
Interactive Theorem Proving with PVS

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

May 16, 2011

Background
Basic Proof Construction

Proof Obligations
Applications

Course Outline

An Introduction to interactive theorem proving (ITP) using
PVS

1 An Introduction to PVS
2 Advanced interactive proof techniques
3 Examples and Applications

PVS combines an expressive language (like Coq) with
interaction (like the LCF provers HOL, Coq, Isabelle) and
automation (like ACL2).

Sam Owre contributed significantly to the preparation of these
slides.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Background Slides

The next series of slides covers

1 Logic Background

2 Basic information about PVS

These slides are not part of the main lectures

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

What is Logic?

Logic is the art and science of effective reasoning.

How can we draw general and reliable conclusions from a
collection of facts?

Formal logic: Precise, syntactic characterizations of
well-formed expressions and valid deductions.

Formal logic makes it possible to calculate consequences so
that each step is verifiable by means of proof.

Computers can be used to automate such symbolic
calculations.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Logic Basics

Logic studies the trinity between language, interpretation, and
proof.

Language circumscribes the syntax that is used to construct
sensible assertions.

Interpretation ascribes an intended sense to these assertions
by fixing the meaning of certain symbols, e.g., the logical
connectives, equality, and delimiting the variation in the
meanings of other symbols, e.g., variables, functions, and
predicates.

An assertion is valid if it holds in all interpretations.

Checking validity through interpretations is not always
possible, so proofs in the form axioms and inference rules are
used to demonstrate the validity of assertions.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Language

Signature Σ[X] contains functions and predicate symbols with
associated arities, and X is a set of variables.

The signature can be used to construct

Terms τ := x | f (τ1, . . . , τn)
Atoms α := p(τ1, . . . τn),
Literals λ := α | ¬α
Constraints λ1 ∧ . . . ∧ λn,
Clauses λ1 ∨ . . . ∨ λn,
Formulas ψ := p(τ1, . . . , τn) | τ0 = τ1 | ¬ψ0 |

ψ0 ∨ ψ1 | ψ0 ∧ ψ1 | (∃x : ψ0) | (∀x : ψ0)

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Structure

A Σ-structure M consists of

A domain |M|

A map M(f) from |M|n → M for each n-ary function f ∈ Σ

A map M(p) from |M|n → {>,⊥} for each n-ary predicate p.

Σ[X]-structure M also maps variables in X to domain elements in
|M|.
E.g., If Σ = {0,+, <}, then M such that |M| = {a, b, c} and
M(0) = a,

M(+) = { 〈a, a, a〉, 〈a, b, b〉, 〈a, c , c〉, 〈b, a, b〉, 〈c , a, c〉,〈b, b, c〉, 〈b, c , a〉, 〈c , b, a〉, 〈c , c , c〉 }, and

M(<) = {〈a, b〉, 〈b, c〉} is a Σ-structure

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Interpreting Terms

M[[x]] = M(x)

M[[f (s1, . . . , sn)]] = M(f)(M[[s1]], . . . ,M[[sn]])

Example: From previous example, if M(x) = a, M(y) = b, and
M(z) = c , then M[[+(+(x , y), z)]] =
M(+)(M(+)(M(x),M(y)),M(z)) = M(+)(b, c) = a.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Interpreting Formulas

The interpretation of a formula A in M, M[[A]], is defined as

M |= s = t ⇐⇒ M[[s]] = M[[t]]

M |= p(s1, . . . , sn) ⇐⇒ M(p)(〈M[[s1]], . . . ,M[[sn]]〉) = >
M |= ¬ψ ⇐⇒ M 6|= ψ

M |= ψ0 ∨ ψ1 ⇐⇒ M |= ψ0 or M |= ψ1

M |= ψ0 ∧ ψ1 ⇐⇒ M |= ψ0 and M |= ψ1

M |= (∀x : ψ) ⇐⇒ M{x 7→ a} |= ψ, for all a ∈ |M|
M |= (∃x : ψ) ⇐⇒ M{x 7→ a} |= ψ, for some a ∈ |M|

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Interpretation Example

M |= (∀y : (∃z : +(y , z) = x)).

M 6|= (∀x : (∃y : x < y)).

M |= (∀x : (∃y : +(x , y) = x)).

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Validity

A Σ[X]-formula A is satisfiable if there is a
Σ[X]-interpretation M such that M |= A.

Otherwise, the formula A is unsatisfiable.

If a formula A is satisfiable, so is its existential closure ∃x : A,
where x is vars(A), the set of free variables in A.

If a formula A is unsatisfiable, then the negation of its
existential closure ¬∃x : A is valid, e.g., ¬(∀x : (∃y : x < y)).

If A ∧ ¬B is unsatisfiable, A =⇒ B is valid.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Propositional Logic

Formulas: φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2.

P is a class of propositional variables (0-ary predicates):
p0, p1,

A model M assigns truth values {>,⊥} to propositional
variables: M(p) = > ⇐⇒ M |= p.

M[[φ]] is the meaning of φ in M and is computed using truth
tables:

φ A B ¬A A ∨ B A ∧ B

M1(φ) ⊥ ⊥ > ⊥ ⊥
M2(φ) ⊥ > > > ⊥
M3(φ) > ⊥ ⊥ > ⊥
M4(φ) > > ⊥ > >

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

A Propositional Proof System

A sequent has the form Γ ` ∆.

Γ is the set of antecedent formulas.

∆ is the set of consequent formulas.

A sequent Γ ` ∆ captures the judgement:
∧

Γ =⇒
∨

∆ is
provable.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

A Propositional Proof System (PL)

Left Right

Ax
Γ,A ` A,∆

¬ Γ ` A,∆
Γ,¬A ` ∆

Γ,A ` ∆
Γ ` ¬A,∆

∨ Γ,A ` ∆ Γ,B ` ∆
Γ,A ∨ B ` ∆

Γ ` A,B,∆
Γ ` A ∨ B,∆

∧ Γ,A,B ` ∆
Γ,A ∧ B ` ∆

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧ B,∆

=⇒ Γ,B ` ∆ Γ ` A,∆
Γ,A =⇒ B ` ∆

Γ,A ` B,∆
Γ ` A =⇒ B,∆

Cut
Γ ` A,∆ Γ,A ` ∆

Γ ` ∆

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Example Proofs

A ` B,A
Ax

A ` B ∨ A
` ∨

` A =⇒ (B ∨ A)
` =⇒

A,B ` B
Ax

A ` A,B
Ax

A,A =⇒ B ` B
=⇒ `

A ∧ (A =⇒ B) ` B
∧ `

` (A ∧ (A =⇒ B)) =⇒ B
` =⇒

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Using Cut

A ` A
Ax

A ` A,B
Ax

` A,A =⇒ B
=⇒ `

(A =⇒ B) =⇒ A ` A
=⇒ `

A,B ` B
Ax

A,B ` A
Ax

A,B ` B ∧ A
` ∧

A ` B =⇒ B ∧ A
` =⇒

(A =⇒ B) =⇒ A ` B =⇒ B ∧ A
Cut

` ((A =⇒ B) =⇒ A) =⇒ (B =⇒ B ∧ A)
` =⇒

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Equational Logic

Equational logic deals with terms τ such that

τ := f (τ1, . . . , τn), for n ≥ 0

φ := P | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 ⊃ φ2 | τ1 = τ2

Recall that the meaning M[[a]] is an element of a domain |M|, and
M(f) is a map from |M|n to |M|, where n is the arity of f .

M[[a = b]] = M[[a]] = M[[b]]

M[[f (a1, . . . , an)]] = (M[[f]])(M[[a1]], . . . ,M[[an]])

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Proof Rules for Equational Logic (LK0)

Reflexivity Γ ` a = a,∆

Symmetry
Γ ` a = b,∆

Γ ` b = a,∆

Transitivity
Γ ` a = b,∆ Γ ` b = c ,∆

Γ ` a = c ,∆

Congruence
Γ ` a1 = b1,∆ . . . Γ ` an = bn,∆

Γ ` f (a1, . . . , an) = f (b1, . . . , bn),∆

Note: Instantiation is omitted from the above since there are no
quantifiers.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Equational Proof Examples

Let f n(a) represent f (. . . f︸ ︷︷ ︸
n

(a) . . .).

f 3(a) = f (a) ` f 3(a) = f (a)
Ax

f 3(a) = f (a) ` f 4(a) = f 2(a)
C

f 3(a) = f (a) ` f 5(a) = f 3(a)
C

f 3(a) = f (a) ` f 3(a) = f (a)
Ax

f 3(a) = f (a) ` f 5(a) = f (a)
T

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Conditional Expressions

τ := f (τ1, . . . , τn), for n ≥ 0
| IF(φ, τ1, τ2)

M[[IF(A, b, c)]] =

{
M[[b]] if M[[A]] = >
M[[c]] if M[[A]] = ⊥

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Proof Rules for Conditionals

` IF Γ,A ` M = L,∆ Γ ` A,N = L,∆

Γ ` IF(A,M,N) = L,∆

IF ` Γ,A,M = L ` ∆ Γ,N = L ` A,∆

Γ, IF(A,M,N) = L ` ∆

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Variables and Quantifiers

τ := X
| f (τ1, . . . , τn), for n ≥ 0
| IF(φ, τ1, τ2)

φ := ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 ⊃ φ2 | τ1 = τ2

| ∀x : φ | ∃x : φ | q(τ1, . . . , τn), for n ≥ 0

Terms contain variables, and formulas contain atomic and
quantified formulas.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Proof Rules for Quantifiers

Left Right

∀ Γ,A[t/x] ` ∆

Γ, ∀x : A ` ∆

Γ ` A[c/x],∆

Γ ` ∀x : A,∆

∃ Γ,A[c/x] ` ∆

Γ, ∃x : A ` ∆

Γ ` A[t/x],∆

Γ ` ∃x : A,∆

Constant c must be chosen to be new so that it does not appear in
the conclusion sequent.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

A Small Puzzle

Given four cards laid out on a table as: D , 3 , F , 7 , where
each card has a letter on one side and a number on the other.

Which cards should you flip over to determine if every card
with a D on one side has a 7 on the other side?

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Exercises

1 Formalize the statement that a total binary relation over 3
elements must contain cycles.

2 Formalize the 4-pigeonhole principle asserting that if there are
5 pigeons that each have one of 4 holes, then some hole has
two pigeons.

