# **Understanding IC3**

Aaron R. Bradley

ECEE, CU Boulder & Summit Middle School



This presentation is based on Bradley, A. R. "Understanding IC3." In SAT, June 2012.

http://theory.stanford.edu/~arbrad



Foundation of verification for 40+ years (Floyd, Hoare)

To prove that S : (I, T) has safety property P, prove:

• Base case (initiation):

 $I \Rightarrow P$ 

• Inductive case (consecution):

 $P \wedge T \Rightarrow P'$ 

•



#### **When Induction Fails**

We present two solutions...

- 1. Use a stronger assertion, or
- 2. Construct an incremental proof, using previously established invariants.



#### – Manna and Pnueli

Temporal Verification of Reactive Systems: Safety 1995

#### Method 1 = "Monolithic" Method 2 = "Incremental"

Understanding IC3 – 5/55

## Outline

- 1. Illustration of the two methods
- 2. SAT-based model checkers
- 3. Understanding IC3 as a prover
- 4. Understanding IC3 as a bug finder
- 5. Beyond IC3: Incremental, inductive verification

## **Two Transition Systems**

 $P: y \ge 1$ 



٠

•

# **Induction on System 1**

• Initiation:

$$\underbrace{x = 1 \land y = 1}_{\text{initial condition}} \Rightarrow \underbrace{y \ge 1}_{P}$$

• Consecution (fails):

$$\underbrace{y \ge 1}_{P} \land \underbrace{x' = x + 1 \land y' = y + x}_{P'} \not\Rightarrow \underbrace{y' \ge 1}_{P'}$$
  
transition relation

Problem: *y* decreases if *x* is negative. But...  $\varphi_1$ :  $x \ge 0$ 

• Initiation:

$$x = 1 \land y = 1 \Rightarrow x \ge 0$$

• Consecution:

$$\underbrace{x \ge 0}_{\varphi_1} \land \underbrace{x' = x + 1 \land y' = y + x}_{\text{transition relation}} \Rightarrow \underbrace{x' \ge 0}_{\varphi_1'}$$

## **Back to** P

#### Consecution:



*P* is inductive relative to  $\varphi_1$ .

### **Induction on System 2**

Induction fails for *P* as in System 1. Additionally,

$$x \ge 0 \land x' = x + y \land y' = y + x \not\Rightarrow x' \ge 0$$

 $x \ge 0$  is not inductive, either.

## **Monolithic Proof**

Invent strengthening all at once:

$$\widehat{P}: \quad x \ge 0 \land y \ge 1$$

#### **Consecution:**

$$\underbrace{x \ge 0 \land y \ge 1}_{\widehat{P}} \land x' = x + y \land y' = y + x \Rightarrow \underbrace{x' \ge 0 \land y' \ge 1}_{\widehat{P'}}$$

•



#### **Incremental vs. Monolithic Methods**

- Incremental: does not always work
- Monolithic: relatively complete
- Incremental: apply induction iteratively ("modular")
- Monolithic: invent one strengthening formula

We strongly recommend its use whenever applicable. Its main advantage is that of **modularity**.

#### Manna and Pnueli

Understanding IC3 – 14/55

Temporal Verification of Reactive Systems: Safety 1995

Transition system:

$$S: (\overline{i}, \overline{x}, I(\overline{x}), T(\overline{x}, \overline{i}, \overline{x}'))$$

Cube s:

• Conjunction of literals, e.g.,

$$x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge x_4 \wedge \cdots$$

• Represents set of states (that satisfy it)

Clause:  $\neg s$ 

## **SAT-Based Backward Model Checking**:

1. Search for predecessor *s* to some error state:

 $P \wedge T \Rightarrow P'$ 

If none, property holds.

- 2. Reduce cube s to  $\overline{s}$ :
  - Expand to others with bad successors [McMillan 2002], [Lu et al. 2005]
  - If  $P \land \neg s \land T \Rightarrow \neg s'$ , reduce by implication graph [Lu et al. 2005]
  - Apply inductive generalization [Bradley 2007]

**3.**  $P := P \land \neg \overline{s}$ 

**Given:** cube *s* **Find:**  $c \subseteq \neg s$  such that

• Initiation:

 $I \Rightarrow c$ 

• Consecution (relative to information *P*):

 $P \wedge c \wedge T \Rightarrow c'$ 

- No strict subclause of  $\boldsymbol{c}$  is inductive relative to  $\boldsymbol{P}$ 





## **Analysis of Backward Search**

Strengths:

- Easy SAT queries, low memory
- Property focused
- Some are approximating, computing neither strongest nor weakest strengthening

Weaknesses:

- Essentially undirected search (bad for bug finding)
- Ignore initial states

### Analysis of FSIS [Bradley 2007]

Strengths (essentially, great when it works):

- Can significantly reduce backward search
- Can find strong lemmas with induction

Weaknesses:

• Like others when inductive generalization fails

Compared to backward search:

