Quantifiers

Bruno Dutertre

Leonardo de Moura SRI International Microsoft Research

Modeling the Runtime

 \forall h,o,f: IsHeap(h) \land o \neq null \land read(h, o, alloc) = t \Rightarrow read(h,o, f) = null \lor read(h, read(h,o,f),alloc) =

Frame Axioms

 \forall o, f: o ≠ null ∧ read(h₀, o, alloc) = t ⇒ read(h₁,o,f) = read(h₀,o,f) ∨ (o,f) ∈ M

User provided assertions

 \forall i,j: i \leq j \Rightarrow read(a,i) \leq read(b,j)

Extra Theories

 $\forall x: p(x,x)$ $\forall x,y,z: p(x,y), p(y,z) \Rightarrow p(x,z)$ $\forall x,y: p(x,y), p(y,x) \Rightarrow x = y$

Main Challenge Solver must be fast is satisfiable instances

Verifying Compilers

pre/post conditions invariants and other annotations

Verification Condition: Structure

VCC: Verifying C Compiler

BAD NEWS

First-order logic (FOL) is semi-decidable Quantifiers + EUF

FOL + Linear Integer Arithmetic is undecidable Quantifiers + EUF + LIA

Hypervisor

Challenges:

VCs have several Megabytes Thousands universal quantifiers Developers are willing at most 5 min per VC

Verification Attempt Time vs. Satisfaction and Productivity

By Michal Moskal (VCC Designer and Software Verification Expert)

NNF: Negation Normal Form

- NNF(p) = p
- $NNF(\neg p) = \neg p$
- $NNF(\neg \neg \phi) = NNF(\phi)$
- $\mathit{NNF}(\phi_0 \lor \phi_1) = \mathit{NNF}(\phi_0) \lor \mathit{NNF}(\phi_1)$
- $\mathit{NNF}(\neg(\phi_0 \lor \phi_1)) = \mathit{NNF}(\neg\phi_0) \land \mathit{NNF}(\neg\phi_1)$
 - $\mathsf{NNF}(\phi_0 \land \phi_1) = \mathsf{NNF}(\phi_0) \land \mathsf{NNF}(\phi_1)$
- $\mathsf{NNF}(\neg(\phi_0 \land \phi_1)) = \mathsf{NNF}(\neg\phi_0) \lor \mathsf{NNF}(\neg\phi_1)$
 - $\mathit{NNF}(\forall x:\phi) \quad = \quad \forall x:\mathit{NNF}(\phi)$
 - $\mathsf{NNF}(\neg(\forall x:\phi)) = \exists x:\mathsf{NNF}(\neg\phi)$
 - $NNF(\exists x:\phi) = \exists x:NNF(\phi)$
 - $\mathit{NNF}(\neg(\exists x:\phi)) \quad = \quad \forall x:\mathit{NNF}(\neg\phi)$

NNF: Negation Normal Form

Theorem: $F \Leftrightarrow NNF(F)$

 $\mathsf{Ex.:} \mathsf{NNF}(\neg (p \land (\neg r \lor \forall x : q(x)))) = \neg p \lor (r \land \exists x : \neg q(x)).$

Skolemization

After NNF, Skolemization can be used to eliminate existential quantifiers.

 $\exists y: F[x,y] \rightsquigarrow F[x,f(x)]$

Skolemization

The resultant formula is equisatisfiable.

Example:

$$\forall x : p(x) \Rightarrow \exists y : q(x, y)$$

 $\forall x : p(x) \Rightarrow q(x, f(x))$

\forall - Many Approaches

Heuristic quantifier instantiation

SMT + Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

Quantifier Elimination

Heuristic Quantifier Instantiation

E-matching (matching modulo equalities).

Example:

 $\forall x: f(g(x)) = x \{ f(g(x)) \}$ a = g(b), b = c, f(a) \neq c Pattern/Trigger

Heuristic Quantifier Instantiation

E-matching (matching modulo equalities).

Example:

 $\forall x: f(g(x)) = x \{ f(g(x)) \}$ a = g(b), b = c, x=b f(g(b)) = bf(a) $\neq c$

E-matching problem

Input: A set of ground equations E, a ground term t, and a pattern p, where p possibly contains variables.