3 Formalize the statement that a transitive graph over 3
elements contains an isolated point.

4 Formalize and prove the statement that given a symmetric
and transitive graph over 3 elements, either the graph is
complete or contains an isolated point.

5 Formalize Sudoku in propositional logic.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

More Exercises

1 Show that every n-ary function from {>,⊥}n to {>,⊥} is
expressible using ¬ and ∨.

2 State and prove as many laws as you can find about negation,
disjunction, conjunction, and implication.

3 State and verify algorithms to
1 Convert a boolean formula into the equivalent conjunctive

normal form.
2 Test a boolean formula for satisfiability and return a satisfying

truth assignment when possible.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Exercises

1 Formalize the statement that a total binary relation over 3
elements must contain cycles.

2 Formalize the 4-pigeonhole principle asserting that if there are
5 pigeons that are each assigned to one of 4 holes, then some
hole has two pigeons.

3 Formalize the statement that a transitive graph over 3
elements contains an isolated point.

4 Formalize and prove the statement that given a symmetric
and transitive graph over 3 elements, either the graph is
complete or contains an isolated point.

5 Formalize Sudoku in propositional logic.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

More Exercises

1 Show that every n-ary function from {>,⊥}n to {>,⊥} is
expressible using ¬ and ∨.

2 State and prove as many laws as you can find about negation,
disjunction, conjunction, and implication.

3 Show that any n-ary Boolean function can be represented by
formulas using ¬ and ∨.

4 State and verify an algorithm to test a boolean formula for
satisfiability and return a satisfying truth assignment when
possible.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Exercises

1 Prove (∀x : p(x)) ⊃ (∃x : p(x)).

2 Define equivalence. Prove the associativity of equivalence.

3 Prove ¬(∀x : p(x)) ⇐⇒ (∃x : ¬p(x)).

4 Prove
(∃x : ∀y : p(x) ⇐⇒ p(y)) ⇐⇒ (∃x : p(x)) ⇐⇒ (∀y : p(y)).

5 Give at least two satisfying interpretations for the statement
(∃x : p(x)) ⊃ (∀x : p(x)).

6 Write a formula asserting the unique existence of an x such that
p(x).

7 Show that any quantified formula is equivalent to one in prenex

normal form, i.e., where the only quantifiers appear at the head of

the formula.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Equivalence

Two formulas A and B are equivalent, A ⇐⇒ B, if their
truth values agree in each interpretation.

Prove that the following are equivalent (TFAE):
1 ¬¬A ⇐⇒ A
2 A =⇒ B ⇐⇒ ¬A ∨ B
3 ¬(A ∧ B) ⇐⇒ ¬A ∨ ¬B
4 ¬(A ∨ B) ⇐⇒ ¬A ∧ ¬B
5 ¬A =⇒ B ⇐⇒ ¬B =⇒ A

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Normal Forms

A formula where negation is applied only to propositional
atoms is said to be in negation normal form (NNF).

A literal is either a propositional atom or its negation.

A formula that is a multiary conjunction of multiary
disjunctions of literals is in conjunctive normal form (CNF).

A formula that is a multiary disjunction of multiary
conjunctions of literals is in disjunctive normal form (DNF).

Show that every propositional formula is equivalent to one in
NNF, CNF, and DNF.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Soundness and Completeness

A proof system is sound if all provable formulas are valid, i.e.,
` A implies |= A.

Demonstrate the soundness of LK0.

A proof system is complete if all valid formulas are provable,
i.e., |= A implies ` A. In other words, any unprovable formula
must be satisfiable.

Demonstrate the completeness of LK0.

A set of formulas Γ is consistent iff there is no formula A in Γ
such that Γ ` ¬A.

A logic is compact if any set of sentences Γ is satisfiable if all
finite subsets of it are.

Demonstrate the compactness of PL.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

A Brief Overview of PVS

The next series of slides cover some basic background on PVS.

More information and documentation can be obtained from
http://pvs.csl.sri.com.

There are several other popular interactive theorem provers,
including

ACL2: http://www.cs.utexas.edu/~moore/acl2

Coq: http://coq.inria.fr

HOL: http://hol.sourceforge.net/
Isabelle:
http://www.cl.cam.ac.uk/research/hvg/Isabelle/

Related to PVS are ideas on Dependently Typed Programming
with languages like Agda, ATS, Cayenne, and Epigram.

N. Shankar Interactive Theorem Proving with PVS

http://pvs.csl.sri.com
http://www.cs.utexas.edu/~moore/acl2
http://coq.inria.fr
http://hol.sourceforge.net/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Introduction

PVS - Prototype Verification System

PVS is a verification system combining language
expressiveness with automated tools.

It features an interactive theorem prover with powerful
commands and user-definable strategies

PVS has been available since 1993

It has a large user base

It is open source

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Decidability & Interaction

PVS uses dependent predicate subtypes

Specifications can be expressed in type predicates

Type correctness is undecidable

Typechecker verifies simple type correctness and generates
proof obligations (e.g., subtyping, termination)

The PVS proof checker uses a number of decision procedures

Interaction drives goals to decidable subgoals

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

PVS System Size

Number of lines of code:

Lisp: 364 KLOC (about 100+ KLOC automatically generated)
C: about 47 KLOC lines
Emacs: 26 KLOC lines

Image size: Allegro 46M; CMU Lisp 118M; SBCL 102M

NASA Libraries: 87 KLOC

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

PVS Language

The PVS language is based on higher-order logic (type theory)

Many other systems use higher-order logic including Coq,
HOL, Isabelle/HOL, Nuprl

PVS uses classical (non-constructive) logic

It has a set-theoretic semantics

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

PVS Types

PVS has a rich type system

Basic types: number, boolean, etc. New basic types may be
introduced

Enumeration types: {red, green, blue}
Function, record, tuple, and cotuple types:

[number -> number]

[# flag: boolean, value: number #]

[boolean, number]

[boolean + number]

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Recursive Types

Datatypes and Codatatypes:

list[T: TYPE]: DATATYPE BEGIN

null: null?

cons(car: T, cdr: list): cons?

END DATATYPE

colist[T: TYPE]: CODATATYPE BEGIN

cnull: cnull?

ccons(car: T, cdr: list): ccons?

END CODATATYPE

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Subtypes

PVS has two notions of subtype:

Predicate subtypes:

{x: real | x /= 0}
{f: [real -> real] | injective?(f)}

The type {x: T | P(x)} may be abbreviated as (P).

Structural subtypes:

[# x, y: real, c: color #] <: [# x, y: real #]

Class hierarchy may be captured with this
Update is structural subtype polymorphic: r WITH [‘x := 0]

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Dependent types

Function, tuple, record, and (co)datatypes may be dependent:

[n: nat -> {m: nat | m <= n}]
[n: nat, {m: nat | m <= n}]
[# n: nat, m: {k: nat | k <= n} #]

dt: DATATYPE BEGIN

b: b?

c(n: nat, m: {k: nat | k <= n}): c?

END DATATYPE

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

PVS Expressions

Logic: TRUE, FALSE, AND, OR, NOT, IMPLIES, FORALL,
EXISTS, =

Arithmetic: +, -, *, /, <, <=, >, >=, 0, 1, 2, . . .

Function application, abstraction, and update

Binder macro - the! (x: nat) p(x)

Coercions

Record construction, selection, and update

Tuple construction, projection, and update

IF-THEN-ELSE, COND

CASES: Pattern matching on (co)datatypes

Tables

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Declarations

Types - P: TYPE = (prime?)

Constants, definitions, macros

Recursive definitions

Inductive and coinductive definitions

Formulas and axioms

Assumptions on formal parameters

Judgements, including recursive judgements

Conversions

Auto-rewrites

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

PVS Theories

Declarations are packaged into theories

Theories may be parameterized with types, constants, and
other theories

Theories and theory instances may be imported

Theory interpretations may be given, using mappings to
interpret uninterpreted types, constants, and theories

Theories may have assumptions on the parameters

Theories may state what is visible, through exportings

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Names

Names may be heavily overloaded

All names have an identifier; in addition, they may have:

a theory identifier
actual parameters
a library identifier
a mapping giving a theory interpretation

For example, a reference to “a” may internally be equivalent
to the form

lib@th[int, 0]{{T := real, c := 1}}.a

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

PVS Prover

The PVS prover is interactive, but with powerful automation

It supports exploration, design, implementation, and
maintenance of proofs

The prover was designed to preserve correspondence with an
informal argument

Support for user defined strategies and rules

Based on sequent calculus

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

The Ground Evaluator

Much of PVS is executable

The ground evaluator generates efficient Lisp and Clean code

Performs analysis to generate safe destructive updates

The random test facility makes use of this to generate random
values for expressions

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

PVSio and ProofLite

PVSio and Prooflite are provided by César Muñoz of the
National Institute of Aerospace

PVSio extends the ground prover and ground evaluator:

An alternative, simplified Emacs interface
A facility for easily creating new semantic attachments
A standalone interface that does not need Emacs
New proof rules to safely use the ground evaluator in a proof

ProofLite is a PVS Package providing:

A command line utility
A proof scripting notation
Emacs commands for managing proof scripts

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Other Features

New proof rules and strategies may be defined

There is an API for adding new decision procedures

Tcl/Tk displays for proofs and theory hierarchies

LATEX, HTML, and XML generation

Yices interface

WS1S

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

The Prelude

The PVS prelude provides a lot of theories - over 1000 lemmas
These are available directly within PVS
It includes theories for:

booleans

numbers (real, rational, integer)

strings

sets, including definitions and basic properties of finite and
infinite sets

functions and relations

equivalences

ordinals

basic definitions and properties of bitvectors

mu calculus, LTL

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

PVS Libraries and Packages

PVS may be extended by means of Libraries

Using an IMPORTING that references the library

Extending the prelude (M-x load-prelude-library)

Libraries that extend the theories of finite sets and bitvectors are
included in the PVS distribution
Packages extend the notion of library to include strategies, Lisp,
and Emacs code

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

About NASA Libraries

NASA has a large and growing set of libraries at
http://shemesh.larc.nasa.gov/fm/ftp/larc/

PVS-library/pvslib.html

Two important packages provided by Ben Divito and César
Muñoz are Manip and Field:

Manip provides for algebraic manipulation of formulas
Field remove divisions from a formula

