Satisfiability Modulo Theories Summer School on Formal Methods

Menlo College, 2011

Bruno Dutertre and Leonardo de Moura

bruno@csl.sri.com, leonardo@microsoft.com

SRI International, Microsoft Research

# Roadmap

- Logic Background
- Modern SAT Solvers
- DPLL with Theory Solvers
- Theory Combination
- Equality
- Arithmetic
- Applications

# Satisfiability Modulo Theories (SMT)

- In SMT solving, the Boolean atoms represent constraints over individual theory variables (ranging over integer, reals, bit-vectors, datatypes, arrays, etc.).
- The constraints can involve theory operations, equality, and inequality.
- Now, the SAT solver has to interact with theory solvers.
- The constraint solver can detect conflicts involving theory reasoning, e.g., f(x) ≠ f(y), x = y, or x - y ≤ 2, y - z ≤ -1, z - x ≤ -3.
- The theory solver must support incremental assertions, efficient backtracking and propagation, and produce efficient explanations of unsatisfiability.

#### Theory Solver: Examples

- Equality: x = y (union-find), and offset equalities x = y + k.
- Term equality: congruence closure for uninterpreted function symbols.
- Difference constraints: incremental negative cycle detection for inequality constraints of the form  $x y \le k$ .
- Linear arithmetic: Fourier's method, Simplex.

## Theory Solver: Rules

- We use  $F \models_T G$  to denote the fact that F entails G in theory T.
- Abstract DPLL can be extended with two new rules to deal with theory T:

**T-Propagate** 

$$M \parallel F \implies M \, l_{(\neg l_1 \lor \ldots \lor \neg l_n \lor l)} \parallel F \quad \text{if} \begin{cases} l \text{ occurs in } F, \\ l \text{ is undefined in } M, \\ l_1 \land \ldots \land l_n \models_T l, \\ l_1, \ldots, l_n \in \textit{lits}(M) \end{cases}$$
  
T-Conflict

 $M \parallel F \implies M \parallel F \parallel \neg l_1 \lor \ldots \lor \neg l_n \quad \text{if} \begin{cases} l_1 \land \ldots \land l_n \models_T \text{ false,} \\ l_1, \ldots, l_n \in \text{lits}(M) \end{cases}$ 

$$p \equiv 3 < x$$
$$q \equiv x < 0$$
$$r \equiv x < y$$

 $s \equiv y < 0$ 

 $\| \quad p, \ q \lor r, \ s \lor \neg r$ 

$$p \equiv 3 < x$$
$$q \equiv x < 0$$

$$r \equiv x < y$$

 $s \equiv y < 0$ 

 $\| \quad p, \ q \lor r, \ s \lor \neg r \quad \Rightarrow \quad \text{(UnitPropagate)}$  $p_p \ \| \quad p, \ q \lor r, \ s \lor \neg r$ 

$$p \equiv 3 < x$$
$$q \equiv x < 0$$

$$r \equiv x < y$$

$$\| \quad p, \ q \lor r, \ s \lor \neg r \quad \Rightarrow \quad \text{(UnitPropagate)}$$

$$p_p \ \| \quad p, \ q \lor r, \ s \lor \neg r \quad \Rightarrow \quad \text{(T-Propagate)}$$

$$p_p \neg q_{\neg p \lor \neg q} \ \| \quad p, \ q \lor r, \ s \lor \neg r$$

$$\underbrace{3 < x}_{p} \text{ implies } \neg \underbrace{x < 0}_{q}$$

$$p \equiv 3 < x$$
$$q \equiv x < 0$$

$$r \equiv x < y$$

$$\begin{array}{cccc} \| & p, q \lor r, s \lor \neg r \Rightarrow & (\text{UnitPropagate}) \\ p_p \| & p, q \lor r, s \lor \neg r \Rightarrow & (\text{T-Propagate}) \\ p_p \neg q_{\neg p \lor \neg q} \| & p, q \lor r, s \lor \neg r \Rightarrow & (\text{UnitPropagate}) \\ p_p \neg q_{\neg p \lor \neg q} r_{q \lor r} \| & p, q \lor r, s \lor \neg r \end{array}$$

$$p \equiv 3 < x$$
$$q \equiv x < 0$$

$$r \equiv x < y$$

$$p \equiv 3 < x$$
$$q \equiv x < 0$$

$$r \equiv x < y$$



Do we need T-Propagate?

Do we need T-Propagate?

#### No

Trade-off between precision and performance.

Do we need T-Propagate?

#### No

- Trade-off between precision and performance.
- What is the minimal functionality of a theory solver?

Do we need T-Propagate?

#### No

- Trade-off between precision and performance.
- What is the minimal functionality of a theory solver?
  - Check the unsatisfiability of conjunction of literals.

Do we need T-Propagate?

#### No

- Trade-off between precision and performance.
- What is the minimal functionality of a theory solver?
  - Check the unsatisfiability of conjunction of literals.
- Efficiently mining T-justifications

**T-Propagate** 

$$M \parallel F \implies M \, l_{(\neg l_1 \lor \ldots \lor \neg l_n \lor l)} \parallel F \quad \text{if} \begin{cases} l \text{ occurs in } F, \\ l \text{ is undefined in } M, \\ l_1 \land \ldots \land l_n \models_T l, \\ l_1, \ldots, l_n \in \textit{lits}(M) \end{cases}$$

$$\textbf{T-Conflict}$$

$$M \parallel F \implies M \parallel F \parallel \neg l_1 \lor \ldots \lor \neg l_n \quad \text{if} \begin{cases} l_1 \land \ldots \land l_n \models_T \textit{false}, \\ l_1, \ldots, l_n \in \textit{lits}(M) \end{cases}$$

# The Ideal Theory Solver

- Incremental
- Efficient Backtracking
- Efficient T-Propagate
- Precise T-Justifications

# Roadmap

- Logic Background
- Modern SAT Solvers
- DPLL with Theory Solvers
- Theory Combination
- Equality
- Arithmetic
- Applications

# **Combination of Theories**

- In practice, we need a combination of theories.
- Example:

$$x + 2 = y \Rightarrow f(\textit{read}(\textit{write}(a, x, 3), y - 2)) = f(y - x + 1)$$

Given

$$\begin{split} \Sigma &= \Sigma_1 \cup \Sigma_2 \\ \mathcal{T}_1, \mathcal{T}_2 &: \text{ theories over } \Sigma_1, \Sigma_2 \\ \mathcal{T} &= \textit{DC}(\mathcal{T}_1 \cup \mathcal{T}_2) \end{split}$$

- Is  $\mathcal{T}$  consistent?
- Given satisfiability procedures for conjunction of literals of  $\mathcal{T}_1$  and  $\mathcal{T}_2$ , how to decide the satisfiability of  $\mathcal{T}$ ?

#### Preamble

- Disjoint signatures:  $\Sigma_1 \cap \Sigma_2 = \emptyset$ .
- Purification
- Stably-Infinite Theories.
- Convex Theories.

- Goal: convert a formula φ into φ₁ ∧ φ₂, where φ₁ is in T₁'s language and φ₂ is in T₂'s language.
   So φ₁ and φ₂ have no common symbols, except variables.
- Purification step: replace term t by a fresh variable x $\phi \wedge F(\dots, s[t], \dots) \rightsquigarrow \phi \wedge F(\dots, s[x], \dots) \wedge x = t$ ,
- Purification is satisfiability preserving and terminating.

- Goal: convert a formula φ into φ₁ ∧ φ₂, where φ₁ is in T₁'s language and φ₂ is in T₂'s language.
   So φ₁ and φ₂ have no common symbols, except variables.
- Purification step: replace term t by a fresh variable x $\phi \wedge F(\dots, s[t], \dots) \rightsquigarrow \phi \wedge F(\dots, s[x], \dots) \wedge x = t$ ,
- Purification is satisfiability preserving and terminating.

$$f(\boldsymbol{x}-1) - 1 = x, f(y) + 1 = y \rightsquigarrow$$

- Goal: convert a formula φ into φ₁ ∧ φ₂, where φ₁ is in T₁'s language and φ₂ is in T₂'s language.
   So φ₁ and φ₂ have no common symbols, except variables.
- Purification step: replace term t by a fresh variable x $\phi \wedge F(\dots, s[t], \dots) \rightsquigarrow \phi \wedge F(\dots, s[x], \dots) \wedge x = t$ ,
- Purification is satisfiability preserving and terminating.

$$f(x-1) - 1 = x, f(y) + 1 = y \rightsquigarrow$$
  
$$f(u_1) - 1 = x, f(y) + 1 = y, u_1 = x - 1 \rightsquigarrow$$

- Goal: convert a formula φ into φ₁ ∧ φ₂, where φ₁ is in T₁'s language and φ₂ is in T₂'s language.
   So φ₁ and φ₂ have no common symbols, except variables.
- Purification step: replace term t by a fresh variable x $\phi \wedge F(\dots, s[t], \dots) \rightsquigarrow \phi \wedge F(\dots, s[x], \dots) \wedge x = t$ ,
- Purification is satisfiability preserving and terminating.

$$f(x-1) - 1 = x, f(y) + 1 = y \rightsquigarrow$$
  
$$f(u_1) - 1 = x, f(y) + 1 = y, u_1 = x - 1 \rightsquigarrow$$
  
$$u_2 - 1 = x, f(y) + 1 = y, u_1 = x - 1, u_2 = f(u_1) \rightsquigarrow$$

- Goal: convert a formula φ into φ₁ ∧ φ₂, where φ₁ is in T₁'s language and φ₂ is in T₂'s language.
   So φ₁ and φ₂ have no common symbols, except variables.
- Purification step: replace term t by a fresh variable x $\phi \wedge F(\dots, s[t], \dots) \rightsquigarrow \phi \wedge F(\dots, s[x], \dots) \wedge x = t$ ,
- Purification is satisfiability preserving and terminating.

