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Satisfiability Modulo Theories (SMT)

In SMT solving, the Boolean atoms represent constraints over

individual theory variables (ranging over integer, reals, bit-vectors,

datatypes, arrays, etc.).

The constraints can involve theory operations, equality, and

inequality.

Now, the SAT solver has to interact with theory solvers.

The constraint solver can detect conflicts involving theory

reasoning, e.g., f(x) 6= f(y), x = y, or

x− y ≤ 2, y − z ≤ −1, z − x ≤ −3.

The theory solver must support incremental assertions, efficient

backtracking and propagation, and produce efficient explanations

of unsatisfiability.
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Theory Solver: Examples

Equality: x = y (union-find), and offset equalities x = y + k.

Term equality: congruence closure for uninterpreted function

symbols.

Difference constraints: incremental negative cycle detection for

inequality constraints of the form x− y ≤ k.

Linear arithmetic: Fourier’s method, Simplex.
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Theory Solver: Rules

We use F |=T G to denote the fact that F entails G in theory T .

Abstract DPLL can be extended with two new rules to deal with

theory T :

T-Propagate

M ||F =⇒ M l(¬l1∨...∨¬ln∨l) ||F if

8

>

>

>

>

>

<

>

>

>

>

>

:

l occurs in F,

l is undefined in M,

l1 ∧ . . . ∧ ln |=T l,

l1, . . . , ln ∈ lits(M)

T-Conflict

M ||F =⇒ M ||F || ¬l1 ∨ . . . ∨ ¬ln if

8

<

:

l1 ∧ . . . ∧ ln |=T false,

l1, . . . , ln ∈ lits(M)
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DPLL + Theory Solver

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

|| p, q ∨ r, s ∨ ¬r
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DPLL + Theory Solver

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

|| p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

pp || p, q ∨ r, s ∨ ¬r
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DPLL + Theory Solver

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

|| p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

pp || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

pp ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r

3 < x
︸ ︷︷ ︸

p

implies ¬x < 0
︸ ︷︷ ︸

q
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DPLL + Theory Solver

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

|| p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

pp || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

pp ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

pp ¬q¬p∨¬q rq∨r || p, q ∨ r, s ∨ ¬r
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DPLL + Theory Solver

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

|| p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

pp || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

pp ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

pp ¬q¬p∨¬q rq∨r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r
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DPLL + Theory Solver

p ≡ 3 < x

q ≡ x < 0

r ≡ x < y

s ≡ y < 0

|| p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

pp || p, q ∨ r, s ∨ ¬r ⇒ (T-Propagate)

pp ¬q¬p∨¬q || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

pp ¬q¬p∨¬q rq∨r || p, q ∨ r, s ∨ ¬r ⇒ (UnitPropagate)

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r ⇒ (T-Conflict)

pp ¬q¬p∨¬q rq∨r ss∨¬r || p, q ∨ r, s ∨ ¬r || ¬p ∨ ¬r ∨ ¬s

3 < x
︸ ︷︷ ︸

p

, x < y
︸ ︷︷ ︸

r

, y < 0
︸ ︷︷ ︸

s

implies false
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DPLL + Theory Solver

Do we need T-Propagate?
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DPLL + Theory Solver

Do we need T-Propagate?

No

Trade-off between precision and performance.
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DPLL + Theory Solver

Do we need T-Propagate?

No

Trade-off between precision and performance.

What is the minimal functionality of a theory solver?

Check the unsatisfiability of conjunction of literals.
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DPLL + Theory Solver

Do we need T-Propagate?

No

Trade-off between precision and performance.

What is the minimal functionality of a theory solver?

Check the unsatisfiability of conjunction of literals.

Efficiently mining T-justifications

T-Propagate

M ||F =⇒ M l(¬l1∨...∨¬ln∨l) ||F if

8

>

>

>

>

>

<

>

>

>

>

>

:

l occurs in F,

l is undefined in M,

l1 ∧ . . . ∧ ln |=T l,

l1, . . . , ln ∈ lits(M)

T-Conflict

M ||F =⇒ M ||F || ¬l1 ∨ . . . ∨ ¬ln if

8

<

:

l1 ∧ . . . ∧ ln |=T false,

l1, . . . , ln ∈ lits(M)
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The Ideal Theory Solver

Incremental

Efficient Backtracking

Efficient T-Propagate

Precise T-Justifications
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Combination of Theories

In practice, we need a combination of theories.

Example:

x+2 = y ⇒ f(read(write(a, x, 3), y−2)) = f(y−x+1)

Given

Σ = Σ1 ∪ Σ2

T 1, T 2 : theories over Σ1,Σ2

T = DC(T 1 ∪ T 2)

Is T consistent?

Given satisfiability procedures for conjunction of literals of T 1 and

T 2, how to decide the satisfiability of T ?
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Preamble

Disjoint signatures: Σ1 ∩ Σ2 = ∅.

Purification

Stably-Infinite Theories.

Convex Theories.
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Purification

Goal: convert a formula φ into φ1 ∧ φ2, where φ1 is in T 1’s

language and φ2 is in T 2’s language.

So φ1 and φ2 have no common symbols, except variables.

Purification step: replace term t by a fresh variable x

φ ∧ F (. . . , s[t], . . .) φ ∧ F (. . . , s[x], . . .) ∧ x = t,

Purification is satisfiability preserving and terminating.
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Purification

Goal: convert a formula φ into φ1 ∧ φ2, where φ1 is in T 1’s

language and φ2 is in T 2’s language.

So φ1 and φ2 have no common symbols, except variables.

Purification step: replace term t by a fresh variable x

φ ∧ F (. . . , s[t], . . .) φ ∧ F (. . . , s[x], . . .) ∧ x = t,

Purification is satisfiability preserving and terminating.

Example:

f(x− 1) − 1 = x, f(y) + 1 = y  
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Purification

Goal: convert a formula φ into φ1 ∧ φ2, where φ1 is in T 1’s

language and φ2 is in T 2’s language.

So φ1 and φ2 have no common symbols, except variables.

Purification step: replace term t by a fresh variable x

φ ∧ F (. . . , s[t], . . .) φ ∧ F (. . . , s[x], . . .) ∧ x = t,

Purification is satisfiability preserving and terminating.

Example:

f(x− 1) − 1 = x, f(y) + 1 = y  

f(u1) − 1 = x, f(y) + 1 = y, u1 = x− 1 
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Purification

Goal: convert a formula φ into φ1 ∧ φ2, where φ1 is in T 1’s

language and φ2 is in T 2’s language.

So φ1 and φ2 have no common symbols, except variables.

Purification step: replace term t by a fresh variable x

φ ∧ F (. . . , s[t], . . .) φ ∧ F (. . . , s[x], . . .) ∧ x = t,

Purification is satisfiability preserving and terminating.

