
Satisfiability Modulo Theories

Summer School on Formal Methods

Menlo College, 2011

Bruno Dutertre and Leonardo de Moura

bruno@csl.sri.com, leonardo@microsoft.com

SRI International, Microsoft Research

SAT/SMT – p.1/50

What’s Satisfiability Modulo Theory

Satisfiability is the problem of determining whether a formula φ has

a model

If φ is propositional, a model is a truth assignemt to Boolean

variables

If φ is a first-order formula, a model assigns values to variables

and interpretations to the function and predicate symbols

SAT Solvers: check satisfiability of propositional formulas

SMT Solvers: check satisfiability of formulas in a decidable

first-order theory (e.g., linear arithmetic, uninterpreted functions,

array theory, bitvectors)

SAT/SMT – p.2/50

Example

b+ 2 = c ∧ f(read(write(a, b, 3), c− 2)) 6= f(c− b+ 1)

SAT/SMT – p.3/50

Example

b+ 2 = c ∧ f(read(write(a, b, 3), c− 2)) 6= f(c− b+ 1)

Arithmetic

SAT/SMT – p.3/50

Example

b+ 2 = c ∧ f(read(write(a, b, 3), c− 2)) 6= f(c− b+ 1)

Array theory

SAT/SMT – p.3/50

Example

b+ 2 = c ∧ f(read(write(a, b, 3), c− 2)) 6= f(c− b+ 1)

Uninterpreted function

SAT/SMT – p.3/50

Example

b+ 2 = c ∧ f(read(write(a, b, 3), c− 2)) 6= f(c− b+ 1)

SAT/SMT – p.3/50

Example

b+ 2 = c ∧ f(read(write(a, b, 3), c− 2)) 6= f(c− b+ 1)

By arithmetic, this is equivalent to

b+ 2 = c ∧ f(read(write(a, b, 3), b)) 6= f(3)

SAT/SMT – p.3/50

Example

b+ 2 = c ∧ f(read(write(a, b, 3), c− 2)) 6= f(c− b+ 1)

By arithmetic, this is equivalent to

b+ 2 = c ∧ f(read(write(a, b, 3), b)) 6= f(3)

then, by the array theory axiom: read(write(v, i, x), i) = x

b+ 2 = c ∧ f(3) 6= f(3)

SAT/SMT – p.3/50

Example

b+ 2 = c ∧ f(read(write(a, b, 3), c− 2)) 6= f(c− b+ 1)

By arithmetic, this is equivalent to

b+ 2 = c ∧ f(read(write(a, b, 3), b)) 6= f(3)

then, by the array theory axiom: read(write(v, i, x), i) = x

b+ 2 = c ∧ f(3) 6= f(3)

then, the formula is unsatisfiable

SAT/SMT – p.3/50

Example 2

x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

SAT/SMT – p.4/50

Example 2

x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

This formula is satisfiable

SAT/SMT – p.4/50

Example 2

x ≥ 0 ∧ f(x) ≥ 0 ∧ y ≥ 0 ∧ f(y) ≥ 0 ∧ x 6= y

This formula is satisfiable:

Example model:

x→ 1

y → 2

f(1) → 0

f(2) → 1

f(. . .) → 0

SAT/SMT – p.4/50

SMT Solving

Input

a first-order formula φ

Output

the status of φ: satisfiable or unsatisfiable

optionally, if φ is satisfiable, a model of φ

also optionally, if φ is unsatisfiable, a proof of unsatisfiability

Main issues

Formula size (e.g., thousands of atoms or more)

Formulas with complex Boolean structure

Combinations of theories

SAT/SMT – p.5/50

Overview of SMT Solving

SMT Solver = SAT Solver + Theory Solver

The SAT solver enumerates possible truth assignments

The theory solver is a decision procedure that checks whether

the truth assignments are satisfiable in the theory (or

combination of theories)