$$f(x-1) - 1 = x, f(y) + 1 = y \rightsquigarrow$$
  

$$f(u_1) - 1 = x, f(y) + 1 = y, u_1 = x - 1 \rightsquigarrow$$
  

$$u_2 - 1 = x, f(y) + 1 = y, u_1 = x - 1, u_2 = f(u_1) \rightsquigarrow$$
  

$$u_2 - 1 = x, u_3 + 1 = y, u_1 = x - 1, u_2 = f(u_1), u_3 = f(y)$$

- Goal: convert a formula φ into φ₁ ∧ φ₂, where φ₁ is in T₁'s language and φ₂ is in T₂'s language.
   So φ₁ and φ₂ have no common symbols, except variables.
- Purification step: replace term t by a fresh variable x $\phi \wedge F(\dots, s[t], \dots) \rightsquigarrow \phi \wedge F(\dots, s[x], \dots) \wedge x = t$ ,
- Purification is satisfiability preserving and terminating.

$$f(x-1) - 1 = x, f(y) + 1 = y \rightsquigarrow$$
  

$$f(u_1) - 1 = x, f(y) + 1 = y, u_1 = x - 1 \rightsquigarrow$$
  

$$u_2 - 1 = x, f(y) + 1 = y, u_1 = x - 1, u_2 = f(u_1) \rightsquigarrow$$
  

$$u_2 - 1 = x, u_3 + 1 = y, u_1 = x - 1, u_2 = f(u_1), u_3 = f(y)$$

#### After Purification

# $x = f(z), f(x) \neq f(y), 0 \le x \le 1, 0 \le y \le 1, z = y - 1$

# $x = f(z), f(x) \neq f(y), 0 \le x \le 1, 0 \le y \le 1, z = y - 1$

| Red Model                     | Blue Model                         |
|-------------------------------|------------------------------------|
| $ R  = \{*_1, \dots, *_6\}$   | $ B  = \{\dots, -1, 0, 1, \dots\}$ |
| $R(x) = *_1$                  | B(x) = 0                           |
| $R(y) = *_2$                  | B(y) = 0                           |
| $R(z) = *_3$                  | B(z) = -1                          |
| $R(f) = \{ *_1 \mapsto *_4, $ |                                    |
| $*_2 \mapsto *_5,$            |                                    |
| $*_3 \mapsto *_1,$            |                                    |
| $else \mapsto *_6\}$          |                                    |

# **Stably-Infinite Theories**

- A theory is stably infinite if every satisfiable QFF is satisfiable in an infinite model.
- Example. Theories with only finite models are not stably infinite.  $T_2 = DC(\forall x, y, z. (x = y) \lor (x = z) \lor (y = z)).$
- The union of two consistent, disjoint, stably infinite theories is consistent.

• A theory  $\mathcal{T}$  is convex iff

for all finite sets  $\Gamma$  of literals and for all non-empty disjunctions  $\bigvee_{i \in I} x_i = y_i$  of variables,  $\Gamma \models_{\mathcal{T}} \bigvee_{i \in I} x_i = y_i$  iff  $\Gamma \models_{\mathcal{T}} x_i = y_i$  for some  $i \in I$ .

- Every convex theory  $\mathcal{T}$  with non trivial models (i.e.,  $\models_T \exists x, y. \ x \neq y$ ) is stably infinite.
- All Horn theories are convex this includes all (conditional) equational theories.
- Linear rational arithmetic is convex.

- Many theories are not convex:
  - Linear integer arithmetic.

$$y = 1, z = 2, 1 \le x \le 2 \models x = y \lor x = z$$

Nonlinear arithmetic.

$$x^2=1, y=1, z=-1 \models x=y \lor x=z$$

- Theory of Bit-vectors.
- Theory of Arrays.

$$v_1 = \operatorname{read}(\operatorname{write}(a, i, v_2), j), v_3 = \operatorname{read}(a, j) \models v_1 = v_2 \lor v_1 = v_3$$

# **Nelson-Oppen Combination**

- Let T<sub>1</sub> and T<sub>2</sub> be consistent, stably infinite theories over disjoint (countable) signatures. Assume satisfiability of conjunction of literals can decided in O(T<sub>1</sub>(n)) and O(T<sub>2</sub>(n)) time respectively. Then,
  - 1. The combined theory  ${\mathcal T}$  is consistent and stably infinite.
  - 2. Satisfiability of quantifier free conjunction of literals in  $\mathcal{T}$  can be decided in  $O(2^{n^2} \times (T_1(n) + T_2(n)))$ .
  - 3. If  $\mathcal{T}_1$  and  $\mathcal{T}_2$  are convex, then so is  $\mathcal{T}$  and satisfiability in  $\mathcal{T}$  is in  $O(n^3 \times (T_1(n) + T_2(n)))$ .

#### **Nelson-Oppen Combination Procedure**

- The combination procedure:
  - **Initial State:**  $\phi$  is a conjunction of literals over  $\Sigma_1 \cup \Sigma_2$ .
  - **Purification:** Preserving satisfiability transform  $\phi$  into  $\phi_1 \wedge \phi_2$ , such that,  $\phi_i \in \Sigma_i$ .
  - Interaction: Guess a partition of  $\mathcal{V}(\phi_1) \cap \mathcal{V}(\phi_2)$  into disjoint subsets. Express it as conjunction of literals  $\psi$ . Example. The partition  $\{x_1\}, \{x_2, x_3\}, \{x_4\}$  is represented as  $x_1 \neq x_2, x_1 \neq x_4, x_2 \neq x_4, x_2 = x_3$ .
  - Component Procedures : Use individual procedures to decide whether  $\phi_i \wedge \psi$  is satisfiable.
  - **Return:** If both return yes, return yes. No, otherwise.

#### NO procedure: soundness

- Each step is satisfiability preserving.
- Say  $\phi$  is satisfiable (in the combination).
  - Purification:  $\phi_1 \wedge \phi_2$  is satisfiable.

#### NO procedure: soundness

- Each step is satisfiability preserving.
- Say  $\phi$  is satisfiable (in the combination).
  - Purification:  $\phi_1 \wedge \phi_2$  is satisfiable.
  - Iteration: for some partition  $\psi$ ,  $\phi_1 \wedge \phi_2 \wedge \psi$  is satisfiable.

#### NO procedure: soundness

- Each step is satisfiability preserving.
- Say  $\phi$  is satisfiable (in the combination).
  - Purification:  $\phi_1 \wedge \phi_2$  is satisfiable.
  - Iteration: for some partition  $\psi$ ,  $\phi_1 \wedge \phi_2 \wedge \psi$  is satisfiable.
  - Component procedures:  $\phi_1 \wedge \psi$  and  $\phi_2 \wedge \psi$  are both satisfiable in component theories.
## NO procedure: soundness

- Each step is satisfiability preserving.
- Say  $\phi$  is satisfiable (in the combination).
  - Purification:  $\phi_1 \wedge \phi_2$  is satisfiable.
  - Iteration: for some partition  $\psi$ ,  $\phi_1 \wedge \phi_2 \wedge \psi$  is satisfiable.
  - Component procedures:  $\phi_1 \wedge \psi$  and  $\phi_2 \wedge \psi$  are both satisfiable in component theories.
  - Therefore, if the procedure return unsatisfiable, then  $\phi$  is unsatisfiable.

- Suppose the procedure returns satisfiable.
  - Let  $\psi$  be the partition and A and B be models of  $\mathcal{T}_1 \wedge \phi_1 \wedge \psi$ and  $\mathcal{T}_2 \wedge \phi_2 \wedge \psi$ .

- Suppose the procedure returns satisfiable.
  - Let  $\psi$  be the partition and A and B be models of  $\mathcal{T}_1 \wedge \phi_1 \wedge \psi$ and  $\mathcal{T}_2 \wedge \phi_2 \wedge \psi$ .
  - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).

- Suppose the procedure returns satisfiable.
  - Let  $\psi$  be the partition and A and B be models of  $\mathcal{T}_1 \wedge \phi_1 \wedge \psi$ and  $\mathcal{T}_2 \wedge \phi_2 \wedge \psi$ .
  - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
  - Let h be a bijection between |A| and |B| such that h(A(x)) = B(x) for each shared variable.

- Suppose the procedure returns satisfiable.
  - Let  $\psi$  be the partition and A and B be models of  $\mathcal{T}_1 \wedge \phi_1 \wedge \psi$ and  $\mathcal{T}_2 \wedge \phi_2 \wedge \psi$ .
  - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
  - Let *h* be a bijection between |A| and |B| such that h(A(x)) = B(x) for each shared variable.
  - Extend B to  $\overline{B}$  by interpretations of symbols in  $\Sigma_1$ :  $\overline{B}(f)(b_1, \ldots, b_n) = h(A(f)(h^{-1}(b_1), \ldots, h^{-1}(b_n)))$

- Suppose the procedure returns satisfiable.
  - Let  $\psi$  be the partition and A and B be models of  $\mathcal{T}_1 \wedge \phi_1 \wedge \psi$ and  $\mathcal{T}_2 \wedge \phi_2 \wedge \psi$ .
  - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
  - Let *h* be a bijection between |A| and |B| such that h(A(x)) = B(x) for each shared variable.
  - Extend B to  $\overline{B}$  by interpretations of symbols in  $\Sigma_1$ :  $\overline{B}(f)(b_1, \ldots, b_n) = h(A(f)(h^{-1}(b_1), \ldots, h^{-1}(b_n)))$
  - $\bar{B}$  is a model of:

 $\mathcal{T}_1 \wedge \phi_1 \wedge \mathcal{T}_2 \wedge \phi_2 \wedge \psi$ 

## NO deterministic procedure

Instead of guessing, we can deduce the equalities to be shared.
Purification: no changes.
Interaction: Deduce an equality x = y:

$$\mathcal{T}_1 \vdash (\phi_1 \Rightarrow x = y)$$

Update  $\phi_2 := \phi_2 \wedge x = y$ . And vice-versa. Repeat until no further changes.

- **Component Procedures** : Use individual procedures to decide whether  $\phi_i$  is satisfiable.
- Remark:  $\mathcal{T}_i \vdash (\phi_i \Rightarrow x = y)$  iff  $\phi_i \land x \neq y$  is not satisfiable in  $\mathcal{T}_i$ .

- Assume the theories are convex.
  - Suppose  $\phi_i$  is satisfiable.

- Assume the theories are convex.
  - Suppose  $\phi_i$  is satisfiable.
  - Let *E* be the set of equalities  $x_j = x_k$  ( $j \neq k$ ) such that,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$ .

