ∨ c)] ¬c ∨ d , c

⊥ [(e ∨ b) ∧ (e ∨ c)] d ,¬d

N. Shankar FMSchool 2012 52/1

AllSAT

To find all satisfying assignments for K , add a field B to
CDCL to collect the blocking clauses corresponding to the
current set of assignments.

For input ¬a ∨ b, c, the first assignment yields M = c; a, b.
Add the negation ¬c ∨ ¬a ∨ ¬b as a blocking clause to B and
continue. (This could be reduced to ¬c ∨ ¬b.)

The next assignment M ′ = c ; a,¬b generates a confict, so we
add the conflict clause ¬c ∨ ¬a to C .

Next, c ,¬a; b is a satisfying assignment, so ¬c ∨ a ∨ ¬b is
added to B. Finally, c ,¬a,¬b is also satisfying, and hence
¬c ∨ a ∨ b is added to B.

There is a conflict at level 0, and ¬
∧

B is the required DNF
form of input K .

Exercise: Show a method for compute the DNF of ∃X .K ,
where X ⊆ atoms(K).

N. Shankar FMSchool 2012 53/1

MaxSAT

With soft constraints, all constraints may not be satisfiable,
but the goal is to satisfy as many as possible.

Each constraint Ai can be augmented as ai ∨ Ai , for a fresh
variable ai .

We can add constraints indicating that at most k of the ai
literals can be assigned >.

By shrinking k, we can determine the minimal value of k.

Weighted MaxSAT can be solved similarly.

More generally, pseudo-Boolean constraints Σiwi ∗ ai ≤ k can
be encoded.

N. Shankar FMSchool 2012 54/1

ROBDD

Boolean functions map {0, 1}n to {0, 1}.
We have already seen how n-ary Boolean functions can be
represented by propositional formulas of n variables.

ROBDDs are a canonical representation of boolean functions
as a decision diagram where

1 Literals are uniformly ordered along every branch:
f (x1, . . . , xn) = IF(x1, f (>, x2, . . . , xn), f (⊥, x2, . . . , xn))

2 Common subterms are identified
3 Redundant branches are removed: IF(xi ,A,A) = A

Efficient implementation of boolean operations: f1.f2, f1 + f2,
−f , including quantification.

Canonical form yields free equivalence checks (for convergence
of fixed points).

N. Shankar FMSchool 2012 55/1

ROBDD for Even Parity

ROBDD for even parity boolean function of a, b, c .

0 1

0 1

1
0 0

1

1
0

1
0

a

b b

c c

Construct an algorithm to compute f1 � f2, where � is . or +.

N. Shankar FMSchool 2012 56/1

Equality Logic (EL)

In the process of creeping toward first-order logic, we introduce a
modest but interesting extension of propositional logic.
In addition to propositional atoms, we add a set of constants τ
given by c0, c1, . . . and equalities c = d for constants c and d .

φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | τ1 = τ2

The structure M now has a domain |M| and maps propositional
variables to {>,⊥} and constants to |M|.

M[[c = d]] =

{
>, if M[[c]] = M[[d]]
⊥, otherwise

N. Shankar FMSchool 2012 57/1

Proof Rules for Equality Logic

Reflexivity Γ ` a = a,∆

Symmetry
Γ ` a = b,∆

Γ ` b = a,∆

Transitivity
Γ ` a = b,∆ Γ ` b = c ,∆

Γ ` a = c ,∆

Show that the above proof rules (on top of propositional
logic) are sound and complete.

Show that Equality Logic is decidable.

Adapt the above logic to reason about partial orders.

N. Shankar FMSchool 2012 58/1

Term Equality Logic (TEL)

One further extension is to add function symbols to form
terms τ , so that constants are just 0-ary function symbols.

τ := f (τ1, . . . , τn), for n ≥ 0

φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | τ1 = τ2

For an n-ary function f , M(f) maps |M|n to |M|.

M[[a = b]] = M[[a]] = M[[b]]

M[[f (a1, . . . , an)]] = (M[[f]])(M[[a1]], . . . ,M[[an]])

We need one additional proof rule.