Efficient integration uses several mechanisms

Theory explanations to rule out unsatisfiable truth assignments

Theory lemmas and theory propagation to prune the SAT

solver search tree

SAT/SMT – p.6/50

Naı̈ve SMT Solving

x+ y ≥ 0 ∧ (x = z ⇒ z + y = −1) ∧ z > 3t

1) Replace atoms by boolean variables

a 7→ x+ y ≥ 0 b 7→ x = z

c 7→ z + y = −1 d 7→ z > 3t

2) Ask for a model of a ∧ (b⇒ c) ∧ d using a SAT solver

Boolean model: {a, b, c, d}

Convert the model back to arithmetic

x+ y ≥ 0 ∧ x = z ∧ z + y = −1 ∧ z > 3t

This is not consistent:

Arithmetic |= ¬(x+ y ≥ 0 ∧ x = z ∧ z + y = −1)
SAT/SMT – p.7/50

Naı̈ve SMT Solving (continued)

3) Feed the explanation to the SAT solver:

add the clause (¬a ∨ ¬b ∨ ¬c)

4) Get a model of (a ∧ (b⇒ c) ∧ d) ∧ (¬a ∨ ¬b ∨ ¬c)

Boolean model: {a,¬b, c, d}

Convert back to arithmetic:

x+ y ≥ 0 ∧ ¬(x = z) ∧ z + y = −1 ∧ z > 3t

Check consistency: satisfiable

Conclusion: The original formula is satisfiable

SAT/SMT – p.8/50

Remainder of the Lectures

We will cover the basics of SAT and SMT solving more precisely.

We will not give a comprehensive survey, but a basic and rigorous

introduction to some of the key ideas.

This tutorial is not directed at experts but at potential users and

developers of SMT solvers.

SAT/SMT – p.9/50

Plan

Lecture 1: principles of SAT solving

Logic background

Modern DPLL SAT solvers

Lecture 2: SMT solving

DPLL + Theory Solvers

Theory combination

Equality

Arithmetic

Lecture 3: applications of SMT

SAT/SMT – p.10/50

Roadmap

Logic Background

Modern SAT Solvers

DPPL with Theory Solvers

Theory Combination

Equality

Arithmetic

Applications

SAT/SMT – p.11/50

Logic Basics

Logic studies the trinity between language, interpretation, and

proof.

Language circumscribes the syntax that is used to construct

sensible assertions.

Interpretation ascribes an intended sense to these assertions by

fixing the meaning of certain symbols, e.g., the logical connectives,

and delimiting the variation in the meanings of other symbols, e.g.,

variables, functions, and predicates.

An assertion is valid if it holds in all interpretations.

Checking validity through interpretations is typically not feasible, so

proofs in the form axioms and inference rules are used to

demonstrate the validity of assertions.

SAT/SMT – p.12/50

Language: Signatures

A signature Σ is a finite set of:

Function symbols: ΣF = {f, g, . . .}.

Predicate symbols: ΣP = {p, q, . . .}.

and an arity function: Σ 7→ N

Function symbols with arity 0 are called constants.

A countable set V of variables disjoint of Σ.

SAT/SMT – p.13/50

Language: Terms

The set T (Σ,V) of terms is the smallest set such that:

V ⊂ T (Σ,V)

f(t1, . . . , tn) ∈ T (Σ,V) whenever

f ∈ ΣF , t1, . . . , tn ∈ T (Σ,V) and arity(f) = n.

The set of ground terms is defined as T (Σ, ∅).

SAT/SMT – p.14/50

Language: Atomic Formulas

p(t1, . . . , tn) is an atomic formula whenever

p ∈ ΣP , arity(p) = n, and t1, . . . , tn ∈ T (Σ,V).

true and false are atomic formulas.

If t1, . . . , tn are ground terms, then p(t1, . . . , tn) is called a

ground (atomic) formula.

We assume that the binary predicate = is present in ΣP .