Output: The set of substitutions β over the variables in p, such that:

$$E \models t = \beta(p)$$

Example:

$$E \equiv \{a = f(b), a = f(c)\}$$

$$t \equiv g(a)$$

$$p \equiv g(f(x))$$

$$R \equiv \{\underbrace{\{x \mapsto b\}}_{\beta_1}, \underbrace{\{x \mapsto c\}}_{\beta_2}\}$$
Applying β_2 : $a = f(b), a = f(c) \models g(a) = g(f(c))$

E-matching Challenge

Number of matches can be exponential It is not refutationally complete The real challenge is finding new matches: Incrementally during backtracking search Large database of patterns

 $f(g(a)) = c, c \neq f(g(b)), a = b$

 $f(g(a)) = c, c \neq f(g(b)), a = b$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\f(g(a)) \mapsto f(g(a)), f(g(b)) \mapsto f(g(b))\} \\D = \{\} \\\pi(a) = \{g(a)\} \\\pi(b) = \{g(b)\} \\\pi(g(a)) = \{f(g(a))\} \\\pi(g(b)) = \{f(g(b))\}$$

Merge equivalence classes of f(g(a)) and c.

 $f(g(a)) = c, c \neq f(g(b)), a = b$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\ f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\} \\ D = \{\} \\ \pi(a) = \{g(a)\} \\ \pi(b) = \{g(b)\} \\ \pi(g(a)) = \{f(g(a))\} \\ \pi(g(b)) = \{f(g(b))\} \\ \end{cases}$$

 $f(g(a)) = c, c \neq f(g(b)), a = b$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\ f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{\}$$

$$\pi(a) = \{g(a)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b))\}$$

Add disequality

 $f(g(a)) = c, c \neq f(g(b)), a = b$

 $f(g(a)) = c, c \neq f(g(b)), a = b$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\ f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a)\}$$

$$\pi(b) = \{g(b)\}$$

 $\pi(g(a)) = \{f(g(a))\}\$ $\pi(g(b)) = \{f(g(b))\}\$

Merge equivalence classes of a and b.

$$f(g(a)) = c, c \neq f(g(b)), a = b, g(a) = g(b)$$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\ f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a), g(b)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

 $\pi(g(b)) \ = \ \{f(g(b))\}$

 $f(g(a)) = c, c \neq f(g(b)), a = b, g(a) = g(b)$

Merge equivalence classes of g(a) and g(b).

 $f(g(a)) = c, c \neq f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(b), g(b) \mapsto g(b) \\f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\} \\D = \{c \neq f(g(b))\} \\\pi(a) = \{g(a), g(b)\} \\\pi(b) = \{g(a), g(b)\} \\\pi(g(a)) = \{f(g(a))\} \\\pi(g(b)) = \{f(g(b)), f(g(a))\}$$

 $f(g(a)) = c, c \neq f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(b), g(b) \mapsto g(b) \\ f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\} \\ D = \{c \neq f(g(b))\} \\ \pi(a) = \{g(a), g(b)\} \\ \pi(b) = \{g(b)\} \\ \pi(g(a)) = \{f(g(a))\} \\ \pi(g(b)) = \{f(g(b)), f(g(a))\}$$

Merge equivalence classes of f(g(a)) and $f(g(b)) \rightsquigarrow$ unsat.

E-matching

$$\begin{split} \textit{match}(x,t,S) &= \{\beta \cup \{x \mapsto t\} \mid \beta \in S, x \not\in \textit{dom}(\beta)\} \cup \\ \{\beta \mid \beta \in S, F^*(\beta(x)) = F^*(t)\} \\ \textit{match}(c,t,S) &= S \text{ if } F^*(c) = F^*(t) \\ \textit{match}(c,t,S) &= \emptyset \text{ if } F^*(c) \neq F^*(t) \\ \textit{match}(f(p_1,\ldots,p_n),t,S) &= \\ & \bigcup_{F^*(f(t_1,\ldots,t_n)) = F^*(t)} \textit{match}(p_n,t_n,\ldots,\textit{match}(p_1,t_1,S)\ldots) \end{split}$$

 $match(p, t, \{\emptyset\})$ returns the desired set of substitutions.

