
Environment Modeling���
for Modular Software Analysis ���

with Java PathFinder���
Part 1���

Oksana Tkachuk	

SGT/NASA Ames	

oksana.tkachuk@nasa.gov	

Peter Mehlitz	

SGT/NASA Ames	

peter.c.mehlitz@nasa.gov	

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

program / model

property

always(ϕ orψ)

model checker

YES (property holds)

NO + counterexample:
Line 5: …
Line 12: …
…
Line 41:…
Line 47:…

✦  Exhaustively explores all executions in a systematic way	

✦  Reports error traces	

Software Model Checking	

The Good	

Software Model Checking	

✦  Software is complex	

✦  Not finite state	

✦  State space explosion 	

✦  Complex libraries, native code	

• Many frameworks	

• GUI, Web, Android	

✦  Open systems	

• User-driven	

•  Event-driven	

✦  Difficult to implement and use	

✦  Extremely difficult to verify	

The Bad and the Ugly	

Software Model Checkers	

✦  Spin, SMV, SLAM, …	

✦  In this talk: Java PathFinder (JPF)	

✦  Extensible virtual machine framework for Java bytecode verification	

✦  Workbench to efficiently implement many kinds of verification tools	

• software model checking (deadlocks, races, assert errors)	

• test case generation (symbolic execution) and more	

Motivating Example: Autopilot Tutor	

✦  Multiple components	

• User (pilot)	

• Machine (autopilot)	

• Interface (knobs, wheels)	

✦  Pilot tasks	

• Climb and maintain altitude	

• Capture the altitude	

✦  Mode Confusions	

• States where the pilot is

mistaken about the state of the
autopilot

✦  Kill the capture	

• Pilot expects to capture the goal altitude but autopilot misses the altitude	

Autopilot Code	

✦  Web-based applet	

• Complex Swing/AWT libs	

• GUI is used to display the state of the underlying machine	

• No buttons, just clickable areas	

✦  One Java class	

• >3,500 LOC (dense)	

✦  Open event-driven system	

• Takes user input	

✦  Initial attempts to verify	

• Manual editing, final model erroneous	

Need Solutions to Handle 	

✦  Large systems (scalability)	

• Modular analysis	

• Restrict analysis to selected parts (unit under analysis)	

✦  Open systems/units (enabling)	

• Close with execution context (environment model)	

• Generate code for missing components 	

‣  User model (drivers)	

✦  Complex libraries/frameworks (reduction)	

• Generate simplified library models (stubs)	

Environment Generation Problem	

✦  Persistent across different types of analysis	

• Testing 	

‣  test harness, mock objects	

• Static Analysis 	

‣  stubs for native methods	

• Model Checking	

‣  main, library stubs	

✦  Environment needs to be	

• Restrictive enough to allow for tractable analysis	

• General enough to uncover errors or produce good coverage for unit	

Environment Generation Problem	

•  Control effects: invoking
of methods 	

•  Data effects: passing data
and modifying data	

•  Hard to identify interaction
points	

•  Locking, exceptions,
global references	

Unit

Code Base

✦  In OO (Java) systems,
boundaries and interactions
between unit and environment
are complex	

Modular Verification	

Unit

Code Base

Drivers

Stubs

Closed Unit

Java + modeling
primitives

+ Unit Properties  Java Model Checker

✦  Drivers	

• Active classes hold a thread of

control	

• Usually make calls to unit 	

‣  GUI, Web, Android user	

✦  Stubs	

• Passive classes	

• Usually called by unit	

✦  Modeling primitives	

• Non-determinism	

•  Symbolic values	

Environment Parts	

✦  Structural Info	

• Classes, fields, methods	

✦  Behavior	

• Universal environments	

‣  Perform all possible sequences of actions, with all possible input values	

‣  Safe but impractical	

• Environment assumptions 	

‣  can be used to generate more precise environments	

✦  Code	

• Java	

Environment Generation Methodology	

✦  Interface Discovery	

• Unit interface, environment interface	

• program actions	

‣  Method invocation, field assignment	

✦  Acquiring Assumptions	

• No code to analyze	

‣  User specifications	

• Analyze environment implementation	

‣  Static analysis	

✦  Code Generation	

• Modeling primitives	

‣  non-determinism, over-approximation	

Balancing	

✦  Human cost 	

• Effort to write specifications	

✦  Tool cost 	

• The expense of model checking	

• The more general the environment, the more expensive the model

checking	

✦  Degree of confidence	

• Coverage over unit code	

• The more restrictive the environment, the more poor the coverage	

Unit Interface Discovery	

✦  Scan the unit for possible env
actions	

✦  General Java units	

• Public methods and fields	

✦  Event-driven systems	

• Domain-specific event-handling

methods that process user inputs	

• NASA’s Autopilot	

‣  mouseClicked(MouseEvent)	

Drivers	

Unit	

?	

Pilot Actions	

✦  incrMCPAlt	

✦  decrMCPAlt	

✦  pullAltKnob	

✦  pushAltKnob	

✦  incrMCPVS	

✦  decrMCPVS	

✦  fly	

✦  init

MouseEvent incrMCPAltEvent = new MouseEvent(400, 110);!
MouseEvent flyEvent = new MouseEvent (550, 440);!
…!
incrMCPAlt = mouseClicked (incrMCPAltEvent);!
fly = mouseClicked (flyEvent);!

