
Understanding IC3

Aaron R. Bradley

ECEE, CU Boulder &

Summit Middle School

Understanding IC3 – 1/55

Further Reading

This presentation is based on

Bradley, A. R. “Understanding IC3.” In SAT,
June 2012.

http://theory.stanford.edu/~arbrad

Understanding IC3 – 2/55

http://theory.stanford.edu/~arbrad

Induction

Foundation of verification for 40+ years (Floyd, Hoare)

To prove that S : (I, T) has safety property P , prove:
• Base case (initiation):

I ⇒ P

• Inductive case (consecution):

P ∧ T ⇒ P ′

Understanding IC3 – 3/55

Understanding IC3 – 4/55

When Induction Fails

We present two solutions. . .
1. Use a stronger assertion, or
2. Construct an incremental proof, using

previously established invariants.

– Manna and Pnueli
Temporal Verification of Reactive Systems: Safety

1995

Method 1 = “Monolithic”
Method 2 = “Incremental”

Understanding IC3 – 5/55

Outline

1. Illustration of the two methods

2. SAT-based model checkers

3. Understanding IC3 as a prover

4. Understanding IC3 as a bug finder

5. Beyond IC3: Incremental, inductive verification

Understanding IC3 – 6/55

Two Transition Systems

S1:

1x , y := 1 , 1
2while ∗ :
3x , y := x + 1 , y + x

S2:

1x , y := 1 , 1
2while ∗ :
3x , y := x + y , y + x

P : y ≥ 1

Understanding IC3 – 7/55

Induction on System 1

S1:

1x , y := 1 , 1
2while ∗ :
3x , y := x + 1 , y + x

• Initiation:

x = 1 ∧ y = 1︸ ︷︷ ︸
initial condition

⇒ y ≥ 1︸ ︷︷ ︸
P

• Consecution (fails):

y ≥ 1︸ ︷︷ ︸
P

∧x′ = x+ 1 ∧ y′ = y + x︸ ︷︷ ︸
transition relation

6⇒ y′ ≥ 1︸ ︷︷ ︸
P ′

Understanding IC3 – 8/55

Incremental Proof

S1:

1x , y := 1 , 1
2while ∗ :
3x , y := x + 1 , y + x

Problem: y decreases if x is negative. But...
ϕ1 : x ≥ 0

• Initiation:
x = 1 ∧ y = 1 ⇒ x ≥ 0

• Consecution:

x ≥ 0︸ ︷︷ ︸
ϕ1

∧x′ = x+ 1 ∧ y′ = y + x︸ ︷︷ ︸
transition relation

⇒ x′ ≥ 0︸ ︷︷ ︸
ϕ′

1

Understanding IC3 – 9/55

Back to P

S1:

1x , y := 1 , 1
2while ∗ :
3x , y := x + 1 , y + x

Consecution:

x ≥ 0︸ ︷︷ ︸
ϕ1

∧ y ≥ 1︸ ︷︷ ︸
P

∧x′ = x+ 1 ∧ y′ = y + x︸ ︷︷ ︸
transition relation

⇒ y′ ≥ 1︸ ︷︷ ︸
P ′

P is inductive relative to ϕ1.

Understanding IC3 – 10/55

Induction on System 2

S2:

1x , y := 1 , 1
2while ∗ :
3x , y := x + y , y + x

Induction fails for P as in System 1.
Additionally,

x ≥ 0 ∧ x′ = x+ y ∧ y′ = y + x 6⇒ x′ ≥ 0

x ≥ 0 is not inductive, either.

Understanding IC3 – 11/55

Monolithic Proof

S2:

1x , y := 1 , 1
2while ∗ :
3x , y := x + y , y + x

Invent strengthening all at once:

P̂ : x ≥ 0 ∧ y ≥ 1

Consecution:

x ≥ 0 ∧ y ≥ 1︸ ︷︷ ︸
P̂

∧x′ = x+y∧y′ = y+x ⇒ x′ ≥ 0 ∧ y′ ≥ 1︸ ︷︷ ︸
P̂ ′

Understanding IC3 – 12/55

Understanding IC3 – 13/55

Incremental vs. Monolithic Methods
• Incremental: does not always work
• Monolithic: relatively complete
• Incremental: apply induction iteratively (“modular”)
• Monolithic: invent one strengthening formula

We strongly recommend its use whenever
applicable. Its main advantage is that of
modularity.