E-matching: Example

$$\begin{array}{lll} F &=& \{a \mapsto c, \ b \mapsto b, \ c \mapsto c, \ d \mapsto d, \\ && f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b), \\ && g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c, \\ && h(a,d) \mapsto b, \ h(c,a) \mapsto b \} \end{array}$$

E-match t and p:

$$t = f(c, b)$$
$$p = f(g(x), h(x, a))$$

E-matching: Example

$$\begin{array}{lll} F &=& \{a \mapsto c, \ b \mapsto b, \ c \mapsto c, \ d \mapsto d, \\ && f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b), \\ && g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c, \\ && h(a,d) \mapsto b, \ h(c,a) \mapsto b \} \end{array}$$

 $\textit{match}(f(g(x),h(x,a)),f(c,b),\{\emptyset\}) =$

E-matching: Example

$$F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\f(c,b) \mapsto f(c,b), f(g(a),b) \mapsto f(c,b), \\g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\h(a,d) \mapsto b, h(c,a) \mapsto b\}$$

$$match(f(g(x), h(x,a)), f(c,b), \{\emptyset\}) = \\match(g(x), c, match(h(x,a), b, \{\emptyset\})) \qquad \text{for } f(c,b) \\ \cup$$

 $match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))$ for f(g(a), b)
$$F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\f(c,b) \mapsto f(c,b), f(g(a),b) \mapsto f(c,b), \\g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\h(a,d) \mapsto b, h(c,a) \mapsto b\}$$

$$match(f(g(x), h(x,a)), f(c,b), \{\emptyset\}) = \\match(g(x), c, match(x, a, match(a, d, \{\emptyset\}))) \qquad \text{for } h(a, d) \\\cup$$

 $match(x, c, match(a, a, \{\emptyset\})))$ for h(c, a)

U

 $match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))$

$$\begin{array}{rcl} \textbf{E-matching: Example} \\ F &= \{a \mapsto c, \, b \mapsto b, \, c \mapsto c, \, d \mapsto d, \\ &f(c,b) \mapsto f(c,b), \, f(g(a),b) \mapsto f(c,b), \\ &g(a) \mapsto c, \, g(b) \mapsto g(b), \, g(c) \mapsto c, \, g(d) \mapsto c, \\ &h(a,d) \mapsto b, \, h(c,a) \mapsto b\} \\ match(f(g(x),h(x,a)),f(c,b),\{\emptyset\}) = \\ &match(g(x),c,match(x,a,match(a,d,\{\emptyset\})) & \text{for } h(a,d) \\ & \cup \\ & & & \\ & &$$

 \boldsymbol{a} and \boldsymbol{d} are not in the same equivalence class.

E-matching: Example $F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, d \mapsto d\}$ $f(c,b) \mapsto f(c,b), f(g(a),b) \mapsto f(c,b),$ $g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,$ $h(a,d) \mapsto b, h(c,a) \mapsto b$ $match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =$ $match(g(x), c, match(x, a, \emptyset))$ U $match(x, c, match(a, a, \{\emptyset\})))$ U $match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))$

E-matching: Example $F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, d \mapsto d\}$ $f(c,b) \mapsto f(c,b), f(g(a),b) \mapsto f(c,b),$ $g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c,$ $h(a,d) \mapsto b, h(c,a) \mapsto b$ $match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =$ $match(g(x), c, \emptyset)$ U $match(x, c, match(a, a, \{\emptyset\})))$ U $match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))$

E-matching: Example $F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, d \mapsto d\}$ $f(c,b) \mapsto f(c,b), f(g(a),b) \mapsto f(c,b),$ $g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c,$ $h(a,d) \mapsto b, h(c,a) \mapsto b$ $match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =$ $match(g(x), c, \emptyset)$ U $match(x, c, match(a, a, \{\emptyset\})))$ U $match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))$