Example:

f(x− 1) − 1 = x, f(y) + 1 = y  

f(u1) − 1 = x, f(y) + 1 = y, u1 = x− 1 

u2 − 1 = x, f(y) + 1 = y, u1 = x− 1, u2 = f(u1) 
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Purification

Goal: convert a formula φ into φ1 ∧ φ2, where φ1 is in T 1’s

language and φ2 is in T 2’s language.

So φ1 and φ2 have no common symbols, except variables.

Purification step: replace term t by a fresh variable x

φ ∧ F (. . . , s[t], . . .) φ ∧ F (. . . , s[x], . . .) ∧ x = t,

Purification is satisfiability preserving and terminating.

Example:

f(x− 1) − 1 = x, f(y) + 1 = y  

f(u1) − 1 = x, f(y) + 1 = y, u1 = x− 1 

u2 − 1 = x, f(y) + 1 = y, u1 = x− 1, u2 = f(u1) 

u2 − 1 = x, u3 + 1 = y, u1 = x− 1, u2 = f(u1), u3 = f(y)
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Purification

Goal: convert a formula φ into φ1 ∧ φ2, where φ1 is in T 1’s

language and φ2 is in T 2’s language.

So φ1 and φ2 have no common symbols, except variables.

Purification step: replace term t by a fresh variable x

φ ∧ F (. . . , s[t], . . .) φ ∧ F (. . . , s[x], . . .) ∧ x = t,

Purification is satisfiability preserving and terminating.

Example:

f(x− 1) − 1 = x, f(y) + 1 = y  

f(u1) − 1 = x, f(y) + 1 = y, u1 = x− 1 

u2 − 1 = x, f(y) + 1 = y, u1 = x− 1, u2 = f(u1) 

u2 − 1 = x, u3 + 1 = y, u1 = x− 1, u2 = f(u1), u3 = f(y)
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After Purification

x = f(z), f(x) 6= f(y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = y − 1
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After Purification

x = f(z), f(x) 6= f(y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = y − 1

Red Model Blue Model

|R| = {∗1, . . . , ∗6} |B| = {. . . ,−1, 0, 1, . . .}

R(x) = ∗1 B(x) = 0

R(y) = ∗2 B(y) = 0

R(z) = ∗3 B(z) = −1

R(f) = {∗1 7→ ∗4,

∗2 7→ ∗5,

∗3 7→ ∗1,

else 7→ ∗6}
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Stably-Infinite Theories

A theory is stably infinite if every satisfiable QFF is satisfiable in an

infinite model.

Example. Theories with only finite models are not stably infinite.

T2 = DC(∀x, y, z. (x = y) ∨ (x = z) ∨ (y = z)).

The union of two consistent, disjoint, stably infinite theories is

consistent.
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Convexity

A theory T is convex iff

for all finite sets Γ of literals and

for all non-empty disjunctions
∨

i∈I xi = yi of variables,

Γ |=T

∨

i∈I xi = yi iff Γ |=T xi = yi for some i ∈ I .

Every convex theory T with non trivial models (i.e.,

|=T ∃x, y. x 6= y) is stably infinite.

All Horn theories are convex – this includes all (conditional)

equational theories.

Linear rational arithmetic is convex.
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Convexity (cont.)

Many theories are not convex:

Linear integer arithmetic.

y = 1, z = 2, 1 ≤ x ≤ 2 |= x = y ∨ x = z

Nonlinear arithmetic.

x2 = 1, y = 1, z = −1 |= x = y ∨ x = z

Theory of Bit-vectors.

Theory of Arrays.

v1 = read(write(a, i, v2), j), v3 = read(a, j) |=

v1 = v2 ∨ v1 = v3
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Nelson-Oppen Combination

Let T 1 and T 2 be consistent, stably infinite theories over disjoint

(countable) signatures. Assume satisfiability of conjunction of

literals can decided in O(T1(n)) and O(T2(n)) time respectively.

Then,

1. The combined theory T is consistent and stably infinite.

2. Satisfiability of quantifier free conjunction of literals in T can be

decided in O(2n2
× (T1(n) + T2(n)).

3. If T 1 and T 2 are convex, then so is T and satisfiability in T is

in O(n3 × (T1(n) + T2(n))).
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Nelson-Oppen Combination Procedure

The combination procedure:

Initial State: φ is a conjunction of literals over Σ1 ∪ Σ2.

Purification: Preserving satisfiability transform φ into φ1 ∧ φ2,

such that, φi ∈ Σi.

Interaction: Guess a partition of V(φ1) ∩ V(φ2) into disjoint

subsets. Express it as conjunction of literals ψ.

Example. The partition {x1}, {x2, x3}, {x4} is represented

as x1 6= x2, x1 6= x4, x2 6= x4, x2 = x3.

Component Procedures : Use individual procedures to decide

whether φi ∧ ψ is satisfiable.

Return: If both return yes, return yes. No, otherwise.
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NO procedure: soundness

Each step is satisfiability preserving.

Say φ is satisfiable (in the combination).

Purification: φ1 ∧ φ2 is satisfiable.
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NO procedure: soundness

Each step is satisfiability preserving.

Say φ is satisfiable (in the combination).

Purification: φ1 ∧ φ2 is satisfiable.

Iteration: for some partition ψ, φ1 ∧ φ2 ∧ ψ is satisfiable.
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NO procedure: soundness

Each step is satisfiability preserving.

Say φ is satisfiable (in the combination).

Purification: φ1 ∧ φ2 is satisfiable.

Iteration: for some partition ψ, φ1 ∧ φ2 ∧ ψ is satisfiable.

Component procedures: φ1 ∧ ψ and φ2 ∧ ψ are both

satisfiable in component theories.
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NO procedure: soundness

Each step is satisfiability preserving.

Say φ is satisfiable (in the combination).

Purification: φ1 ∧ φ2 is satisfiable.

Iteration: for some partition ψ, φ1 ∧ φ2 ∧ ψ is satisfiable.

Component procedures: φ1 ∧ ψ and φ2 ∧ ψ are both

satisfiable in component theories.

Therefore, if the procedure return unsatisfiable, then φ is

unsatisfiable.
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NO procedure: correctness

Suppose the procedure returns satisfiable.

Let ψ be the partition and A and B be models of T 1 ∧ φ1 ∧ ψ

and T 2 ∧ φ2 ∧ ψ.
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NO procedure: correctness

Suppose the procedure returns satisfiable.

Let ψ be the partition and A and B be models of T 1 ∧ φ1 ∧ ψ

and T 2 ∧ φ2 ∧ ψ.

The component theories are stably infinite. So, assume the

models are infinite (of same cardinality).
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NO procedure: correctness

Suppose the procedure returns satisfiable.