Congruence
Γ ` a1 = b1,∆ . . . Γ ` an = bn,∆

Γ ` f (a1, . . . , an) = f (b1, . . . , bn),∆

N. Shankar FMSchool 2012 59/1

Term Equality Proof Examples

Let f n(a) represent f (. . . f︸ ︷︷ ︸
n

(a) . . .).

f 3(a) = f (a) ` f 3(a) = f (a)
Ax

f 3(a) = f (a) ` f 4(a) = f 2(a)
C

f 3(a) = f (a) ` f 5(a) = f 3(a)
C

f 3(a) = f (a) ` f 3(a) = f (a)
Ax

f 3(a) = f (a) ` f 5(a) = f (a)
T

Show soundness and completeness of the above system.

N. Shankar FMSchool 2012 60/1

First-Order Logic

We can now complete the transition to first-order logic by adding

τ := X
| f (τ1, . . . , τn), for n ≥ 0

φ := ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | τ1 = τ2

| ∀x .φ | ∃x .φ | q(τ1, . . . , τn), for n ≥ 0

Terms contain variables, and formulas contain atomic and
quantified formulas.

N. Shankar FMSchool 2012 61/1

Semantics for Variables and Quantifiers

M[[q]] is a map from Dn to {>,⊥}, where n is the arity of
predicate q.

M[[x]]ρ = ρ(x)

M[[q(a1, . . . , an)]]ρ = M[[q]](M[[a1]]ρ, . . . ,M[[an]]ρ)

M[[∀x .A]]ρ =

{
>, if M[[A]]ρ[x := d] for all d ∈ D
⊥, otherwise

M[[∃x .A]]ρ =

{
>, if M[[A]]ρ[x := d] for some d ∈ D
⊥, otherwise

Atomic formulas are either equalities or of the form q(a1, . . . , an).

N. Shankar FMSchool 2012 62/1

First-Order Logic

Left Right

∀ Γ,A[t/x] ` ∆

Γ, ∀x .A ` ∆

Γ ` A[c/x],∆

Γ ` ∀x .A,∆

∃ Γ,A[c/x] ` ∆

Γ, ∃x .A ` ∆

Γ ` A[t/x],∆

Γ ` ∃x .A,∆

Constant c must be chosen to be new so that it does not
appear in the conclusion sequent.

Demonstrate the soundness of first-order logic.

N. Shankar FMSchool 2012 63/1

Using First-Order Logic

Prove ∃x .(p(x)⇒ ∀y .p(y)).
Give at least two satisfying interpretations for the statement
(∃x .p(x)) =⇒ (∀x .p(x)).
A sentence is a formula with no free variables. Find a
sentence A such that both A and ¬A are satisfiable.
Write a formula asserting the unique existence of an x such
that p(x).
Define operations for collecting the free variables vars(A) in a
given formula A, and substituting a term a for a free variable
x in a formula A to get A{x 7→ a}.
Is M[[A{x 7→ a}]]ρ = M[[A]]ρ[x := M[[a]]ρ]? If not, show an
example where it fails. Under what condition does the
equality hold?
Show that any quantified formula is equivalent to one in
prenex normal form, i.e., where the only quantifiers appear at
the head of the formula and the body is purely a propositional
combination of atomic formulas.

N. Shankar FMSchool 2012 64/1

More Exercises

¬∀x .A ⇐⇒ ∃x .¬A

(∀x .A ∧ B) ⇐⇒ (∀x .A) ∧ (∀x .B)

(∃x .A ∨ B) ⇐⇒ (∃x .A) ∨ (∃x .B)

((∀x .A) ∨ (∀x .B))⇒ (∀x .A ∨ B)

Can you write first-order formulas whose models
1 Have exactly (at most, at least) three elements?
2 Are infinite
3 Are finite but unbounded

Can you write a first-order formula asserting that
1 A relation is transitively closed
2 A relation is the transitive closure of another relation.

N. Shankar FMSchool 2012 65/1

Equational Logic

Equational logic (or Universal Algebra) is a heavily used
fragment of first-order logic.

This can be seen as a fragment of first-order logic where
sequents are of the form Γ ` A, where the sequent formulas
are all of the form a = b or ∀x .a = b, where x is a sequence
of variables x1, . . . , xn and ∀x .a = b is ∀x1. . . .∀x2.a = b.