A literal is an atomic formula or its negation.

SAT/SMT – p.15/50

Language: Quantifier Free Formulas

The set QFF(Σ,V) of quantifier-free formulas is the smallest set

such that:

Every atomic formulas is in QFF(Σ,V).

If φ ∈ QFF(Σ,V), then ¬φ ∈ QFF(Σ,V).

If φ1, φ2 ∈ QFF(Σ,V), then

φ1 ∧ φ2 ∈ QFF(Σ,V)

φ1 ∨ φ2 ∈ QFF(Σ,V)

φ1 ⇒ φ2 ∈ QFF(Σ,V)

φ1 ⇔ φ2 ∈ QFF(Σ,V)

SAT/SMT – p.16/50

Language: Formulas

The set of first-order formulas is the closure of QFF(Σ,V) under

existential (∃) and universal (∀) quantification.

Free (occurrences) of variables in a formula are those not bound by

a quantifier.

A sentence is a first-order formula with no free variables.

SAT/SMT – p.17/50

Models (Semantics)

A model M is defined as:

Domain |M |: set of elements.

Interpretation M(f) : |M |n 7→ |M | for each f ∈ ΣF with

arity(f) = n.

Interpretation M(p) ⊆ |M |n for each p ∈ ΣP with

arity(p) = n.

Assignment M(x) ∈ |M | for every variable x ∈ V .

A formula φ is true in a model M if it evaluates to true under the

given interpretations over the domain |M |.

SAT/SMT – p.18/50

Interpreting Terms

M [[x]] = M(x)

M [[f(a1, . . . , an)]] = M(f)(M [[a1]], . . . ,M [[an]])

SAT/SMT – p.19/50

Interpreting Formulas

The interpretation of a formula F in M , M [[F]], is defined as

M |= a = b ⇐⇒ M [[a]] = M [[b]]

M |= p(a1, . . . , an) ⇐⇒ 〈M [[a1]], . . . ,M [[an]]〉 ∈M(p)

M |= ¬ψ ⇐⇒ M 6|= ψ

M |= ψ1 ∨ ψ2 ⇐⇒ M |= ψ1 or M |= ψ2

M |= ψ1 ∧ ψ2 ⇐⇒ M |= ψ1 and M |= ψ2

M |= (∀x : ψ) ⇐⇒ M{x 7→ a} |= ψ, for all a ∈ |M |

M |= (∃x : ψ) ⇐⇒ M{x 7→ a} |= ψ, for some a ∈ |M |

SAT/SMT – p.20/50

Interpretation Example

Σ = {0,+, <}, and M such that |M | = {a, b, c}

M(0) = a,

M(+) = {〈a, a 7→ a〉, 〈a, b 7→ b〉, 〈a, c 7→ c〉, 〈b, a 7→ b〉, 〈b, b 7→ c〉,

〈b, c 7→ a〉, 〈c, a 7→ c〉, 〈c, b 7→ a〉, 〈c, c 7→ b〉}

M(<) = {〈a, b〉, 〈a, c〉, 〈b, c〉}

If M(x) = a,M(y) = b,M(z) = c, then

M [[+(+(x, y), z)]] =

M(+)(M(+)(M(x),M(y)),M(z)) = M(+)(M(+)(a, b), c) =

M(+)(b, c) = a

SAT/SMT – p.21/50

Interpretation Example

Σ = {0,+, <}, and M such that |M | = {a, b, c}

M(0) = a,

M(+) = {〈a, a 7→ a〉, 〈a, b 7→ b〉, 〈a, c 7→ c〉, 〈b, a 7→ b〉, 〈b, b 7→ c〉,

〈b, c 7→ a〉, 〈c, a 7→ c〉, 〈c, b 7→ a〉, 〈c, c 7→ b〉}

M(<) = {〈a, b〉, 〈a, c〉, 〈b, c〉}

M |= (∀x : (∃y : +(x, y) = 0))

M 6|= (∀x : (∃y : x < y))

M |= (∀x : (∃y : +(x, y) = x))

SAT/SMT – p.22/50

Validity

A formula F is satisfiable if there is a model M such that M |= F .