Let ψ be the partition and A and B be models of T 1 ∧ φ1 ∧ ψ

and T 2 ∧ φ2 ∧ ψ.

The component theories are stably infinite. So, assume the

models are infinite (of same cardinality).

Let h be a bijection between |A| and |B| such that

h(A(x)) = B(x) for each shared variable.
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NO procedure: correctness

Suppose the procedure returns satisfiable.

Let ψ be the partition and A and B be models of T 1 ∧ φ1 ∧ ψ

and T 2 ∧ φ2 ∧ ψ.

The component theories are stably infinite. So, assume the

models are infinite (of same cardinality).

Let h be a bijection between |A| and |B| such that

h(A(x)) = B(x) for each shared variable.

Extend B to B̄ by interpretations of symbols in Σ1:

B̄(f)(b1, . . . , bn) = h(A(f)(h−1(b1), . . . , h
−1(bn)))
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NO procedure: correctness

Suppose the procedure returns satisfiable.

Let ψ be the partition and A and B be models of T 1 ∧ φ1 ∧ ψ

and T 2 ∧ φ2 ∧ ψ.

The component theories are stably infinite. So, assume the

models are infinite (of same cardinality).

Let h be a bijection between |A| and |B| such that

h(A(x)) = B(x) for each shared variable.

Extend B to B̄ by interpretations of symbols in Σ1:

B̄(f)(b1, . . . , bn) = h(A(f)(h−1(b1), . . . , h
−1(bn)))

B̄ is a model of:

T 1 ∧ φ1 ∧ T 2 ∧ φ2 ∧ ψ
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NO deterministic procedure

Instead of guessing, we can deduce the equalities to be shared.

Purification: no changes.

Interaction: Deduce an equality x = y:

T 1 ⊢ (φ1 ⇒ x = y)

Update φ2 := φ2 ∧ x = y. And vice-versa. Repeat until no

further changes.

Component Procedures : Use individual procedures to decide

whether φi is satisfiable.

Remark: T i ⊢ (φi ⇒ x = y) iff φi ∧ x 6= y is not satisfiable in

T i.
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NO deterministic procedure: correctness

Assume the theories are convex.

Suppose φi is satisfiable.
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NO deterministic procedure: correctness

Assume the theories are convex.

Suppose φi is satisfiable.

Let E be the set of equalities xj = xk (j 6= k) such that,

T i 6⊢ φi ⇒ xj = xk.
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NO deterministic procedure: correctness

Assume the theories are convex.

Suppose φi is satisfiable.

Let E be the set of equalities xj = xk (j 6= k) such that,

T i 6⊢ φi ⇒ xj = xk.

By convexity, T i 6⊢ φi ⇒
∨

E xj = xk.
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NO deterministic procedure: correctness

Assume the theories are convex.

Suppose φi is satisfiable.

Let E be the set of equalities xj = xk (j 6= k) such that,

T i 6⊢ φi ⇒ xj = xk.

By convexity, T i 6⊢ φi ⇒
∨

E xj = xk.

φi ∧
∧

E xj 6= xk is satisfiable.

SAT/SMT – p.22/57



NO deterministic procedure: correctness

Assume the theories are convex.

Suppose φi is satisfiable.

Let E be the set of equalities xj = xk (j 6= k) such that,

T i 6⊢ φi ⇒ xj = xk.

By convexity, T i 6⊢ φi ⇒
∨

E xj = xk.

φi ∧
∧

E xj 6= xk is satisfiable.

The proof now is identical to the nondeterministic case.
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NO deterministic procedure: correctness

Assume the theories are convex.

Suppose φi is satisfiable.

Let E be the set of equalities xj = xk (j 6= k) such that,

T i 6⊢ φi ⇒ xj = xk.

By convexity, T i 6⊢ φi ⇒
∨

E xj = xk.

φi ∧
∧

E xj 6= xk is satisfiable.

The proof now is identical to the nondeterministic case.

Sharing equalities is sufficient, because a theory T 1 can

assume that xB 6= yB whenever x = y is not implied by T 2

and vice versa.
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NO procedure: example

x+ 2 = y ∧ f(read(write(a, x, 3), y − 2)) 6= f(y − x+ 1)

T E T A T Ar

Purifying
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NO procedure: example

f(read(write(a, x, 3), y − 2)) 6= f(y − x+ 1)

T E T A T Ar

x+ 2 = y

Purifying
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NO procedure: example

f(read(write(a, x, u1), y − 2)) 6= f(y − x+ 1)

T E T A T Ar

x+ 2 = y

u1 = 3

Purifying
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NO procedure: example

f(read(write(a, x, u1), u2)) 6= f(y − x+ 1)

T E T A T Ar

x+ 2 = y

u1 = 3

u2 = y − 2

Purifying
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NO procedure: example

f(u3) 6= f(y − x+ 1)

T E T A T Ar

x+ 2 = y u3 =

u1 = 3 read(write(a, x, u1), u2)

u2 = y − 2

Purifying
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NO procedure: example

f(u3) 6= f(u4)

T E T A T Ar

x+ 2 = y u3 =

u1 = 3 read(write(a, x, u1), u2)

u2 = y − 2

u4 = y − x+ 1

Purifying
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NO procedure: example

T E T A T Ar

f(u3) 6= f(u4) x+ 2 = y u3 =

u1 = 3 read(write(a, x, u1), u2)

u2 = y − 2

u4 = y − x+ 1

Solving T A
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NO procedure: example

T E T A T Ar

f(u3) 6= f(u4) y = x+ 2 u3 =

u1 = 3 read(write(a, x, u1), u2)

u2 = x

u4 = 3

Propagating u2 = x
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NO procedure: example

T E T A T Ar

f(u3) 6= f(u4) y = x+ 2 u3 =

u2 = x u1 = 3 read(write(a, x, u1), u2)

u2 = x u2 = x

u4 = 3

Solving T Ar
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NO procedure: example

T E T A T Ar

f(u3) 6= f(u4) y = x+ 2 u3 = u1

u2 = x u1 = 3 u2 = x

u2 = x

u4 = 3

Propagating u3 = u1
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NO procedure: example

T E T A T Ar

f(u3) 6= f(u4) y = x+ 2 u3 = u1

u2 = x u1 = 3 u2 = x

u3 = u1 u2 = x

u4 = 3

u3 = u1

Propagating u1 = u4
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NO procedure: example

T E T A T Ar

f(u3) 6= f(u4) y = x+ 2 u3 = u1

u2 = x u1 = 3 u2 = x

u3 = u1 u2 = x

u4 = u1 u4 = 3

u3 = u1

Congruence u3 = u1 ∧ u4 = u1 ⇒ f(u3) = f(u4)
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NO procedure: example

T E T A T Ar

f(u3) 6= f(u4) y = x+ 2 u3 = u1

u2 = x u1 = 3 u2 = x

u3 = u1 u2 = x

u4 = u1 u4 = 3

f(u3) = f(u4) u3 = u1

Unsatisfiable!
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NO deterministic procedure

Deterministic procedure does not work for non convex theories.

