
Verification Everywhere:
Security, Dependability,

Reliability

Lenore D. Zuck
Usable Verification, May 25, 2011

1

“Trustworthy” Protocols: NTLM

• A suite of Microsoft security protocols

• Proves authentication, integrity, confidentiality

• Had been replaced by Kerberos unless it canʼt:

- domain controller unavailable/unreachable

- client is not Kerberos capable

- user remotely authenticating over the web

- ...

• Vulnerable to a credential forwarding attack

2

“Trustworthy” Protocols

3

And then...

4

Why??

• Protocols not carefully designed (hard to obtain exact specs from
English description)

• Protocols not formally verified (“we may never get a secure system,
and we surely wonʼt unless we verify it”)

• Bugs take a long time to identify (usually long after deployment)

• Patching breaks backward compatibility

• and we lack ...

5

We lack
• Integration of verification methodologies

- that operate on networks

- that incorporate functional and non-functional properties

- that implementations follow specifications

- that check backward compatibility

• Agreed upon language(s) to formally specify the security properties we
require from systems that can be verified

• Formal assumptions of attacker and attack models

6

Road Map

Fully verified
protocols

robust against
security attacks

+ =

Note:
Attackable!expressive (pref

decidable) logic for
both functional and

non-functional
properties of protocol

+ ++

http://www.faqs.org/photo-dict/phrase/374/scroll.html

http://www.gilad.co.uk/writings/the-protocols-of-the-elders-of-zion-verse-2-by-gilad-atzmon.html

http://www.alternative-zine.com/interviews/en/88

Translation Validation

invariant

generation

theorem
proving

parame-
terization

http://www.faqs.org/photo-dict/phrase/457/building-blocks.html http://www.1stpositionmarketing.com/blog/?Tag=Twitter%20tools

7

http://www.alternative-zine.com/interviews/en/88
http://www.alternative-zine.com/interviews/en/88
http://www.gilad.co.uk/writings/the-protocols-of-the-elders-of-zion-verse-2-by-gilad-atzmon.html
http://www.gilad.co.uk/writings/the-protocols-of-the-elders-of-zion-verse-2-by-gilad-atzmon.html
http://www.faqs.org/photo-dict/phrase/374/scroll.html
http://www.faqs.org/photo-dict/phrase/374/scroll.html
http://www.faqs.org/photo-dict/phrase/457/building-blocks.html
http://www.faqs.org/photo-dict/phrase/457/building-blocks.html
http://www.1stpositionmarketing.com/blog/?Tag=Twitter%20tools
http://www.1stpositionmarketing.com/blog/?Tag=Twitter%20tools

On What There Is
• Tools to verify security protocols (Avispa, Athena, Scyther, ProVerif)

- Cannot be easily accommodated to work on arbitrary topologies
and arbitrarily large messages

• Handcrafted tools for particular protocols [Pereira, Paulson]

• Bugs found even on verified protocols (TLS)

• Implementation sometimes break security (side-channel attacks)
[Bleichbaher, Kocher]

Missing: General tools to verify protocols on any
topology, careful specifications of protocol
requirements and attack model, proofs that
implementations do not introduce new flaws

8

What Formal Methods offer
A variety of methodologies to help verification of:

• Protocols (arbitrary, even dynamic, topology and number of
participants) even in case of attacks on network*

• Stepwise refinement (functional and non-functional properties)*

Theorem provers that allow integration of proofs about mathematics
with proofs about software

9

On Refinement
• Techniques apply to high-level abstractions

• But itʼs actual code we want to verify

• Existing techniques can help verify that properties are preserved at
refined code, but

• Unlike many properties, security flaws can pop up at the lower level
implementation (e.g., Kocher attack on RSA) and may require new
methodologies (to show that security is preserved)

10

Preview
• Similarities between fundamental problems in FM and security

• Verification of network security protocols is (probably) attainable using
more research and a combination of (numerous!) existing tools

• The lack of formal requirements and formal (executable) specification
is a major obstacle

• The model of the attacker needs be clearly defined (per protocol)

• (As in SE) Combining development and verification processes
facilitates correct verified design (Design for Verification)

• Tools for security verification need to be integrated with “standard”
verification tools if we are to obtain a full-fledged verification tool

11

An Example (where
everything is needed...)

