Incremental Verification and
_ Validation of System
— Architecture for Software
Reliant Systems Using AADL
_ (Architecture Analysis &
N

Design Language)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Layered Assurance Workshop, Dec 6, 2010

_ Bruce Lewis (US Army), Peter H Feiler (SEI)

=== Software Engineering Institute | CarnegieMellon © 2010 Camnege eton Unversiy

AADL
Gravity of the Issue Today

A System Complexity is Growing Rapidly...

Estimated Onboard SLOC Growth
Slope: 0.1778 Intercept. -338.5
Curve Implies SLOC doubles about every 4 years j
20

o209
M J3am
18 i 3 ﬁ' R .
: 5 ? This line fit is pegged at 27.5 M SLOC
. ; : : v because the SLOC sizes for 2010 -
(L lon Lo i E s, ' SRR SRy, G 2020 are not affordable. The COCOMO
2 : B77/ 4M : : N I estimated costs to develop that much
2 software is in excess of $10B
‘(6 14. - B73747€)K " A320800K * Stralght “ne prov— ﬁt
2 B4 : - A310: 4OOK : T
£ gok... B767: ST G o SN SN = Boeing aircraft
<} B757: : <= Airbus aircraft
= - A3®OFF 4OK <= Not affordable extrapolation
1 ' A o ' Airbus data source: J. P. Potocki De Montalk,
“Computer Software in Civil Aircraft,” Sixth
8.. 63008 4-.6K , A nnua/ Conference 0f7 SOﬂW&re Assurance
‘ INS: O 8K (Compass ‘91), Gaithersburg, MD, June 24-27,1991
6 Boeing data source: J. J. Chilenski, 2009
1960 1 970 1 980 1990 2000 2010 2020

Acronyms: Year

SLOC: source lines of code
COCOMO II: COnstructive COst MOdel I

System and Software Architecture Using

=== Software Engineering Institute | CarnegieMellon £

Feiler, Nov 2010
© 2010 Carnegie Mellon University

AADL

Late Discovery of System-Level Problems

80% of accidents due to operator error
High recertification cost of design error corrections 20.5% 110x
leads to 75% of operator time spent in work-arounds

Requirements o
Engineering *, '

*

Acceptance
* Test

g 0 i
interaction errors at high rework &
Systen. - recertification cost
Design %, System
%, Test
~. (70%, 3.5% 1x
Software P £
Architectural 60% of errors in fault management software - Integration
Design . Test
System-level fault propagation due to incomplete/inconsistent
requirements and mismatched assumptions.
Component %, g
Software ‘. o
Design \‘ 20%’ 16% .,'. U
% A nit
) 5x A Test
Sources: ‘x‘ :.'
NIST Planning report 02-3, The Economic Impacts of Inadequate %, O ;
Infrastructure for Software Testing, May 2002. "’ ." Where f aults are 'ntrOduced
D. Galin, Software Quality Assurance: From Theory to Implementation, %, S Where faults are found
Pearson/Addison-Wesley (2004) % ," . .
B.W. Boehm, Software Engineering Economics, Prentice Hall (1981) \‘ g The estimated nominal cost for fault removal
Code
= Development System and Software Architecture Using
T — - - - . AADL
== Software Engineering Institute \ Carnegie Mellon Feiler. Nov 2010 3

© 2010 Carnegie Mellon University

| “AADL
New Levels of System Interaction Complexity &

Mismatched Assumptions — AADL addresses

Physical Plant

Sys.tem Characteristics Control
System Engineer Lag, proximity Engineer
User Model recalibration Data Representation
Ariane 4/5: 16-bit data
H 0 System Control Air Canada: gal vs. |
uman Under System
Control
Data Streams : .
Operator Error Unstable control & Appllcatlon
Brtver (e inconsistent state Developer
due to jitter and loss
Compute @ Runtime Agp]['cat'on
Platform Architecture JIUTENE
Distribution & Redundancy Concurrency
Loss of redundancy & other Race conditions crash applications
hazards due to HW Virtualization designed for single-core on multi-cores

Embedded SW System Engineer

Software runtime system impacts safety-critical software & system properties

System and Software Architecture Using
AADL

%% Software Engineering Institute | CarnegieMellon . o 2010 :