Example (integer arithmetic):

0 ≤ x, y, z ≤ 1, f(x) 6= f(y), f(x) 6= f(z), f(y) 6= f(z)

(Expensive) solution: deduce disjunctions of equalities.
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Combining theories in practice

Propagate all implied equalities.

Deterministic Nelson-Oppen.

Complete only for convex theories.

It may be expensive for some theories.

Delayed Theory Combination.

Nondeterministic Nelson-Oppen.

Create set of interface equalities (x = y) between shared

variables.

Use SAT solver to guess the partition.

Disadvantage: the number of additional equality literals is

quadratic in the number of shared variables.
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Combining theories in practice (cont.)

Common to these methods is that they are pessimistic about which

equalities are propagated.

Model-based Theory Combination

Optimistic approach.

Use a candidate model Mi for one of the theories T i and

propagate all equalities implied by the candidate model,

hedging that other theories will agree.

if Mi |= T i ∪ Γi ∪ {u = v} then propagate u = v .

If not, use backtracking to fix the model.

It is cheaper to enumerate equalities that are true in a

particular model than the equalities implied by all models.
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Model based theory combination: Example

x = f(y − 1), f(x) 6= f(y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Purifying
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Model based theory combination: Example

x = f(z), f(x) 6= f(y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = y − 1
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Model based theory combination: Example

T E T A

Literals Eq. Classes Model Literals Model

x = f(z) {x, f(z)} E(x) = ∗1 0 ≤ x ≤ 1 A(x) = 0

f(x) 6= f(y) {y} E(y) = ∗2 0 ≤ y ≤ 1 A(y) = 0

{z} E(z) = ∗3 z = y − 1 A(z) = −1

{f(x)} E(f) = {∗1 7→ ∗4,

{f(y)} ∗2 7→ ∗5,

∗3 7→ ∗1,

else 7→ ∗6}

Assume x = y

SAT/SMT – p.27/57



Model based theory combination: Example

T E T A

Literals Eq. Classes Model Literals Model

x = f(z) {x, y, f(z)} E(x) = ∗1 0 ≤ x ≤ 1 A(x) = 0

f(x) 6= f(y) {z} E(y) = ∗1 0 ≤ y ≤ 1 A(y) = 0

x = y {f(x), f(y)} E(z) = ∗2 z = y − 1 A(z) = −1

E(f) = {∗1 7→ ∗3, x = y

∗2 7→ ∗1,

else 7→ ∗4}

Unsatisfiable
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Model based theory combination: Example

T E T A

Literals Eq. Classes Model Literals Model

x = f(z) {x, f(z)} E(x) = ∗1 0 ≤ x ≤ 1 A(x) = 0

f(x) 6= f(y) {y} E(y) = ∗2 0 ≤ y ≤ 1 A(y) = 0

x 6= y {z} E(z) = ∗3 z = y − 1 A(z) = −1

{f(x)} E(f) = {∗1 7→ ∗4, x 6= y

{f(y)} ∗2 7→ ∗5,

∗3 7→ ∗1,

else 7→ ∗6}

Backtrack, and assert x 6= y.

T A model need to be fixed.
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Model based theory combination: Example

T E T A

Literals Eq. Classes Model Literals Model

x = f(z) {x, f(z)} E(x) = ∗1 0 ≤ x ≤ 1 A(x) = 0

f(x) 6= f(y) {y} E(y) = ∗2 0 ≤ y ≤ 1 A(y) = 1

x 6= y {z} E(z) = ∗3 z = y − 1 A(z) = 0

{f(x)} E(f) = {∗1 7→ ∗4, x 6= y

{f(y)} ∗2 7→ ∗5,

∗3 7→ ∗1,

else 7→ ∗6}

Assume x = z
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Model based theory combination: Example

T E T A

Literals Eq. Classes Model Literals Model

x = f(z) {x, z, E(x) = ∗1 0 ≤ x ≤ 1 A(x) = 0

f(x) 6= f(y) f(x), f(z)} E(y) = ∗2 0 ≤ y ≤ 1 A(y) = 1

x 6= y {y} E(z) = ∗1 z = y − 1 A(z) = 0

x = z {f(y)} E(f) = {∗1 7→ ∗1, x 6= y

∗2 7→ ∗3, x = z

else 7→ ∗4}

Satisfiable
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Model based theory combination: Example

T E T A

Literals Eq. Classes Model Literals Model

x = f(z) {x, z, E(x) = ∗1 0 ≤ x ≤ 1 A(x) = 0

f(x) 6= f(y) f(x), f(z)} E(y) = ∗2 0 ≤ y ≤ 1 A(y) = 1

x 6= y {y} E(z) = ∗1 z = y − 1 A(z) = 0

x = z {f(y)} E(f) = {∗1 7→ ∗1, x 6= y

∗2 7→ ∗3, x = z

else 7→ ∗4}

Let h be the bijection between |E| and |A|.

h = {∗1 7→ 0, ∗2 7→ 1, ∗3 7→ −1, ∗4 7→ 2, . . .}
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Model based theory combination: Example

T E T A

Literals Model Literals Model

x = f(z) E(x) = ∗1 0 ≤ x ≤ 1 A(x) = 0

f(x) 6= f(y) E(y) = ∗2 0 ≤ y ≤ 1 A(y) = 1

x 6= y E(z) = ∗1 z = y − 1 A(z) = 0

x = z E(f) = {∗1 7→ ∗1, x 6= y A(f) = {0 7→ 0

∗2 7→ ∗3, x = z 1 7→ −1

else 7→ ∗4} else 7→ 2}

Extending A using h.

h = {∗1 7→ 0, ∗2 7→ 1, ∗3 7→ −1, ∗4 7→ 2, . . .}
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Model mutation

Sometimes M(x) = M(y) by accident.