Use equational logic to formalize (i.e., find axioms whose
models are)

1 Semigroups: A set G with an associative binary operator ..
2 Monoids: A set M with associative binary operator . and unit

1.
3 Groups: A monoid with an right-inverse operator x−1

Prove that every group element has a left inverse.

N. Shankar FMSchool 2012 66/1

Completeness of First-Order Logic

The quantifier rules for sequent calculus require copying.

Proof branches can be extended without bound.

Ex: Show that LK is sound: ` A implies |= A.

The Henkin closure H(Γ) is the smallest extension of a set of
sentences Γ that is Henkin-closed, i.e., contains B ⇒ A(cB)
for every B ∈ H(Γ) of the form ∃x : A. (cB is a fresh
constant.)

Any consistent set of formulas Γ has a consistent Henkin
closure H(Γ).

As before, any consistent, Henkin closed set of formulas Γ has
a complete, Henkin-closed extension Γ̂.

Ex: Construct an interpretation M
Ĥ(Γ)

from Ĥ(Γ) and show

that it is a model for Γ.

N. Shankar FMSchool 2012 67/1

Inference Systems for First-Order Theories

Recall that inference systems are triples 〈Ψ,Λ,`〉 where ` is
conservative, progressive, and canonizing.

We have already seen inference systems for resolution and
CDCL.

A theory in a signature Σ is a set of Σ-structures (closed
under isomorphism).

Satisfiability procedures for many first-order theories and
theory combinations can be presented as inference systems.

1 Union-find for equality
2 Basic superposition for equality/propositional reasoning
3 Simplex-based linear arithmetic reasoning
4 Satisfiability Modulo Theories

N. Shankar FMSchool 2012 68/1

SMT Overview

In SMT solving, the Boolean atoms represent constraints over
individual variables ranging over integers, reals, datatypes, and
arrays.

The constraints can involve theory operations, equality, and
inequality.

The SAT solver has to interact with a theory constraint solver
which propagates truth assignments and adds new clauses.

The theory solver can detect conflicts involving theory
reasoning, e.g.,

1 f (x) = f (y) ∨ x 6= y
2 f (x − 2) 6= f (y + 3) ∨ x − y ≤ 5 ∨ y − z ≤ −2 ∨ z − x ≤ −3
3 x XOR y 6= 0b0000000 ∨ select(store(A, x , v), y) = v

The theory solver must produce efficient explanations,
incremental assertions, and efficient backtracking.

N. Shankar FMSchool 2012 69/1

Example Constraint Solvers

Core theory: Equalities between variables x = y , offset
equalities x = y + c .

Term equality: Congruence closure for uninterpreted
function symbols

Difference constraints: Incremental negative cycle
detection for inequality constraints of the form x − y ≤ k .

Linear arithmetic constraints: Fourier’s method, Simplex.

N. Shankar FMSchool 2012 70/1

Theory Constraint Solver Interface

The satisfiability procedure uses a theory constraint solver oracle
which maintains the theory state S with the interface operations:

1 assert(l , S) adds literal l to the theory state S returning a
new state S ′ or ⊥[∆]

2 check(S) checks if the conjunction of literals asserted to S is
satisfiable, and returns either > or ⊥[∆].

3 retract(S , l): Retracts, in reverse chronological order, the
assertions up to and including l from state S .

4 model(S): Builds a model for a state known to be satisfiable.

N. Shankar FMSchool 2012 71/1

Satisfiability Modulo Theories

SMT deals with formulas with theory atoms like x = y ,
x 6= y , x − y ≤ 3, and select(store(A, i , v), j) = w .

The CDCL search state is augmented with a theory state S in
addition to the partial assignment.

Total assignments are checked for theory satisfiability.

When a literal is added to M by unit propagation, it is also
asserted to S .

When a literal is implied by S , it is propagated to M.

When backjumping, the literals deleted from M are also
retracted from S .

N. Shankar FMSchool 2012 72/1

SMT example

The state extends CDCL with a find structure F and disquality set
D.
Input is y = z , x = y ∨ x = z , x 6= y ∨ x 6= z

Step M F D C
Assert y = z {y 7→ z} ∅ ∅
Select y = z ; x 6= y {y 7→ z} {x 6= y} ∅

Prop
. . . , x 6= z
[x 6= z ∨ y 6= z ∨ x = y]

{y 7→ z} {x 6= y} ∅

Conflict . . . {y 7→ z} {x 6= y} ∅
Analyze . . . {y 7→ z} {x 6= y} {y 6= z

∨x = y}
Bkjump y = z , x = y {y 7→ z} ∅ . . .
Assert y = z , x = y {x 7→ y , y 7→ z} ∅ . . .

