
Environment Modeling
with

JavaPathfinder (JPF)
Part 2 - JPF Introduction

1

Oksana Tkachuk
SGT / NASA Ames Research Center

<oksana.tkachuk@nasa.gov>

Peter C. Mehlitz
SGT / NASA Ames Research Center

<peter.c.mehlitz@nasa.gov>

Monday, May 28, 12

mailto:pcmehlitz@email.arc.nasa.gov
mailto:pcmehlitz@email.arc.nasa.gov
mailto:pcmehlitz@email.arc.nasa.gov
mailto:pcmehlitz@email.arc.nasa.gov

Roadmap

✦ Motivating Example
✦ What is JPF?
✦ Major Extension Mechanisms
✦ Anatomy of a JPF Installation
✦ Documentation

2
Monday, May 28, 12

✦ this is where we want to go
“not your usual model checking”

✦ small system under test
(7 classes, ~500 loc)

✦ graphical user interface app
⇒ uses huge framework (Swing,AWT)
400+ classes

✦ user input and concurrency ⇒ hard to test
✦ needs tool that supports

environment modeling and
faithful execution

Example - RobotManager

3

user input
event thread

data acquisition
thread

jpf src/examples/RobotManager-thread.jpf
...
========================== error #1
NoUncaughtExceptionsProperty
java.lang.NullPointerException: Calling 'processSequence(String)' on null object
! at RobotManager.sendSequence(RobotManager.java:265)
! at RobotManagerView.sendSequence(RobotManager.java:565)
...

Monday, May 28, 12

What Is JPF - Not a Black Box Tool

4

✦ a model checker? a virtual machine? ..

✦ ..and the answer is: both, and more - it depends on you
✦ not a monolithic, black box tool

✦ the quest of today: learn what is in the toolbox to find out how you can
adapt JPF to your needs

*.class verification
artifact

JPF core

• report
• test case
• specification
...

JPF
extension

System under Test
(Java bytecode)

*.jpf

JPF configuration

abstract virtual machine

• execution semantics
• program properties
...

No “one size fits all” - Extensibility is Paramount

Monday, May 28, 12

What is JPF - Core and Extensions

✦ partitioned into core and extensions
✦ core consists of Search and Virtual Machine
✦ several extension mechanism

5

verification
artifacts

*.class
*.jar

Java bytecode
program

native
peer

choice
generator

Search Strategy

state space
branches

state
management

listener

library
abstraction

execution
observation

VM
driver verification

artifacts

instruction
set

execution
semantics

reports, test data

*.jpf
*.prop

publisherVirtual MachineSystem
under Test

JPF configuration

 result +trace

JPF
extension

JPF
core

Monday, May 28, 12

What is JPF - VM running in VM

6

✦ main stumbling block is recursive nature of JPF
✦ JPF’s Virtual Machine (VM) runs as a normal Java application on top

of a host Java VM

platform OS

host JVM

native libraries

standard
library classes

JPF (VM)

rt.jar

*.class

verification target

standard Java
installation

application

JPF modules

jpf.jar

classpath

native_classpath

library
 classes

native Java installation

JPF installation

system under test

Monday, May 28, 12

JPF Extensions - Main Mechanisms

7

✦ ChoiceGenerators - Transitions and States
✦ VM and Search Listeners - the JPF “plugins”
✦ Native Peers - Model Java Interface (MJI)

✦ Object Attributes - data flow
✦ Instruction Factories - execution semantics
✦ ... and many more (Serializers, Publishers, PublisherExtensions, ...)

used in lab

FYI

Monday, May 28, 12

JPF Extensions - ChoiceGenerators

✦ nature of state space branches not hardwired into JPF
✦ user can introduce new choice types by providing ChoiceGenerators

8

Transition

State

iterator objects
for statespace branches

hasMoreChoices()
advance()
getNextChoice() : T

choices : set
nextChoice

ChoiceGenerator<T>

...

choice value

...

instructions

path

ThreadChoiceGenerator

IntChoiceGenerator ...

UIActionGenerator ...

JPF
core

JPF
extension

Monday, May 28, 12

JPF Extensions - Listeners

✦ the primary JPF “plugins”
✦ used to monitor execution & search (e.g. to implement properties)
✦ runtime configurable

9

Search

JVM

System under Test

Listener

executed by JPF

executed by host JVM

search event notifications

execution event notifications

runtime - configured

- classLoaded
- threadScheduled
- instructionExecuted
- objectCreated
- exceptionThrown
- choiceGeneratorAdvanced
 ...

- stateAdvanced
- stateBacktracked
- propertyViolated
- searchFinished
 ...

≪SearchListener≫

≪VMListener≫

JPF core

JPF
extension

Monday, May 28, 12

JPF Extensions - Native Peers

✦ preferred way to model libraries that use platform specific code (I/O,
GUI frameworks etc.)