Most of the NASA libraries depend on these, but they are
quite general

NASA Library Contributors: Rick Butler, Ben Di Vito, Bruno

Dutertre, Paul Miner, Alfons Geser, David Griffioen, Jerry James,

David Lester, Jeff Maddalon, César Muñoz, Kristin Y. Rozier, Jon

Sjogren, Christian van der Stap, Allwyn Goodloe

N. Shankar Interactive Theorem Proving with PVS

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

NASA Libraries

algebra groups, monoids, rings, etc
analysis real analysis, limits, continuity, derivatives, integrals
calculus axiomatic version of calculus
complex complex numbers
co structures sequences of countable length defined as coalgebra datatypes
digraphs directed graphs: circuits, maximal subtrees, paths, dags
float floating point numbers and arithmetic
graphs graph theory: connectedness, walks, trees, Menger’s Theo-

rem
ints integer division, gcd, mod, prime factorization, min, max
interval interval bounds and numerical approximations
lnexp logarithm, exponential and hyperbolic functions
lnexp fnd foundational definitions of logarithm, exponential and hyper-

bolic functions

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

NASA Libraries (cont)

orders abstract orders, lattices, fixedpoints
reals summations, sup, inf, sqrt over the reals, abs lemmas
scott Theories for reasoning about compiler correctness
series power series, comparison test, ratio test, Taylor’s theorem
sets aux powersets, orders, cardinality over infinite sets
sigma set summations over countably infinite sets
structures bounded arrays, finite sequences and bags
topology continuity, homeomorphisms, connected and compact spaces,

Borel sets/functions
trig trigonometry: definitions, identities, approximations
trig fnd foundational development of trigonometry: proofs of trig axioms
vectors basic properties of vectors
while Semantics for the Programming Language ”while”

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Some Applications

Verification of the AAMP5 microprocessor - Mandayam K. Srivas, Steven P. Miller

TAME (Timed Automata Modeling Environment) uses PVS as back end It is used for requirements and

security, have a Common Criteria EAL7 certified embedded system - C.L. Heitmeyer, M.M. Archer, E.I.

Leonard, J.D. McLean

LOOP is used to verify Java code, applied to JavaCard - J. van den Berg, B. Jacobs, E. Poll

Mifare card security broken - Bart Jacobs

Many NASA/NIA applications - clock synchronization, fault-tolerance, floating point, collision avoidance -

C. Muñoz, R. Butler, B. Di Vito, P. Miner

InVeSt: A Tool for the Verification of Invariants - S. Bensalem, Y. Lakhnech, S. Owre

Maple interface - Andrew Adams, Martin Dunstan, Hanne Gottliebsen, Tom Kelsey, Ursula Martin, Sam

Owre, Clare So

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

More Applications

A Semantic Embedding of the Ag Dynamic Logic - Carlos Pombo

Early validation of requirements - Steve Miller

Programming language meta theory - David Naumann

Cache coherence protocols - Paul Loewenstein

Systematic Verification of Pipelined Microprocessors - Ravi Hosabettu

Vamp processor - Christoph Berg, Christian Jacobi, Wolfgang Paul, Daniel Kroening, Mark Hillebrand,

Sven Beyer, Dirk Leinenbach

Flash protocol - Seungjoon Park

Trust management kernel - Drew Dean, Ajay Chander, John Mitchell

Self stabilization - N. Shankar, Shaz Qadeer, Sandeep Kulkarni, John Rushby

Sequential Reactive Systems, Garbage Collection verifications - Paul Jackson

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Still More Applications

Software reuse, Java verification, CMULisp port of PVS - Joe Kiniry

Reactive systems, literate PVS - Pertti Kellomaki

Garbage collection - Klaus Havelund, N. Shankar

Nova microhypervisor, Coalgebras, Numerous PVS bug reports - Hendrik Tews

Why: software verification platform has PVS as a back-end prover - Jean-Christophe Filliâtre

Adaptive cache coherence protocol - Joe Stoy, et al

PBS: Support for the B-Method in PVS - César Muñoz

SPOTS: A System for Proving Optimizing Transformations Sound - Aditya Kanade

Time Warp-based parallel simulation - Perry Alexander

Linking QEPCAD with PVS - Ashish Tiwari

Distributed Embedded Real-Time Systems, Reactive Objects - Jozef Hooman

TLPVS: A PVS-Based LTL Verification System - Amir Pnueli, Tamarah Arons

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Courses using PVS

An introduction to theorem proving using PVS - Erik Poll, Radboud University Nijmegen

Logic For Software Engineering - Mark Lawford, McMaster

NASA LaRC PVS Class - NASA, NIA

Theorem Proving and Model Checking in PVS - Ed Clarke & Daniel Kroening, CMU

Formal Methods in Concurrent and Distributed Systems - Dino Mandrioli, Politecnico di Milano

Formal Methods in Software Development - Wolfgang Schreiner, Johannes Kepler University

Applied Computer-Aided Verifcation - Kathi Fisler, Rice University

Dependable Systems Case Study - Scott Hazelhurst, University of the Witwatersrand, Johannesburg

Introduction to Verification - Steven D. Johnson, Indiana Univerisity

Automatic Verification - Marsha Chechik, University of Toronto

Modeling Software Systems - Egon Boerger, University of Pisa

Advanced Software Engineering - Perry Alexander, University of Cincinnati

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

The Future of PVS

Declarative Proofs

A verified reference kernel

Generation of C code

Improved Yices interface

Incorporation into tool bus

Reflexive PVS

Polymorphism beyond theory parameters

Functors as an extension of (co)datatypes, i.e., mu and nu
operators

XML Proof Objects - a step toward integrating with other
systems

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Logic
PVS Overview

Conclusion

PVS (version 5.0) is available at http://pvs.csl.sri.com

There is a Wiki page users can contribute

Mailing lists

PVS is open source, available as tar files or subversion

N. Shankar Interactive Theorem Proving with PVS

http://pvs.csl.sri.com

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Lecture 1

The main lecture starts here

The first lecture covers the basics of interacting with PVS

Topics covered are

Propositional reasoning
Equality reasoning
Conditionals
Quantifiers

The primary goal of the course is to teach the effective use of
logic in specification and proof construction through PVS.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

PVS Specifications

A PVS theory is a list of declarations.

Declarations introduce names for types, constants, variables,
or formulas.

Propositional connectives are declared in theory booleans.

Type bool contains constants TRUE and FALSE.

Type [bool -> bool] is a function type where the domain
and range types are bool.

The PVS syntax allows certain prespecified infix operators.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

More PVS Background

Information about PVS is available at
http://pvs.csl.sri.com.

PVS is used from within Emacs.

The PVS Emacs command M-x pvs-help lists all the PVS
Emacs commands.

N. Shankar Interactive Theorem Proving with PVS

http://pvs.csl.sri.com

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Propositional Logic in PVS

booleans: THEORY

BEGIN

boolean: NONEMPTY_TYPE

bool: NONEMPTY_TYPE = boolean

FALSE, TRUE: bool

NOT: [bool -> bool]

AND, &, OR, IMPLIES, =>, WHEN, IFF, <=>

: [bool, bool -> bool]

END booleans

AND and & are synonymous and infix.
IMPLIES and => are synonymous and infix.
A WHEN B is just B IMPLIES A.
IFF and <=> are synonymous and infix.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Propositional Proofs in PVS

prop_logic : THEORY

BEGIN

A, B, C, D: bool

ex1: LEMMA A IMPLIES (B OR A)

ex2: LEMMA (A AND (A IMPLIES B)) IMPLIES B

ex3: LEMMA

((A IMPLIES B) IMPLIES A) IMPLIES (B IMPLIES (B AND A))

END prop_logic

A, B, C, D are arbitrary Boolean constants.
ex1, ex2, and ex3 are LEMMA declarations.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Propositional Proofs in PVS.

ex1 :

|-------

{1} A IMPLIES (B OR A)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

Q.E.D.

PVS proof commands are applied at the Rule? prompt, and
generate zero or more premises from conclusion sequents.
Command (flatten) applies the disjunctive rules: ` ∨, ` ¬, `⊃,
∧ `, ¬ `.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Propositional Proofs in PVS

ex2 :

|-------

{1} (A AND (A IMPLIES B)) IMPLIES B

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

ex2 :

{-1} A

{-2} (A IMPLIES B)

|-------

{1} B

Rule? (split)

Splitting conjunctions,

this yields 2 subgoals:

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Propositional Proof (continued)

ex2.1 :

{-1} B

[-2] A

|-------

[1] B

which is trivially true.

This completes the proof of ex2.1.

PVS sequents consist of a list of (negative) antecedents and a list
of (positive) consequents.
{-1} indicates that this sequent formula is new.
(split) applies the conjunctive rules ` ∧, ∨ `, ⊃`.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Propositional Proof (continued)

ex2.2 :

[-1] A

|-------

{1} A

[2] B

which is trivially true.

This completes the proof of ex2.2.

Q.E.D.

Propositional axioms are automatically discharged.
flatten and split can also be applied to selected sequent
formulas by giving suitable arguments.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

The PVS Strategy Language

A simple language is used for defining proof strategies:

try for backtracking
if for conditional strategies
let for invoking Lisp
Recursion

prop$ is the non-atomic (expansive) version of prop.

(defstep prop ()

(try (flatten) (prop$) (try (split)(prop$) (skip)))

"A black-box rule for propositional simplification."

"Applying propositional simplification")

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Propositional Proofs Using Strategies

ex2 :

|-------

{1} (A AND (A IMPLIES B)) IMPLIES B

Rule? (prop)

Applying propositional simplification,

Q.E.D.

(prop) is an atomic application of a compound proof step.
(prop) can generate subgoals when applied to a sequent that is
not propositionally valid.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Using BDDs for Propositional Simplification

Built-in proof command for propositional simplification with
reduced ordered binary decision diagrams (ROBDDs).

ex2 :

|-------

{1} (A AND (A IMPLIES B)) IMPLIES B

Rule? (bddsimp)

Applying bddsimp,

this simplifies to:

Q.E.D.