 $F^*(a) = F^*(a)$

U

 $\textit{match}(g(x),g(a),\textit{match}(h(x,a),b,\{\emptyset\}))$

$$E-matching: Example$$

$$F = \{a \mapsto c, b \mapsto b, c \mapsto c, d \mapsto d, \\f(c,b) \mapsto f(c,b), f(g(a),b) \mapsto f(c,b), \\g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c, \\h(a,d) \mapsto b, h(c,a) \mapsto b\}$$

$$match(f(g(x), h(x,a)), f(c,b), \{\emptyset\}) = \\match(g(x), c, \emptyset \cup \{\{x \mapsto c\}\})$$

$$\cup$$

 $\textit{match}(g(x), g(a), \textit{match}(h(x, a), b, \{\emptyset\}))$

$$\begin{array}{rcl} \textbf{E-matching: Example} \\ F &= \{a \mapsto c, \, b \mapsto b, \, c \mapsto c, \, d \mapsto d, \\ &\quad f(c,b) \mapsto f(c,b), \, f(g(a),b) \mapsto f(c,b), \\ &\quad g(a) \mapsto c, \, g(b) \mapsto g(b), \, g(c) \mapsto c, \, g(d) \mapsto c, \\ &\quad h(a,d) \mapsto b, \, h(c,a) \mapsto b \} \\ \\ \textbf{match}(f(g(x), h(x,a)), f(c,b), \{\emptyset\}) = \\ &\quad \textbf{match}(g(x), c, \{\{x \mapsto c\}\}) \\ & \cup \\ &\quad \textbf{match}(g(x), g(a), \textbf{match}(h(x,a), b, \{\emptyset\})) \end{array}$$

$$\begin{array}{lll} F &=& \{a \mapsto c, \, b \mapsto b, \, c \mapsto c, \, d \mapsto d, \\ && f(c,b) \mapsto f(c,b), \, f(g(a),b) \mapsto f(c,b), \\ && g(a) \mapsto c, \, g(b) \mapsto g(b), \, g(c) \mapsto c, \, g(d) \mapsto c, \\ && h(a,d) \mapsto b, \, h(c,a) \mapsto b \} \\ match(f(g(x),h(x,a)),f(c,b),\{\emptyset\}) = \\ && match(x,a,\{\{x \mapsto c\}\}) \cup & \text{for } g(a) \\ && match(x,c,\{\{x \mapsto c\}\}) \cup & \text{for } g(c) \\ && match(x,d,\{\{x \mapsto c\}\}) \cup & \text{for } g(d) \\ && match(g(x),g(a),match(h(x,a),b,\{\emptyset\})) \end{array}$$

$$\begin{array}{lll} F &=& \{a \mapsto c, \ b \mapsto b, \ c \mapsto c, \ d \mapsto d, \\ && f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b), \\ && g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c, \\ && h(a,d) \mapsto b, \ h(c,a) \mapsto b \} \end{array}$$

$$\begin{array}{l} \mathsf{match}(f(g(x), h(x,a)), f(c,b), \{\emptyset\}) = \\ && \{\{x \mapsto c\}\} \cup \\ && \{\{x \mapsto c\}\} \cup \\ && \emptyset \cup \end{array}$$

 $match(g(x), g(a), match(h(x, a), b, \{\emptyset\}))$

$$\begin{array}{ll} F &=& \{a \mapsto c, \ b \mapsto b, \ c \mapsto c, \ d \mapsto d, \\ & f(c,b) \mapsto f(c,b), \ f(g(a),b) \mapsto f(c,b), \\ & g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c, \\ & h(a,d) \mapsto b, \ h(c,a) \mapsto b \} \end{array}$$

$$\begin{array}{l} \texttt{match}(f(g(x),h(x,a)), f(c,b), \{\emptyset\}) = \\ & \{\{x \mapsto c\}\} \cup \end{array}$$

 $\textit{match}(g(x),g(a),\textit{match}(h(x,a),b,\{\emptyset\}))$

 $f(c,b) \mapsto f(c,b), f(g(a),b) \mapsto f(c,b),$ $g(a) \mapsto c, \ g(b) \mapsto g(b), \ g(c) \mapsto c, \ g(d) \mapsto c,$ $h(a,d) \mapsto b, h(c,a) \mapsto b$ $match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =$ $\{\{x \mapsto c\}\} \cup$ $\{\{x \mapsto c\}\}$

E-matching: Example $f(c,b) \mapsto f(c,b), f(g(a),b) \mapsto f(c,b),$ $g(a) \mapsto c, g(b) \mapsto g(b), g(c) \mapsto c, g(d) \mapsto c,$ $h(a,d) \mapsto b, h(c,a) \mapsto b$ $match(f(g(x), h(x, a)), f(c, b), \{\emptyset\}) =$ $\{\{x \mapsto c\}\}$

Efficient E-matching

Problem	Indexing Technique
Fast retrieval	E-matching code trees
Incremental E-Matching	Inverted path index

E-matching: code trees

E-matching needs ground seeds.