Prop
. . . , x = z
[x = z ∨ x 6= y ∨ y 6= z]

{x 7→ y , y 7→ z} ∅ . . .

Conflict

N. Shankar FMSchool 2012 73/1

Inference Systems for Theories

Define an inference system for congruence closure for
satisfiability for a set of equality and disequality assertions
over terms.
Define an inference system for difference logic constraints of
the form x − y ≤ k , where k is a numeric constant. Does it
make a difference whether you are solving over integers,
rationals, or reals?
Define an inference system for linear inequality constraints
c1x1 + . . . cnxn ≤ c .
A theory supports quantifier elimination if to any formula φ,
there is an theory-equivalent quantifier-free formula φ̂.
Which of the above theories support quantifier elimination?
Show that first-order theory over infinite models in the empty
signature supports quantifier elimination.
Use this with first-order interpolation to combine two
constraint solvers for disjoint theories. (Nelson-Oppen
combination).

N. Shankar FMSchool 2012 74/1

Skolemization

Consider a formula of the form ∀x .∃y .q(x , y).

It is equisatisfiable with the formula ∀x .q(x , f (x)) for a new
function symbol f .

If M |= ∀x .∃y .q(x , y), then for any c ∈ |M|, there is dc ∈ |M|
such that M[[q(x , y)]]{x 7→ c , y 7→ dc}. let M ′ extend M so
that M(f)(c) = dc , for each c ∈ |M|: M ′ |= ∀x .q(x , f (y)).

Conversely, if M |= ∀x .q(x , f (y)), then for every c ∈ |M|,
M[[q(x , y)]]{x 7→ c , y 7→ M(f)(c)}.
Prove the general case that any prenex formula can be
Skolemized by replacing each existentially quantified variable
y by a term f (x), where f is a distinct, new function symbol
for each y , and x are the universally quantified variables
governing y .

N. Shankar FMSchool 2012 75/1

Herbrand’s Theorem

For any sentence A there is a quantifier-free sentence AH (the
Herbrand form of A) such that ` A in LK iff ` AH in TEL0.

The Herbrand form is a dual of Skolemization where each
universal quantifier is replaced by a term f (y), where y is the
set of governing existentially quantified variables.

Then, ∃x : (p(x)⇒ ∀y : p(y)) has the Herbrand form
∃x .p(x)⇒ p(f (x)), and the two formulas are equi-valid.

How do you prove the latter formula?

N. Shankar FMSchool 2012 76/1

Herbrand’s Theorem

Herbrand terms are those built from function symbols in AH

(adding a constant, if needed).

Show that if AH is of the form ∃x .B, then ` AH iff∨n
i=0 σi (B), for some Herbrand term substitutions σ1, . . . , σn.

[Hint: In a cut-free sequent proof of a prenex formula, the quantifier

rules can be made to appear below all the other rules. Such proofs

must have a quantifier-free mid-sequent above which the proof is

entirely equational/propositional.]

Show that if a formula has a counter-model, then it has one
built from Herbrand terms (with an added constant if there
isn’t one).

N. Shankar FMSchool 2012 77/1

Unification

A substitution is a map {x1 7→ a1, . . . , xn 7→ an} from a finite
set of variables {x1, . . . , xn} to a set of terms.
Define the operation σ(a) of applying a substitution (such as
the one above) to a term a to replace any free variables xi in t
with ai .
Define the operation of composing two substitutions σ1 ◦ σ2

as {x1 7→ σ1(a1), . . . , xn 7→ σ1(an)}, if σ2 is of the form
{x1 7→ a1, . . . , xn 7→ an}.
Given two terms f (x , g(y , y)) and f (g(y , y), x) (possibly
containing free variables), find a substitution σ such that
σ(a) ≡ σ(b).
Such a σ is called a unifier.
Not all terms have such unifiers, e.g., f (g(x)) and f (x).
A substitution σ1 is more general than σ2 if the latter can be
obtained as σ ◦ σ1, for some σ.
Define the operation of computing the most general unifier, if
there is one, and reporting failure, otherwise.