- Assume the theories are convex.
  - Suppose  $\phi_i$  is satisfiable.
  - Let *E* be the set of equalities  $x_j = x_k$  ( $j \neq k$ ) such that,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$ .
  - By convexity,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$ .

- Assume the theories are convex.
  - Suppose  $\phi_i$  is satisfiable.
  - Let *E* be the set of equalities  $x_j = x_k$  ( $j \neq k$ ) such that,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$ .
  - By convexity,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$ .

• 
$$\phi_i \wedge \bigwedge_E x_j \neq x_k$$
 is satisfiable.

- Assume the theories are convex.
  - Suppose  $\phi_i$  is satisfiable.
  - Let *E* be the set of equalities  $x_j = x_k$  ( $j \neq k$ ) such that,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$ .
  - By convexity,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$ .
  - $\phi_i \wedge \bigwedge_E x_j \neq x_k$  is satisfiable.
  - The proof now is identical to the nondeterministic case.

- Assume the theories are convex.
  - Suppose  $\phi_i$  is satisfiable.
  - Let *E* be the set of equalities  $x_j = x_k$  ( $j \neq k$ ) such that,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$ .
  - By convexity,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$ .
  - $\phi_i \wedge \bigwedge_E x_j \neq x_k$  is satisfiable.
  - The proof now is identical to the nondeterministic case.
  - Sharing equalities is sufficient, because a theory T₁ can assume that x<sup>B</sup> ≠ y<sup>B</sup> whenever x = y is not implied by T₂ and vice versa.

 $x + 2 = y \land f(\mathit{read}(\mathit{write}(a, x, 3), y - 2)) \neq f(y - x + 1)$ 

| ${\cal T}_E$ | ${\cal T}_A$ | ${\cal T}_{Ar}$ |
|--------------|--------------|-----------------|
|              |              |                 |
|              |              |                 |
|              |              |                 |
|              |              |                 |
|              |              |                 |

# NO procedure: example

$$f(\mathit{read}(\mathit{write}(a, x, \mathbf{3}), y - 2)) \neq f(y - x + 1)$$

| ${\cal T}_E$ | ${\cal T}_A$ | ${\cal T}_{Ar}$ |
|--------------|--------------|-----------------|
|              | x + 2 = y    |                 |
|              |              |                 |
|              |              |                 |
|              |              |                 |
|              |              |                 |

# NO procedure: example

 $f(\textit{read}(\textit{write}(a, x, u_1), y - 2)) \neq f(y - x + 1)$ 

| ${\cal T}_E$ | ${\cal T}_A$ | ${\cal T}_{Ar}$ |
|--------------|--------------|-----------------|
|              | x + 2 = y    |                 |
|              | $u_1 = 3$    |                 |
|              |              |                 |
|              |              |                 |
|              |              |                 |

# NO procedure: example

 $f(\operatorname{read}(\operatorname{write}(a, x, u_1), u_2)) \neq f(y - x + 1)$ 

| ${\cal T}_E$ | ${\cal T}_A$  | ${\cal T}_{Ar}$ |
|--------------|---------------|-----------------|
|              | x + 2 = y     |                 |
|              | $u_1 = 3$     |                 |
|              | $u_2 = y - 2$ |                 |
|              |               |                 |
|              |               |                 |

$$f(u_3) \neq f(y - x + 1)$$

| ${\cal T}_E$ | ${\cal T}_A$  | ${\cal T}_{Ar}$                              |
|--------------|---------------|----------------------------------------------|
|              | x + 2 = y     | $u_3 =$                                      |
|              | $u_1 = 3$     | $\mathit{read}(\mathit{write}(a,x,u_1),u_2)$ |
|              | $u_2 = y - 2$ |                                              |
|              |               |                                              |
|              |               |                                              |

 $f(u_3) \neq f(u_4)$ 

| ${\cal T}_E$ | ${\cal T}_A$      | ${\cal T}_{Ar}$                              |
|--------------|-------------------|----------------------------------------------|
|              | x + 2 = y         | $u_3 =$                                      |
|              | $u_1 = 3$         | $\mathit{read}(\mathit{write}(a,x,u_1),u_2)$ |
|              | $u_2 = y - 2$     |                                              |
|              | $u_4 = y - x + 1$ |                                              |
|              |                   |                                              |

| ${\cal T}_E$         | ${\cal T}_A$               | ${\cal T}_{Ar}$                              |
|----------------------|----------------------------|----------------------------------------------|
| $f(u_3) \neq f(u_4)$ | x + 2 = y                  | $u_3 =$                                      |
|                      | $u_1 = 3$                  | $\mathit{read}(\mathit{write}(a,x,u_1),u_2)$ |
|                      | $u_2 = y - 2$              |                                              |
|                      | $u_4 = \mathbf{y} - x + 1$ |                                              |
|                      |                            |                                              |

Solving  ${\mathcal T}_A$ 

| ${\cal T}_E$         | ${\cal T}_A$ | ${\cal T}_{Ar}$                              |
|----------------------|--------------|----------------------------------------------|
| $f(u_3) \neq f(u_4)$ | y = x + 2    | $u_3 =$                                      |
|                      | $u_1 = 3$    | $\mathit{read}(\mathit{write}(a,x,u_1),u_2)$ |
|                      | $u_2 = x$    |                                              |
|                      | $u_4 = 3$    |                                              |
|                      |              |                                              |

Propagating  $u_2 = x$ 

| ${\cal T}_E$         | ${\cal T}_A$ | ${\cal T}_{Ar}$                                             |
|----------------------|--------------|-------------------------------------------------------------|
| $f(u_3) \neq f(u_4)$ | y = x + 2    | $u_3 =$                                                     |
| $u_2 = x$            | $u_1 = 3$    | $\mathit{read}(\mathit{write}(a, \pmb{x}, u_1), \pmb{u_2})$ |
|                      | $u_2 = x$    | $u_2 = x$                                                   |
|                      | $u_4 = 3$    |                                                             |
|                      |              |                                                             |

Solving  ${\mathcal T}_{Ar}$ 

| ${\cal T}_E$         | ${\cal T}_A$ | ${\cal T}_{Ar}$ |
|----------------------|--------------|-----------------|
| $f(u_3) \neq f(u_4)$ | y = x + 2    | $u_3 = u_1$     |
| $u_2 = x$            | $u_1 = 3$    | $u_2 = x$       |
|                      | $u_2 = x$    |                 |
|                      | $u_4 = 3$    |                 |
|                      |              |                 |

Propagating  $u_3 = u_1$ 

| ${\cal T}_E$         | ${\cal T}_A$ | ${\cal T}_{Ar}$ |
|----------------------|--------------|-----------------|
| $f(u_3) \neq f(u_4)$ | y = x + 2    | $u_3 = u_1$     |
| $u_2 = x$            | $u_1 = 3$    | $u_2 = x$       |
| $u_3 = u_1$          | $u_2 = x$    |                 |
|                      | $u_4 = 3$    |                 |
|                      | $u_3 = u_1$  |                 |

Propagating  $u_1 = u_4$ 

| ${\cal T}_E$         | ${\cal T}_A$ | ${\cal T}_{Ar}$ |
|----------------------|--------------|-----------------|
| $f(u_3) \neq f(u_4)$ | y = x + 2    | $u_3 = u_1$     |
| $u_2 = x$            | $u_1 = 3$    | $u_2 = x$       |
| $u_3 = u_1$          | $u_2 = x$    |                 |
| $u_4 = u_1$          | $u_4 = 3$    |                 |
|                      | $u_3 = u_1$  |                 |

Congruence  $u_3 = u_1 \land u_4 = u_1 \Rightarrow f(u_3) = f(u_4)$ 

| ${\cal T}_E$         | ${\cal T}_A$ | ${\cal T}_{Ar}$ |
|----------------------|--------------|-----------------|
| $f(u_3) \neq f(u_4)$ | y = x + 2    | $u_3 = u_1$     |
| $u_2 = x$            | $u_1 = 3$    | $u_2 = x$       |
| $u_3 = u_1$          | $u_2 = x$    |                 |
| $u_4 = u_1$          | $u_4 = 3$    |                 |
| $f(u_3) = f(u_4)$    | $u_3 = u_1$  |                 |

**Unsatisfiable!** 

## NO deterministic procedure

- Deterministic procedure does not work for non convex theories.
- Example (integer arithmetic):

 $0 \leq x, y, z \leq 1, f(x) \neq f(y), f(x) \neq f(z), f(y) \neq f(z)$ 

(Expensive) solution: deduce disjunctions of equalities.

# Combining theories in practice

- Propagate all implied equalities.
  - Deterministic Nelson-Oppen.
  - Complete only for convex theories.
  - It may be expensive for some theories.
- Delayed Theory Combination.
  - Nondeterministic Nelson-Oppen.
  - Create set of interface equalities (x = y) between shared variables.
  - Use SAT solver to guess the partition.
  - Disadvantage: the number of additional equality literals is quadratic in the number of shared variables.

# Combining theories in practice (cont.)

- Common to these methods is that they are pessimistic about which equalities are propagated.
- Model-based Theory Combination
  - Optimistic approach.
  - Use a candidate model M<sub>i</sub> for one of the theories T<sub>i</sub> and propagate all equalities implied by the candidate model, hedging that other theories will agree.

if  $M_i \models {\mathcal T}_i \cup \Gamma_i \cup \{u=v\}$  then propagate u=v .