Otherwise, the formula F is unsatisfiable.

If a formula is satisfiable, so is its existential closure ∃~x : F , where

~x is vars(F), the set of free variables in F .

If a formula F is unsatisfiable, then the negation of its existential

closure ¬∃~x : F is valid.

SAT/SMT – p.23/50

Theories

A (first-order) theory T (over a signature Σ) is a set of (deductively

closed) sentences (over Σ and V).

Let DC(Γ) be the deductive closure of a set of sentences Γ.

For every theory T , DC(T) = T .

A theory T is consistent if false 6∈ T .

We can view a (first-order) theory T as the class of all models of

T (due to completeness of first-order logic).

SAT/SMT – p.24/50

Satisfiability and Validity

A formula φ(~x) is satisfiable in a theory T if there is a model of

DC(T ∪ ∃~x.φ(~x)). That is, there is a model M for T in which

φ(~x) evaluates to true, denoted by,

M |=T φ(~x)

This is also called T -satisfiability.

A formula φ(~x) is valid in a theory T if ∀~x.φ(~x) ∈ T . That is

φ(~x) evaluates to true in every model M of T .

T -validity is denoted by |=T φ(~x).

The quantifier free T -satisfiability problem restricts φ to be

quantifier free.

SAT/SMT – p.25/50

Roadmap

Logic Background

Modern SAT Solvers

DPLL with Theory Solvers

Theory Combination

Equality

Arithmetic

Applications

SAT/SMT – p.26/50

SAT Solvers

Modern Boolean SAT solvers are based on the Davis-Putnam and

Davis-Logemann-Loveland (DPLL) procedures

Input formula is in Conjunctive Normal Form (CNF)

Solvers combine search with backtracking and deduction

based on resolution

SAT/SMT – p.27/50

Clausal Form (CNF)

In clausal form, a formula is a set (conjunction) of clauses
∧

iCi,

and each clause Ci is a disjunction of literals.

A literal is an atom or the negation of an atom.

Example: (p1 ∨ ¬p2) ∧ (¬p1 ∨ p2 ∨ p3) ∧ p3

Theorem: for any formula φ, there’s a CNF formula φ′ such that

φ′ ⇐⇒ φ.

But, φ′ may be exponentially larger than φ. For example, if φ is

(p1 ∧ q1) ∨ (p2 ∧ q2) ∨ . . . ∨ (pn ∧ qn).

Rather than constructing a CNF formula equivalent to φ, it’s

cheaper to construct a CNF formula φ′ that preserves satisfiability:

φ is satisfiable iff φ′ is satisfiable

SAT/SMT – p.28/50

Efficient Conversion to CNF

Idea: replace a subformula ψ by a fresh variable p, then add

clauses to express the constraint p ⇐⇒ ψ

For example, we can replace (p1 ∧ p2) by a fresh p and add the

clauses (¬p ∨ p1), (¬p ∨ p2), and (p ∨ ¬p1 ∨ ¬p2)

SAT/SMT – p.29/50

CNF-Conversion Procedure

CNF(p,∆) = 〈p,∆〉

CNF(¬φ,∆) = 〈¬l,∆′〉, where 〈l,∆′〉 = CNF(φ,∆)

CNF(φ1 ∧ φ2,∆) = 〈p,∆′〉, where

〈l1,∆1〉 = CNF(φ1,∆)

〈l2,∆2〉 = CNF(φ2,∆1)

p is fresh

∆′ = ∆2 ∪ {¬p ∨ l1,¬p ∨ l2,¬l1 ∨ ¬l2 ∨ p}

CNF(φ1 ∨ φ2,∆) = 〈p,∆′〉, where . . .