Pilot Scenarios	

✦  Climb and Maintain MCP Alt	

•  incrMCPAlt * ; pullAltKnob; fly * 	

• Until level off	

✦  Capture MCP Alt	

•  incrMCPAlt * ; pullAltKnob ; fly * 	

• Until in capture region	

✦  Climb and maintain MCP - fixed rate of climb	

•  incrMCPAlt * ; pullAltKnob ; incMCPVS*; fly * 	

• Until in capture region	

✦  Climb away from MCP Alt – 2sec 	

•  incrMCPAlt * ; pullAltKnob ; fly * (until in capture) incrMCPVS * (small enough to stay in

capture); fly * 	

init; incrMCPAlt *; pullAltKnob ; fly *; incrMCPVS*; fly *	

init; incrMCPAlt^{1,10}; pullAltKnob ; fly^{1,10}; incrMCPVS^{1,10}; fly^{1,10}	

Generated Driver Code	

… !

System.out.println("@EnvDriver: init");!

autopilot.mouseClicked(initEvent);!

//executes from 1 to 10 times!

for(int i=0;i<1+Verify.random(9);++i){!

 System.out.println("@EnvDriver: incrMCPAlt");!

 autopilot.mouseClicked(incrMCPAltEvent);!

}!

System.out.println("@EnvDriver: pullAltKnob");!

autopilot.mouseClicked(pullAltKnobEvent);!

…!

Environment Interface Discovery	

Stubs	

Unit	

?	

?	

?	

?	

✦  Scan unit for all external
references	

• Classes	

• Methods	

• Fields	

✦  Side-effects analysis	

• Calculate the set of memory locations

that may/must be modified by
method execution	

• Domain-specific side-effects	

• Data specific to framework features	

Stub Generation for Autopilot	

✦  No side-effects to unit data	

• GUI displayed machine state, used to check properties	

✦  Look-and-feel features	

• Size, shape, color	

‣  Irrelevant to logical state	

• All (but one) components for Autopilot in this category	

‣  No buttons or widgets	

‣  Clickable areas	

• Empty stubs	

✦  Relevant to logical state	

• MouseEvent coordinates X, Y	

‣  Can make MouseEvent part of the unit	

MouseEvent Side-Effects	

public MouseEvent(… , int x, int y, …) !

{ …!

 this.x = x;!

 this.y = y;!

!! …!

}!
// must side-effects

this.x = param4;
this.y = param5;

Property Specification	

✦  Pilot mental model (simple, 3 states)	

• Climb	

• Descend	

• Hold	

✦  Map autopilot states to	

• Pilot states 	

✦  Check pilot expectations with assertions	

• If pilot expectation == climb, then the autopilot state == climb	

Property Specification	

… 	

public void getExpectation(){!

 if(ap.mcpAltitude - ap.altitude >= 100)!

 expectation = climb;!

 else if(ap.altitude - ap.mcpAltitude >= 100)!

 expectation = descend;!

 else !

 expectation = hold;!

 checkExpectation();!

}!

public void checkExpectation(){!

 Verify.assert(expectation != climb || ap.getMode() == climb); !

 Verify.assert(expectation != descend || ap.getMode() == descend);!

 Verify.assert(expectation != hold || ap.getMode() == hold);!

}!

Autopilot Results	

✦  Driver specification enhanced with property	

• init; incrMCPAlt ^{1,10}; pullAltKnob ; (check; fly)^{1,10}; 	

 incrMCPVS ^{1,10}; (check; fly)^{1,10}	

✦  Verification	

• Using JPF, successfully identified mode confusion scenarios	

• init; incMCPALT; incMCPALT; pullAltKnob; fly; fly; incMCPVS; fly	

✦  Results	

• First GUI case study for JPF (2001)	

• Formal Analysis of Human-Automation Interaction project	

Other Frameworks	

✦  GUI applications (2004)	

• Enabledness	

• Visibility	

• Modality	

✦  Web applications (2008)	

• J2EE	

• Fujitsu internal framework	

• Struts	

✦  Android applications (2012)	

• Google Summer of Code projects	

Related Approaches	

✦  Specifying assumptions	

• RE 	

• LTL 	

• Context Free Grammar 	

✦  Static analysis	

• Control effects 	

✦  Run-time analysis	

• Run the environment 	

• Learn behavior from the traces	

✦  Symbolic execution	

• Data generation	

✦  Automated assumption generation	

• Given a unit, learn assumptions for environment	

• Learning and abstraction (Corina Pasareanu, next talk)	

Related Approaches	

✦  Automated	

• Universal drivers, stubs based on static analysis	

‣  May be over-approximate	

• Empty stubs, run-time analysis 	

‣  May miss important behavior	

✦  Semi-automated	

• May require manual refinement	

• Produce more precise, cost-effective models	

• Reusable	

‣  Library stubs	

‣  Cost can be amortized	

JPF-AWT: Extension for GUIs	

•  Closes open GUI app with a
user model	

• Deals with libraries	

 Unmodified	

 Modeled	

 Abstracted away	