- If not, use backtracking to fix the model.
- It is cheaper to enumerate equalities that are true in a particular model than the equalities implied by all models.

$$x = f(\mathbf{y-1}), f(x) \neq f(y), 0 \leq x \leq 1, 0 \leq y \leq 1$$

$$x = f(z), f(x) \neq f(y), 0 \le x \le 1, 0 \le y \le 1, z = y - 1$$

| ${\cal T}_E$     |               |                               | ${\cal T}_A$    |           |
|------------------|---------------|-------------------------------|-----------------|-----------|
| Literals         | Eq. Classes   | Model                         | Literals        | Model     |
| x = f(z)         | $\{x, f(z)\}$ | $E(x) = *_1$                  | $0 \le x \le 1$ | A(x) = 0  |
| $f(x) \neq f(y)$ | $\{y\}$       | $E(y) = *_2$                  | $0 \le y \le 1$ | A(y) = 0  |
|                  | $\{z\}$       | $E(z) = *_3$                  | z = y - 1       | A(z) = -1 |
|                  | $\{f(x)\}$    | $E(f) = \{ *_1 \mapsto *_4, $ |                 |           |
|                  | $\{f(y)\}$    | $*_2 \mapsto *_5,$            |                 |           |
|                  |               | $*_3 \mapsto *_1,$            |                 |           |
|                  |               | $\textit{else}\mapsto *_6\}$  |                 |           |

| ${\cal T}_E$     |                  | ${\cal T}_A$                  |                 |           |
|------------------|------------------|-------------------------------|-----------------|-----------|
| Literals         | Eq. Classes      | Model                         | Literals        | Model     |
| x = f(z)         | $\{x, y, f(z)\}$ | $E(x) = *_1$                  | $0 \le x \le 1$ | A(x) = 0  |
| $f(x) \neq f(y)$ | $\{z\}$          | $E(y) = *_1$                  | $0 \le y \le 1$ | A(y) = 0  |
| x = y            | $\{f(x), f(y)\}$ | $E(z) = *_2$                  | z = y - 1       | A(z) = -1 |
|                  |                  | $E(f) = \{ *_1 \mapsto *_3, $ | x = y           |           |
|                  |                  | $*_2 \mapsto *_1,$            |                 |           |
|                  |                  | $\textit{else}\mapsto *_4\}$  |                 |           |

Unsatisfiable

| ${\cal T}_E$     |               |                               | ${\cal T}_A$    |           |
|------------------|---------------|-------------------------------|-----------------|-----------|
| Literals         | Eq. Classes   | Model                         | Literals        | Model     |
| x = f(z)         | $\{x, f(z)\}$ | $E(x) = *_1$                  | $0 \le x \le 1$ | A(x) = 0  |
| $f(x) \neq f(y)$ | $\{y\}$       | $E(y) = *_2$                  | $0 \le y \le 1$ | A(y) = 0  |
| $x \neq y$       | $\{z\}$       | $E(z) = *_3$                  | z = y - 1       | A(z) = -1 |
|                  | $\{f(x)\}$    | $E(f) = \{ *_1 \mapsto *_4, $ | $x \neq y$      |           |
|                  | $\{f(y)\}$    | $*_2 \mapsto *_5,$            |                 |           |
|                  |               | $*_3 \mapsto *_1,$            |                 |           |
|                  |               | $\textit{else}\mapsto *_6\}$  |                 |           |

Backtrack, and assert  $x \neq y$ .  $\mathcal{T}_A$  model need to be fixed.

| ${\cal T}_E$     |               |                               | ${\cal T}_A$    |          |
|------------------|---------------|-------------------------------|-----------------|----------|
| Literals         | Eq. Classes   | Model                         | Literals        | Model    |
| x = f(z)         | $\{x, f(z)\}$ | $E(x) = *_1$                  | $0 \le x \le 1$ | A(x) = 0 |
| $f(x) \neq f(y)$ | $\{y\}$       | $E(y) = *_2$                  | $0 \le y \le 1$ | A(y) = 1 |
| $x \neq y$       | $\{z\}$       | $E(z) = *_3$                  | z = y - 1       | A(z) = 0 |
|                  | $\{f(x)\}$    | $E(f) = \{ *_1 \mapsto *_4, $ | $x \neq y$      |          |
|                  | $\{f(y)\}$    | $*_2 \mapsto *_5,$            |                 |          |
|                  |               | $*_3 \mapsto *_1,$            |                 |          |
|                  |               | $\textit{else}\mapsto *_6\}$  |                 |          |

#### Assume x = z

| ${\cal T}_E$     |                | ${\cal T}_A$                  |                 |          |
|------------------|----------------|-------------------------------|-----------------|----------|
| Literals         | Eq. Classes    | Model                         | Literals        | Model    |
| x = f(z)         | $\{x, z,$      | $E(x) = *_1$                  | $0 \le x \le 1$ | A(x) = 0 |
| $f(x) \neq f(y)$ | $f(x), f(z)\}$ | $E(y) = *_2$                  | $0 \le y \le 1$ | A(y) = 1 |
| $x \neq y$       | $\{y\}$        | $E(z) = *_{1}$                | z = y - 1       | A(z) = 0 |
| x = z            | $\{f(y)\}$     | $E(f) = \{ *_1 \mapsto *_1, $ | $x \neq y$      |          |
|                  |                | $*_2 \mapsto *_3,$            | x = z           |          |
|                  |                | $\textit{else}\mapsto *_4\}$  |                 |          |

Satisfiable
#### Model based theory combination: Example

| ${\cal T}_E$     |             |                               | ${\cal T}_A$    |          |
|------------------|-------------|-------------------------------|-----------------|----------|
| Literals         | Eq. Classes | Model                         | Literals        | Model    |
| x = f(z)         | $\{x, z,$   | $E(x) = *_1$                  | $0 \le x \le 1$ | A(x) = 0 |
| $f(x) \neq f(y)$ | f(x), f(z)  | $E(y) = *_2$                  | $0 \le y \le 1$ | A(y) = 1 |
| $x \neq y$       | $\{y\}$     | $E(z) = *_1$                  | z = y - 1       | A(z) = 0 |
| x = z            | $\{f(y)\}$  | $E(f) = \{ *_1 \mapsto *_1, $ | $x \neq y$      |          |
|                  |             | $*_2 \mapsto *_3,$            | x = z           |          |
|                  |             | $\textit{else}\mapsto *_4\}$  |                 |          |

Let h be the bijection between |E| and |A|.

$$h = \{*_1 \mapsto 0, *_2 \mapsto 1, *_3 \mapsto -1, *_4 \mapsto 2, \ldots\}$$

#### Model based theory combination: Example

| ${\cal T}_E$     |                               | ${\cal T}_A$    |                            |  |
|------------------|-------------------------------|-----------------|----------------------------|--|
| Literals         | Model                         | Literals        | Model                      |  |
| x = f(z)         | $E(x) = *_1$                  | $0 \le x \le 1$ | A(x) = 0                   |  |
| $f(x) \neq f(y)$ | $E(y) = *_2$                  | $0 \le y \le 1$ | A(y) = 1                   |  |
| $x \neq y$       | $E(z) = *_1$                  | z = y - 1       | A(z) = 0                   |  |
| x = z            | $E(f) = \{ *_1 \mapsto *_1, $ | $x \neq y$      | $A(f) = \{0 \mapsto 0$     |  |
|                  | $*_2 \mapsto *_3,$            | x = z           | $1\mapsto -1$              |  |
|                  | $\textit{else}\mapsto *_4\}$  |                 | $\mathit{else}\mapsto 2\}$ |  |

Extending A using h.

$$h = \{ *_1 \mapsto 0, *_2 \mapsto 1, *_3 \mapsto -1, *_4 \mapsto 2, \ldots \}$$

#### Model mutation

• Sometimes M(x) = M(y) by accident.

$$\bigwedge_{i=1}^{N} f(x_i) \ge 0 \ \land \ x_i \ge 0$$

Model mutation: diversify the current model.

#### Roadmap

- Logic Background
- Modern SAT Solvers
- DPLL with Theory Solvers
- Theory Combination
- Equality
- Arithmetic
- Applications

Reflexivity x = x

Symmetry  $x = y \Rightarrow y = x$ 

Transitivity  $x = y, y = z \Rightarrow x = z$ 

#### Congruence

$$x_1 = y_1, \dots, x_n = y_n \Rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

$$f(f(a)) = a, \ b = f(a), \ \neg f(f(f(a))) = b$$

$$f(f(a)) = a, \ b = f(a), \ \neg f(f(f(a))) = b$$
  
congruence  $\rightsquigarrow f(f(f(a))) = f(a)$ 

$$f(f(a)) = a, \ b = f(a), \ \neg f(f(f(a))) = b,$$
  
$$f(f(f(a))) = f(a)$$
  
symmetry  $\rightsquigarrow f(a) = b$ 

SAT/SMT – p.31/57

$$f(f(a)) = a, \ b = f(a), \ \neg f(f(f(a))) = b,$$
  
$$f(f(f(a))) = f(a), \ f(a) = b$$

transitivity  $\rightsquigarrow f(f(f(a))) = b$ 

$$f(f(a)) = a, \ b = f(a), \ \neg f(f(f(a))) = b,$$
  
$$f(f(f(a))) = f(a), \ f(a) = b, \ f(f(f(a))) = b$$

unsatisfiable

- A conjunction of equalities is trivially satisfiable.
- Example: f(x) = y, x = y, g(x) = z, f(y) = f(z)

- A conjunction of equalities is trivially satisfiable.
- Example: f(x) = y, x = y, g(x) = z, f(y) = f(z)
- Model:
  - $|M| = \{*_1\}$
  - $M(x) = M(y) = M(z) = *_1$
  - $M(f)(*_1) = *_1$
  - $M(g)(*_1) = *_1$

#### Variable equality

- Assume the problem has not function symbols.
- Use union-find data structure to represent equalities.
- The state consists of a find structure F that maintains equivalence classes and a set of disequalities D.
- Initially, F(x) = x for each variable x.
- $F^*(x)$  is the root of the equivalence class containing x:

$$F^*(x) = \begin{cases} x, & \text{ if } F(x) = x \\ F^*(F(x)) & \text{ otherwise} \end{cases}$$

• Let sz(F, x) denote the size of the equivalence class containing x.