© 2010 Carnegie Mellon University

Fault Root Causes Due to Runtime System AADL
Architecture

Violation of data stream assumptions

Data (stream) consistency
End-to-end latency analysis

- Stream miss rates, Mismatched data representation, Latency jitter & age
Partitions as Isolation Regions Modeling of partitioned
- Space, time, and bandwidth partitioning architectures
- Isolation not guaranteed due to undocumented resource sharing

- fault containment, security levels, safety levels, distribution

Virtualization of time & resources Ul
security analysis
- Logical vs. physical redundancy redundancy patterns

- Time stamping of data & asynchronous systems
Inconsistent System States & Interactions

- Modal systems with modal components
. Concurrency & redundancy management Validation by model

o : : checking & proofs
- Application level interaction protocols

AADL concepts capture key
architecture abstractions to address

root causes . ,
e] . _ . System and Software Architecture Using
=== Software Engineering Institute ‘ CarnegieMellon 750

Feiler, Nov 2010
© 2010 Carnegie Mellon University

SAE Architecture Analysis & Design AADL
Language (AADL) for Embedded Systems

Focus on software

The System f runtime architecture
Control - | B8 2=
Guidance
Embedded -
Physical platform <:> Application Software [1
Aircraft Flight control & Mission] The Software
Deployed on
Utilizes

Physical interface

Platform component Computer System
Hardware & OS

The Computer System

major elements of a software-intensive system
based on architectural abstractions of each.

System and Software Architecture Using
AADL 6

=== Software Engineering Institute | CarnegieMellon 22> .

© 2010 Carnegie Mellon University

AADL
AADL: The Language

Designed for standardized incremental, composable, quantitative
analysis and generative system integration
Precise semantics for components & interactions

- Thread, process, data, subprogram, system, processor, memory, bus,
device, virtual processor, virtual bus, abstract

- Typed properties, properties with units and model reference values
Continuous control & event response processing

- Data and event flow, synchronous call/return, shared access

- End-to-End flow specifications, black box flow specs
Operational modes & fault tolerant configurations

- Modes & mode transition, mode specific properties & configurations
Modeling of large-scale systems

- Component variants, packaging of AADL models, public/private

Accommodation of diverse analysis needs
- Extension mechanism (property set, sublanguage) standardized

System and Software Architecture Using
AADL

=== Software Engineering Institute ‘ Carnegie Mellon Feiler, Nov 2010 7

© 2010 Carnegie Mellon University

AADL Annex Standard Extensions AADL

Behavior Annex (ballot passed 2010)
Concurrency behavior
Validation of implementation
ARNIC 653 Annex (ballot passed 2010)
Define 653 architectural elements in AADL for analysis
Generation of runtime & configuration file for 653-compliant O/S
Data Modeling Annex (ballot passed 2010)
Interface with data model in other modeling notation
Code Generation Annex (in review)
API & code patterns for different programming languages
Original annex in 2006
Error Model Annex (in revision)
Error behavior as architecture model annotation
Original annex in 2006

System and Software Architecture Using

=== Software Engineering Institute | CarnegieMellon 22> .

© 2010 Carnegie Mellon University

Architecture Execution Semantics Defined ~AADL
Components to S0S

Nominal & recovery

Fau It h an d I I n g thread abort * thread wnrecoverabls

- . 1 error detected
performing thread initialization e e g BT [T

Res O u rC e I O C ki n g +Recover:DeadIine

complete initialidation thread unrecoverablz
azzert = Intialize_Deadline error detected

. . +Recover_Deadline = Hyper de) azzert t= (ComputeltctivateDeactivate)_Deadline
Mode switching

+Recover_Degdline

L

complete deactivation
assert = Deactivate_Deadline
+Recover_Deadline

Initialization

suspended

awraiting mode
stop(pro cess
. . . stopiprocessor) t."_?read enter_l:l'u'lu_de}
FI n al I Zatl on abort{process) s‘tnp{s]{sEan} td;sﬂpatch activation
gﬂﬂﬁg Dc:r?,?m} : ‘ performing thread
v \

. erforming thread degctivation
petr;? rming activation 1

finalize ——
complete sctivation
stop (p ro CESS) assat = Activate_Deadline

stopiprocessor) +Recover_Deadling
stopisystem) v

Mod es assert fi2 Finalize_Deadi suspended
awaiting dispatch
Wait For Dispatch

il

Temporal Logic

f exitiMode)