N∧

i=1

f(xi) ≥ 0 ∧ xi ≥ 0

Model mutation: diversify the current model.
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Roadmap

Logic Background

Modern SAT Solvers

DPLL with Theory Solvers

Theory Combination

Equality

Arithmetic

Applications
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Theory of Equality: Axioms

Reflexivity x = x

Symmetry x = y ⇒ y = x

Transitivity x = y, y = z ⇒ x = z

Congruence

x1 = y1, . . . , xn = yn ⇒ f(x1, . . . , xn) = f(y1, . . . , yn)

SAT/SMT – p.30/57



Example

f(f(a)) = a, b = f(a), ¬f(f(f(a))) = b
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Example

f(f(a)) = a, b = f(a), ¬f(f(f(a))) = b

congruence  f(f(f(a))) = f(a)

SAT/SMT – p.31/57



Example

f(f(a)) = a, b = f(a), ¬f(f(f(a))) = b,

f(f(f(a))) = f(a)

symmetry  f(a) = b
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Example

f(f(a)) = a, b = f(a), ¬f(f(f(a))) = b,

f(f(f(a))) = f(a), f(a) = b

transitivity  f(f(f(a))) = b
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Example

f(f(a)) = a, b = f(a), ¬f(f(f(a))) = b,

f(f(f(a))) = f(a), f(a) = b, f(f(f(a))) = b

unsatisfiable
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Example

A conjunction of equalities is trivially satisfiable.

Example: f(x) = y, x = y, g(x) = z, f(y) = f(z)
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Example

A conjunction of equalities is trivially satisfiable.

Example: f(x) = y, x = y, g(x) = z, f(y) = f(z)

Model:

|M | = {∗1}

M(x) = M(y) = M(z) = ∗1

M(f)(∗1) = ∗1

M(g)(∗1) = ∗1

SAT/SMT – p.32/57



Variable equality

Assume the problem has not function symbols.

Use union-find data structure to represent equalities.

The state consists of a find structure F that maintains equivalence

classes and a set of disequalities D.

Initially, F (x) = x for each variable x.

F ∗(x) is the root of the equivalence class containing x:

F ∗(x) =







x, if F (x) = x

F ∗(F (x)) otherwise

Let sz(F, x) denote the size of the equivalence class containing x.
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Variable equality: union

An equality x = y is processed by merging distinct equivalence

classes using the union operation:

union(F, x, y) =







F [x′ := y′], sz(F, x) < sz(F, y)

F [y′ := x′], otherwise

where x′ ≡ F ∗(x) 6≡ F ∗(y) ≡ y′

Optimization: path compression, update F when executing F ∗(x).

F [x := F ∗(x)]
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Processing equalities

The entire inference system consists of operations for adding

equalities, disequalities, and dectecting unsatisfiability.

addeq(x = y, F,D) := 〈F,D〉, if F ∗(x) ≡ F ∗(y)

addeq(x = y, F,D) :=







unsat , if F ′∗(u) ≡ F ′∗(v) for some

u 6= v ∈ D

〈F ′, D〉, otherwise

where F ∗(x) 6≡ F ∗(y)

F ′ = union(F, x, y)
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Processing disequalities

addneq(x 6= y, F,D) := unsat , if F ∗(x) ≡ F ∗(y)

addneq(x 6= y, F,D) := 〈F,D〉, if

F ∗(x) = F ∗(u), F ∗(y) = F ∗(v),

for u 6= v ∈ D or v 6= u ∈ D

addneq(x 6= y, F,D) := 〈F,D ∪ {x 6= y}〉, otherwise
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Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x2, x3 7→ x3, x4 7→ x4, x5 7→ x5}

D = {}
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Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x2, x3 7→ x3, x4 7→ x4, x5 7→ x5}

D = {}

Merge equivalence classes of x1 and x2.
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Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x3, x4 7→ x4, x5 7→ x5}

D = {}
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Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x3, x4 7→ x4, x5 7→ x5}

D = {}

Merge equivalence classes of x1 and x3.
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Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x5}

D = {}
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Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x5}

D = {}

Skip equality
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Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x5}

D = {}

Add disequality

SAT/SMT – p.37/57



Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x5}

D = {x2 6= x4}
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Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x5}

D = {x2 6= x4}

Merge equivalence classes of x4 and x5.
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Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x4}

D = {x2 6= x4}
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Example

x1 = x2, x1 = x3, x2 = x3, x2 6= x4, x4 = x5

F = {x1 7→ x1, x2 7→ x1, x3 7→ x1, x4 7→ x4, x5 7→ x4}

D = {x2 6= x4}

Model M :

|M | = {∗1, ∗2}

M(x1),M(x2),M(x3) = ∗1

M(x4),M(x5) = ∗2
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Equality with offsets

Many terms are equal modulo a numeric offset (e.g., x = y + 1).

If these are placed in separate equivalence classes, then the

equality reasoning on these terms must invoke the arithmetic

module.

We can modify the find data structure so that F (x) returns y + c,

and similarly F ∗(x).

Example: x1 6= x2 + c if F ∗(x1) = y + c1 and

F ∗(x2) = y + c2, where c 6= c1 − c2.
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Retracting assertions

Checkpointing the find data structure can be expensive.

A disequality can be retracted by just deleting it from D.

Retracting equality assertions is more difficult, the history of the

merge operations have to be maintained.

On retraction, the find values have to be restored.
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Congruence Closure

Equivalence is extended to congruence with the rule that for each

n-ary function f , f(s1, . . . , sn) = f(t1, . . . , tn) if si = ti for

each 1 ≤ 1 ≤ n.

New index: π(t) is the set of parents of the equivalence class

rooted by t (aka use-list).

Example:

{f(f(a)), g(a), a, g(b)} F = {b 7→ a, g(a) 7→ g(b), . . .}

π(a) = {f(a), g(a), g(b)}

π(f(a)) = {f(f(a))}

π(g(a)) = ∅

π(f(f(a))) = ∅
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Congruence Closure (cont.)

As with equivalence, the find roots s′ = F ∗(s) and t′ = F ∗(t)

are merged. The use lists π(s′) and π(t′) are also merged.

How to merge use-lists?

1. Use-lists are circular lists:

Constant time merge and unmerge.

2. Use-lists are vectors:

Linear time merge: copy π(s′) to π(t′).

Constant time unmerge: shrink the vector.

3. Do not merge: to traverse the set of parents, traverse the

equivalence class.

Any pair p1 in π(s′) and p2 in π(t′) that are congruent in F is

added to a queue of equalities to be merged.
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Congruence Closure (cont.)

Any pair p1 in π(s′) and p2 in π(t′) that are congruent in F is

added to a queue of equalities to be merged.

Naı̈ve solution: for each pi of π(s′) traverse π(t′) looking for a

congruence pj .

Efficient solution: congruence table.

Hashtable of ground terms.

Hash of f(t1, . . . , tn) is based on f , F ∗(t1), . . . , F
∗(tn)

f(s1, . . . , sn) = f(t1, . . . , tn) if

F ∗(s1) = F ∗(t1), . . . , F
∗(sn) = F ∗(tn)

The operation F [x′ := y′] affects the hashcode of π(x′),

before executing it remove terms in π(x′) from the table,

and reinsert them back after.