#### Variable equality: union

An equality x = y is processed by merging distinct equivalence classes using the *union* operation:

$$\begin{array}{ll} \textit{union}(F,x,y) & = & \left\{ \begin{array}{ll} F[x':=y'], & \textit{sz}(F,x) < \textit{sz}(F,y) \\ & F[y':=x'], & \textit{otherwise} \end{array} \right. \\ & \text{where } x' \equiv F^*(x) \not\equiv F^*(y) \equiv y' \end{array} \right. \end{array}$$

Optimization: path compression, update F when executing F\*(x).
F[x := F\*(x)]

#### **Processing equalities**

The entire inference system consists of operations for adding equalities, disequalities, and dectecting unsatisfiability.

$$\begin{aligned} & \textit{addeq}(x = y, F, D) \quad := \quad \langle F, D \rangle, \text{ if } F^*(x) \equiv F^*(y) \\ & \textit{addeq}(x = y, F, D) \quad := \quad \begin{cases} & \textit{unsat}, & \textit{if } F'^*(u) \equiv F'^*(v) \text{ for some} \\ & u \neq v \in D \\ & \langle F', D \rangle, & \textit{otherwise} \\ & \textit{where } F^*(x) \not\equiv F^*(y) \\ & F' = \textit{union}(F, x, y) \end{aligned}$$

$$\begin{aligned} \text{addneq}(x \neq y, F, D) &:= \text{ unsat, if } F^*(x) \equiv F^*(y) \\ \text{addneq}(x \neq y, F, D) &:= \langle F, D \rangle, \text{ if} \\ F^*(x) = F^*(u), F^*(y) = F^*(v), \\ \text{ for } u \neq v \in D \text{ or } v \neq u \in D \end{aligned}$$

 $addneq(x \neq y, F, D) := \langle F, D \cup \{x \neq y\} \rangle$ , otherwise

$$x_1 = x_2, x_1 = x_3, x_2 = x_3, x_2 \neq x_4, x_4 = x_5$$

$$F = \{x_1 \mapsto x_1, x_2 \mapsto x_2, x_3 \mapsto x_3, x_4 \mapsto x_4, x_5 \mapsto x_5\}$$
$$D = \{\}$$

$$x_1 = x_2, x_1 = x_3, x_2 = x_3, x_2 \neq x_4, x_4 = x_5$$

$$F = \{x_1 \mapsto x_1, x_2 \mapsto x_2, x_3 \mapsto x_3, x_4 \mapsto x_4, x_5 \mapsto x_5\}$$
$$D = \{\}$$

#### Merge equivalence classes of $x_1$ and $x_2$ .

$$x_1 = x_2, x_1 = x_3, x_2 = x_3, x_2 \neq x_4, x_4 = x_5$$

$$F = \{x_1 \mapsto x_1, x_2 \mapsto x_1, x_3 \mapsto x_3, x_4 \mapsto x_4, x_5 \mapsto x_5\}$$
$$D = \{\}$$

$$x_1 = x_2, x_1 = x_3, x_2 = x_3, x_2 \neq x_4, x_4 = x_5$$

$$F = \{x_1 \mapsto x_1, x_2 \mapsto x_1, x_3 \mapsto x_3, x_4 \mapsto x_4, x_5 \mapsto x_5\}$$
$$D = \{\}$$

#### Merge equivalence classes of $x_1$ and $x_3$ .

$$x_1 = x_2, x_1 = x_3, x_2 = x_3, x_2 \neq x_4, x_4 = x_5$$

$$F = \{x_1 \mapsto x_1, x_2 \mapsto x_1, x_3 \mapsto x_1, x_4 \mapsto x_4, x_5 \mapsto x_5\}$$
$$D = \{\}$$

$$x_1 = x_2, x_1 = x_3, x_2 = x_3, x_2 \neq x_4, x_4 = x_5$$

$$F = \{x_1 \mapsto x_1, x_2 \mapsto x_1, x_3 \mapsto x_1, x_4 \mapsto x_4, x_5 \mapsto x_5\}$$
$$D = \{\}$$

Skip equality

$$x_1 = x_2, x_1 = x_3, x_2 = x_3, x_2 \neq x_4, x_4 = x_5$$

$$F = \{x_1 \mapsto x_1, x_2 \mapsto x_1, x_3 \mapsto x_1, x_4 \mapsto x_4, x_5 \mapsto x_5\}$$
$$D = \{\}$$

Add disequality

$$x_1 = x_2, x_1 = x_3, x_2 = x_3, x_2 \neq x_4, x_4 = x_5$$

$$F = \{x_1 \mapsto x_1, x_2 \mapsto x_1, x_3 \mapsto x_1, x_4 \mapsto x_4, x_5 \mapsto x_5\}$$
$$D = \{x_2 \neq x_4\}$$

$$x_1 = x_2, x_1 = x_3, x_2 = x_3, x_2 \neq x_4, x_4 = x_5$$

$$F = \{x_1 \mapsto x_1, x_2 \mapsto x_1, x_3 \mapsto x_1, x_4 \mapsto x_4, x_5 \mapsto x_5\}$$
$$D = \{x_2 \neq x_4\}$$

#### Merge equivalence classes of $x_4$ and $x_5$ .

$$x_1 = x_2, x_1 = x_3, x_2 = x_3, x_2 \neq x_4, x_4 = x_5$$

$$F = \{x_1 \mapsto x_1, x_2 \mapsto x_1, x_3 \mapsto x_1, x_4 \mapsto x_4, x_5 \mapsto x_4\}$$
$$D = \{x_2 \neq x_4\}$$

$$x_1 = x_2, x_1 = x_3, x_2 = x_3, x_2 \neq x_4, x_4 = x_5$$

$$F = \{x_1 \mapsto x_1, x_2 \mapsto x_1, x_3 \mapsto x_1, x_4 \mapsto x_4, x_5 \mapsto x_4\}$$
$$D = \{x_2 \neq x_4\}$$

Model M:  $|M| = \{*_1, *_2\}$   $M(x_1), M(x_2), M(x_3) = *_1$  $M(x_4), M(x_5) = *_2$ 

### Equality with offsets

- Many terms are equal modulo a numeric offset (e.g., x = y + 1).
- If these are placed in separate equivalence classes, then the equality reasoning on these terms must invoke the arithmetic module.
- We can modify the *find* data structure so that F(x) returns y + c, and similarly F\*(x).
- Example:  $x_1 \neq x_2 + c$  if  $F^*(x_1) = y + c_1$  and  $F^*(x_2) = y + c_2$ , where  $c \neq c_1 c_2$ .

#### Retracting assertions

- Checkpointing the find data structure can be expensive.
- A disequality can be retracted by just deleting it from D.
- Retracting equality assertions is more difficult, the history of the merge operations have to be maintained.
- On retraction, the find values have to be restored.

## Congruence Closure

- Equivalence is extended to *congruence* with the rule that for each n-ary function f,  $f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)$  if  $s_i = t_i$  for each  $1 \le 1 \le n$ .
- New index: π(t) is the set of parents of the equivalence class rooted by t (aka use-list).
- Example:

 $\begin{cases} f(f(a)), \ g(a), \ a, \ g(b) \end{cases} F = \{ b \mapsto a, g(a) \mapsto g(b), \dots \} \\ \pi(a) &= \{ f(a), \ g(a), \ g(b) \} \\ \pi(f(a)) &= \{ f(f(a)) \} \\ \pi(g(a)) &= \emptyset \\ \pi(f(f(a))) &= \emptyset \\ \end{cases}$ 

## Congruence Closure (cont.)

- As with equivalence, the *find* roots s' = F<sup>\*</sup>(s) and t' = F<sup>\*</sup>(t) are merged. The use lists π(s') and π(t') are also merged.
- How to merge use-lists?
  - 1. Use-lists are circular lists:
    - Constant time merge and unmerge.
  - 2. Use-lists are vectors:
    - Linear time merge: copy  $\pi(s')$  to  $\pi(t')$ .
    - Constant time unmerge: shrink the vector.
  - 3. Do not merge: to traverse the set of parents, traverse the equivalence class.
- Any pair p₁ in π(s') and p₂ in π(t') that are congruent in F is added to a queue of equalities to be merged.

## Congruence Closure (cont.)

- Any pair p<sub>1</sub> in π(s') and p<sub>2</sub> in π(t') that are congruent in F is added to a queue of equalities to be merged.
  - Naïve solution: for each p<sub>i</sub> of π(s') traverse π(t') looking for a congruence p<sub>j</sub>.
  - Efficient solution: congruence table.
    - Hashtable of ground terms.
    - Hash of  $f(t_1, \ldots, t_n)$  is based on f,  $F^*(t_1), \ldots, F^*(t_n)$
    - $f(s_1, \dots, s_n) = f(t_1, \dots, t_n)$  if  $F^*(s_1) = F^*(t_1), \dots, F^*(s_n) = F^*(t_n)$
    - The operation F[x' := y'] affects the hashcode of π(x'), before executing it remove terms in π(x') from the table, and reinsert them back after.
    - Detect new congruences during reinsertion.

$$f(g(a)) = c, c \neq f(g(b)), a = b$$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\ f(g(a)) \mapsto f(g(a)), f(g(b)) \mapsto f(g(b))\}$$

$$D = \{\}$$

$$\pi(a) = \{g(a)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}\$$
  
$$\pi(g(b)) = \{f(g(b))\}\$$

$$f(g(a)) = c, c \neq f(g(b)), a = b$$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\ f(g(a)) \mapsto f(g(a)), f(g(b)) \mapsto f(g(b))\}$$

$$D = \{\}$$

$$\pi(a) = \{g(a)\}$$

$$\pi(b) = \{g(b)\}\$$
  
$$\pi(g(a)) = \{f(g(a))\}\$$
  
$$\pi(g(b)) = \{f(g(b))\}\$$

Merge equivalence classes of f(g(a)) and c.

$$f(g(a)) = c, c \neq f(g(b)), a = b$$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b)$$
$$f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$
$$D = \{\}$$

$$\pi(a) = \{g(a)\} \\ \pi(b) = \{g(b)\} \\ \pi(g(a)) = \{f(g(a))\} \\ \pi(g(b)) = \{f(g(b))\}$$

$$f(g(a)) = c, c \neq f(g(b)), a = b$$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b)$$
$$f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$
$$D = \{\}$$
$$\pi(a) = \{g(a)\}$$
$$\pi(b) = \{g(b)\}$$

 $\pi(g(a)) = \{f(g(a))\}\$  $\pi(g(b)) = \{f(g(b))\}\$ 

Add disequality
$$f(g(a)) = c, c \neq f(g(b)), a = b$$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\ f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b))\}$$

$$f(g(a)) = c, c \neq f(g(b)), a = b$$

$$F = \{a \mapsto a, b \mapsto b, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\ f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\} \\ D = \{c \neq f(g(b))\} \\ \pi(a) = \{g(a)\} \\ \pi(b) = \{g(b)\} \\ \pi(g(a)) = \{f(g(a))\} \\ \pi(g(b)) = \{f(g(b))\}$$