– Manna and Pnueli
Temporal Verification of Reactive Systems: Safety

1995

Understanding IC3 – 14/55

Finite-state System

Transition system:

S : (i, x, I(x), T (x, i, x′))

Cube s:
• Conjunction of literals, e.g.,

x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ · · ·

• Represents set of states (that satisfy it)

Clause: ¬s

Understanding IC3 – 15/55

SAT-Based Backward Model Checking

1. Search for predecessor s to some error state:

P ∧ T ⇒ P ′

If none, property holds.

2. Reduce cube s to s̄:
• Expand to others with bad successors

[McMillan 2002], [Lu et al. 2005]

• If P ∧ ¬s ∧ T ⇒ ¬s′, reduce by implication
graph [Lu et al. 2005]

• Apply inductive generalization [Bradley 2007]

3. P := P ∧ ¬s̄

Understanding IC3 – 16/55

Inductive Generalization

Given: cube s
Find: c ⊆ ¬s such that

• Initiation:
I ⇒ c

• Consecution (relative to information P):

P ∧ c ∧ T ⇒ c′

• No strict subclause of c is inductive relative to P

Understanding IC3 – 17/55

Understanding IC3 – 18/55

Understanding IC3 – 19/55

Analysis of Backward Search

Strengths:
• Easy SAT queries, low memory
• Property focused
• Some are approximating, computing neither

strongest nor weakest strengthening

Weaknesses:
• Essentially undirected search (bad for bug finding)
• Ignore initial states

Understanding IC3 – 20/55

Analysis of FSIS[Bradley 2007]

Strengths (essentially, great when it works):
• Can significantly reduce backward search
• Can find strong lemmas with induction

Weaknesses:
• Like others when inductive generalization fails

Understanding IC3 – 21/55

BMC [Biere et al. 1999]

Compared to backward search:
• Considers initial and final states
• Requires solving hard SAT queries
• Practically incomplete (UNSAT case)

I ∧
k−1∧

i=0

(P (i) ∧ T (i)) ∧ ¬P (k)

Understanding IC3 – 22/55

Understanding IC3 – 23/55

k-Induction [Sheeran et al. 2000]

Addresses practical incompleteness of BMC:
• Initiation: BMC
• Consecution:

k−1∧

i=0

(P (i) ∧ T (i)) ⇒ P (k)

(plus extra constraints to consider loop-free paths)

Understanding IC3 – 24/55

Understanding IC3 – 25/55

ITP [McMillan 2003]

Property-focused over-approximating post-image:

Fi ∧

k−1∧

i=0

(P (i) ∧ T (i)) ⇒ P (k)

• {states ≤ i steps from initial states} ⊆ Fi

• If holds, finds interpolant Fi+1:

Fi ∧ T ⇒ F ′
i+1 F ′

i+1 ∧

k−1∧

i=1

(P (i) ∧ T (i)) ⇒ P (k)

• If fails, increases k

Understanding IC3 – 26/55

Understanding IC3 – 27/55

BMC → k-Induction → ITP
• Completeness from unrolling transition relation
• Evolution: reduce max k in practice (UNSAT case)
• Monolithic:

• hard SAT queries
• induction at top-level only

• Consider both initial and final states

Understanding IC3 – 28/55

Best of Both?

Desire:
• Stable behavior (backward search)

• Low memory, reasonable queries
• Can just let it run

• Consideration of initial and final states (BMC)
• Modular reasoning (incremental method)

Avoid:
• Blind search (backward search)
• Queries that overwhelm the SAT solver (BMC)

Understanding IC3 – 29/55

IC3: A Prover

Stepwise sets F0, F1, . . . , Fk, Fk+1 (CNF):
• {states ≤ i steps from initial states} ⊆ Fi

• Fi ⊆ {states ≥ k − i+ 1 steps from error}

Four invariants:
• F0 = I

• Fi ⇒ Fi+1

• Fi ∧ T ⇒ F ′
i+1

• Except Fk+1, Fi ⇒ P

∴ if ever Fi = Fi+1, Fi is inductive & P is invariant

Understanding IC3 – 30/55

Understanding IC3 – 31/55

Induction at Top Level

Is P inductive relative to Fk?