- Considers initial and final states
- Requires solving hard SAT queries
- Practically incomplete (UNSAT case)

$$I \wedge \bigwedge_{i=0}^{k-1} (P^{(i)} \wedge T^{(i)}) \wedge \neg P^{(k)}$$



#### k-Induction [Sheeran et al. 2000]

Addresses practical incompleteness of BMC:

- Initiation: BMC
- Consecution:

$$\bigwedge_{i=0}^{k-1} (P^{(i)} \wedge T^{(i)}) \Rightarrow P^{(k)}$$

(plus extra constraints to consider loop-free paths)



k-Induction

Property-focused over-approximating post-image:

$$F_i \wedge \bigwedge_{i=0}^{k-1} (P^{(i)} \wedge T^{(i)}) \Rightarrow P^{(k)}$$

- {states  $\leq i$  steps from initial states}  $\subseteq F_i$
- If holds, finds interpolant  $F_{i+1}$ :

$$F_i \wedge T \Rightarrow F'_{i+1}$$
  $F'_{i+1} \wedge \bigwedge_{i=1}^{k-1} (P^{(i)} \wedge T^{(i)}) \Rightarrow P^{(k)}$ 

• If fails, increases  $\boldsymbol{k}$ 



## **BMC** $\rightarrow$ *k*-Induction $\rightarrow$ **ITP**

- Completeness from unrolling transition relation
- Evolution: reduce max k in practice (UNSAT case)
- Monolithic:
  - hard SAT queries
  - induction at top-level only
- Consider both initial and final states

### **Best of Both?**

#### Desire:

- Stable behavior (backward search)
  - Low memory, reasonable queries
  - Can just let it run
- Consideration of initial and final states (BMC)
- Modular reasoning (incremental method)

Avoid:

- Blind search (backward search)
- Queries that overwhelm the SAT solver (BMC)

## **IC3: A Prover**

Stepwise sets  $F_0$ ,  $F_1$ , ...,  $F_k$ ,  $F_{k+1}$  (CNF):

- {states  $\leq i$  steps from initial states}  $\subseteq F_i$
- $F_i \subseteq \{ \text{states} \ge k i + 1 \text{ steps from error} \}$

Four invariants:

- $F_0 = I$
- $F_i \Rightarrow F_{i+1}$
- $F_i \wedge T \Rightarrow F'_{i+1}$
- Except  $F_{k+1}$ ,  $F_i \Rightarrow P$
- $\therefore$  if ever  $F_i = F_{i+1}$ ,  $F_i$  is inductive & P is invariant

• • • • • • •



### **Induction at Top Level**

Is *P* inductive relative to  $F_k$ ?

 $F_k \wedge T \Rightarrow P'$ 

(Recall:  $F_k \Rightarrow P$ )

- Possibility #1: Yes
- Conclusion: P is inductive relative to  $F_k$



### **Induction at Top Level**

Monolithic behavior (predicate abstraction):

• For *i* from 1 to *k*: find largest  $C \subseteq F_i$  s.t.

$$F_i \wedge T \Rightarrow C'$$

 $F_{i+1} := F_{i+1} \wedge C$ 

- $F_{k+1} := F_{k+1} \wedge P$
- New frontier:  $F_{k+1}$

If ever  $F_i = F_{i+1}$ , done: *P* is invariant.

• •

## **Counterexample To Induction (CTI)**

$$F_k \wedge T \Rightarrow P'$$

- Possibility #2: No
- Conclusion:  $\exists F_k$ -state s with error successor
- If s is an initial state, done: P is not invariant
- Otherwise...



#### **Induction at Low Level**

Inductive Generalization in IC3

- Given: cube s
- Find:  $c \subseteq \neg s$  such that
  - Initiation:

 $I \Rightarrow c$ 

• Consecution (relative to  $F_i$ ):

 $F_i \wedge c \wedge T \Rightarrow c'$ 

• No strict subclause of c is inductive relative to  $F_i$ 

•



# **Addressing CTI** s

• Find highest *i* such that

$$F_i \wedge \neg s \wedge T \Rightarrow \neg s'$$

• Apply inductive generalization:

$$c \subseteq \neg s \qquad I \Rightarrow c \qquad F_i \wedge c \wedge T \Rightarrow c'$$

- $\therefore$   $F_{i+1} := F_{i+1} \land c$  (also update  $F_j$ ,  $j \leq i$ )
- If i < k, new proof obligation:

$$(s, i+1)$$

"Inductively generalize s relative to  $F_{i+1}$ "

•

Addressing Proof Obligation (t, j)

SAT query:

$$F_j \wedge \neg t \wedge T \Rightarrow \neg t'$$

Understanding IC3 – 40/55

If UNSAT:

• Inductive generalization must succeed:

$$c \subseteq \neg t \qquad I \Rightarrow c \qquad F_j \land c \land T \Rightarrow c'$$

• 
$$F_{j+1} := F_{j+1} \wedge c$$

• Updated proof obligation (if j < k): (t, j+1)

## Addressing Proof Obligation (t, j)

SAT query:

$$F_j \wedge \neg t \wedge T \Rightarrow \neg t'$$

If SAT: New CTI u, treat as before

- Find highest *i* s.t.  $\neg u$  is inductive relative to  $F_i$
- Inductively generalize ( $c \subseteq \neg u$ ):  $F_{i+1} := F_{i+1} \land c$
- New proof obligation (if i < k): (u, i+1)