Merge equivalence classes of a and b.

$$f(g(a)) = c, c \neq f(g(b)), a = b, g(a) = g(b)$$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\ f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a), \mathbf{g}(\mathbf{b})\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b))\}$$

$$f(g(a)) = c, c \neq f(g(b)), a = b, g(a) = g(b)$$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(a), g(b) \mapsto g(b) \\ f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a), g(b)\}$$

$$\pi(b) = \{g(b)\}$$

 $\pi(g(a)) = \{f(g(a))\}\$  $\pi(g(b)) = \{f(g(b))\}\$ 

Merge equivalence classes of g(a) and g(b).

$$f(g(a)) = c, c \neq f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))$$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(b), g(b) \mapsto g(b) \\ f(g(a)) \mapsto c, f(g(b)) \mapsto f(g(b))\}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a), g(b)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b)), f(g(a))\}$$

$$f(g(a)) = c, c \neq f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))$$

$$F = \{a \mapsto a, \ b \mapsto a, \ c \mapsto c, \ g(a) \mapsto g(b), \ g(b) \mapsto g(b) \\ f(g(a)) \mapsto c, \ f(g(b)) \mapsto f(g(b))\}$$

$$D = \{c \neq f(g(b))\}$$

$$\pi(a) = \{g(a), g(b)\}$$

$$\pi(b) = \{g(b)\}$$

$$\pi(g(a)) = \{f(g(a))\}$$

$$\pi(g(b)) = \{f(g(b)), f(g(a))\}$$

Merge equivalence classes of f(g(a)) and  $f(g(b)) \rightsquigarrow$  unsat.

## Example: Satisfiable Version

$$f(g(a)) = c, a \neq f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))$$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(b), g(b) \mapsto g(b)$$
$$f(g(a)) \mapsto c, f(g(b)) \mapsto c\}$$
$$D = \{a \neq f(g(b))\}$$

## Example: Satisfiable Version

$$f(g(a)) = c, a \neq f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))$$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(b), g(b) \mapsto g(b)$$
$$f(g(a)) \mapsto c, f(g(b)) \mapsto c\}$$
$$D = \{a \neq f(g(b))\}$$

Model: 
$$|M| = \{*_1, *_2, *_3\}$$
 One value for each eq. class root.  
 $M(a) = M(b) = *_1$   
 $M(c) = *_2$   
 $M(g) = \{*_1 \mapsto *_3, \text{else} \mapsto *_?\}$  \*? can be any value.  
 $M(f) = \{*_3 \mapsto *_2, \text{else} \mapsto *_?\}$ 

## Example: Satisfiable Version

$$f(g(a)) = c, a \neq f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))$$

$$F = \{a \mapsto a, b \mapsto a, c \mapsto c, g(a) \mapsto g(b), g(b) \mapsto g(b)$$
$$f(g(a)) \mapsto c, f(g(b)) \mapsto c\}$$
$$D = \{a \neq f(g(b))\}$$

Model: 
$$|M| = \{*_1, *_2, *_3\}$$
 One value for each eq. class root.  
 $M(a) = M(b) = *_1$   
 $M(c) = *_2$   
 $M(g) = \{*_1 \mapsto *_3, \text{else} \mapsto *_?\}$  \*? can be any value.  
 $M(f) = \{*_3 \mapsto *_2, \text{else} \mapsto *_?\}$ 

## Equality: T-Justifications

- A T-Justification for F is a set of literals S such that  $S \models_T F$ .
- S is a non-redudant if there is no  $S' \subset S$  such that  $S' \models_T F$ .
- Non-redundant T-Justifications for variable equalities is easy: shortest-path between two variables.
- With uninterpreted functions the problem is more difficult:
- Example:

 $f_1(x_1) = x_1 = x_2 = f_1(x_{n+1}),$ ...,  $f_n(x_1) = x_n = x_{n+1} = f_n(x_{n+1}),$  $g(f_1(x_1), \dots, f_n(x_1)) \neq g(f_1(x_{n+1}), \dots, f_n(x_{n+1}))$ 

## Roadmap

- Logic Background
- Modern SAT Solvers
- DPLL with Theory Solvers
- Theory Combination
- Equality
- Arithmetic
- Applications

- Algorithms:
  - Graph based for difference logic ( $x \le y k$ ).
  - Fourier-Motzkin elimination.

 $t_1 \leq ax, \ bx \leq t_2 \Rightarrow bt_1 \leq at_2$ 

- Standard Simplex.
- Standard Simplex based solvers:
  - Standard Form: Ax = b and  $x \ge 0$ .
  - Incremental: add/remove equations (i.e., rows).
  - Slow backtracking.
  - No theory propagation.

### Fast Linear Arithmetic

- Simplex General Form.
- Algorithm based on the Dual Simplex.
- Non-redundant T-Justifications.
- Efficient Backtracking.
- Efficient T-Propagate.
- Support for strict inequalities (t > 0).
- Presimplification step.
- Integer problems: Gomory cuts, Branch & Bound, GCD test.

#### **General Form**

- General Form: Ax = 0 and  $l_j \le x_j \le u_j$
- Example:

$$x \ge 0, (x + y \le 2 \lor x + 2y \ge 6), (x + y = 2 \lor x + 2y > 4)$$
  
$$\rightsquigarrow$$
$$s_1 = x + y, s_2 = x + 2y,$$
$$y \ge 0, (x + y \le 2) \lor x \ge 2) \lor x \ge 4)$$

- $x \ge 0, (s_1 \le 2 \lor s_2 \ge 6), (s_1 = 2 \lor s_2 > 4)$
- Only bounds (e.g.,  $s_1 \leq 2$ ) are asserted during the search.
- Unconstrained variables can be eliminated before the beginning of the search.

### Model + Equations + Bounds

- An assignment (model) is a mapping from variables to values.
- We maintain an assignment that satisfies all equations and bounds.
- The assignment of non dependent variables implies the assignment of dependent variables.
- Equations + Bounds can be used to derive new bounds.
- Example:  $x = y z, y \le 2, z \ge 3 \rightsquigarrow x \le -1.$
- The new bound may be inconsistent with the already known bounds.
- Example:  $x \leq -1, x \geq 0$ .

- The method described only handles non-strict inequalities (e.g.,  $x \le 2$ ).
- For integer problems, strict inequalities can be converted into non-strict inequalities. x < 1 → x ≤ 0.</p>
- For rational/real problems, strict inequalities can be converted into non-strict inequalities using a small δ. x < 1 → x ≤ 1 − δ.</p>
- We do not compute a  $\delta$ , we treat it symbolically.
- $\delta$  is an infinitesimal parameter:  $(c, k) = c + k\delta$

#### Initial state

$$s \ge 1, x \ge 0$$
$$(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$$



• Asserting  $s \ge 1$ 

$$s \ge 1, x \ge 0$$
$$(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$$



• Asserting  $s \ge 1$  assignment does not satisfy new bound.

#### $s \ge 1, x \ge 0$



• Asserting  $s \ge 1$  pivot s and x (s is a dependent variable).



• Asserting  $s \ge 1$  pivot s and x (s is a dependent variable).



• Asserting  $s \ge 1$  pivot s and x (s is a dependent variable).



• Asserting  $s \ge 1$  update assignment.



• Asserting  $s \ge 1$  update dependent variables assignment.

#### $s \ge 1, x \ge 0$



• Asserting  $x \ge 0$ 



• Asserting  $x \ge 0$  assignment satisfies new bound.

#### $s \ge 1, x \ge 0$



• Case split  $\neg y \leq 1$ 

$$s \ge 1, x \ge 0$$
$$(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$$



• Case split  $\neg y \leq 1$  assignment does not satisfies new bound.

#### $s \ge 1, x \ge 0$



• Case split  $\neg y \leq 1$  update assignment.

| Model               | Equations  | Bounds     |
|---------------------|------------|------------|
| M(x) = 1            | x = s - y  | $s \geq 1$ |
| $M(y) = 1 + \delta$ | u = s + y  | $x \geq 0$ |
| M(s) = 1            | v = s - 2y | y > 1      |
| M(u) = 1            |            |            |
| M(v) = 1            |            |            |

• Case split  $\neg y \leq 1$  update dependent variables assignment.

 $s \ge 1, x \ge 0$ 

| Model |   |              | Equations |   |       | Bounds |   |        |   |
|-------|---|--------------|-----------|---|-------|--------|---|--------|---|
| M(x)  | = | $-\delta$    | x         | — | s-y   |        | S | $\geq$ | 1 |
| M(y)  | = | $1 + \delta$ | u         | — | s + y |        | x | $\geq$ | 0 |
| M(s)  | = | 1            | v         | — | s-2y  |        | y | >      | 1 |
| M(u)  | — | $2+\delta$   |           |   |       |        |   |        |   |
| M(v)  | = | $-1-2\delta$ |           |   |       |        |   |        |   |

#### Bound violation

| Model |     |              | Equations |   |       | Bounds |   |        |   |
|-------|-----|--------------|-----------|---|-------|--------|---|--------|---|
| M(x)  | =   | $-\delta$    | x         | — | s-y   |        | S | $\geq$ | 1 |
| M(y)  | =   | $1 + \delta$ | u         | = | s + y |        | x | $\geq$ | 0 |
| M(s)  | =   | 1            | v         | = | s-2y  |        | y | >      | 1 |
| M(u)  | =   | $2+\delta$   |           |   |       |        |   |        |   |
| M(v)  | = - | $-1-2\delta$ |           |   |       |        |   |        |   |

• Bound violation pivot x and s (x is a dependent variables).

| Model |   |              | Equations |   |       | Bounds |   |        |   |
|-------|---|--------------|-----------|---|-------|--------|---|--------|---|
| M(x)  | = | $-\delta$    | x         | — | s - y |        | S | $\geq$ | 1 |
| M(y)  | = | $1 + \delta$ | u         | = | s + y |        | x | $\geq$ | 0 |
| M(s)  | = | 1            | v         | = | s-2y  |        | y | >      | 1 |
| M(u)  | — | $2+\delta$   |           |   |       |        |   |        |   |
| M(v)  | — | $-1-2\delta$ |           |   |       |        |   |        |   |