 $\forall x: p(x), \\ \forall x: not p(x)$

Bad user provided triggers:

```
\forall x: f(g(x))=x \{ f(g(x)) \}g(a) = c,g(b) = c,a \neq b
```

Trigger is too restrictive

```
Bad user provided triggers:

\forall x: f(g(x))=x \{ g(x) \}

g(a) = c,

g(b) = c,

a \neq b

More "liberal"

trigger
```

Bad user provided triggers:

 $\forall x: f(g(x)) = x \{ g(x) \}$ g(a) = c, g(b) = c, $a \neq b$, f(g(a)) = a, f(g(b)) = b a=b

It is not refutationally complete

False positives

E-matching: why do we use it?

Integrates smoothly with current SMT Solvers design.

Proof finding.

Software verification problems are big & shallow.

Decidable Fragments & Complete Quantifier Instatiation

\forall + theories

There is no sound and refutationally complete procedure for linear arithmetic + unintepreted function symbols

Model Generation

How to represent the model of satisfiable formulas? Functor:

Given a model *M* for *T*

Generate a model M' for F (modulo T)

Example:

F: f(a) = 0 and a > b and f(b) > f(a) + 1

	Symbol	Interpretation
	а	1
IVI':	b	0
	f	ite(x=1, 0, 2)

Model Generation

How to represent the model of satisfiable formulas?

Interpretation is given

Functor:

Given a model *M* for *T*

using T-symbols Generate a model *M'* for *F* (model

Example:

F: f(a) = 0 and a > b and f(b) > f(a) + 1

	Symbol	Interpretation
N 41	a	1
M':	b	0
	f	ite(x=1, 0, 2)

Model Generation

How to represent the model of satisfiable formulas?

Non ground term

Functor:

Given a model *M* for *T*

Generate a model *M*′ for *F* (modu (lambda expression)

Example:

F: f(a) = 0 and a > b and f(b) > f(a) + 1

	Symbol	Interpretati
N 41.	а	1
M':	b	0
	f	ite(x=1, 0, 2)

Models as Functional Programs

```
(declare-fun f (Int Int) Int)
(declare-const a Int)
(declare-const b Int)
(assert (forall ((x Int)) (>= (f x x) (+ x a))))
(assert (< (f a b) a))
(assert (> a 0))
(check-sat)
(get-model)
(echo "evaluating (f (+ a 10) 20)...")
                                                sat
(eval (f (+ a 10) 20))
                                                (model
                                                  (define-fun b () Int
                                                    2)
ask z3
                                                  (define-fun a () Int
                                                    1)
                                                  (define-fun f ((x!1 Int) (x!2 Int)) Int
                                                    (ite (and (= x!1 1) (= x!2 2)) 0
                                                      (+ 1 x!1)))
                                                evaluating (f (+ a 10) 20)...
                                                12
```

Model Checking

	Symbol	Interpretation
	а	1
IVI':	b	0
	f	ite(x=1, 0, 2)

Is $\forall x: f(x) \ge 0$ satisfied by *M*?

Yes, not (ite(k=1,0,2) \geq 0) is unsatisfiable

Model Checking

	Symbol	Interpretation
	а	1
IVI':	b	0
	f	ite(x=1, 0, 2)

Is $\forall x: f(x) \ge 0$ satisfied by *M*?

Yes, not (ite(k=1,0,2) \geq 0) is unsatisfiable

Negated quantifier Replaced *f* by its interpretation Replaced *x* by fresh constant *k*

Essentially uninterpreted fragment

Variables appear only as arguments of uninterpreted symbols.

$$f(g(x_1) + a) < g(x_1) \lor h(f(x_1), x_2) = 0$$

$$f(x_1 + x_2) \le f(x_1) + f(x_2)$$

Basic Idea

```
Given a set of formulas F, build an equisatisfiable set of quantifier-free formulas F*
```

"Domain" of f is the set of ground terms A_f t $\in A_f$ if there is a ground term f(t)

Suppose

- 1. We have a clause C[f(x)] containing f(x).
- 2. We have f(t).