Secure RideSharing (Iskander, Lee, Mossé)

A protocol for dynamic Wireless Sensor Networks to
carry out secure data aggregation to a sink node.

Protocol should satisfy:
✦ Privacy
✦ Fault tolerance
✦ Exact aggregation during fault-free operation

12

Secure RideShare
• Ad-hoc sensor network

• Sensors are limited
✦ bandwidth
✦ storage
✦ power
✦ computation

13

Goal
Formal verification permeates system:

distributed resource allocation
security sensing

power management
real-time

trusted join/leave
(In)voluntary promotion/demotion
reliable delivery of data & results

Building Blocks:

Privacy
Preservation

Robustness

Additively homomorphic
stream cipher [1]

Cascaded Ridesharing [2]

[1] Casteluccia, Chan, Mykletun, Tsudik 2009
[2] Gobriel, Khatab, Mossé, Brustoloni, Melhem 2006

14

Applications

15

Network Model

16

Attack Model

17

Protocol (rough outline)

18

Protocol (rough outline)
1. Each sensor ni encrypts its value vi as ci = vi + gi(ki) mod M, and sets

its corresponding bit in the P-Vector

2. The resulting ci values are aggregated using the Cascaded
RideSharing protocol, which results in the sink receiving the value C =
Σi ci mod M

3. The sink computes the aggregate key value K=Σi gi(ki) mod M for each
i in P-vector

4. The sink extracts the final aggregate value V = Σi vi = C - K mod M

19

And it started here...

20

With the properties:

21

What does a proof look like?
Formalize (abstract, if needed) program/protocol [transition system]

Formalize property [Temporal Logic]

... Invent (divine?) auxiliary constructs

Conclude: Property

Prove:

...

1. ...
2. ...

k. ...

logical formulae over system description
and ...

22

Safety
• System often associated with “good” and “bad” states

• Safety: the system is always in a good state

• Invariance: safety properties that can be described by “state
assertions”

• every safety property can be reduced to an invariance property

• Invariance properties are perhaps the most important properties one
may wish to prove on systems!

• They capture properties like “within a given amount of time, something
good must occur”, “there is no security violation”, &c

23

How to prove Invariance
• Inductive invariant: true at initial state, and preserved in

every step

• INV rule: construct an auxiliary invariant, show that itʼs
inductive and implies “good”

• (Why do we need the auxiliary invariant? because
inductiveness may be hard to show on real system)

• (Auxiliary inductive invariants can be viewed as an
abstraction of the reachable states)

24

Example
P[i]:

req(x)
rel(x)
 (x: semaphore; initially 1)

Reachability:

states covered by
auxiliary invariant

possible states (for N=2)

1

1

00

0

1

1

0

bad states

auxiliary invariant:
N�

i=1

(P [i] is in red state) + x ≤ 1

25

Back to RideShare
Fault tolerance, power/timing, and correct aggregation of the P-vectors

are all safety properties

Sample property: If

1. attackers can only eavesdrop

2. for sufficiently long time (so that information can propagate from leaves
to sink) there are no changes in topology (but possibly for a single link
failure)

Then within a given time bound the sink node receives the “correct”
information

26

 Parameterized Systems*
• A parallel composition of N (finite-state) processes where N is unknown

P1 || P2 || P3 || • • • || PN

• Proofs requires auxiliary constructs parameterized on N

- For safety, an inductive invariant

• Invisible Invariants: derive constructs for general N by abstracting from
the mechanical proof of a particular N

- under-approximation can yield over-approximation

- Proofs can be done entirely using finite-state model checking, w/o
explicitly generating the auxiliary constructs

*Joint work with Amir Pnueli and students (main ideas in [ZP04])
27

Generating an Invariant
1. Compute the reachable states RN for a fixed N (say N=5)

2. Project onto a small subset of processes (say {1,2})

π = {(s1, s2) | (s1, s2, . . . , sN) ∈ RN}

28

Generating an Invariant

4. Test whether GN is an invariant for all N

2. Project onto a small subset of processes (say {1,2})

π = {(s1, s2) | (s1, s2, . . . , sN) ∈ RN}

3. Generalize from two to N, to get GN

N N

GN = ∀i �=j∈[1..N] π(si, sj)

29

Checking Inductiveness

• Small Model Theorem:

- If there is a counterexample with N>M there is a counter-model with
N≤M

- Suffices to check inductiveness for N≤M

Thus, both invariant generation and invariant checking amount to finite-
state model checking

However, doesnʼt apply to all cases (and Abstract Interpretation does!)