N. Shankar FMSchool 2012 78/1

Resolution

To prove (∃y .∀x .p(x , y))⇒ (∀x .∃y .p(x , y))

Negate: (∃y .∀x .p(x , y)) ∧ (∃x .∀y .¬p(x , y))

Prenexify: ∃y1.∀x1.∃x2.∀y2.p(x1, y1) ∧ ¬p(x2, y2)

Skolemize: ∀x1, y2.p(x1, c) ∧ ¬p(f (x1), y2)

Distribute and clausify: {p(x1, c),¬p(f (x3), y2)}
Unify and resolve with unifier {x1 7→ f (x3), y2 7→ c}
Yields an empty clause

Now try to show (∀x .∃y .p(x , y))⇒ (∃y .∀x .p(x , y)).

N. Shankar FMSchool 2012 79/1

Dedekind-Peano Arithmetic

The natural numbers consist of 0, s(0), s(s(0)), etc.
Clearly, 0 6= s(x), for any x .
Also, s(x) = s(y)⇒ x = y , for any x and y .
Next, we would like to say that this is all there is, i.e., every
domain element is reachable from 0 through applications of s.
This requires induction:
P(0) ∧ (∀n.P(n)⇒ P(n + 1))⇒ (∀n.P(n)), for every
property P.
But there is no way to write this — there are uncountably
many properties (subset of natural numbers) but only finitely
many formulas.
Induction is therefore given as a scheme, an infinite set of
axioms, with the template

A{x 7→ 0} ∧ (∀x .A⇒ A{x 7→ s(x)})⇒ (∀x .A).

We still need to define + and ×. How?
How do you define the relation x < y?

N. Shankar FMSchool 2012 80/1

Set Theory

Set theory has can also be axiomatized using axiom schemes, using
a membership relation ∈:

Extensionality: x = y ⇐⇒ (∀z .z ∈ x ⇐⇒ z ∈ y)
The existence of the empty set ∀x .¬x ∈ ∅
Pairs: ∀x , y .∃z .∀u ∈ z .u = x ∨ u = y (Define the singleton
set containing the empty set. Construct a representation for
the ordered pair of two sets.)
Union: How? (Define a representation for the finite ordinals
using singleton, or using singleton and union.)
Comprehension: {x ∈ y |A}, for any formula A, y 6∈ vars(A).
(Define the intersection and disjointness of two sets.)
Infinity: There is a set containing all the finite ordinals.
Power set: For any set, we have the set of all its subsets.
Regularity: Every set has a minimal element (that is disjoint
from it).
Replacement: The image Y of a set X with respect to a
functional (∀x ∈ X .∃!y .A(x , y)) rule A(x , y), is a set.

N. Shankar FMSchool 2012 81/1

Incompleteness

Can all mathematical truths (valid sentences) be formally
proved?

No. There are valid statements about numbers that have no
proof. (Gödel’s first incompleteness theorem)

Suppose Z is some formal theory claiming to be a sound and
complete formalization of arithmetic, i.e., it proves all and
only valid statements about numbers.

Gödel showed that there is a valid but unprovable statement.

N. Shankar FMSchool 2012 82/1

The First Incompleteness Theorem

The expressions of Z can be represented as numbers as can
the proofs.

The statement “p is a proof of A” can then be represented by
a formula Pf (x , y) about numbers x and y .

If p is represented by the number p and A by A, then
Pf (p,A) is provable iff p is a proof of A.

Numbers such as A are representable as numerals in Z and
these numerals can also be represented by numbers, A.

Then ∃x .Pf (x , y) says that the statement represented by y is
provable. Call this Pr(y).

N. Shankar FMSchool 2012 83/1

The Undecidable Sentence

Let S(x) represent the numeric encoding of the operation
such that for any number k , S(k) is the encoding of the
expression obtained by substituting the numeral for k for the
variable ‘x ’ in the expression represented by the number k .

Then ¬Pr(S(x)) is represented by a number k , and the
undecidable sentence U is ¬Pr(S(k)).

U is S(k), i.e., the sentence obtained by substituting the
numeral for k for ‘x ’ in ¬Pr(S(x)) which is represented by k .