Fk ∧ T ⇒ P ′

(Recall: Fk ⇒ P)

• Possibility #1: Yes
• Conclusion: P is inductive relative to Fk

Understanding IC3 – 32/55

Understanding IC3 – 33/55

Induction at Top Level

Monolithic behavior (predicate abstraction):
• For i from 1 to k: find largest C ⊆ Fi s.t.

Fi ∧ T ⇒ C ′

Fi+1 := Fi+1 ∧ C

• Fk+1 := Fk+1 ∧ P

• New frontier: Fk+1

If ever Fi = Fi+1, done: P is invariant.

Understanding IC3 – 34/55

Counterexample To Induction (CTI)

Fk ∧ T ⇒ P ′

• Possibility #2: No
• Conclusion: ∃ Fk-state s with error successor
• If s is an initial state, done: P is not invariant
• Otherwise...

Understanding IC3 – 35/55

Understanding IC3 – 36/55

Induction at Low Level

Inductive Generalization in IC3
• Given: cube s

• Find: c ⊆ ¬s such that
• Initiation:

I ⇒ c

• Consecution (relative to Fi):

Fi ∧ c ∧ T ⇒ c′

• No strict subclause of c is inductive relative to Fi

Understanding IC3 – 37/55

Understanding IC3 – 38/55

Addressing CTI s
• Find highest i such that

Fi ∧ ¬s ∧ T ⇒ ¬s′

• Apply inductive generalization:

c ⊆ ¬s I ⇒ c Fi ∧ c ∧ T ⇒ c′

• ∴ Fi+1 := Fi+1 ∧ c (also update Fj, j ≤ i)

• If i < k, new proof obligation:

(s, i+ 1)

“Inductively generalize s relative to Fi+1”

Understanding IC3 – 39/55

Addressing Proof Obligation (t, j)
SAT query:

Fj ∧ ¬t ∧ T ⇒ ¬t′

If UNSAT:
• Inductive generalization must succeed:

c ⊆ ¬t I ⇒ c Fj ∧ c ∧ T ⇒ c′

• Fj+1 := Fj+1 ∧ c

• Updated proof obligation (if j < k): (t, j + 1)

Understanding IC3 – 40/55

Addressing Proof Obligation (t, j)
SAT query:

Fj ∧ ¬t ∧ T ⇒ ¬t′

If SAT: New CTI u, treat as before
• Find highest i s.t. ¬u is inductive relative to Fi

• Inductively generalize (c ⊆ ¬u): Fi+1 := Fi+1 ∧ c

• New proof obligation (if i < k): (u, i+ 1)

Understanding IC3 – 41/55

One of IC3’s Insights
• Suppose CTI s was inductively generalized at Fi

• Fi+1 := Fi+1 ∧ c

• Removed s and some predecessors from Fi+1

• Updated proof obligation: (s, i+ 1)

Understanding IC3 – 42/55

One of IC3’s Insights
• Suppose CTI s was inductively generalized at Fi

• Fi+1 := Fi+1 ∧ c

• Removed s and some predecessors from Fi+1

• Updated proof obligation: (s, i+ 1)

• Suppose Fi+1 ∧ ¬s ∧ T 6⇒ ¬s′

• ∃ s-predecessor Fi+1-state t

• But t was not a Fi-state
• t is a relevant predecessor: the difference

between Fi and Fi+1

Inductive generalization at Fi focuses IC3’s choice
of predecessors at Fi+1.

Understanding IC3 – 42/55

Understanding IC3 – 43/55

Meeting Obligations

IC3 pursues proof obligation (t, j) until j = k — even
if the original CTI has been addressed. Why?

• Supporting lemmas for this frontier can be useful
at next

• During “predicate abstraction” phase, supporting
clauses propagate forward together

• Allows IC3 to find mutually (relatively) inductive
lemmas, addressing a key weakness of FSIS

• More...

Understanding IC3 – 44/55

IC3: A Prover
• Based on CTIs from frontier and predecessors,

IC3 generates stepwise-relative inductive clauses.
• IC3 propagates clauses forward in preparing a

new frontier.
• Some clauses may be too specific.
• Their loss can break mutual support.

• But as the frontier advances, IC3 considers ever
more general situations.

• It eventually finds the real reasons (as truly
inductive clauses) that P is invariant.