Detect new congruences during reinsertion.
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Example

f(g(a)) = c, c 6= f(g(b)), a = b

F = {a 7→ a, b 7→ b, c 7→ c, g(a) 7→ g(a), g(b) 7→ g(b)

f(g(a)) 7→ f(g(a)), f(g(b)) 7→ f(g(b))}

D = {}

π(a) = {g(a)}

π(b) = {g(b)}

π(g(a)) = {f(g(a))}

π(g(b)) = {f(g(b))}
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Example

f(g(a)) = c, c 6= f(g(b)), a = b

F = {a 7→ a, b 7→ b, c 7→ c, g(a) 7→ g(a), g(b) 7→ g(b)

f(g(a)) 7→ f(g(a)), f(g(b)) 7→ f(g(b))}

D = {}

π(a) = {g(a)}

π(b) = {g(b)}

π(g(a)) = {f(g(a))}

π(g(b)) = {f(g(b))}

Merge equivalence classes of f(g(a)) and c.
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Example

f(g(a)) = c, c 6= f(g(b)), a = b

F = {a 7→ a, b 7→ b, c 7→ c, g(a) 7→ g(a), g(b) 7→ g(b)

f(g(a)) 7→ c, f(g(b)) 7→ f(g(b))}

D = {}

π(a) = {g(a)}

π(b) = {g(b)}

π(g(a)) = {f(g(a))}

π(g(b)) = {f(g(b))}
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Example

f(g(a)) = c, c 6= f(g(b)), a = b

F = {a 7→ a, b 7→ b, c 7→ c, g(a) 7→ g(a), g(b) 7→ g(b)

f(g(a)) 7→ c, f(g(b)) 7→ f(g(b))}

D = {}

π(a) = {g(a)}

π(b) = {g(b)}

π(g(a)) = {f(g(a))}

π(g(b)) = {f(g(b))}

Add disequality

SAT/SMT – p.43/57



Example

f(g(a)) = c, c 6= f(g(b)), a = b

F = {a 7→ a, b 7→ b, c 7→ c, g(a) 7→ g(a), g(b) 7→ g(b)

f(g(a)) 7→ c, f(g(b)) 7→ f(g(b))}

D = {c 6= f(g(b))}

π(a) = {g(a)}

π(b) = {g(b)}

π(g(a)) = {f(g(a))}

π(g(b)) = {f(g(b))}

SAT/SMT – p.43/57



Example

f(g(a)) = c, c 6= f(g(b)), a = b

F = {a 7→ a, b 7→ b, c 7→ c, g(a) 7→ g(a), g(b) 7→ g(b)

f(g(a)) 7→ c, f(g(b)) 7→ f(g(b))}

D = {c 6= f(g(b))}

π(a) = {g(a)}

π(b) = {g(b)}

π(g(a)) = {f(g(a))}

π(g(b)) = {f(g(b))}

Merge equivalence classes of a and b.
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Example

f(g(a)) = c, c 6= f(g(b)), a = b, g(a) = g(b)

F = {a 7→ a, b 7→ a, c 7→ c, g(a) 7→ g(a), g(b) 7→ g(b)

f(g(a)) 7→ c, f(g(b)) 7→ f(g(b))}

D = {c 6= f(g(b))}

π(a) = {g(a), g(b)}

π(b) = {g(b)}

π(g(a)) = {f(g(a))}

π(g(b)) = {f(g(b))}
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Example

f(g(a)) = c, c 6= f(g(b)), a = b, g(a) = g(b)

F = {a 7→ a, b 7→ a, c 7→ c, g(a) 7→ g(a), g(b) 7→ g(b)

f(g(a)) 7→ c, f(g(b)) 7→ f(g(b))}

D = {c 6= f(g(b))}

π(a) = {g(a), g(b)}

π(b) = {g(b)}

π(g(a)) = {f(g(a))}

π(g(b)) = {f(g(b))}

Merge equivalence classes of g(a) and g(b).
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Example

f(g(a)) = c, c 6= f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))

F = {a 7→ a, b 7→ a, c 7→ c, g(a) 7→ g(b), g(b) 7→ g(b)

f(g(a)) 7→ c, f(g(b)) 7→ f(g(b))}

D = {c 6= f(g(b))}

π(a) = {g(a), g(b)}

π(b) = {g(b)}

π(g(a)) = {f(g(a))}

π(g(b)) = {f(g(b)), f(g(a))}
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Example

f(g(a)) = c, c 6= f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))

F = {a 7→ a, b 7→ a, c 7→ c, g(a) 7→ g(b), g(b) 7→ g(b)

f(g(a)) 7→ c, f(g(b)) 7→ f(g(b))}

D = {c 6= f(g(b))}

π(a) = {g(a), g(b)}

π(b) = {g(b)}

π(g(a)) = {f(g(a))}

π(g(b)) = {f(g(b)), f(g(a))}

Merge equivalence classes of f(g(a)) and f(g(b)) unsat .
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Example: Satisfiable Version

f(g(a)) = c, a 6= f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))

F = {a 7→ a, b 7→ a, c 7→ c, g(a) 7→ g(b), g(b) 7→ g(b)

f(g(a)) 7→ c, f(g(b)) 7→ c}

D = {a 6= f(g(b))}
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Example: Satisfiable Version

f(g(a)) = c, a 6= f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))

F = {a 7→ a, b 7→ a, c 7→ c, g(a) 7→ g(b), g(b) 7→ g(b)

f(g(a)) 7→ c, f(g(b)) 7→ c}

D = {a 6= f(g(b))}

Model: |M | = {∗1, ∗2, ∗3} One value for each eq. class root.

M(a) = M(b) = ∗1

M(c) = ∗2

M(g) = {∗1 7→ ∗3, else 7→ ∗?} ∗? can be any value.

M(f) = {∗3 7→ ∗2, else 7→ ∗?}
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Example: Satisfiable Version

f(g(a)) = c, a 6= f(g(b)), a = b, g(a) = g(b), f(g(a)) = f(g(b))

F = {a 7→ a, b 7→ a, c 7→ c, g(a) 7→ g(b), g(b) 7→ g(b)

f(g(a)) 7→ c, f(g(b)) 7→ c}

D = {a 6= f(g(b))}

Model: |M | = {∗1, ∗2, ∗3} One value for each eq. class root.

M(a) = M(b) = ∗1

M(c) = ∗2

M(g) = {∗1 7→ ∗3, else 7→ ∗?} ∗? can be any value.

M(f) = {∗3 7→ ∗2, else 7→ ∗?}
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Equality: T-Justifications

A T-Justification for F is a set of literals S such that S |=T F .

S is a non-redudant if there is no S′ ⊂ S such that S′ |=T F .

Non-redundant T-Justifications for variable equalities is easy:

shortest-path between two variables.