→

Instantiate x with t: C[f(t)].

Example F $g(x_1, x_2) = 0 \lor h(x_2) = 0,$ $g(f(x_1),b) + 1 \le f(x_1),$ h(c) = 1,f(a) = 0

F*

Copy quantifier-free formulas

"Domains": A_f: { a } A_g: { } A_h: { c }

Example
F
$$F^*$$

 $g(x_1, x_2) = 0 \lor h(x_2) = 0, \quad h(c) = 1,$
 $g(f(x_1),b) + 1 \le f(x_1), \quad f(a) = 0,$
 $h(c) = 1,$
 $f(a) = 0$

"Domains": A_f: { a } A_g: { } A_h: { c }

$\begin{array}{ccc} F & F^{*} \\ g(x_{1}, x_{2}) = 0 \lor h(x_{2}) = 0, & h(c) = 1, \\ g(f(x_{1}), b) + 1 \le f(x_{1}), & f(a) = 0, \\ h(c) = 1, & g(f(a), b) + 1 \le f(a) \\ f(a) = 0 \end{array}$

"Domains": A_f: { a } A_g: { [f(a), b] } A_h: { c }
$$\begin{array}{ccc} F & F^{*} \\ g(x_{1}, x_{2}) = 0 \lor h(x_{2}) = 0, & h(c) = 1, \\ g(f(x_{1}), b) + 1 \le f(x_{1}), & f(a) = 0, \\ h(c) = 1, & g(f(a), b) + 1 \le f(a), \\ f(a) = 0 \end{array}$$

"Domains": A_f: { a } A_g: { [f(a), b] } A_h: { c }

$$F^*$$

h(c) = 1,
f(a) = 0,
g(f(a),b) + 1 \le f(a),
g(f(a), b) = 0 \lor h(b) = 0

"Domains": A_f: { a } A_g: { [f(a), b] } A_h: { c, b }

$$F^*$$

h(c) = 1,
f(a) = 0,
g(f(a),b) + 1 \le f(a),
g(f(a), b) = 0 \lor h(b) = 0

"Domains": A_f: { a } A_g: { [f(a), b]} A_h: { c, b }

$$F^*$$

h(c) = 1,
f(a) = 0,
g(f(a),b) + 1 \le f(a),
g(f(a), b) = 0 \lor h(b) = 0,
g(f(a), c) = 0 \lor h(c) = 0

"Domains": A_f: { a } A_g: { [f(a), b], [f(a), c] } A_h: { c, b }

F* h(c) = 1, f(a) = 0, $g(f(a),b) + 1 \le f(a),$ $g(f(a), b) = 0 \vee h(b) = 0$, $g(f(a), c) = 0 \lor h(c) = 0$ M $a \rightarrow 2, b \rightarrow 2, c \rightarrow 3$ $f \rightarrow \{2 \rightarrow 0, ...\}$ $h \rightarrow \{2 \rightarrow 0, 3 \rightarrow 1, ...\}$ $g \rightarrow \{ [0,2] \rightarrow -1, [0,3] \rightarrow 0, ... \}$

Basic Idea

Given a model M for F^* , Build a model M^{π} for F

Define a projection function π_f s.t. range of π_f is M(A_f), and π_f (v) = v if v \in M(A_f)

Then, $M^{\pi}(f)(v) = M(f)(\pi_f(v))$

Basic Idea

Basic Idea

Given a model M for F^* , Build a model M^{π} for F

In our example, we have: h(b) and h(c) $\rightarrow A_h = \{ b, c \}$, and $M(A_h) = \{ 2, 3 \}$

$$\pi_{h} = \{ 2 \rightarrow 2, 3 \rightarrow 3, \text{else} \rightarrow 3 \}$$

 $\begin{array}{c} \mathsf{M}(\mathsf{h}) & \mathsf{M}^{\pi}(\mathsf{h}) \\ \{2 \rightarrow 0, 3 \rightarrow 1, \ldots\} & \boxed{\qquad} \{2 \rightarrow 0, 3 \rightarrow 1, \text{else} \rightarrow 1\} \end{array}$