∆′ = ∆2 ∪ {¬p ∨ l1 ∨ l2,¬l1 ∨ p,¬l2 ∨ p}

Theorem: φ and l ∧∆ are equisatisfiable, where CNF(φ, ∅) = 〈l,∆〉.

SAT/SMT – p.30/50

Conversion to CNF: Example

CNF(¬(q1 ∧

p1

︷ ︸︸ ︷

(q2 ∨ ¬q3)
︸ ︷︷ ︸

p2

), ∅) =

〈¬p2, { ¬p1 ∨ q2 ∨ ¬q3,

¬q2 ∨ p1,

q3 ∨ p1,

¬p2 ∨ q1,

¬p2 ∨ p1,

¬q1 ∨ ¬p1 ∨ p2}〉

SAT/SMT – p.31/50

Conversion to CNF: Improvements

Maximize sharing & canonicity in the input formula F .

Cache φ 7→ l, when CNF(φ,∆) = 〈l,∆′〉.

Support for multiary ∨ and ∧.

. . .

SAT/SMT – p.32/50

Resolution

Resolution rule: take two clauses (p ∨ A) and (¬p ∨B)

add the new clause (A ∨ B), called the resolvent

In this rule, clauses are considered as sets of literals:

No duplicate literals in clauses.

(A ∨B) is a tautology (can be deleted) if it contains

complementary literals l and l̄

The empty clause is false.

Property: if F is a set of clauses (CNF formula), and C is the

resolvent of two clauses from F , then F and F ∪ C are

equivalent.

So, if we can derive the empty clause from F using resolution, we

know that F is unsatisfiable.

SAT/SMT – p.33/50

Resolution: Example

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r

SAT/SMT – p.34/50

Resolution: Example

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r ⇒

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r, ¬q ∨ r

SAT/SMT – p.34/50

Resolution: Example

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r ⇒

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r, ¬q ∨ r ⇒

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r, ¬q ∨ r, q ∨ r

SAT/SMT – p.34/50

Resolution: Example

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r ⇒

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r, ¬q ∨ r ⇒

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r, ¬q ∨ r, q ∨ r ⇒

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r, ¬q ∨ r, q ∨ r, r

SAT/SMT – p.34/50

Resolution: Example

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r ⇒

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r, ¬q ∨ r ⇒

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r, ¬q ∨ r, q ∨ r ⇒

¬p ∨ ¬q ∨ r, ¬p ∨ q, p ∨ r, ¬r, ¬q ∨ r, q ∨ r, r ⇒

unsat

SAT/SMT – p.34/50

The (original) DPLL Search Procedure

Exhaustive resolution is not practical (exponential amount of

memory).

DPLL tries to build incrementally a model M for a CNF formula F .

M is grown by:

deducing the truth value of a literal from M and F , or

guessing the truth value of an unassigned literal

Deducing is based on the unit-propagation rule:

If F contains a clause C ∨ l and all literals of C are false in M

then l must be true.

If a wrong guess leads to an inconsistency, the procedure

backtracks to the last guess and tries the opposite value.

SAT/SMT – p.35/50

Improvements to DPLL in Modern SAT solvers

Breakthrough: Conflict-driven clause learning and backjumping:

When an inconsistency is detected, use resolution to construct

a new (learned) clause

This clause is used to determine how far to backtrack

Benefits:

Backtracking can happen further than the last guess

(pruning of the search tree)

The learned clause may avoid repeating the same conflict

Other improvements: restarts, variable activity heuristics, clause

indexing for fast propagation, preprocessing, etc.

SAT/SMT – p.36/50

Abstract DPLL

During search, DPLL states are pairs M ||F where

M is a truth assignment

F is a set of clauses (problem clauses + learned clauses)

The truth assignment is a list of literals: either decision literals

(guesses) or implied literals (by unit propagation).

If literal l is implied by unit propagation from clause C ∨ l, then

the clause is recorded as the explanation for l. This is written

lC∨l in M .