With uninterpreted functions the problem is more difficult:

Example:

f1(x1) = x1 = x2 = f1(xn+1),

. . . ,

fn(x1) = xn = xn+1 = fn(xn+1),

g(f1(x1), . . . , fn(x1)) 6= g(f1(xn+1), . . . , fn(xn+1))
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Roadmap

Logic Background

Modern SAT Solvers

DPLL with Theory Solvers

Theory Combination

Equality

Arithmetic

Applications
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Linear Arithmetic

Algorithms:

Graph based for difference logic (x ≤ y − k).

Fourier-Motzkin elimination.

t1 ≤ ax, bx ≤ t2 ⇒ bt1 ≤ at2

Standard Simplex.

Standard Simplex based solvers:

Standard Form: Ax = b and x ≥ 0.

Incremental: add/remove equations (i.e., rows).

Slow backtracking.

No theory propagation.
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Fast Linear Arithmetic

Simplex General Form.

Algorithm based on the Dual Simplex.

Non-redundant T-Justifications.

Efficient Backtracking.

Efficient T-Propagate.

Support for strict inequalities (t > 0).

Presimplification step.

Integer problems: Gomory cuts, Branch & Bound, GCD test.

SAT/SMT – p.48/57



General Form

General Form: Ax = 0 and lj ≤ xj ≤ uj

Example:

x ≥ 0, (x+ y ≤ 2 ∨ x+ 2y ≥ 6), (x+ y = 2 ∨ x+ 2y > 4)

 

s1 = x+ y, s2 = x+ 2y,

x ≥ 0, (s1 ≤ 2 ∨ s2 ≥ 6), (s1 = 2 ∨ s2 > 4)

Only bounds (e.g., s1 ≤ 2) are asserted during the search.

Unconstrained variables can be eliminated before the beginning of

the search.
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Model + Equations + Bounds

An assignment (model) is a mapping from variables to values.

We maintain an assignment that satisfies all equations and bounds.

The assignment of non dependent variables implies the

assignment of dependent variables.

Equations + Bounds can be used to derive new bounds.

Example: x = y − z, y ≤ 2, z ≥ 3 x ≤ −1.

The new bound may be inconsistent with the already known

bounds.

Example: x ≤ −1, x ≥ 0.
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Strict Inequalities

The method described only handles non-strict inequalities (e.g.,

x ≤ 2).

For integer problems, strict inequalities can be converted into

non-strict inequalities. x < 1 x ≤ 0.

For rational/real problems, strict inequalities can be converted into

non-strict inequalities using a small δ. x < 1 x ≤ 1 − δ.

We do not compute a δ, we treat it symbolically.

δ is an infinitesimal parameter: (c, k) = c+ kδ

SAT/SMT – p.51/57



Example

Initial state

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 0

M(s) = 0

M(u) = 0

M(v) = 0

s = x+ y

u = x+ 2y

v = x− y
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Example

Asserting s ≥ 1

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 0

M(s) = 0

M(u) = 0

M(v) = 0

s = x+ y

u = x+ 2y

v = x− y
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Example

Asserting s ≥ 1 assignment does not satisfy new bound.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 0

M(s) = 0

M(u) = 0

M(v) = 0

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1
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Example

Asserting s ≥ 1 pivot s and x (s is a dependent variable).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 0

M(s) = 0

M(u) = 0

M(v) = 0

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1
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Example

Asserting s ≥ 1 pivot s and x (s is a dependent variable).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 0

M(s) = 0

M(u) = 0

M(v) = 0

x = s− y

u = x+ 2y

v = x− y

s ≥ 1
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Example

Asserting s ≥ 1 pivot s and x (s is a dependent variable).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 0

M(s) = 0

M(u) = 0

M(v) = 0

x = s− y

u = s+ y

v = s− 2y

s ≥ 1
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Example

Asserting s ≥ 1 update assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 0

M(s) = 1

M(u) = 0

M(v) = 0

x = s− y

u = s+ y

v = s− 2y

s ≥ 1
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Example

Asserting s ≥ 1 update dependent variables assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 1

M(y) = 0

M(s) = 1

M(u) = 1

M(v) = 1

x = s− y

u = s+ y

v = s− 2y

s ≥ 1
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Example

Asserting x ≥ 0

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 1

M(y) = 0

M(s) = 1

M(u) = 1

M(v) = 1

x = s− y

u = s+ y

v = s− 2y

s ≥ 1
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Example

Asserting x ≥ 0 assignment satisfies new bound.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 1

M(y) = 0

M(s) = 1

M(u) = 1

M(v) = 1

x = s− y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0
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Example

Case split ¬y ≤ 1

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 1

M(y) = 0

M(s) = 1

M(u) = 1

M(v) = 1

x = s− y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0
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Example

Case split ¬y ≤ 1 assignment does not satisfies new bound.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 1

M(y) = 0

M(s) = 1

M(u) = 1

M(v) = 1

x = s− y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0

y > 1
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Example

Case split ¬y ≤ 1 update assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 1

M(y) = 1 + δ

M(s) = 1

M(u) = 1

M(v) = 1

x = s− y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0

y > 1
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Example

Case split ¬y ≤ 1 update dependent variables assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = −δ

M(y) = 1 + δ

M(s) = 1

M(u) = 2 + δ

M(v) = −1 − 2δ

x = s− y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0

y > 1
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Example

Bound violation

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = −δ

M(y) = 1 + δ

M(s) = 1

M(u) = 2 + δ

M(v) = −1 − 2δ

x = s− y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0

y > 1
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Example

Bound violation pivot x and s (x is a dependent variables).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = −δ

M(y) = 1 + δ

M(s) = 1

M(u) = 2 + δ

M(v) = −1 − 2δ

x = s− y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0

y > 1
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Example

Bound violation pivot x and s (x is a dependent variables).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = −δ

M(y) = 1 + δ

M(s) = 1

M(u) = 2 + δ

M(v) = −1 − 2δ

s = x+ y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0

y > 1
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Example

Bound violation pivot x and s (x is a dependent variables).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = −δ

M(y) = 1 + δ

M(s) = 1

M(u) = 2 + δ

M(v) = −1 − 2δ

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0

y > 1
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Example

Bound violation update assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1 + δ

M(s) = 1

M(u) = 2 + δ

M(v) = −1 − 2δ

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0

y > 1
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Example

Bound violation update dependent variables assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1 − δ