 $M^{\pi}(h) = \lambda x. \text{ if}(x=2, 0, 1)$

Example F* F h(c) = 1, $g(x_1, x_2) = 0 \lor h(x_2) = 0$, f(a) = 0, $g(f(x_1),b) + 1 \le f(x_1),$ h(c) = 1, $g(f(a),b) + 1 \le f(a),$ f(a) = 0 $g(f(a), b) = 0 \lor h(b) = 0$, $g(f(a), c) = 0 \lor h(c) = 0$ M Μπ $a \rightarrow 2, b \rightarrow 2, c \rightarrow 3$ $a \rightarrow 2, b \rightarrow 2, c \rightarrow 3$ $f \rightarrow \{2 \rightarrow 0, ...\}$ $f \rightarrow \lambda x. 2$ $h \rightarrow \{2 \rightarrow 0, 3 \rightarrow 1, ...\}$ $h \rightarrow \lambda x. \text{ if}(x=2, 0, 1)$ $g \rightarrow \{ [0,2] \rightarrow -1, [0,3] \rightarrow 0, ... \}$ $g \rightarrow \lambda x, y$. if $(x=0 \land y=2,-1, 0)$

Example : Model Checking \mathbf{M}^{π} $a \rightarrow 2, b \rightarrow 2, c \rightarrow 3$ Does M^{π} satisfies? $f \rightarrow \lambda x. 2$ $\forall x_1, x_2 : g(x_1, x_2) = 0 \lor h(x_2) = 0$ $h \rightarrow \lambda x. \text{ if}(x=2, 0, 1)$ $g \rightarrow \lambda x, y.$ if $(x=0 \land y=2,-1, 0)$ $\forall x_1, x_2: if(x_1=0 \land x_2=2,-1,0) = 0 \lor if(x_2=2,0,1) = 0$ is valid $\exists x_1, x_2: if(x_1=0 \land x_2=2,-1,0) \neq 0 \land if(x_2=2,0,1) \neq 0$ is unsat $if(s_1=0 \land s_2=2,-1,0) \neq 0 \land if(s_2=2,0,1) \neq 0$ is unsat

Why does it work?

Suppose M^{π} does not satisfy C[f(x)].

Then for some value v, $M^{\pi}\{x \rightarrow v\}$ falsifies C[f(x)].

 $M^{\pi}{x \rightarrow \pi_{f}(v)}$ also falsifies C[f(x)].

But, there is a term $t \in A_f$ s.t. $M(t) = \pi_f(v)$ Moreover, we instantiated C[f(x)] with t.

So, M must not satisfy C[f(t)]. Contradiction: M is a model for F*.

Refinement: Lazy construction

F* may be very big (or infinite).

Lazy-construction

Build F* incrementally, F* is the limit of the sequence $F^0 \subset F^1 \subset u \subset F^k \subset u$

If F^k is unsat then F is unsat.

If F^k is sat, then build (candidate) M^{π}

If M^{π} satisfies all quantifiers in F then return sat.

Refinement: Model-based instantiation

Suppose M^{π} does not satisfy a clause C[f(x)] in F.

Add an instance C[f(t)] which "blocks" this spurious model. Issue: how to find t?

Use model checking, and the "inverse" mapping π_f^{-1} from values to terms (in A_f). $\pi_f^{-1}(v) = t$ if $M^{\pi}(t) = \pi_f(v)$

Example: Model-based instantiation

Infinite F*

Is refutationally complete?

FOL Compactness A set of sentences is unsatisfiable iff it contains an unsatisfiable finite subset.

A theory T is a set of sentences, then apply compactness to $F^* \cup T$

Infinite F* : What is wrong?

Theory of linear arithmetic T_z is the set of all first-order sentences that are true in the standard structure Z. T_z has non-standard models. F and F* are satisfiable in a non-standard model.

Alternative: a theory is a class of structures.

Compactness does not hold.

F and F* are still equisatisfiable.