30

Example: Pulser

if there are no “bad guys”
0 s

Δ + 1

t

of
pulsers

C + Δ C + ΔC + ΔC + Δ

Δ+ 1 Δ + 1 Δ + 1

Δ + 1

t

of
pulsers

C + Δ C + ΔC + ΔC + Δ

Δ + 1 Δ + 1 Δ + 1

0 s

With (not too many) bad guys

31

Pulser: Protocol and specs
Protocol:

Property:

32

But, it didnʼt start there...

33

How to Verify

• Verification of Protocols (arbitrary, even dynamic, topology and number
of participants) even in case of attacks

Parameterized Verification

• Verification of stepwise refinement (of functional and non-functional
properties)

Translation Validation

34

Translation Validation
• Originally proposed as part of the Safety Critical Embedded Systems

project (1995-1998), where all validation/verification occurred at high
levels and correct design automatically “translated” into C

• Had to verify the translation!

• Evolved to:

- TV of optimizing compilers for Intelʼs ORC compiler

- MicroFormal @ Intel: tool to verify backward compatibility of
microcode

35

Translation Validation
• Verification of translatOR is often infeasible

- “translator” (compiler) may be proprietary, compiler may evolve over
time (so its verification may become useless), provides an
independent cross check

- “translator” may be human!

• Instead of verifying translator, verify each translation!!

- has constant run-time additional cost (justifiable)

- usually doable because source and target are similar (in case of
optimizing compilers, there are a known set of optimizations)

36

T.V. : Idea (1)

37

T.V. : Idea (2)
Source

Target

Data
MappingControl

Mapping

Verification
conditions
(including

time,
power,

security)

Theorem
Prover

(PVS, CVC,
ACL2...)

Yes! CEX
38

Example: Client/Server

•Web applications need to
•Validate user supplied input
•Reject invalid input

• Examples:
- “date/month combination is invalid”
- “Credit card number is exactly 16 digits”
- “Expiration date of Jan 2009 is not valid”

• Validation traditionally done at server: round trip, load
• Popular trend: Browser (client) validation through JavaScript

39

Client Side Validation using JavaScript
 Problem: The user interacting with website can attack the site!

onSubmit=
 validateCard();

Text

No

Reject
inputs

Yes

Send inputs
to Server

Validation Pass?

Problem: The user interacting with website can attack the client !
40

Problem: Client is Untrusted Environment
•Validation can be
bypassed

•Previously rejected values,
sent to server
 Invalid quantity: -4

• Ideally: Re-validate at
server-side and reject
 If not, security risks

41

Applying TV on Example
Client

cost :=0
ok := true
For every i in list
 cost := cost + quan[i] x cost[i]
 if quan[i] < 0
 then ok := false
If cc not in list
then ok := false

Server
Cost := cost
Ok := true
If !valid(cc)
then Ok := false

Need to verify: Cost = cost ∧ Ok = ok

Counter Examples:
quan[1] < 0 ∧ ¬ok ∧ Ok

(cc not on list) ∧ ¬ok ∧ Ok

¬valid(cc) ∧ ok ∧ ¬Ok

42

How to Overcome?

• Use Translation Validation to show that every check
performed by the client is also performed by the server

• (Of course) needs to be done automatically
✦ The code of client and server is usually in different

languages – we successfully dealt with a similar
issue in MicroFormal by translation into an
intermediate representation language (IRL)

• Can then automatically (or almost fully-automatically)
patch server and repeat TV

43

Conclusion
• Security NEEDS formal methods

- The stakes are high: security protocols have bugs

- Many (some recently developed) FM techniques are not
incorporated in security verification:

‣ Verification of network protocols

‣ Verification of refinement

‣ Integration of proofs techniques

• Attacker needs to be formally specified

• We have many techniques in FM that can assist

• Much research is needed to obtain reliable security

44

Whatʼs Next?
• Develop methodologies, supported by tools, to formally verify secure

network protocols

• DARPA project:

- formally verify the secure RideSharing protocol

- apply to expanded network topologies (using D4V)

• Automatic patching of servers (or cloud)

• Data sanitization (for testing purposes, e.g.)

• Verification of smartgrid controllers

45