ROBDDs are decision graphs where the decision variables are
uniformly ordered along any path, and redundant decision
variables have been eliminated.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Cut in PVS

ex3 :

|-------

{1} ((A IMPLIES B) IMPLIES A) IMPLIES (B IMPLIES (B AND A))

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

ex3 :

{-1} ((A IMPLIES B) IMPLIES A)

{-2} B

|-------

{1} (B AND A)

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Cut in PVS

Rule? (case "A")

Case splitting on

A,

this yields 2 subgoals:

ex3.1 :

{-1} A

[-2] ((A IMPLIES B) IMPLIES A)

[-3] B

|-------

[1] (B AND A)

Rule? (prop)

Applying propositional simplification,

This completes the proof of ex3.1.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Cut in PVS

ex3.2 :

[-1] ((A IMPLIES B) IMPLIES A)

[-2] B

|-------

{1} A

[2] (B AND A)

Rule? (prop)

Applying propositional simplification,

This completes the proof of ex3.2.

Q.E.D.

(case "A") corresponds to the Cut rule.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Propositional Simplification

ex4 :

|-------

{1} ((A IMPLIES B) IMPLIES A) IMPLIES (B AND A)

Rule? (prop)

Applying propositional simplification,

this yields 2 subgoals:

ex4.1 :

{-1} A

|-------

{1} B

(prop) generates subgoal sequents when applied to a sequent that
is not propositionally valid.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Propositional Simplification with BDDs

ex4 :

|-------

{1} ((A IMPLIES B) IMPLIES A) IMPLIES (B AND A)

Rule? (bddsimp)

Applying bddsimp,

this simplifies to:

ex4 :

{-1} A

|-------

{1} B

Notice that bddsimp is more efficient.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Equality in PVS

equalities [T: TYPE]: THEORY

BEGIN

=: [T, T -> boolean]

END equalities

Predicates are functions with range type boolean.
Theories can be parametric with respect to types and constants.
Equality is a parametric predicate.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Proving Equality in PVS

eq : THEORY

BEGIN

T : TYPE

a : T

f : [T -> T]

ex1: LEMMA f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)

END eq

ex1 is the same example in PVS.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Proving Equality in PVS

ex1 :

|-------

{1} f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

ex1 :

{-1} f(f(f(a))) = f(a)

|-------

{1} f(f(f(f(f(a))))) = f(a)

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Proving Equality in PVS

Rule? (replace -1)

Replacing using formula -1,

this simplifies to:

ex1 :

[-1] f(f(f(a))) = f(a)

|-------

{1} f(f(f(a))) = f(a)

which is trivially true.

Q.E.D.

(replace -1) replaces the left-hand side of the chosen equality
by the right-hand side in the chosen sequent.
The range and direction of the replacement can be controlled
through arguments to replace.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Proving Equality in PVS

ex1 :

|-------

{1} f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

ex1 :

{-1} f(f(f(a))) = f(a)

|-------

{1} f(f(f(f(f(a))))) = f(a)

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

A Strategy for Equality

(defstep ground ()

(try (flatten)(ground$)(try (split)(ground$)(assert)))

"Does propositional simplification followed by the use of

decision procedures."

"Applying propositional simplification and decision procedures")

ex1 :

|-------

{1} f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)

Rule? (ground)

Applying propositional simplification and decision procedures,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Exercises

1 Prove: If Bob is Joe’s father’s father, Andrew is Jim’s father’s
father, and Joe is Jim’s father, then prove that Bob is
Andrew’s father.

2 Prove f (f (f (x))) = x , x = f (f (x)) ` f (x) = x .

3 Prove f (g(f (x))) = x , x = f (x) ` f (g(f (g(f (g(x)))))) = x .

4 Show that the proof system for equational logic is sound,
complete, and decidable.

5 What happens when everybody loves my baby, but my baby
loves nobody but me?

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Conditionals in PVS

if_def [T: TYPE]: THEORY

BEGIN

IF:[boolean, T, T -> T]

END if_def

PVS uses a mixfix syntax for conditional expressions

IF A THEN M ELSE N ENDIF

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

PVS Proofs with Conditionals

conditionals : THEORY

BEGIN

A, B, C, D: bool

T : TYPE+

K, L, M, N : T

IF_true: LEMMA IF TRUE THEN M ELSE N ENDIF = M

IF_false: LEMMA IF FALSE THEN M ELSE N ENDIF = N
.
.
.

END conditionals

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

PVS Proofs with Conditionals

IF_true :

|-------

{1} IF TRUE THEN M ELSE N ENDIF = M

Rule? (lift-if)

Lifting IF-conditions to the top level,

this simplifies to:

IF_true :

|-------

{1} TRUE

which is trivially true.

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

PVS Proofs with Conditionals

IF_false :

|-------

{1} IF FALSE THEN M ELSE N ENDIF = N

Rule? (lift-if)

Lifting IF-conditions to the top level,

this simplifies to:

IF_false :

|-------

{1} TRUE

which is trivially true.

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

PVS Proofs with Conditionals

conditionals : THEORY

BEGIN
.
.
.

IF_distrib: LEMMA (IF (IF A THEN B ELSE C ENDIF)

THEN M

ELSE N

ENDIF)

= (IF A

THEN (IF B THEN M ELSE N ENDIF)

ELSIF C

THEN M

ELSE N

ENDIF)

END conditionals

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

PVS Proofs with Conditionals

IF_distrib :

|-------

{1} (IF (IF A THEN B ELSE C ENDIF) THEN M ELSE N ENDIF) =

(IF A THEN (IF B THEN M ELSE N ENDIF)

ELSIF C THEN M ELSE N ENDIF)

Rule? (lift-if)

Lifting IF-conditions to the top level,

this simplifies to:

IF_distrib :

|-------

{1} TRUE

which is trivially true.

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

PVS Proofs with Conditionals

IF_test :

|-------

{1} IF A THEN (IF B THEN M ELSE N ENDIF)

ELSIF C THEN N ELSE M ENDIF =

IF A THEN M ELSE N ENDIF

Rule? (lift-if)

Lifting IF-conditions to the top level,

this simplifies to:

IF_test :

|-------

{1} IF A

THEN IF B THEN TRUE ELSE N = M ENDIF

ELSE IF C THEN TRUE ELSE M = N ENDIF

ENDIF

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Exercises

1 Prove
IF(IF(A,B,C),M,N) = IF(A, IF(B,M,N), IF(C ,M,N)).

2 Prove that conditional expressions with the boolean constants
TRUE and FALSE are a complete set of boolean connectives.

3 A conditional expression is normal if all the first (test)
arguments of any conditional subexpression are variables.
Write a program to convert a conditional expression into an
equivalent one in normal form.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Quantifiers in PVS

quantifiers : THEORY

BEGIN

T: TYPE

P: [T -> bool]

Q: [T, T -> bool]

x, y, z: VAR T

ex1: LEMMA FORALL x: EXISTS y: x = y

ex2: CONJECTURE (FORALL x: P(x)) IMPLIES (EXISTS x: P(x))

ex3: LEMMA

(EXISTS x: (FORALL y: Q(x, y)))

IMPLIES (FORALL y: EXISTS x: Q(x, y))

END quantifiers

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Quantifier Proofs in PVS

ex1 :

|-------

{1} FORALL x: EXISTS y: x = y

Rule? (skolem * "x")

For the top quantifier in *, we introduce Skolem constants: x,

this simplifies to:

ex1 :

|-------

{1} EXISTS y: x = y

Rule? (inst * "x")

Instantiating the top quantifier in * with the terms:

x,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

A Strategy for Quantifier Proofs

ex1 :

|-------

{1} FORALL x: EXISTS y: x = y

Rule? (skolem!)

Skolemizing,

this simplifies to:

ex1 :

|-------

{1} EXISTS y: x!1 = y

Rule? (inst?)

Found substitution: y gets x!1,

Using template: y

Instantiating quantified variables,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Alternative Quantifier Proofs

ex1 :

|-------

{1} FORALL x: EXISTS y: x = y

Rule? (skolem!)

Skolemizing, this simplifies to:

ex1 :

|-------

{1} EXISTS y: x!1 = y

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Alternative Quantifier Proofs

ex3 :

|-------

{1} (EXISTS x: (FORALL y: Q(x, y)))

IMPLIES (FORALL y: EXISTS x: Q(x, y))

Rule? (reduce)

Repeatedly simplifying with decision procedures, rewriting,

propositional reasoning, quantifier instantiation, skolemization,

if-lifting and equality replacement,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Propositional Logic
Equality/Conditionals
Quantifiers

Summary

We have seen a formal language for writing propositional,
equational, and conditional expressions, and proof commands:

Propositional: flatten, split, case, prop, bddsimp.

Equational: replace, assert.

Conditional: lift-if.

Quantifier: skolem, skolem!, inst, inst?.

Strategies: ground, reduce

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Lecture 2: Proof Obligations

The second lecture covers

Theories
Definitions, Lemmas, and Rewrite rules
Predicate subtypes and Type Correctness Conditions
Recursion and Induction
Higher-order logic

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Formalization Using PVS: Theories

group : THEORY

BEGIN

T: TYPE+

x, y, z: VAR T

id : T

* : [T, T -> T]

associativity: AXIOM (x * y) * z = x * (y * z)

identity: AXIOM x * id = x

inverse: AXIOM EXISTS y: x * y = id

left_identity: LEMMA EXISTS z: z * x = id

END group

Free variables are implicitly universally quantified.
N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Parametric Theories

pgroup [T: TYPE+, * : [T, T -> T], id: T] : THEORY

BEGIN

ASSUMING

x, y, z: VAR T

associativity: ASSUMPTION (x * y) * z = x * (y * z)

identity: ASSUMPTION x * id = x

inverse: ASSUMPTION EXISTS y: x * y = id

ENDASSUMING

left_identity: LEMMA EXISTS z: z * x = id

END pgroup

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Using Theories

We can build a theory of commutative groups by using IMPORTING

group.

commutative_group : THEORY

BEGIN

IMPORTING group

x, y, z: VAR T

commutativity: AXIOM x * y = y * x

END commutative_group

The declarations in group are visible within commutative group,
and in any theory importing commutative group.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Using Parametric Theories

To obtain an instance of pgroup for the additive group over the
real numbers:

additive_real : THEORY

BEGIN

IMPORTING pgroup[real, +, 0]

END additive_real

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proof Obligations from IMPORTING

IMPORTING pgroup[real, +, 0] when typechecked, generates
proof obligations corresponding to the ASSUMINGs:

IMP_pgroup_TCC1: OBLIGATION

FORALL (x, y, z: real): (x + y) + z = x + (y + z);

IMP_pgroup_TCC2: OBLIGATION FORALL (x: real): x + 0 = x;

IMP_pgroup_TCC3: OBLIGATION

FORALL (x: real): EXISTS (y: real): x + y = 0;

The first two are proved automatically, but the last one needs an
interactive quantifier instantiation.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Definitions

group : THEORY

BEGIN

T: TYPE+

x, y, z: VAR T

id : T

* : [T, T -> T]
.
.
.

square(x): T = x * x

.