Shifting

$$\neg (0 \le x_1) \lor \neg (x_1 \le n) \lor f(x_1) = g(x_1+2)$$

Many-sorted logic Pseudo-Macros

 $\begin{array}{l} 0 \leq g(x_{1}) \lor f(g(x_{1})) = x_{1}, \\ 0 \leq g(x_{1}) \lor h(g(x_{1})) = 2x_{1}, \\ g(a) < 0 \end{array}$

Online tutorial at: <u>http://rise4fun.com/z3/tutorial</u>

Online tutorial at: <u>http://rise4fun.com/z3/tutorial</u>

Related work

Bernays-Schönfinkel class.Stratified Many-Sorted Logic.Array Property Fragment.Local theory extensions.

SMT + Saturation

Guessing $p \mid p \lor q, \neg q \lor r$ $p, \neg q \mid p \lor q, \neg q \lor r$

Backtracking

p, ¬s, q | p ∨ q, s ∨ q, ¬p∨ ¬q
p, s | p ∨ q, s ∨ q, ¬p∨ ¬q

$\mathsf{DPLL}(\Gamma)$

Tight integration: DPLL + Saturation solver.

DPLL(Γ)

Inference rule:

...

$$\frac{C_1 \quad \dots \quad C_n}{C}$$

DPLL(Γ) is parametric. Examples: Resolution Superposition calculus

$\mathsf{DPLL}(\Gamma)$

$\mathsf{DPLL}(\Gamma)$: Deduce I

p(a) | p(a) \lor q(a), \forall x: \neg p(x) \lor r(x), \forall x: p(x) \lor s(x)

$\mathsf{DPLL}(\Gamma)$: Deduce I

p(a) | p(a) \lor q(a), \neg p(x) \lor r(x), p(x) \lor s(x)

$\mathsf{DPLL}(\Gamma)$: Deduce I

p(a) | p(a) \lor q(a), \neg p(x) \lor r(x), p(x) \lor s(x)

Resolution

$p(a) \mid p(a) \lor q(a), \neg p(x) \lor r(x), p(x) \lor s(x), r(x) \lor s(x)$

$\mathsf{DPLL}(\Gamma)$: Deduce II

Using ground atoms from M:

Main issue: backtracking. Hypothetical clauses:

 $H \triangleright$

Track literals from M used to derive C

(hypothesis) Ground literals

(regular) Clause

M | F

$\mathsf{DPLL}(\Gamma)$: Deduce II

p(a) | p(a)∨q(a), ¬**p(x)**∨r(x)

$DPLL(\Gamma)$: Backtracking

p(a), r(a) | p(a)∨q(a), ¬p(a)∨¬r(a), p(a)▷r(a), ...
$DPLL(\Gamma)$: Backtracking

p(a), r(a) | p(a)∨q(a), ¬p(a)∨¬r(a), p()) (a), ...

p(a) is removed from M

¬p(a) | p(a)∨q(a), ¬p(a)∨¬r(a), …

$DPLL(\Gamma)$: Improvement

Saturation solver ignores non-unit ground clauses.

$\mathsf{DPLL}(\Gamma)$: Improvement

Saturation solver ignores non-unit ground clauses. It is still refutanionally complete if:

 Γ has the reduction property.

$\mathsf{DPLL}(\Gamma)$: Improvement

Saturation solver ignores non-unit ground clauses. It is still refutanionally complete if:

• Γ has the reduction property.

$\mathsf{DPLL}(\Gamma): \mathsf{Problem}$

Interpreted symtbols $\neg(f(a) > 2), f(x) > 5$

It is refutationally complete if Interpreted symbols only occur in ground clauses Non ground clauses are variable inactive "Good" ordering is used

Summary

E-matching proof finding fast shallow proofs in big formulas not refutationally complete regularly solves VCs with more than 5 Mb

Summary

Complete instantiation + MBQI

decides several useful fragments model & proof finding slow complements E-matching

Summary

SMT + Saturation

refutationally complete for pure first-order proof finding slow

Not covered

Quantifier elimination

Fourier-Motzkin (Linear Real Arithmetic) Cooper (Linear Integer Arithmetic) CAD (Nonlinear Real Arithmetic) Algebraic Datatypes (Hodges) Finite model finding Many Decidable Fragments

Challenge

New and efficient procedures capable of producing models for satisfiable instances.