During conflict resolution, the state is written M ||F ||C where M

and F are as before, and C is a clause.

C is false in the assigment M (written M |= ¬C)

C is either a clause of F or is derived by resolution from

clauses of F . SAT/SMT – p.37/50

Abstract DPLL

M ||F =⇒ M l ||F if

8

<

:

l or l̄ occurs in F,

l is undefined in M
(Decide)

M ||F, C ∨ l =⇒ M lC∨l ||F, C ∨ l if

8

<

:

M |= ¬C,

l is undefined in M
(UnitPropagate)

M ||F, C =⇒ M ||F, C ||C if M |= ¬C (Conflict)

M ||F ||C ∨ l̄ =⇒ M ||F ||D ∨ C if lD∨l ∈ M, (Resolve)

M ||F ||C =⇒ M ||F, C ||C if C 6∈ F (Learn)

M l′ M ′ ||F ||C ∨ l =⇒ M lC∨l ||F if

8

<

:

M |= ¬C,

l is undefined in M
(Backjump)

M ||F ||� =⇒ unsat (Unsat)

SAT/SMT – p.38/50

Abstract DPLL: Example

|| 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

SAT/SMT – p.39/50

Abstract DPLL: Example

|| 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

SAT/SMT – p.39/50

Abstract DPLL: Example

|| 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

SAT/SMT – p.39/50

Abstract DPLL: Example

|| 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 21∨2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

SAT/SMT – p.39/50

Abstract DPLL: Example

|| 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 21∨2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 3 43∨4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

SAT/SMT – p.39/50

Abstract DPLL: Example

|| 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 21∨2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 3 43∨4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 21∨2 3 43∨4 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

SAT/SMT – p.39/50

Abstract DPLL: Example

|| 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 21∨2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 3 43∨4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 21∨2 3 43∨4 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 3 43∨4 5 65∨6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2

SAT/SMT – p.39/50

Abstract DPLL: Example

|| 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 21∨2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 3 43∨4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 21∨2 3 43∨4 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 3 43∨4 5 65∨6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Conflict)

1 21∨2 3 43∨4 5 65∨6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 || 6 ∨ 5 ∨ 2

SAT/SMT – p.39/50

Abstract DPLL: Example

|| 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 21∨2 3 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 3 43∨4 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Decide)

1 21∨2 3 43∨4 5 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (UnitProp)

1 21∨2 3 43∨4 5 65∨6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2 ⇒ (Conflict)

1 21∨2 3 43∨4 5 65∨6 || 1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 6 ∨ 5 ∨ 2
︸ ︷︷ ︸

F

|| 6 ∨ 5 ∨ 2

SAT/SMT – p.39/50

Abstract DPLL: Example (cont.)

1 21∨2 3 43∨4 5 65∨6 || F || 6 ∨ 5 ∨ 2

SAT/SMT – p.40/50

Abstract DPLL: Example (cont.)

1 21∨2 3 43∨4 5 65∨6 || F || 6 ∨ 5 ∨ 2 ⇒ (Resolve)

1 21∨2 3 43∨4 5 65∨6 || F || 5 ∨ 2

SAT/SMT – p.40/50

Abstract DPLL: Example (cont.)

1 21∨2 3 43∨4 5 65∨6 || F || 6 ∨ 5 ∨ 2 ⇒ (Resolve)

1 21∨2 3 43∨4 5 65∨6 || F || 5 ∨ 2 ⇒ (Learn)

1 21∨2 3 43∨4 5 65∨6 || F, 5 ∨ 2 || 5 ∨ 2

SAT/SMT – p.40/50

Abstract DPLL: Example (cont.)