.

.

END group

Type T, constants id and * are declared; square is defined.
Definitions are conservative, i.e., preserve consistency.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Using Definitions

Definitions are treated like axioms.

We examine several ways of using definitions and axioms in
proving the lemma:

square id: LEMMA square(id) = id

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proofs with Definitions

square id :

|-------

{1} square(id) = id

Rule? (lemma "square")

Applying square

this simplifies to:

square id :

{-1} square = (LAMBDA (x): x * x)

|-------

[1] square(id) = id

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proving with Definitions

square_id :

|-------

{1} square(id) = id

Rule? (lemma "square" ("x" "id"))

Applying square where

x gets id,

this simplifies to:

square_id :

{-1} square(id) = id * id

|-------

[1] square(id) = id

The lemma step brings in the specified instance of the lemma as an
antecedent formula.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proving with Definitions

Rule? (replace -1)

Replacing using formula -1,

this simplifies to:

square_id :

[-1] square(id) = id * id

|-------

{1} id * id = id

Rule? (lemma "identity")

Applying identity

this simplifies to:

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proving with Definitions

square_id :

{-1} FORALL (x: T): x * id = x

[-2] square(id) = id * id

|-------

[1] id * id = id

Rule? (inst?)

Found substitution:

x: T gets id,

Using template: x * id = x

Instantiating quantified variables,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proofs With Definitions and Lemmas

The lemma and inst? steps can be collapsed into a single use

command.

square_id :

[-1] square(id) = id * id

|-------

{1} id * id = id

Rule? (use "identity")

Using lemma identity,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proofs With Definitions

square_id :

|-------

{1} square(id) = id

Rule? (expand "square")

Expanding the definition of square,

this simplifies to:

square_id :

|-------

{1} id * id = id

(expand "square") expands definitions in place.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proofs With Definitions

.

.

.

Rule? (rewrite "identity")

Found matching substitution:

x: T gets id,

Rewriting using identity, matching in *,

Q.E.D.

(rewrite "identity") rewrites using a lemma that is a rewrite
rule.
A rewrite rule is of the form l = r or h ⊃ l = r where the free
variables in r and h are a subset of those in l . It rewrites an
instance σ(l) of l to σ(r) when σ(h) simplifies to TRUE.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Rewriting with Lemmas and Definitions

square id :

|-------

{1} square(id) = id

Rule? (rewrite "square")

Found matching substitution: x gets id,

Rewriting using square, matching in *,

this simplifies to:

square id :

|-------

{1} id * id = id

Rule? (rewrite "identity")

Found matching substitution: x: T gets id,

Rewriting using identity, matching in *,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Automatic Rewrite Rules

square id :

|-------

{1} square(id) = id

Rule? (auto-rewrite "square" "identity")

.

.

.

Installing automatic rewrites from:

square

identity

this simplifies to:

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Using Rewrite Rules Automatically

square id :

|-------

[1] square(id) = id

Rule? (assert)

identity rewrites id * id

to id

square rewrites square(id)

to id

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Rewriting with Theories

square id :

|-------

{1} square(id) = id

Rule? (auto-rewrite-theory "group")

Rewriting relative to the theory: group,

this simplifies to:

square id :

|-------

[1] square(id) = id

Rule? (assert)

.

.

.

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

grind using Rewrite Rules

square id :

|-------

{1} square(id) = id

Rule? (grind :theories "group")

identity rewrites id * id

to id

square rewrites square(id)

to id

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.

grind is a complex strategy that sets up rewrite rules from
theories and definitions used in the goal sequent, and then applies
reduce to apply quantifier and simplification commands.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Numbers in PVS

All the examples so far used the type bool or an
uninterpreted type T .

Numbers are characterized by the types:

real: The type of real numbers with operations +, −, ∗, /.
rat: Rational numbers closed under +, −, ∗, /.
int: Integers closed under +, −, ∗.
nat: Natural numbers closed under +, ∗.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Predicate Subtypes

A type judgement is of the form a : T for term a and type T .

PVS has a subtype relation on types.

Type S is a subtype of T if all the elements of S are also
elements of T .

The subtype of a type T consisting of those elements
satisfying a given predicate p is give by {x : T | p(x)}.
For example nat is defined as {i : int | i >= 0}, so nat

is a subtype of int.

int is also a subtype of rat which is a subtype of real.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Type Correctness Conditions

All functions are taken to be total, i.e., f (a1, . . . , an) always
represents a valid element of the range type.

The division operation represents a challenge since it is
undefined for zero denominators.

With predicate subtyping, division can be typed to rule out
zero denominators.

nzreal: NONEMPTY_TYPE = {r: real | r /= 0} CONTAINING 1

/: [real, nzreal -> real]

nzreal is defined as the nonempty type of real consisting of
the non-zero elements. The witness 1 is given as evidence for
nonemptiness.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Type Correctness Conditions

number_props : THEORY

BEGIN

x, y, z: VAR real

div1: CONJECTURE x /= y IMPLIES (x + y)/(x - y) /= 0

END number_props

Typechecking number props generates the proof obligation

% Subtype TCC generated (at line 6, column 44) for (x - y)

% proved - complete

div1_TCC1: OBLIGATION

FORALL (x, y: real): x /= y IMPLIES (x - y) /= 0;

Proof obligations arising from typechecking are called Type
Correctness Conditions (TCCs).

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Arithmetic Rewrite Rules

Using the refined type declarations

real_props: THEORY

BEGIN

w, x, y, z: VAR real

n0w, n0x, n0y, n0z: VAR nonzero_real

nnw, nnx, nny, nnz: VAR nonneg_real

pw, px, py, pz: VAR posreal

npw, npx, npy, npz: VAR nonpos_real

nw, nx, ny, nz: VAR negreal

.

.

.

END real_props

It is possible to capture very useful arithmetic simplifications
as rewrite rules.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Arithmetic Rewrite Rules

both_sides_times1: LEMMA (x * n0z = y * n0z) IFF x = y

both_sides_div1: LEMMA (x/n0z = y/n0z) IFF x = y

div_cancel1: LEMMA n0z * (x/n0z) = x

div_mult_pos_lt1: LEMMA z/py < x IFF z < x * py

both_sides_times_neg_lt1: LEMMA x * nz < y * nz IFF y < x

Nonlinear simplifications can be quite difficult in the absence of
such rewrite rules.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Arithmetic Typing Judgements

The + and * operations have the type [real, real ->

real].

Judgements can be used to give them more refined types —
especially useful for computing sign information for nonlinear
expressions.

px, py: VAR posreal

nnx, nny: VAR nonneg_real

nnreal_plus_nnreal_is_nnreal: JUDGEMENT

+(nnx, nny) HAS_TYPE nnreal

nnreal_times_nnreal_is_nnreal: JUDGEMENT

*(nnx, nny) HAS_TYPE nnreal

posreal_times_posreal_is_posreal: JUDGEMENT

*(px, py) HAS_TYPE posreal

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Subranges

The following parametric type definitions capture various
subranges of integers and natural numbers.

upfrom(i): NONEMPTY_TYPE = {s: int | s >= i} CONTAINING i

above(i): NONEMPTY_TYPE = {s: int | s > i} CONTAINING i + 1

subrange(i, j): TYPE = {k: int | i <= k AND k <= j}
upto(i): NONEMPTY_TYPE = {s: nat | s <= i} CONTAINING i

below(i): TYPE = {s: nat | s < i} % may be empty

Subrange types may be empty.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Recursion and Induction: Overview

We have covered the basic logic formulated as a sequent
calculus, and its realization in terms of PVS proof commands.

We have examined types and specifications involving numbers.

We now examine richer datatypes such as sets, arrays, and
recursive datatypes.

The interplay between the rich type information and
deduction is especially crucial.

PVS is merely used as an aid for teaching effective
formalization. Similar ideas can be used in informal
developments or with other mechanizations.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Recursive Definition

Many operations on integers and natural numbers are defined by
recursion.

summation: THEORY

BEGIN

i, m, n: VAR nat

sumn(n): RECURSIVE nat =

(IF n = 0 THEN 0 ELSE n + sumn(n - 1) ENDIF)

MEASURE n

sumn_prop: LEMMA

sumn(n) = (n*(n+1))/2

END summation

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Termination TCCs

A recursive definition must be well-founded or the function
might not be total, e.g., bad(x) = bad(x) + 1.

MEASURE m generates proof obligations ensuring that the
measure m of the recursive arguments decreases according to
a default well-founded relation given by the type of m.

MEASURE m BY r can be used to specify a well-founded
relation.