# One of IC3's Insights

- Suppose CTI s was inductively generalized at  $F_i$ 
  - $F_{i+1} := F_{i+1} \wedge c$
  - Removed s and some predecessors from  $F_{i+1}$
  - Updated proof obligation: (s, i+1)

•

# **One of IC3's Insights**

- Suppose CTI s was inductively generalized at  $F_i$ 
  - $F_{i+1} := F_{i+1} \wedge c$
  - Removed s and some predecessors from  $F_{i+1}$
  - Updated proof obligation: (s, i+1)
- Suppose  $F_{i+1} \land \neg s \land T \not\Rightarrow \neg s'$ 
  - $\exists s$ -predecessor  $F_{i+1}$ -state t
  - But t was not a  $F_i$ -state
  - *t* is a **relevant predecessor**: the difference between  $F_i$  and  $F_{i+1}$

Inductive generalization at  $F_i$  focuses IC3's choice of predecessors at  $F_{i+1}$ .

•

Understanding IC3 – 42/55



# **Meeting Obligations**

IC3 pursues proof obligation (t, j) until j = k — even if the original CTI has been addressed. Why?

- Supporting lemmas for this frontier can be useful at next
- During "predicate abstraction" phase, supporting clauses propagate forward together
- Allows IC3 to find mutually (relatively) inductive lemmas, addressing a key weakness of FSIS
- More...

## **IC3: A Prover**

- Based on CTIs from frontier and predecessors, IC3 generates stepwise-relative inductive clauses.
- IC3 propagates clauses forward in preparing a new frontier.
  - Some clauses may be too specific.
  - Their loss can break mutual support.
- But as the frontier advances, IC3 considers ever more general situations.
- It eventually finds the real reasons (as truly inductive clauses) that *P* is invariant.

#### Suppose:

- $u \to t \to s \to \text{Error}$
- Proof obligations:

$$\{(s, k-1), (t, k-2), (u, k-1)\}$$

#### That is,

- s must be inductively generalize relative to  $F_{k-1}$
- t must be inductively generalize relative to  $F_{k-2}$
- u must be inductively generalize relative to  $F_{k-1}$

Which proof obligation should IC3 address next?

Understanding IC3 – 46/55

Two observations:

• u is the "deepest" of the states

$$u \to t \to s \to \mathsf{Error}$$

• t is the state that IC3 considers as likeliest to be closest to an initial state.

$$\{(s, k-1), (t, k-2), (u, k-1)\}$$

"Proximity metric" Conclusion: Pursue (t, k-2) next.

(It also happens to be the correct choice [Bradley 2011].)



# **IC3: A Bug Finder**

IC3 executes a guided search.

- Proximity metric: j of (t, j)
- IC3 pursues obligation with minimal proximity
- A new clause updates the proximity metric for many states
- Same conclusion as proof perspective:
  - Pursue all proof obligations (t, j) until j = k
  - Now: To gain important heuristic information
  - Additionally: Allows IC3 to search deeply even for small k

## **Incremental, Inductive Verification**

#### IIV Algorithm:

- Constructs concrete hypotheses
- Generates intermediate lemmas incrementally
- Applies induction many times
- Generalizes from hypotheses to strong lemmas

## After IC3

- FAIR [Bradley et al. 2011]
  - For  $\omega$ -regular properties, e.g., LTL
  - Insight: SCC-closed regions can be characterized inductively
- IICTL [Hassan et al. 2012]
  - For CTL properties
  - Insight: EX (SAT), EU (IC3), EG (FAIR)
  - Standard traversal of CTL property's parse tree
    - Over- and under-approximating sets
    - Task state-driven refinement

### **FAIR: Reachable Fair Cycles**

Reduce search for reachable fair cycle to a set of safety problems:

• Skeleton:

Together satisfy all fairness constraints.

• Task: Connect states to form lasso.

 $\bigcirc$ 



## **Reach Queries**

Each connection task is a reach query.

• Stem query: Connect initial condition to a state:



• Cycle query: Connect one state to another:



#### (To itself if skeleton has only one state.)

IIV

-

|                | IC3        | FAIR              | IICTL                |
|----------------|------------|-------------------|----------------------|
|                |            |                   |                      |
| Hypothesis     | CTI        | "lasso" skeleton  | task state           |
| Lemma          | clause     | barrier           | refinement           |
| Induction      | $\uparrow$ | $\uparrow$        | EU (IC3), EG (FAIR)  |
| Generalization | MIC        | proof improvement |                      |
|                |            |                   | trace generalization |

• •

•

•

• • •

•

 $\bullet$ 

•

## Conclusions

- Attempted to explain why IC3 works:
  - As a compromise between the incremental and monolithic strategies
  - In terms of best and worst qualities of previous SAT-based model checkers
  - As a prover
  - As a bug finder
- Other IIV algorithms:
  - FAIR and IICTL
  - An indication that IC3's characteristics work in other contexts