1 21∨2 3 43∨4 5 65∨6 || F || 6 ∨ 5 ∨ 2 ⇒ (Resolve)

1 21∨2 3 43∨4 5 65∨6 || F || 5 ∨ 2 ⇒ (Learn)

1 21∨2 3 43∨4 5 65∨6 || F, 5 ∨ 2 || 5 ∨ 2 ⇒ (Resolve)

1 21∨2 3 43∨4 5 65∨6 || F, 5 ∨ 2 || 5 ∨ 1

SAT/SMT – p.40/50

Abstract DPLL: Example (cont.)

1 21∨2 3 43∨4 5 65∨6 || F || 6 ∨ 5 ∨ 2 ⇒ (Resolve)

1 21∨2 3 43∨4 5 65∨6 || F || 5 ∨ 2 ⇒ (Learn)

1 21∨2 3 43∨4 5 65∨6 || F, 5 ∨ 2 || 5 ∨ 2 ⇒ (Resolve)

1 21∨2 3 43∨4 5 65∨6 || F, 5 ∨ 2 || 5 ∨ 1 ⇒ (Backjump)

1 21∨2 55∨1 || F, 5 ∨ 2

SAT/SMT – p.40/50

Abstract DPLL: Termination

Each decision defines a new scope level.

Metric: number of assigned literals per level

1 21∨2 3 43∨4 5 65∨6 7→ (2, 2, 2)

1 21∨2 55∨1 7→ (3)

Order: lexicographic ordering on the metric: (e..g.,

(3, 1) > (2, 2, 4, 1))

Decide , UnitPropagate , and Backjump increase the metric.

It can not increase forever (finite number of variables).

Conflict resolution rules (Conflict , Resolve , Learn) are also

terminating.

SAT/SMT – p.41/50

Abstract DPLL: Strategy

Abstract DPLL is very flexible.

Basic Strategy:

Only apply Decide if UnitPropagate and Conflict cannot be

applied.

Conflict Resolution:

Learn only one clause per conflict (the clause used in

Backjump).

Use Backjump as soon as possible (FUIP).

Use the rightmost (applicable) literal in M when applying

Resolve .

M ||F ||C ∨ l̄ =⇒ M ||F ||D ∨ C if lD∨l ∈ M, (Resolve)

SAT/SMT – p.42/50

Abstract DPLL: Decision Strategy

Decision heuristic:

Associate a score with each boolean variable.

Select the variable with highest score when Decide is used.

Increase by δ the score of var(l) when Resolve is used:

M ||F ||C ∨ l̄ =⇒ M ||F ||D ∨ C if lD∨l ∈ M, (Resolve)

Increase the score of every variable in the clause C ∨ l when

Backjump is used:

M l′ M ′ ||F ||C ∨ l =⇒ M lC∨l ||F
′ if

8

<

:

M |= ¬C,

l is undefined in M
(Backjump)

After each conflict: slightly increase the value of δ.

From time to time renormalize the scores and δ to avoid

overflows.

SAT/SMT – p.43/50

Abstract DPLL: Phase Selection

Assume p was selected by a decision strategy.

Should we assign p or ¬p in Decide ?

Always False Guess ¬p (works well in practice).

Always True Guess p.

Score Associate a score with each literal instead of each variable.

Pick the phase with highest score.

Caching Caches the last phase of variables during conflict

resolution. Improvement: except for variables in the last

decision level.

Greedy Select the phase that satisfies most clauses.

SAT/SMT – p.44/50

Abstract DPLL: Extra Rules

Extra rules:

M ||F, C =⇒ M ||F if C is a learned clause (Forget)

M ||F =⇒ ||F (Restart)

Forget in practice:

Associate a score with each learned clause C .
Increase by δc the score of D ∨ l when Resolve is used.
M ||F ||C ∨ l̄ =⇒ M ||F ||D ∨ C if lD∨l ∈ M, (Resolve)

From time to time use Forget to delete learned clauses with

low score.

SAT/SMT – p.45/50

Abstract DPLL: Restart Strategies

No restarts

Linear Restart after every k conflicts, update k := k + δ.