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0

y > 1
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Example

Theory propagation x ≥ 0, y > 1 u > 2

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1 − δ

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0

y > 1
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Example

Theory propagation u > 2 ¬u ≤ −1

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1 − δ

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0

y > 1

u > 2
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Example

Boolean propagation ¬y ≤ 1 v ≥ 2

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1 − δ

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0

y > 1

u > 2
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Example

Theory propagation v ≥ 2 ¬v ≤ −2

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1 − δ

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0

y > 1

u > 2
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Example

Conflict empty clause

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1 − δ

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0

y > 1

u > 2
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Example

Backtracking

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1 − δ

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0

SAT/SMT – p.52/57



Example

Asserting y ≤ 1

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1 − δ

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0
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Example

Asserting y ≤ 1 assignment does not satisfy new bound.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1 + δ

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1 − δ

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0

y ≤ 1
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Example

Asserting y ≤ 1 update assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1

M(s) = 1 + δ

M(u) = 2 + 2δ

M(v) = −1 − δ

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0

y ≤ 1
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Example

Asserting y ≤ 1 update dependent variables assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

s = x+ y

u = x+ 2y

v = x− y

s ≥ 1

x ≥ 0

y ≤ 1
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Example

Theory propagation s ≥ 1, y ≤ 1 v ≥ −1

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

x = s− y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0

y ≤ 1
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Example

Theory propagation v ≥ −1 ¬v ≤ −2

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

x = s− y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ −1
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Example

Boolean propagation ¬v ≤ −2 v ≥ 0

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

x = s− y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ −1
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Example

Bound violation assignment does not satisfy new bound.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

x = s− y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0
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Example

Bound violation pivot u and s (u is a dependent variable).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

x = s− y

u = s+ y

v = s− 2y

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0
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Example

Bound violation pivot u and s (u is a dependent variable).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

x = s− y

u = s+ y

s = v + 2y

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0
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Example

Bound violation pivot u and s (u is a dependent variable).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = −1

x = v + y

u = v + 3y

s = v + 2y

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0
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Example

Bound violation update assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 0

M(y) = 1

M(s) = 1

M(u) = 2

M(v) = 0

x = v + y

u = v + 3y

s = v + 2y

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0
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Example

Bound violation update dependent variables assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 1

M(y) = 1

M(s) = 2

M(u) = 3

M(v) = 0

x = v + y

u = v + 3y

s = v + 2y

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0
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Example

Boolean propagation ¬v ≤ −2 u ≤ −1

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 1

M(y) = 1

M(s) = 2

M(u) = 3

M(v) = 0

x = v + y

u = v + 3y

s = v + 2y

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0
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Example

Bound violation assignment does not satisfy new bound.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 1

M(y) = 1

M(s) = 2

M(u) = 3

M(v) = 0

x = v + y

u = v + 3y

s = v + 2y

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0

u ≤ −1
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Example

Bound violation pivot u and y (u is a dependent variable).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 1

M(y) = 1

M(s) = 2

M(u) = 3

M(v) = 0

x = v + y

u = v + 3y

s = v + 2y

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0

u ≤ −1
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Example

Bound violation pivot u and y (u is a dependent variable).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 1

M(y) = 1

M(s) = 2

M(u) = 3

M(v) = 0

x = v + y

y = 1
3
u− 1

3
v

s = v + 2y

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0

u ≤ −1
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Example

Bound violation pivot u and y (u is a dependent variable).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 1

M(y) = 1

M(s) = 2

M(u) = 3

M(v) = 0

x = 1
3
u+ 2

3
v

y = 1
3
u− 1

3
v

s = 2
3
u+ 1

3
v

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0

u ≤ −1
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Example

Bound violation update assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds
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3
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3
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x ≥ 0

y ≤ 1

v ≥ 0

u ≤ −1
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Example

Bound violation update dependent variables assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds
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Example

Bound violations

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds
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Example

Bound violations pivot s and v (s is a dependent variable).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds
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Example

Bound violations pivot s and v (s is a dependent variable).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = −1
3

M(y) = −1
3

M(s) = −2
3

M(u) = −1

M(v) = 0

x = 1
3
u+ 2

3
v

y = 1
3
u− 1

3
v

v = 3s− 2u

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0

u ≤ −1
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Example

Bound violations pivot s and v (s is a dependent variable).

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = −1
3

M(y) = −1
3

M(s) = −2
3

M(u) = −1

M(v) = 0

x = 2s− u

y = −s+ u

v = 3s− 2u

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0

u ≤ −1
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Example

Bound violations update assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = −1
3

M(y) = −1
3

M(s) = 1

M(u) = −1

M(v) = 0

x = 2s− u

y = −s+ u

v = 3s− 2u

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0

u ≤ −1
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Example

Bound violations update dependent variables assignment.

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 3

M(y) = −2

M(s) = 1

M(u) = −1

M(v) = 5

x = 2s− u

y = −s+ u

v = 3s− 2u

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0

u ≤ −1
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Example

Found satisfying assignment

s ≥ 1, x ≥ 0

(y ≤ 1 ∨ v ≥ 2), (v ≤ −2 ∨ v ≥ 0), (v ≤ −2 ∨ u ≤ −1)

Model Equations Bounds

M(x) = 3

M(y) = −2

M(s) = 1

M(u) = −1

M(v) = 5

x = 2s− u

y = −s+ u

v = 3s− 2u

s ≥ 1

x ≥ 0

y ≤ 1

v ≥ 0

u ≤ −1
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Opportunistic equality propagation

Efficient (and incomplete) methods for propagating equalities.

Notation

A variable xi is fixed iff li = ui.

A linear polynomial
∑

xj∈V
aijxj is fixed iff xj is fixed or

aij = 0.

Given a linear polynomial P =
∑

xj∈V
aijxj , and a model M :

M(P ) denotes
∑

xj∈V
aijM(xj).
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Opportunistic equality propagation

Equality propagation in arithmetic:

FixedEq

li ≤ xi ≤ ui, lj ≤ xj ≤ uj=⇒ xi = xj if li = ui = lj = uj

EqRow

xi = xj + P =⇒ xi = xj if P is fixed, and M(P ) = 0

EqOffsetRows

xi = xk + P1

xj = xk + P2

=⇒ xi = xj if







P1 and P2 are fixed, and

M(P1) = M(P2)

EqRows

xi = P + P1

xj = P + P2

=⇒ xi = xj if







P1 and P2 are fixed, and

M(P1) = M(P2)
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Opportunistic theory/equality propagation

These rules can miss some implied equalities.

Example: z = w is detected, but x = y is not because w is not a

fixed variable.

x = y + w + s

z = w + s

0 ≤ z

w ≤ 0

0 ≤ s ≤ 0

Remark: bound propagation can be used imply the bound 0 ≤ w,

making w a fixed variable.
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Linear Integer Arithmetic

GCD test

Gomory Cuts

Branch and Bound
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Beyond Linear Arithmetic

Gröbner Basis

Cylindric Algebraic Decomposition
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