• Bound violation pivot x and s (x is a dependent variables).

| Model |     |              | Equations |   |       | Bounds |   |        |   |
|-------|-----|--------------|-----------|---|-------|--------|---|--------|---|
| M(x)  | =   | $-\delta$    | s         | — | x + y |        | S | $\geq$ | 1 |
| M(y)  | =   | $1 + \delta$ | u         | — | s + y |        | x | $\geq$ | 0 |
| M(s)  | =   | 1            | v         | — | s-2y  |        | y | >      | 1 |
| M(u)  | =   | $2+\delta$   |           |   |       |        |   |        |   |
| M(v)  | = - | $-1-2\delta$ |           |   |       |        |   |        |   |

• Bound violation pivot x and s (x is a dependent variables).

| Model |     |              | Equations |   |        | Bounds |   |        |   |
|-------|-----|--------------|-----------|---|--------|--------|---|--------|---|
| M(x)  | =   | $-\delta$    | s         | = | x + y  |        | S | $\geq$ | 1 |
| M(y)  | =   | $1 + \delta$ | u         | = | x + 2y |        | x | $\geq$ | 0 |
| M(s)  | =   | 1            | v         | = | x - y  |        | y | >      | 1 |
| M(u)  | —   | $2+\delta$   |           |   |        |        |   |        |   |
| M(v)  | = - | $-1-2\delta$ |           |   |        |        |   |        |   |

Bound violation update assignment.

| Model |     |              | Equations |   |        | Bounds |   |        |   |
|-------|-----|--------------|-----------|---|--------|--------|---|--------|---|
| M(x)  | —   | 0            | s         | = | x + y  |        | S | $\geq$ | 1 |
| M(y)  | =   | $1 + \delta$ | u         | = | x + 2y |        | x | $\geq$ | 0 |
| M(s)  | =   | 1            | v         | = | x - y  |        | y | >      | 1 |
| M(u)  | =   | $2+\delta$   |           |   |        |        |   |        |   |
| M(v)  | = - | $-1-2\delta$ |           |   |        |        |   |        |   |

Bound violation update dependent variables assignment.

 $s \ge 1, x \ge 0$ (y \le 1 \le v \ge 2), (v \le -2 \le v \ge 2), (v \le -2 \le v \ge 0), (v \le -2 \le u \le -1)

| Model                | Equations  | Bounds     |
|----------------------|------------|------------|
| M(x) = 0             | s = x + y  | $s \geq 1$ |
| $M(y) = 1 + \delta$  | u = x + 2y | $x \geq 0$ |
| $M(s) = 1 + \delta$  | v = x - y  | y > 1      |
| $M(u) = 2 + 2\delta$ |            |            |
| $M(v) = -1 - \delta$ |            |            |
• Theory propagation 
$$x \ge 0, y > 1 \rightsquigarrow u > 2$$
  
 $s \ge 1, x \ge 0$   
 $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$ 

| Model                | Equations  | Bounds     |
|----------------------|------------|------------|
| M(x) = 0             | s = x + y  | $s \geq 1$ |
| $M(y) = 1 + \delta$  | u = x + 2y | $x \geq 0$ |
| $M(s) = 1 + \delta$  | v = x - y  | y > 1      |
| $M(u) = 2 + 2\delta$ |            |            |
| $M(v) = -1 - \delta$ |            |            |

• Theory propagation  $u > 2 \rightsquigarrow \neg u \leq -1$   $s \geq 1, x \geq 0$  $(y \leq 1 \lor v \geq 2), (v \leq -2 \lor v \geq 0), (v \leq -2 \lor u \leq -1)$ 

| Model                | Equations  | Bounds     |
|----------------------|------------|------------|
| M(x) = 0             | s = x + y  | $s \geq 1$ |
| $M(y) = 1 + \delta$  | u = x + 2y | $x \geq 0$ |
| $M(s) = 1 + \delta$  | v = x - y  | y > 1      |
| $M(u) = 2 + 2\delta$ |            | u > 2      |
| $M(v) = -1 - \delta$ |            |            |

▶ Boolean propagation  $\neg y \leq 1 \rightsquigarrow v \geq 2$   $s \geq 1, x \geq 0$   $(y \leq 1 \lor v \geq 2), (v \leq -2 \lor v \geq 0), (v \leq -2 \lor u \leq -1)$ 

| Model                | Equations  | Bounds     |
|----------------------|------------|------------|
| M(x) = 0             | s = x + y  | $s \geq 1$ |
| $M(y) = 1 + \delta$  | u = x + 2y | $x \geq 0$ |
| $M(s) = 1 + \delta$  | v = x - y  | y > 1      |
| $M(u) = 2 + 2\delta$ |            | u > 2      |
| $M(v) = -1 - \delta$ |            |            |

• Theory propagation  $v \ge 2 \rightsquigarrow \neg v \le -2$   $s \ge 1, x \ge 0$  $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$ 

| Model                | Equations  | Bounds     |
|----------------------|------------|------------|
| M(x) = 0             | s = x + y  | $s \geq 1$ |
| $M(y) = 1 + \delta$  | u = x + 2y | $x \geq 0$ |
| $M(s) = 1 + \delta$  | v = x - y  | y > 1      |
| $M(u) = 2 + 2\delta$ |            | u > 2      |
| $M(v) = -1 - \delta$ |            |            |

#### Conflict empty clause

| Model                | Equations  | Bounds     |
|----------------------|------------|------------|
| M(x) = 0             | s = x + y  | $s \geq 1$ |
| $M(y) = 1 + \delta$  | u = x + 2y | $x \geq 0$ |
| $M(s) = 1 + \delta$  | v = x - y  | y > 1      |
| $M(u) = 2 + 2\delta$ |            | u > 2      |
| $M(v) = -1 - \delta$ |            |            |

#### Backtracking

| Model                | Equations  | Bounds     |
|----------------------|------------|------------|
| M(x) = 0             | s = x + y  | $s \geq 1$ |
| $M(y) = 1 + \delta$  | u = x + 2y | $x \geq 0$ |
| $M(s) = 1 + \delta$  | v = x - y  |            |
| $M(u) = 2 + 2\delta$ |            |            |
| $M(v) = -1 - \delta$ |            |            |

• Asserting  $y \leq 1$ 

$$s \ge 1, x \ge 0$$
$$(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$$

| Model                | Equations  | Bounds     |
|----------------------|------------|------------|
| M(x) = 0             | s = x + y  | $s \geq 1$ |
| $M(y) = 1 + \delta$  | u = x + 2y | $x \geq 0$ |
| $M(s) = 1 + \delta$  | v = x - y  |            |
| $M(u) = 2 + 2\delta$ |            |            |
| $M(v) = -1 - \delta$ |            |            |

• Asserting  $y \leq 1$  assignment does not satisfy new bound.

 $s \ge 1, x \ge 0$ 

| Model                | Equations  | Bounds     |
|----------------------|------------|------------|
| M(x) = 0             | s = x + y  | $s \geq 1$ |
| $M(y) = 1 + \delta$  | u = x + 2y | $x \geq 0$ |
| $M(s) = 1 + \delta$  | v = x - y  | $y~\leq~1$ |
| $M(u) = 2 + 2\delta$ |            |            |
| $M(v) = -1 - \delta$ |            |            |

• Asserting  $y \leq 1$  update assignment.

| Model                | Equations  | Bounds     |
|----------------------|------------|------------|
| M(x) = 0             | s = x + y  | $s \geq 1$ |
| M(y) = 1             | u = x + 2y | $x \geq 0$ |
| $M(s) = 1 + \delta$  | v = x - y  | $y \leq 1$ |
| $M(u) = 2 + 2\delta$ |            |            |
| $M(v) = -1 - \delta$ |            |            |

• Asserting  $y \leq 1$  update dependent variables assignment.

| Model     | Equations  | Bounds     |
|-----------|------------|------------|
| M(x) = 0  | s = x + y  | $s \geq 1$ |
| M(y) = 1  | u = x + 2y | $x \geq 0$ |
| M(s) = 1  | v = x - y  | $y \leq 1$ |
| M(u) = 2  |            |            |
| M(v) = -1 |            |            |

Theory propagation 
$$s \ge 1, y \le 1 \rightsquigarrow v \ge -1$$
  
 $s \ge 1, x \ge 0$   
 $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$ 

| Model    |            | Equations | Bounds     |
|----------|------------|-----------|------------|
| M(x) =   | 0 <i>x</i> | = s - y   | $s \geq 1$ |
| M(y) =   | 1 <i>u</i> | = s + y   | $x \geq 0$ |
| M(s) =   | 1 <i>v</i> | = s - 2y  | $y \leq 1$ |
| M(u) =   | 2          |           |            |
| M(v) = - | -1         |           |            |

Theory propagation 
$$v \ge -1 \rightsquigarrow \neg v \le -2$$
  
 $s \ge 1, x \ge 0$   
 $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$ 

| Model          |              | Equations | Boun     | ds |
|----------------|--------------|-----------|----------|----|
| M(x) =         | 0 <i>x</i>   | = s - y   | $s \geq$ | 1  |
| M(y) =         | $1 \qquad u$ | = s + y   | $x \geq$ | 0  |
| M(s) =         | 1 	v         | = s - 2y  | $y \leq$ | 1  |
| M(u) =         | 2            |           | $v \geq$ | -1 |
| $M(v) = \cdot$ | -1           |           |          |    |

▶ Boolean propagation  $\neg v \leq -2 \rightsquigarrow v \geq 0$   $s \geq 1, x \geq 0$   $(y \leq 1 \lor v \geq 2), (v \leq -2 \lor v \geq 0), (v \leq -2 \lor u \leq -1)$ 

| Model     | Equations  | Bounds      |
|-----------|------------|-------------|
| M(x) = 0  | x = s - y  | $s \geq 1$  |
| M(y) = 1  | u = s + y  | $x \geq 0$  |
| M(s) = 1  | v = s - 2y | $y \leq 1$  |
| M(u) = 2  |            | $v \geq -1$ |
| M(v) = -1 |            |             |

Bound violation assignment does not satisfy new bound.