% Subtype TCC generated (at line 8, column 34) for n - 1

sumn_TCC1: OBLIGATION

FORALL (n: nat): NOT n = 0 IMPLIES n - 1 >= 0;

% Termination TCC generated (at line 8, column 29) for sumn

sumn_TCC2: OBLIGATION

FORALL (n: nat): NOT n = 0 IMPLIES n - 1 < n;

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Termination: Ackermann’s function

Proof obligations are also generated corresponding to the
termination conditions for nested recursive definitions.

ack(m,n): RECURSIVE nat =

(IF m=0 THEN n+1

ELSIF n=0 THEN ack(m-1,1)

ELSE ack(m-1, ack(m, n-1))

ENDIF)

MEASURE lex2(m, n)

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Termination: McCarthy’s 91-function

f91: THEORY

BEGIN

i, j: VAR nat

g91(i): nat = (IF i > 100 THEN i - 10 ELSE 91 ENDIF)

f91(i) : RECURSIVE {j | j = g91(i)}
= (IF i>100

THEN i-10

ELSE f91(f91(i+11))

ENDIF)

MEASURE (IF i>101 THEN 0 ELSE 101-i ENDIF)

END f91

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proof by Induction

sumn_prop :

|-------

{1} FORALL (n: nat): sumn(n) = (n * (n + 1)) / 2

Rule? (induct "n")

Inducting on n on formula 1,

this yields 2 subgoals:

sumn_prop.1 :

|-------

{1} sumn(0) = (0 * (0 + 1)) / 2

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proof by Induction

Rule? (expand "sumn")

Expanding the definition of sumn,

this simplifies to:

sumn_prop.1 :

|-------

{1} 0 = 0 / 2

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of sumn_prop.1.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proof by Induction

sumn_prop.2 :

|-------

{1} FORALL j:

sumn(j) = (j * (j + 1)) / 2 IMPLIES

sumn(j + 1) = ((j + 1) * (j + 1 + 1)) / 2

Rule? (skosimp)

Skolemizing and flattening,

this simplifies to:

sumn_prop.2 :

{-1} sumn(j!1) = (j!1 * (j!1 + 1)) / 2

|-------

{1} sumn(j!1 + 1) = ((j!1 + 1) * (j!1 + 1 + 1)) / 2

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proof by Induction

Rule? (expand "sumn" +)

Expanding the definition of sumn,

this simplifies to:

sumn_prop.2 :

[-1] sumn(j!1) = (j!1 * (j!1 + 1)) / 2

|-------

{1} 1 + sumn(j!1) + j!1 = (2 + j!1 + (j!1 * j!1 + 2 * j!1)) / 2

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of sumn_prop.2.

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

An Induction/Simplification Strategy

sumn_prop :

|-------

{1} FORALL (n: nat): sumn(n) = (n * (n + 1)) / 2

Rule? (induct-and-simplify "n")

sumn rewrites sumn(0)

to 0

sumn rewrites sumn(1 + j!1)

to 1 + sumn(j!1) + j!1

By induction on n, and by repeatedly rewriting and simplifying,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Summary

Variables allow general facts to be stated, proved, and
instantiated over interesting datatypes such as numbers.

Proof commands for quantifiers include skolem, skolem!,
skosimp, skosimp*, inst, inst?, reduce.

Proof commands for reasoning with definitions and lemmas
include lemma, expand, rewrite, auto-rewrite,
auto-rewrite-theory, assert, and grind.

Predicate subtypes with proof obligation generation allow
refined type definitions.

Commands for reasoning with numbers include induct,
assert, grind, induct-and-simplify.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Exercise

1 Define an operations for extracting the quotient and
remainder of a natural number with respect to a nonzero
natural number, and prove its correctness.

2 Define an addition operation over two n-digit numbers over a
base b (b > 1) represented as arrays, and prove its
correctness.

3 Define a function for taking the greatest common divisor of
two natural numbers, and state and prove its correctness.

4 Prove the decidability of first-order logic over linear arithmetic
equalities and inequalities over the reals.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Higher-Order Logic: Overview

Thus far, variables ranged over ordinary datatypes such as
numbers, and the functions and predicates were fixed
(constants).

Higher order logic allows free and bound variables to range
over functions and predicates as well.

This requires strong typing for consistency, otherwise, we
could define R(x) = ¬x(x), and derive R(R) = ¬R(R).

Higher order logic can express a number of interesting
concepts and datatypes that are not expressible within
first-order logic: transitive closure, fixpoints, finiteness, etc.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Types in Higher Order Logic

Base types: bool, nat, real

Tuple types: [T1, . . . ,Tn] for types T1, . . . , Tn.

Tuple terms: (a1, . . . , an)

Projections: πi (a)

Function types: [T1→T2] for domain type T1 and range type
T2.

Lambda abstraction: λ(x : T1) : a

Function application: f a.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Semantics of Higher Order Types

[[bool]] = {0, 1}
[[real]] = R

[[[T1, . . . ,Tn]]] = [[T1]]× . . .× [[Tn]]

[[[T1→T2]]] = [[T2]][[T1]]

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Higher-Order Proof Rules

β-reduction
Γ ` (λ(x : T) : a)(b) = a[b/x],∆

Extensionality
Γ ` (∀(x : T) : f (x) = g(x)),∆

Γ ` f = g ,∆

Projection
Γ ` πi (a1, . . . , an) = ai ,∆

Tuple Ext.
Γ ` π1(a) = π1(b),∆, . . . , Γ ` πn(a) = πi (b),∆

Γ ` a = b,∆

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Tuple and Function Expressions in PVS

Tuple type: [T 1,..., T n].

Tuple expression: (a 1,..., a n). (a) is identical to a.

Tuple projection: PROJ 3(a) or a‘3.

Function type: [T 1 -> T 2]. The type [[T 1, ..., T n]

-> T] can be written as [T 1, ..., T n -> T].

Lambda Abstraction: LAMBDA x, y, z: x * (y + z).

Function Application: f(a 1,..., a n)

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Induction in Higher Order Logic

Given pred : TYPE = [T -> bool]

p: VAR pred[nat]

nat_induction: LEMMA

(p(0) AND (FORALL j: p(j) IMPLIES p(j+1)))

IMPLIES (FORALL i: p(i))

nat induction is derived from well-founded induction, as are
other variants like structural recursion, measure induction.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Higher-Order Specification: Functions

functions [D, R: TYPE]: THEORY

BEGIN

f, g: VAR [D -> R]

x, x1, x2: VAR D

extensionality_postulate: POSTULATE

(FORALL (x: D): f(x) = g(x)) IFF f = g

congruence: POSTULATE f = g AND x1 = x2 IMPLIES f(x1) = g(x2)

eta: LEMMA (LAMBDA (x: D): f(x)) = f

injective?(f): bool =

(FORALL x1, x2: (f(x1) = f(x2) => (x1 = x2)))

surjective?(f): bool = (FORALL y: (EXISTS x: f(x) = y))

bijective?(f): bool = injective?(f) & surjective?(f)

.

.

.

END functions

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Sets are Predicates

sets [T: TYPE]: THEORY

BEGIN

set: TYPE = [t -> bool]

x, y: VAR T

a, b, c: VAR set

member(x, a): bool = a(x)

empty?(a): bool = (FORALL x: NOT member(x, a))

emptyset: set = {x | false}

subset?(a, b): bool = (FORALL x: member(x, a) => member(x, b))

union(a, b): set = {x | member(x, a) OR member(x, b)}
.
.
.

END sets

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Useful Higher Order Datatypes: Finite Sets

Finite sets: Predicate subtypes of sets that have an injective map
to some initial segment of nat.

finite_sets_def[T: TYPE]: THEORY

BEGIN

x, y, z: VAR T

S: VAR set[T]

N: VAR nat

is_finite(S): bool = (EXISTS N, (f: [(S) -> below[N]]):

injective?(f))

finite_set: TYPE = (is_finite) CONTAINING emptyset[T]

.

.

.

END finite_sets_def

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Useful Higher Order Datatypes: Sequences

sequences[T: TYPE]: THEORY

BEGIN

sequence: TYPE = [nat->T]

i, n: VAR nat

x: VAR T

p: VAR pred[T]

seq: VAR sequence

nth(seq, n): T = seq(n)

suffix(seq, n): sequence =

(LAMBDA i: seq(i+n))

delete(n, seq): sequence =

(LAMBDA i: (IF i < n THEN seq(i) ELSE seq(i + 1) ENDIF))

.

.

.

END sequences

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Arrays

Arrays are just functions over a subrange type.

An array of size N over element type T can be defined as

INDEX: TYPE = below(N)

ARR: TYPE = ARRAY[INDEX -> T]

The k’th element of an array A is accessed as A(k-1).

Out of bounds array accesses generate unprovable proof
obligations.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Function and Array Updates

Updates are a distinctive feature of the PVS language.

The update expression f WITH [(a) := v] (loosely
speaking) denotes the function (LAMBDA i: IF i = a

THEN v ELSE f(i) ENDIF).

Nested update f WITH [(a 1)(a 2) := v] corresponds to f

WITH [(a 1) := f(a 1) WITH [(a 2) := v]].

Simultaneous update f WITH [(a 1) := v 1, (a 2) :=

v 2] corresponds to (f WITH [(a 1) := v 1]) WITH

[(a 2) := v 2].

Arrays can be updated as functions. Out of bounds updates
yield unprovable TCCs.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Record Types

Record types: [#l1 : T1, . . . ln : Tn#], where the li are labels
and Ti are types.

Records are a variant of tuples that provided labelled access
instead of numbered access.

Record access: l(r) or r‘l for label l and record expression
r.

Record updates: r WITH [‘l := v] represents a copy of
record r where label l has the value v.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proofs with Updates

array_record : THEORY

BEGIN

ARR: TYPE = ARRAY[below(5) -> nat]

rec: TYPE = [# a : below(5), b : ARR #]

r, s, t: VAR rec

test: LEMMA r WITH [‘b(r‘a) := 3, ‘a := 4] =

(r WITH [‘a := 4]) WITH [‘b(r‘a) := 3]

test2: LEMMA r WITH [‘b(r‘a) := 3, ‘a := 4] =

(# a := 4, b := (r‘b WITH [(r‘a) := 3]) #)

END array_record

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proofs with Updates

test :

|-------

{1} FORALL (r: rec):

r WITH [(b)(r‘a) := 3, (a) := 4] =

(r WITH [(a) := 4]) WITH [(b)(r‘a) := 3]

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proofs with Updates

test2 :

|-------

{1} FORALL (r: rec):

r WITH [(b)(r‘a) := 3, (a) := 4] =

(# a := 4, b := (r‘b WITH [(r‘a) := 3]) #)

Rule? (skolem!)

Skolemizing,

this simplifies to:

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Proofs with Updates

test2 :

|-------

{1} r!1 WITH [(b)(r!1‘a) := 3, (a) := 4] =

(# a := 4, b := (r!1‘b WITH [(r!1‘a) := 3]) #)

Rule? (apply-extensionality)

Applying extensionality,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Dependent Types

Dependent records have the form
[#l1 : T1, l2 : T2(l1), . . . , ln : TN(l1, . . . , ln−1)#].

finite_sequences [T: TYPE]: THEORY

BEGIN

finite_sequence: TYPE

= [# length: nat, seq: [below[length] -> T] #]

END finite_sequences

Dependent function types have the form [x : T1→T2(x)]

abs(m): {n: nonneg_real | n >= m}
= IF m < 0 THEN -m ELSE m ENDIF

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

Theories/Definitions
Predicate Subtypes
Recursion
Higher-order logic
Updates/Dependent Types

Summary

Higher order variables and quantification admit the definition
of a number of interesting concepts and datatypes.