Understanding IC3 – 45/55

IC3: A Bug Finder

Suppose:
• u → t → s → Error
• Proof obligations:

{(s, k − 1), (t, k − 2), (u, k − 1)}

That is,
• s must be inductively generalize relative to Fk−1

• t must be inductively generalize relative to Fk−2

• u must be inductively generalize relative to Fk−1

Which proof obligation should IC3 address next?

Understanding IC3 – 46/55

Guided Search

Two observations:
• u is the “deepest” of the states

u → t → s → Error

• t is the state that IC3 considers as likeliest to be
closest to an initial state.

{(s, k − 1), (t, k − 2), (u, k − 1)}

“Proximity metric”

Conclusion: Pursue (t, k − 2) next.

(It also happens to be the correct choice [Bradley 2011].)
Understanding IC3 – 47/55

Understanding IC3 – 48/55

IC3: A Bug Finder

IC3 executes a guided search.
• Proximity metric: j of (t, j)
• IC3 pursues obligation with minimal proximity
• A new clause updates the proximity metric for

many states
• Same conclusion as proof perspective:

• Pursue all proof obligations (t, j) until j = k

• Now: To gain important heuristic information
• Additionally: Allows IC3 to search deeply even

for small k

Understanding IC3 – 49/55

Incremental, Inductive Verification

IIV Algorithm:
• Constructs concrete hypotheses
• Generates intermediate lemmas incrementally
• Applies induction many times
• Generalizes from hypotheses to strong lemmas

Understanding IC3 – 50/55

After IC3
• FAIR [Bradley et al. 2011]

• For ω-regular properties, e.g., LTL
• Insight: SCC-closed regions can be

characterized inductively
• IICTL [Hassan et al. 2012]

• For CTL properties
• Insight: EX (SAT), EU (IC3), EG (FAIR)
• Standard traversal of CTL property’s parse tree

• Over- and under-approximating sets
• Task state-driven refinement

Understanding IC3 – 51/55

FAIR: Reachable Fair Cycles

Reduce search for reachable fair cycle to a set of
safety problems:

• Skeleton:

•

◦ •

•

Together satisfy all fairness constraints.
• Task: Connect states to form lasso.

•

◦ •

•
Understanding IC3 – 52/55

Reach Queries

Each connection task is a reach query.
• Stem query: Connect initial condition to a state:

•

◦ •

•

• Cycle query: Connect one state to another:

•

◦ •

•

(To itself if skeleton has only one state.)
Understanding IC3 – 53/55

IIV

IC3 FAIR IICTL

Hypothesis CTI “lasso” skeleton task state

Lemma clause barrier refinement

Induction ↑ ↑ EU (IC3), EG (FAIR)

Generalization MIC proof improvement

trace generalization

Understanding IC3 – 54/55

Conclusions
• Attempted to explain why IC3 works:

• As a compromise between the incremental
and monolithic strategies

• In terms of best and worst qualities of previous
SAT-based model checkers

• As a prover
• As a bug finder

• Other IIV algorithms:
• FAIR and IICTL
• An indication that IC3’s characteristics work in

other contexts

Understanding IC3 – 55/55

	Further Reading
	Induction
	
	When Induction Fails
	Outline
	Two Transition Systems
	Induction on System 1
	Incremental Proof
	Back to P
	Induction on System 2
	Monolithic Proof
	
	Incremental vs. Monolithic Methods
	Finite-state System
	SAT-Based Backward Model Checking
	Inductive Generalization
	
	
	Analysis of Backward Search
	Analysis of FSIS attrib {Bradley 2007}
	BMC attrib {Biere et al. 1999}
	
	k-Induction attrib {Sheeran et al. 2000}
	
	ITP attrib {McMillan 2003}
	
	BMC $ightarrow $ k-Induction $ightarrow $ ITP
	Best of Both?
	IC3: A Prover
	
	Induction at Top Level
	
	Induction at Top Level
	Counterexample To Induction (CTI)
	
	Induction at Low Level
	
	Addressing CTI s
	Addressing Proof Obligation (t, j)
	Addressing Proof Obligation (t, j)
	One of IC3's Insights
	
	Meeting Obligations
	IC3: A Prover
	IC3: A Bug Finder
	Guided Search
	
	IC3: A Bug Finder
	Incremental, Inductive Verification
	After IC3
	FAIR: Reachable Fair Cycles
	Reach Queries
	{IIV}
	Conclusions