#### $s \ge 1, x \ge 0$



• Bound violation pivot u and s (u is a dependent variable).

#### $s \ge 1, x \ge 0$



• Bound violation pivot u and s (u is a dependent variable).

#### $s \ge 1, x \ge 0$



• Bound violation pivot u and s (u is a dependent variable).

#### $s \ge 1, x \ge 0$

| Model     | Equations  | Bounds     |
|-----------|------------|------------|
| M(x) = 0  | x = v + y  | $s \geq 1$ |
| M(y) = 1  | u = v + 3y | $x \geq 0$ |
| M(s) = 1  | s = v + 2y | $y \leq 1$ |
| M(u) = 2  |            | $v \geq 0$ |
| M(v) = -1 |            |            |

▶ Bound violation update assignment.  $s \ge 1, x \ge 0$   $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$ 

| Model    | Equations  | Bounds     |
|----------|------------|------------|
| M(x) = 0 | x = v + y  | $s \geq 1$ |
| M(y) = 1 | u = v + 3y | $x \geq 0$ |
| M(s) = 1 | s = v + 2y | $y \leq 1$ |
| M(u) = 2 |            | $v \geq 0$ |
| M(v) = 0 |            |            |

▶ Bound violation update dependent variables assignment.  $s \ge 1, x \ge 0$   $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$ 

| Model    | Equations  | Bounds     |
|----------|------------|------------|
| M(x) = 1 | x = v + y  | $s \geq 1$ |
| M(y) = 1 | u = v + 3y | $x \geq 0$ |
| M(s) = 2 | s = v + 2y | $y \leq 1$ |
| M(u) = 3 |            | $v \geq 0$ |
| M(v) = 0 |            |            |

▶ Boolean propagation  $\neg v \leq -2 \rightsquigarrow u \leq -1$   $s \geq 1, x \geq 0$   $(y \leq 1 \lor v \geq 2), (v \leq -2 \lor v \geq 0), (v \leq -2 \lor u \leq -1)$ 

| Model    | Equations  | Bounds     |
|----------|------------|------------|
| M(x) = 1 | x = v + y  | $s \geq 1$ |
| M(y) = 1 | u = v + 3y | $x \geq 0$ |
| M(s) = 2 | s = v + 2y | $y \leq 1$ |
| M(u) = 3 |            | $v \geq 0$ |
| M(v) = 0 |            |            |

Bound violation assignment does not satisfy new bound.

### $s \ge 1, x \ge 0$

| Model    | Equations  | Bounds      |
|----------|------------|-------------|
| M(x) = 1 | x = v + y  | $s \geq 1$  |
| M(y) = 1 | u = v + 3y | $x \geq 0$  |
| M(s) = 2 | s = v + 2y | $y \leq 1$  |
| M(u) = 3 |            | $v \geq 0$  |
| M(v) = 0 |            | $u \leq -1$ |

• Bound violation pivot u and y (u is a dependent variable).

### $s \ge 1, x \ge 0$

| Model    | Equations  | Bounds      |
|----------|------------|-------------|
| M(x) = 1 | x = v + y  | $s \geq 1$  |
| M(y) = 1 | u = v + 3y | $x \geq 0$  |
| M(s) = 2 | s = v + 2y | $y \leq 1$  |
| M(u) = 3 |            | $v \geq 0$  |
| M(v) = 0 |            | $u \leq -1$ |

• Bound violation pivot u and y (u is a dependent variable).

#### $s \ge 1, x \ge 0$



• Bound violation pivot u and y (u is a dependent variable).

#### $s \ge 1, x \ge 0$



Bound violation update assignment.  $s \ge 1, x \ge 0$   $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$ 

| Model     | Equations                         | Bounds      |
|-----------|-----------------------------------|-------------|
| M(x) = 1  | $x = \frac{1}{3}u + \frac{2}{3}v$ | $s \geq 1$  |
| M(y) = 1  | $y = \frac{1}{3}u - \frac{1}{3}v$ | $x \geq 0$  |
| M(s) = 2  | $s = \frac{2}{3}u + \frac{1}{3}v$ | $y \leq 1$  |
| M(u) = -1 |                                   | $v \geq 0$  |
| M(v) = 0  |                                   | $u \leq -1$ |

▶ Bound violation update dependent variables assignment.  $s \ge 1, x \ge 0$   $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$ 

| Model          |                  | Equ | ations                        | E | Bound  | ls |
|----------------|------------------|-----|-------------------------------|---|--------|----|
| M(x) = -       | $-\frac{1}{3}$ x | =   | $\frac{1}{3}u + \frac{2}{3}v$ | S | $\geq$ | 1  |
| M(y) = -       | $-\frac{1}{3}$ y | =   | $\frac{1}{3}u - \frac{1}{3}v$ | x | $\geq$ | 0  |
| M(s) = -       | $-\frac{2}{3}$ S | =   | $\frac{2}{3}u + \frac{1}{3}v$ | y | $\leq$ | 1  |
| $M(u) = \cdot$ | -1               |     |                               | v | $\geq$ | 0  |
| M(v) =         | 0                |     |                               | u | $\leq$ | -1 |

#### Bound violations

| Model  |                  | Equa | ations                        | B | Sound  | ls |
|--------|------------------|------|-------------------------------|---|--------|----|
| M(x) = | $-\frac{1}{3}$ x | —    | $\frac{1}{3}u + \frac{2}{3}v$ | S | $\geq$ | 1  |
| M(y) = | $-\frac{1}{3}$ y | =    | $\frac{1}{3}u - \frac{1}{3}v$ | x | $\geq$ | 0  |
| M(s) = | $-\frac{2}{3}$ s | =    | $\frac{2}{3}u + \frac{1}{3}v$ | y | $\leq$ | 1  |
| M(u) = | -1               |      |                               | v | $\geq$ | 0  |
| M(v) = | 0                |      |                               | U | $\leq$ | -1 |

• Bound violations pivot s and v (s is a dependent variable).

## $s \ge 1, x \ge 0$



• Bound violations pivot s and v (s is a dependent variable).

### $s \ge 1, x \ge 0$



• Bound violations pivot s and v (s is a dependent variable).

## $s \ge 1, x \ge 0$

| Model                 | Equations   | Bounds      |
|-----------------------|-------------|-------------|
| $M(x) = -\frac{1}{3}$ | x = 2s - u  | $s \geq 1$  |
| $M(y) = -\frac{1}{3}$ | y = -s + u  | $x \geq 0$  |
| $M(s) = -\frac{2}{3}$ | v = 3s - 2u | $y \leq 1$  |
| M(u) = -1             |             | $v \geq 0$  |
| M(v) = 0              |             | $u \leq -1$ |

Bound violations update assignment.

| Model                 | Equations   | Bounds      |
|-----------------------|-------------|-------------|
| $M(x) = -\frac{1}{3}$ | x = 2s - u  | $s \geq 1$  |
| $M(y) = -\frac{1}{3}$ | y = -s + u  | $x \geq 0$  |
| M(s) = 1              | v = 3s - 2u | $y \leq 1$  |
| M(u) = -1             |             | $v \geq 0$  |
| M(v) = 0              |             | $u \leq -1$ |

• Bound violations update dependent variables assignment.  $s \ge 1, x \ge 0$  $(y \le 1 \lor v \ge 2), (v \le -2 \lor v \ge 0), (v \le -2 \lor u \le -1)$ 

| Model     | Equations   | Bounds      |
|-----------|-------------|-------------|
| M(x) = 3  | x = 2s - u  | $s \geq 1$  |
| M(y) = -2 | y = -s + u  | $x \geq 0$  |
| M(s) = 1  | v = 3s - 2u | $y \leq 1$  |
| M(u) = -1 |             | $v \geq 0$  |
| M(v) = 5  |             | $u \leq -1$ |

Found satisfying assignment

| Model     | Equations   | Bounds      |
|-----------|-------------|-------------|
| M(x) = 3  | x = 2s - u  | $s \geq 1$  |
| M(y) = -2 | y = -s + u  | $x \geq 0$  |
| M(s) = 1  | v = 3s - 2u | $y \leq 1$  |
| M(u) = -1 |             | $v \geq 0$  |
| M(v) = 5  |             | $u \leq -1$ |

## **Opportunistic equality propagation**

- Efficient (and incomplete) methods for propagating equalities.
- Notation
  - A variable  $x_i$  is fixed iff  $l_i = u_i$ .
  - A linear polynomial  $\sum_{x_j \in \mathcal{V}} a_{ij} x_j$  is fixed iff  $x_j$  is fixed or  $a_{ij} = 0$ .
  - Given a linear polynomial  $P = \sum_{x_j \in \mathcal{V}} a_{ij} x_j$ , and a model M: M(P) denotes  $\sum_{x_j \in \mathcal{V}} a_{ij} M(x_j)$ .

**Opportunistic equality propagation** 

Equality propagation in arithmetic:

FixedEq

$$l_i \le x_i \le u_i, \ l_j \le x_j \le u_j \Longrightarrow \ x_i = x_j \ \text{if} \ l_i = u_i = l_j = u_j$$

#### EqRow

$$x_i = x_j + P \implies x_i = x_j$$
 if  $P$  is fixed, and  $M(P) = 0$ 

EqOffsetRows

$$\begin{aligned} x_i &= x_k + P_1 \\ x_j &= x_k + P_2 \end{aligned} \implies x_i = x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ M(P_1) &= M(P_2) \end{cases} \end{aligned}$$

EqRows

$$\begin{aligned} x_i &= P + P_1 \\ x_j &= P + P_2 \end{aligned} \implies x_i = x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ M(P_1) &= M(P_2) \end{cases} \end{aligned}$$

## **Opportunistic theory/equality propagation**

- These rules can miss some implied equalities.
- Example: z = w is detected, but x = y is not because w is not a fixed variable.

x = y + w + sz = w + s $0 \leq z$  $w \leq 0$  $0 \leq s \leq 0$ 

Remark: bound propagation can be used imply the bound 0 ≤ w, making w a fixed variable.
## Linear Integer Arithmetic

- GCD test
- Gomory Cuts
- Branch and Bound

## **Beyond Linear Arithmetic**

- Gröbner Basis
- Cylindric Algebraic Decomposition