We have given higher-order definitions for functions, sets,
sequences, finite sets, arrays.

Dependent typing combines nicely with predicate subtyping as
in finite sequences.

Record and function updates are powerful operations.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Lecture 3: Applications

The third lecture combines the language and proof capabilities
from the first two lectures.
We look at examples such as

1 Equivalence of deterministic and nondeterministic finite
automata

2 Knaster–Tarski theorem

3 Continuation-based Program Transformation

4 Big Number Arithmetic

5 Ordered Binary Trees

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Deterministic and Nondeterministic Automata

The equivalence of deterministic and nondeterministic
automata through the subset construction is a basic theorem
in computing.

In higher-order logic, sets (over a type A) are defined as
predicates over A.

The set operations are defined as

member(x, a): bool = a(x)

emptyset: set = {x | false}
subset?(a, b): bool = (FORALL x: member(x, a) => member(x, b))

union(a, b): set = {x | member(x, a) OR member(x, b)}

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Image and Least Upper Bound

Given a function f from domain D to range R and a set X on
D, the image operation returns a set over R.

image(f, X): set[R] = {y: R | (EXISTS (x:(X)): y = f(x))}

Given a set of sets X of type T, the least upper bound is the
union of all the sets in X .

lub(setofpred): pred[T] =

LAMBDA s: EXISTS p: member(p,setofpred) AND p(s)

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Deterministic Automata

DFA [Sigma : TYPE,

state : TYPE,

start : state,

delta : [Sigma -> [state -> state]],

final? : set[state]] : THEORY

BEGIN

DELTA((string : list[Sigma]))((S : state)):

RECURSIVE state =

(CASES string OF

null : S,

cons(a, x): delta(a)(DELTA(x)(S))

ENDCASES)

MEASURE length(string)

DAccept?((string : list[Sigma])) : bool =

final?(DELTA(string)(start))

END DFA

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Nondeterministic Automata

NFA [Sigma : TYPE,

state : TYPE,

start : state,

ndelta : [Sigma -> [state -> set[state]]],

final? : set[state]] : THEORY

BEGIN

NDELTA((string : list[Sigma]))((s : state)) :

RECURSIVE set[state] =

(CASES string OF

null : singleton(s),

cons(a, x): lub(image(ndelta(a), NDELTA(x)(s)))

ENDCASES)

MEASURE length(string)

Accept?((string : list[Sigma])) : bool =

(EXISTS (r : (final?)) :

member(r, NDELTA(string)(start)))

END NFA

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

DFA/NFA Equivalence

equiv[Sigma : TYPE,

state : TYPE,

start : state,

ndelta : [Sigma -> [state -> set[state]]],

final? : set[state]]: THEORY

BEGIN

IMPORTING NFA[Sigma, state, start, ndelta, final?]

dstate: TYPE = set[state]

delta((symbol : Sigma))((S : dstate)): dstate =

lub(image(ndelta(symbol), S))

dfinal?((S : dstate)) : bool =

(EXISTS (r : (final?)) : member(r, S))

dstart : dstate = singleton(start)

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

DFA/NFA Equivalence

IMPORTING DFA[Sigma, dstate, dstart, delta, dfinal?]

main: LEMMA

(FORALL (x : list[Sigma]), (s : state):

NDELTA(x)(s) = DELTA(x)(singleton(s)))

equiv: THEOREM

(FORALL (string : list[Sigma]):

Accept?(string) IFF DAccept?(string))

END equiv

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Tarski–Knaster Theorem

Tarski_Knaster [T : TYPE, <= : PRED[[T, T]], glb : [set[T] -> T]]

: THEORY

BEGIN

ASSUMING

x, y, z: VAR T

X, Y, Z : VAR set[T]

f, g : VAR [T -> T]

antisymmetry: ASSUMPTION x <= y AND y <= x IMPLIES x = y

transitivity : ASSUMPTION x <= y AND y <= z IMPLIES x <= z

glb_is_lb: ASSUMPTION X(x) IMPLIES glb(X) <= x

glb_is_glb: ASSUMPTION

(FORALL x: X(x) IMPLIES y <= x) IMPLIES y <= glb(X)

ENDASSUMING
.
.
.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Tarski–Knaster Theorem

.

.

.

mono?(f): bool = (FORALL x, y: x <= y IMPLIES f(x) <= f(y))

lfp(f) : T = glb({x | f(x) <= x})

TK1: THEOREM

mono?(f) IMPLIES

lfp(f) = f(lfp(f))

END Tarski_Knaster

Monotone operators on complete lattices have fixed points. The
fixed point defined above can be shown to be the least such fixed
point.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Continuation-Based Program Transformation

wand [dom, rng: TYPE, %function domain, range

a: [dom -> rng], %base case function

d: [dom-> rng], %recursion parameter

b: [rng, rng -> rng],%continuation builder

c: [dom -> dom], %recursion destructor

p: PRED[dom], %branch predicate

m: [dom -> nat], %termination measure

F : [dom -> rng]] %tail-recursive function

: THEORY

BEGIN
.
.
.

END wand

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Continuation-Based Program Transformation (contd.)

ASSUMING %3 assumptions: b associative,

% c decreases measure, and

% F defined recursively

% using p, a, b, c, d.

u, v, w: VAR rng

assoc: ASSUMPTION b(b(u, v), w) = b(u, b(v, w))

x, y, z: VAR dom

wf : ASSUMPTION NOT p(x) IMPLIES m(c(x)) < m(x)

F_def: ASSUMPTION

F(x) =

(IF p(x) THEN a(x) ELSE b(F(c(x)), d(x)) ENDIF)

ENDASSUMING

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Continuation-Based Program Transformation (contd.)

f: VAR [rng -> rng]

%FC is F redefined with explicit continuation f.

FC(x, f) : RECURSIVE rng =

(IF p(x)

THEN f(a(x))

ELSE FC(c(x), (LAMBDA u: f(b(u, d(x)))))

ENDIF)

MEASURE m(x)

%FFC is main invariant relating FC and F.

FFC: LEMMA FC(x, f) = f(F(x))

%FA is FC with accumulator replacing continuation.

FA(x, u): RECURSIVE rng =

(IF p(x)

THEN b(a(x), u)

ELSE FA(c(x), b(d(x), u)) ENDIF)

MEASURE m(x)

%Main invariant relating FA and FC.

FAFC: LEMMA FA(x, u) = FC(x, (LAMBDA w: b(w, u)))

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Recursive Datatypes: Overview

Recursive datatypes like lists, stacks, queues, binary trees, leaf
trees, and abstract syntax trees, are commonly used in
specification.

Manual axiomatizations for datatypes can be error-prone.

Verification system should (and many do) automatically
generate datatype theories.

The PVS DATATYPE construct introduces recursive datatypes
that are freely generated by given constructors, including lists,
binary trees, abstract syntax trees, but excluding bags and
queues.

The PVS proof checker automates various datatype
simplifications.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Lists and Recursive Datatypes

A list datatype with constructors null and cons is declared as

list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

The accessors for cons are car and cdr.

The recognizers are null? for null and cons? for
cons-terms.

The declaration generates a family of theories with the
datatype axioms, induction principles, and some useful
definitions.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Introducing PVS: Number Representation

bignum [base : above(1)] : THEORY

BEGIN

l, m, n: VAR nat

cin : VAR upto(1)

digit : TYPE = below(base)

JUDGEMENT 1 HAS_TYPE digit

i, j, k: VAR digit

bignum : TYPE = list[digit]

X, Y, Z, X1, Y1: VAR bignum

val(X) : RECURSIVE nat =

CASES X of

null: 0,

cons(i, Y): i + base * val(Y)

ENDCASES

MEASURE length(X);

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Adding a Digit to a Number

+(X, i): RECURSIVE bignum =

(CASES X of

null: cons(i, null),

cons(j, Y):

(IF i + j < base

THEN cons(i+j, Y)

ELSE cons(i + j - base, Y + 1)

ENDIF)

ENDCASES)

MEASURE length(X);

correct_plus: LEMMA

val(X + i) = val(X) + i

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Adding Two Numbers

bigplus(X, Y, (cin : upto(1))): RECURSIVE bignum =

CASES X of

null: Y + cin,

cons(j, X1):

CASES Y of

null: X + cin,

cons(k, Y1):

(IF cin + j + k < base

THEN cons((cin + j + k - base),

bigplus(X1, Y1, 1))

ELSE cons((cin + j + k), bigplus(X1, Y1, 0))

ENDIF)

ENDCASES

ENDCASES

MEASURE length(X)

bigplus_correct: LEMMA

val(bigplus(X, Y, cin)) = val(X) + val(Y) + cin

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Binary Trees

Parametic in value type T.

Constructors: leaf and node.

Recognizers: leaf? and node?.

node accessors: val, left, and right.

binary_tree[T : TYPE] : DATATYPE

BEGIN

leaf : leaf?

node(val : T, left : binary_tree, right : binary_tree) : node?

END binary_tree

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Theories Axiomatizing Binary Trees

The binary tree declaration generates three theories
axiomatizing the binary tree data structure:

binary tree adt: Declares the constructors, accessors, and
recognizers, and contains the basic axioms for extensionality
and induction, and some basic operators.
binary tree adt map: Defines map operations over the
datatype.
binary tree adt reduce: Defines an recursion scheme over
the datatype.

Datatype axioms are already built into the relevant proof
rules, but the defined operations are useful.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Basic Binary Tree Theory

binary_tree_adt[T: TYPE]: THEORY

BEGIN

binary_tree: TYPE

leaf?, node?: [binary_tree -> boolean]

leaf: (leaf?)

node: [[T, binary_tree, binary_tree] -> (node?)]

val: [(node?) -> T]

left: [(node?) -> binary_tree]

right: [(node?) -> binary_tree]

.

.

.