Since U is ¬Pr(U), we have a situation where either
1 U, i.e., ¬Pr(U), is provable, but from the numbering of the

proof of U, we can also prove Pr(U).
2 ¬U, i.e., Pr(U) is provable, but clearly none of Pf (0,U)

Pf (1,U), . . . , is provable (since otherwise U would be
provable), an ω-inconsistency, or

3 Neither U nor ¬U is provable: an incompleteness.

N. Shankar FMSchool 2012 84/1

Second Incompleteness Theorem

The negation of the sentence U is Σ1, and Z can verify
Σ1-completeness (every valid Σ1-sentence is provable).

Then
` Pr(U)⇒ Pr(Pr(U)).

But this says ` Pr(U)⇒ Pr(¬U).

Therefore ` Con(Z)⇒ ¬Pr(U).

Hence ¬ ` Con(Z), by the first incompleteness theorem.

Exercise: The theory Z is consistent if A ∧ ¬A is not
provable for any A. Show that ω-consistency is stronger than
consistency. Show that the consistency of Z is adequate for
proving the first incompleteness theorem.

N. Shankar FMSchool 2012 85/1

Higher-Order Logic

Thus far, variables ranged over ordinary datatypes such as
numbers, and the functions and predicates were fixed
(constants).

Second-order logic allows free and bound variables to range
over the functions and predicates of first-order logic.

In n’th-order logic, the arguments (and results) of functions
and predicates are the functions and predicates of m’th-order
logic for m < n.

This kind of strong typing is required for consistency,
otherwise, we could define R(x) = ¬x(x), and derive
R(R) = ¬R(R).

Higher-order logic, which includes n’th-order logic for any
n > 0, can express a number of interesting concepts and
datatypes that are not expressible within first-order logic:
transitive closure, fixpoints, finiteness, etc.

N. Shankar FMSchool 2012 86/1

Types in Higher-Order Logic

Base types: e.g., bool, nat, real

Tuple types: [T1, . . . ,Tn] for types T1, . . . , Tn.

Tuple terms: (a1, . . . , an)

Projections: πi (a)

Function types: [T1→T2] for domain type T1 and range type
T2.

Lambda abstraction: λ(x : T1) : a

Function application: f a.

N. Shankar FMSchool 2012 87/1

Semantics of Higher Order Types

[[bool]] = {0, 1}
[[real]] = R

[[[T1, . . . ,Tn]]] = [[T1]]× . . .× [[Tn]]

[[[T1→T2]]] = [[T2]][[T1]]

N. Shankar FMSchool 2012 88/1

Higher-Order Proof Rules

β-reduction
Γ ` (λ(x : T) : a)(b) = a[b/x],∆

Extensionality
Γ ` (∀(x : T) : f (x) = g(x)),∆

Γ ` f = g ,∆

Projection
Γ ` πi (a1, . . . , an) = ai ,∆

Tuple Ext.
Γ ` π1(a) = π1(b),∆, . . . , Γ ` πn(a) = πi (b),∆

Γ ` a = b,∆

N. Shankar FMSchool 2012 89/1

Conclusions: Speak Logic!

Logic is a powerful tool for
1 Formalizing concepts
2 Defining abstractions
3 Proving validities
4 Solving constraints
5 Reasoning by calculation
6 Mechanized inference

The power of logic is when it is used as an aid to effective
reasoning.

Logic can become enormously difficult, and it would
undoubtedly be well to produce more assurance in its use.
. . . We may some day click off arguments on a machine
with the same assurance that we now enter sales on a
cash register.

Vannevar Bush, As We May Think

The machinery of logic has made it possible to solve large and
complex problems; formal verification is now a practical
technology.

N. Shankar FMSchool 2012 90/1

References

Barwise, Handbook of Mathematical Logic

Johnstone, Notes on logic and set theory

Ebbinghaus, Flum, and Thomas, Mathematical Logic

Kees Doets, Basic Model Theory

Huth and Ryan, Logic in Computer Science: Modelling and
Reasoning about Systems

Girard, Lafont, and Taylor, Proofs and Types

Shankar, Automated Reasoning for Verification, ACM
Computing Surveys, 2009

N. Shankar FMSchool 2012 91/1