Geometric Restart after every k conflicts, update k := k × δ.

Inner-Out Geometric “Two dimensional pattern” that increases in both

dimensions.

Initially k := x, the inner loop multiplies k by δ at each restart.

When k > y, k := x and y := y × δ.

Luby Restarts are performed according to the following series:

1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . ., multiplied by a constant

c (e.g., 100, 256, 512).

luby(i) =

8

<

:

2k−1, if ∃k. i = 2k − 1

luby(i − 2k−1 + 1), if ∃k. 2k−1 ≤ i < 2k − 1

SAT/SMT – p.46/50

Indexing

Indexing techniques are very important.

How to implement UnitPropagate and Conflict ?

Scanning the set of clauses will not scale.

Simple index: mapping from literals to clauses (occurrences).

watch(l) = {C1, . . . , Cn}, where l̄ ∈ Ci

If l is assigned, check each clause C ∈ watch(l) for

UnitPropagate and Conflict .

Most of the time C has more than one unassigned literal.

Improvement: associate a counter u with each clause (number

of unassigned literals).

Problem: counters must be decremented when literals are

assigned, and restored during Backjump .

SAT/SMT – p.47/50

Indexing: Two Watch Literal

Insight:

No need to include clause C in every set watch(l) where

l̄ ∈ C .

It suffices to include C in at most 2 such sets.

Invariant:

If some literal l in C is not assigned to false, then

C ∈ watch(l′) of some l′ that is not assigned to false.

SAT/SMT – p.48/50

Indexing: Two watch Literal

Maintain 2-watch invariant:

Whenever l is assigned.

For each clause C ∈ watch(l)

If the other watch literal l′ (C ∈ watch(l′)) is assigned to

true, then do nothing.

Else if some other literal l′ is true or unassigned

watch(l′) := watch(l′) ∪ {C}

watch(l) := watch(l) \ {C}

Else if all literals in C are assigned to false, then Backjump .

Else (all but one literal in C is assigned to false) Propagate .

SAT/SMT – p.49/50

Preprocessing

Preprocessing is very important for industrial benchmarks.

Example simplification rules

Apply subsumption to remove clauses: C subsumes D if

C ⊆ D, then D can be removed.

Apply resolution to eliminate variables provided this does not

create too many new clauses:

occs(l) = {clauses that contain l}

|occs(p)| ∗ |occs(¬p)| < k

|occs(p)| = 1 or |occs(¬p)| = 1

SAT/SMT – p.50/50

	What's Satisfiability Modulo Theory
	Example
	Example 2
	SMT Solving
	Overview of SMT Solving
	Na"{i }ve SMT Solving
	Na"{i }ve SMT Solving (continued)
	Remainder of the Lectures
	Plan
	Roadmap
	Logic Basics
	Language: Signatures
	Language: Terms
	Language: Atomic Formulas
	Language: Quantifier Free Formulas
	Language: Formulas
	Models (Semantics)
	Interpreting Terms
	Interpreting Formulas
	Interpretation Example
	Interpretation Example
	Validity
	Theories
	Satisfiability and Validity
	Roadmap
	SAT Solvers
	Clausal Form (CNF)
	Efficient Conversion to CNF
	CNF-Conversion Procedure
	Conversion to CNF: Example
	Conversion to CNF: Improvements
	Resolution
	Resolution: Example
	The (original) DPLL Search Procedure
	Improvements to DPLL in Modern SAT solvers
	Abstract DPLL
	Abstract DPLL
	Abstract DPLL: Example
	Abstract DPLL: Example (cont.)
	Abstract DPLL: Termination
	Abstract DPLL: Strategy
	Abstract DPLL: Decision Strategy
	Abstract DPLL: Phase Selection
	Abstract DPLL: Extra Rules
	Abstract DPLL: Restart Strategies
	Indexing
	Indexing: Two Watch Literal
	Indexing: Two watch Literal
	Preprocessing