END binary_tree_adt

Predicate subtyping is used to precisely type constructor terms and
avoid misapplied accessors.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

An Extensionality Axiom per Constructor

Extensionality states that a node is uniquely determined by its
accessor fields.

binary_tree_node_extensionality: AXIOM

(FORALL (node?_var: (node?)),

(node?_var2: (node?)):

val(node?_var) = val(node?_var2)

AND left(node?_var) = left(node?_var2)

AND right(node?_var) = right(node?_var2)

IMPLIES node?_var = node?_var2)

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Accessor/Constructor Axioms

Asserts that val(node(v, A, B)) = v.

binary_tree_val_node: AXIOM

(FORALL (node1_var: T), (node2_var: binary_tree),

(node3_var: binary_tree):

val(node(node1_var, node2_var, node3_var)) = node1_var)

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

An Induction Axiom

Conclude FORALL A: p(A) from p(leaf) and
p(A) ∧ p(B) ⊃ p(node(v, A, B)).

binary_tree_induction: AXIOM

(FORALL (p: [binary_tree -> boolean]):

p(leaf)

AND

(FORALL (node1_var: T), (node2_var: binary_tree),

(node3_var: binary_tree):

p(node2_var) AND p(node3_var)

IMPLIES p(node(node1_var, node2_var, node3_var)))

IMPLIES (FORALL (binary_tree_var: binary_tree):

p(binary_tree_var)))

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Pattern-matching Branching

The CASES construct is used to branch on the outermost
constructor of a datatype expression.

We implicitly assume the disjointness of (node?) and
(leaf?):

CASES leaf OF

leaf : u,
node(a, y, z) : v(a, y, z)
ENDCASES

= u

CASES node(b, w, x) OF

leaf : u,
node(a, y, z) : v(a, y, z)
ENDCASES

= v(b, w, x)

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Useful Generated Combinators

reduce_nat(leaf?_fun:nat, node?_fun:[[T, nat, nat] -> nat]):

[binary_tree -> nat] = ...

every(p: PRED[T])(a: binary_tree): boolean = ...

some(p: PRED[T])(a: binary_tree): boolean = ...

subterm(x, y: binary_tree): boolean = ...

map(f: [T -> T1])(a: binary_tree[T]): binary_tree[T1] = ...

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Ordered Binary Trees

Ordered binary trees can be introduced by a theory that is
parametric in the value type as well as the ordering relation.

The ordering relation is subtyped to be a total order.

total_order?(<=): bool = partial_order?(<=) & dichotomous?(<=)

obt [T : TYPE, <= : (total_order?[T])] : THEORY

BEGIN

IMPORTING binary_tree[T]

A, B, C: VAR binary_tree

x, y, z: VAR T

pp: VAR pred[T]

i, j, k: VAR nat

.

.

.

END obt

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

The size Function

The number of nodes in a binary tree can be computed by the
size function which is defined using reduce nat.

size(A) : nat =

reduce_nat(0, (LAMBDA x, i, j: i + j + 1))(A)

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

The Ordering Predicate

Recursively checks that the left and right subtrees are ordered, and
that the left (right) subtree values lie below (above) the root value.

ordered?(A) : RECURSIVE bool =

(IF node?(A)

THEN (every((LAMBDA y: y<=val(A)), left(A)) AND

every((LAMBDA y: val(A)<=y), right(A)) AND

ordered?(left(A)) AND

ordered?(right(A)))

ELSE TRUE

ENDIF)

MEASURE size

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Insertion

Compares x against root value and recursively inserts into the
left or right subtree.

insert(x, A): RECURSIVE binary_tree[T] =

(CASES A OF

leaf: node(x, leaf, leaf),

node(y, B, C): (IF x<=y THEN node(y, insert(x, B), C)

ELSE node(y, B, insert(x, C))

ENDIF)

ENDCASES)

MEASURE (LAMBDA x, A: size(A))

The following is a very simple property of insert.

ordered?_insert_step: LEMMA

pp(x) AND every(pp, A) IMPLIES every(pp, insert(x, A))

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Proof of insert property

ordered?_insert_step :

|-------

{1} (FORALL (A: binary_tree[T], pp: pred[T], x: T):

pp(x) AND every(pp, A) IMPLIES every(pp, insert(x, A)))

Rule? (induct-and-simplify "A")

every rewrites every(pp!1, leaf)

to TRUE

insert rewrites insert(x!1, leaf)

to node(x!1, leaf, leaf)

every rewrites every(pp!1, node(x!1, leaf, leaf))

to TRUE
.
.
.

By induction on A, and by repeatedly rewriting and simplifying,

Q.E.D.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Orderedness of insert

ordered?_insert: THEOREM

ordered?(A) IMPLIES ordered?(insert(x, A))

is proved by the 4-step PVS proof

(""

(induct-and-simplify "A" :rewrites "ordered?_insert_step")

(rewrite "ordered?_insert_step")

(typepred "obt.<=")

(grind :if-match all))

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Automated Datatype Simplifications

binary_props[T : TYPE] : THEORY

BEGIN

IMPORTING binary_tree_adt[T]

A, B, C, D: VAR binary_tree[T]

x, y, z: VAR T

leaf_leaf: LEMMA leaf?(leaf)

node_node: LEMMA node?(node(x, B, C))

leaf_leaf1: LEMMA A = leaf IMPLIES leaf?(A)

node_node1: LEMMA A = node(x, B, C) IMPLIES node?(A)

val_node: LEMMA val(node(x, B, C)) = x

leaf_node: LEMMA NOT (leaf?(A) AND node?(A))

node_leaf: LEMMA leaf?(A) OR node?(A)

leaf_ext: LEMMA (FORALL (A, B: (leaf?)): A = B)

node_ext: LEMMA

(FORALL (A : (node?)) : node(val(A), left(A), right(A)) = A)

END binary_props

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Inline Datatypes

combinators : THEORY

BEGIN

combinators: DATATYPE

BEGIN

K: K?

S: S?

app(operator, operand: combinators): app?

END combinators

x, y, z: VAR combinators

reduces_to: PRED[[combinators, combinators]]

K: AXIOM reduces_to(app(app(K, x), y), x)

S: AXIOM reduces_to(app(app(app(S, x), y), z),

app(app(x, z), app(y, z)))

END combinators

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Scalar Datatypes

colors: DATATYPE

BEGIN

red: red?

white: white?

blue: blue?

END colors

The above verbose inline declaration can be abbreviated as:

colors: TYPE = {red, white, blue}

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Disjoint Unions

disj_union[A, B: TYPE] : DATATYPE

BEGIN

inl(left : A): inl?

inr(right : B): inr?

END disj_union

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Mutually Recursive Datatypes

PVS does not directly support mutually recursive datatypes.

These can be defined as subdatatypes (e.g., term, expr) of a
single datatype.

arith: DATATYPE WITH SUBTYPES expr, term

BEGIN

num(n:int): num? :term

sum(t1:term,t2:term): sum? :term

% ...

eq(t1: term, t2: term): eq? :expr

ift(e: expr, t1: term, t2: term): ift? :term

% ...

END arith

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Summary

The PVS datatype mechanism succinctly captures a large
class of useful datatypes by exploiting predicate subtypes and
higher-order types.

Datatype simplifications are built into the primitive inference
mechanisms of PVS.

This makes it possible to define powerful and flexible
high-level strategies.

The PVS datatype is loosely inspired by the Boyer-Moore
Shell principle.

Other systems HOL [Melham89, Gunter93] and Isabelle
[Paulson] have similar datatype mechanisms as a provably
conservative extension of the base logic.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

The Specification Challenge

Specifications are a prerequisite for verification.

Many serious flaws are already introduced in the requirements
gathering phase through missing, incomplete, incompatible, or
ambiguous specifications.

Specifying security, concurrency, fault tolerance, and real-time
properties is a difficult art.

Formally modeling domains like power grid, control systems,
transportation, and commerce can be quite challenging.

Strong analytic tools are needed for analyzing specifications
for flaws.

Since specifications are not always executable, this is one area
where formal methods can definitely earn its keep.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

The Design Challenge

Software design methodologies are still in their infancy.

Due to the paucity of specification tools, we currently rely on
a build-and-test approach to software.

Hence, critical specifications may only be discovered late in
the construction.

Methodologies like extreme programming make a virtue of the
ephemeral nature of specifications.

However, good software design is also good mathematics. It
requires powerful abstractions (like synchronous languages),
precise interfaces, and verifiable properties.

Design and verification must coexist so that the software that
is developed is correct by construction, and remains correct
through maintenance.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

The Verification Challenge

There are diverse approaches to verification and it is too early
to bet on any of these.

Verification technology must be exploited to enhance the
productivity of software designers and developers.

The short-term goal is establish the absence of run-time errors
(buffer overflow, numeric overflow and underflow,
out-of-bounds access, uncaught exceptions, nontermination,
deadlock, livelock) in low-level code.

The medium-term goal is to verify strong properties and
interfaces for software systems and libraries.

The long-term goal is demonstrate the safety, security, and
reliability of applications built on formally verified platforms,
services, and libraries.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

Verification: Not by Technology Alone

Technology alone will not be sufficient for effective
verification.

The requirements still have to be spelled out clearly.

The software architecture must yield a clear separation of
concerns, coherent abstractions, and precise interfaces that
guide the construction of the software as well as its
correctness proof.

Design issues like security, fault tolerance, and adaptability
require engineering judgement.

Verification must be the enabling technology for a discipline of
software engineering that is based on a rigorous modeling,
detailed semantic definitions, elegant mathematics, and
engineering and algorithm insight.

N. Shankar Interactive Theorem Proving with PVS

Background
Basic Proof Construction

Proof Obligations
Applications

DFA/NFA Equivalence
Tarski–Knaster Theorem
Program Transformation
Big Numbers
Ordered Binary Trees

The Future of Verification

The future of verification lies in the aggressive and tasteful
use of logic, automation, and interaction.

Expressive logics are needed for large-scale specifications and
semantic definitions.

Aggressive automation is needed for managing large-scale
formal development.

Interaction allows automation to be controlled with human
insight, judgement, and creativity.

With proper integration into design tools, automated formal
methods ought to be able to support the productive (>5KLOC
per programmer-year) development of verified software.

N. Shankar Interactive Theorem Proving with PVS

	Background
	Logic
	PVS Overview

	Basic Proof Construction
	Propositional Logic
	Equality/Conditionals
	Quantifiers

	Proof Obligations
	Theories/Definitions
	Predicate Subtypes
	Recursion
	Higher-order logic
	Updates/Dependent Types

	Applications
	DFA/NFA Equivalence
	Tarski–Knaster Theorem
	Program Transformation
	Big Numbers
	Ordered Binary Trees