✦ JPF’s Model Java Interface (MJI) resembles Java Native Interface (JNI)
✦ lowers execution from JPF VM into host VM

10

int indexOf (char c)
java.lang.String

static int indexOf__I__I (MJIEnv env, int objRef, char c)
JPF_java_lang_String

executed by JPF

executed by host JVM

Model Java Interface (MJI)
method.invoke(peer,args)

arg,… → invoke_virtual → ret
state managed
bytecode interpreter

native code (JIT)
not state managed

model class ...

peer class ...

call

JPF core

JPF
extension

classpath

native_classpath
Monday, May 28, 12

JPF Extensions - Attributes

✦ POJO’s that can be attached to many types of JPF objects
✦ travel with data - good to implement data flow properties

11

lo
ca

ls

values attributes

op
er

an
ds

slots

values attributes

putfield

getfield
dup
..

iload
..

istore
..

callee invokevirtual
..

return
..attribute

object
setAttr(i,o)

getAttr(i)

- listener
- Instruction
- native peer getOperandAttr(i)

getLocalAttr(i)

setOperandAttr(i,o)
setLocalAttr(i,o)

JPF core

JPF
extension

heap
(object fields)

stack
(stack frames)

create

caller

JPF object

host VM object

Monday, May 28, 12

JPF Extensions - Instruction Factories

✦ execution semantics encapsulated in JPF Instruction objects
✦ can be replaced, e.g. to add additional operations

12

*.class
Instruction ifeq(..)
...

<<InstructionFactory>>

DefaultInstructionFactory SymbolicInstructionFactory ...

Instruction execute()
Instruction

... ...

init (JavaClass)

factory
Instruction[] code

MethodInfo

concrete value
instruction set

symbolic value
instruction set

code[i] =
 factory.ifeq(..); JPF core

JPF extension

execute()
IFEQ

execute()
IFEQ

Monday, May 28, 12

JPF Anatomy - Project layout

13

✦ all JPF projects share
uniform directory layout

✦ use ANT based build system
✦ use same configuration scheme
✦ support binary distributions
✦ 3rd party tools & libraries

can be included (self-contained)
✦ projects (should) have examples

and regression test suites
✦ projects (should) have

IDE configuration (NB,Eclipse)

jpf-proj

src

build

build.xml

jpf.properties

jpf-proj.jar
jpf-proj-classes.jar
jpf-proj-annotations.jar

main
peers
classes
annotations
tests
examples

lib

tools

bin

RunJPF.jar

RunAnt.jar

jpf
test

main
...

JPF project properties file
(runtime def: native_classpath, classpath, sourcepath)

host-VM executed classes (listeners, infrastructure etc.)

host-VM executed library classes (MJI native peers)

JPF executed library classes →sourcepath
JPF processed Java annotations

regression tests

demos →sourcepath

Ant build script (compile, build, test, clean)

temporary build artifacts (classfiles)

host-VM executed jar (main,peers →native_classpath)

JPF executed library jar (classes,annotations →classpath)
separate anotations jar (for JPF external SUT exec)

required runtime jars

build & run tools

build artifacts

permanent build artifacts

JPF startup jar (executable)

JPF build jar (executable)

scripts
JPF startup script (→RunJPF.jar)
JPF build script (→RunTest.jar)

project sources

project root directory

RunTest.jar JPF testing jar (executable)

ant JPF build script (→RunAnt.jar)

. . .

 →native_classpath

Monday, May 28, 12

JPF Anatomy - Configuration

14

jpf.home = ${user.home}/projects/jpf

jpf-core = ${jpf.home}/jpf-core
jpf-awt = ${jpf.home}/awt
jpf-shell = ${jpf.home}/jpf-shell
jpf-aprop = ...
...
extensions = ${jpf-core},${jpf-shell}

jpf-core = ${config_path}

jpf-core.native_classpath=\
 ${jpf-core}/build/jpf.jar;\
 ...
 ${jpf-core}/lib/bcel.jar;

jpf-core.classpath=\
 build/jpf-classes.jar

jpf-core.test_classpath=\
 build/tests

jpf-core.sourcepath=\
 src/classes
...

jpf-awt-shell = ${config_path}

@using = jpf-awt

jpf-awt-shell.native_classpath=...
jpf-awt-shell.classpath=...
...

target = RobotManager
target_args = ...

@using = jpf-aprop
@import = ./my.properties

shell = .shell.basicshell.BasicShell
listener = .aprop.listener.SharedChecker
...

1. site properties

2. project properties

3. application properties

4. command line

~/.jpf/site.properties

<project>/jpf.properties

<project>/.../*.jpf

> bin/jpf [-log][-show] {+log.info=..} .../RobotManager.jpf

all jpf.properties in
order of extensions

jpf.properties in current directory

- project locations
- pre-loaded projects

- project class paths
- project dependencies

- system-under-test
- listeners, shells

- debugging
 (+key=value pairs)

command line property arguments

...

application
properties

site properties

Configuration Levels

Monday, May 28, 12

JPF Documentation & Help - Wiki

15

http://babelfish.arc.nasa.gov/trac/jpf

project blog

bug tracking

hierarchical
navigation menu

● Trac ticket system

● announcements
● important changes

● intro
● installation
● user docu
● developer docu
● extension projects

● public read access
● edit for account holders
 (also non-NASA)

Monday, May 28, 12

JPF Documentation & Help - Mailing List

16

✦ http://groups.google.com/group/java-pathfinder
✦ anyone can join & read, member only post
✦ moderate volume (~50 messages/month)
✦ subscribe on http://groups.google.com/group/java-pathfinder/subscribe

Monday, May 28, 12

http://groups.google.com/group/java-pathfinder
http://groups.google.com/group/java-pathfinder
http://groups.google.com/group/java-pathfinder
http://groups.google.com/group/java-pathfinder

Conclusions

✦ JPF not a black box tool
✦ highly extensible
✦ can - and has to - be customized for domain specific verification
✦ takes some time to master

17
Monday, May 28, 12

Conclusions

✦ JPF not a black box tool
✦ highly extensible
✦ can - and has to - be customized for domain specific verification
✦ takes some time to master

17

Thank You!
See you at the lab

Monday, May 28, 12