Behavior Annex ? Enabled

dispatch cormput ation
te— 0

complete computation
assat = Compute_Deadline
+Recover_Deadline

—

Thread Example s, [roomre ot comnie
ano em
Diagram

System and Software Architecture Using

=== Software Engineering Institute ‘ CarnegieMellon 750 9 o

Feiler, Nov 2010
© 2010 Carnegie Mellon University

AADL
Potential Model-based Engineering Pitfalls

The Issues Potential Solution

Inconsistency between
independently developed
analytical models

O)

Architecture-centric}
moduel repository

Security model
Timing model e

? ‘ 10 i3 3)

Confidence that model Generation from
reflects implementation validated models

System implementation

System and Software Architecture Using

== Software Engineering Institute ‘ CarnegieMellon 750

. 10
Feiler, Nov 2010
© 2010 Carnegie Mellon University

Single-Truth through consistency across AADL
Architectural models => Architecture-Centric

Increased confidentiality
requirement
 change of encryption policy

SECURITY
Intrusion
Integrity
Confidentiality

~

Key exchange frequency changes

Message size increases

* increases bandwidth utilization

RESOURCE
CONSUMPTION

Bandwidth
CPU Time
Power Consumption

ARCHITECTURAL
MODEL

* increases power consumption Y,

Increased computational complexity\

* increases WCET
* increases CPU utilization

* increases power consumption

REAL-TIME
PERFORMANCE * may increase latency /
Deadlock/Starvation

Latency
Execution Time/Deadline <

Confidence

System and Software Architecture Using
AADL 1

Software Engineering Institute ‘ Carnegie Mellon Feller. Nov 2010

© 2010 Carnegie Mellon University

Formal Methods & AADL (A bridge to formal AADL
modeling from an architecture specification).

Concurrency & mode logic: interface with Alloy (deNiz)

Simulink & AADL integration: Emmeskay & Telecom Paristech
Model checking based on Simulink specifications: Rockwell Collins
Behavioral component interaction — AADL & BIP: Verimag
Formal proofs & AADL — BLESS (pace maker): Larson

AADL & Maude Model Checking: Meseguer (UIUC), U Leicester
AADL & Timed Abstract State Machines (TASM): Lundquist
AADL & Timed Automata (Cheddar): Singhoff

AADL & Process Algebra: Sokolsky

AADL & UPPAAL: Sokolsky, Lundquist

AADL & timed Petri nets: Filali (TINA), Kordon

Consistency Across Virtual Integration Models, (Nam, Sha, deNiz)

System and Software Architecture Using
AADL

%% Software Engineering Institute ‘ CarnegieMellon 5 oy 2010 12

© 2010 Carnegie Mellon University

- S AADL
Summary — AADL Strong Semantics

Integration of CPS effects into the architecture context
Understanding of runtime behavior and communication impact
Single truth modeling and transformation

Model compilation and Model composition

Incremental Verification and Validation

Precise, correct by construction code generation

Analysis tools per domain built to common architectural semantics
Bridge to formal analysis

Cyber-Physical adds several more dimensions of complexity — to
Integrate the effects into an understanding of system behavior we
need a similar standardized approach, perhaps AADL annex.

System and Software Architecture Using
AADL

=== Software Engineering Institute ‘ CarnegieMellon £ vov 2010 -

© 2010 Carnegie Mellon University

EAST ADL
Consortium
AUtoSAR

OMG MARTE
2005-2009

2 AADL
AADL Standard Suite l Aerospace

- B—
& Industry Initiatives -
EC ASSERT
—— = - - — — —_—— Proof-based Satellite _
- Architectures Automotive
AADL Behavior ESA + 30 partners
Annex AADL UML €15M 2004 2007 Autonomous

2009 - systems
MARTE Profile Fos xTe Toolset
STobD TOPCASED Medial
o sl e SSA - ﬁA[LL iDi Open Source Embedded devices
Annex tandar
2009 2004/2009 : Systems Tool Framework
+
AADL Data AADL Meta 28 partners €20+M 2005-2009
Modeling Annex MJodeI g‘o)ég/”
2009 Hie ITEASPICES
RADL Ada/C Code ANABIL (ST | Model-Driven Embedded
A Genesrftlzn ’ Annex Standard | Systems Engineering
ANex standar June 2006)
2006/2009 15 partners €16M 2006-2009

! AVSI SAVI

OpenGroup IST ARTIST? Analysis-based System Validatio
Real-Time Forum Embedded Systems 12+ partners $40+M 2008-2014
EU + US partners

Center of Excellencp
NN 2007-2011

DARPA META
{ 2010-2011

wiki.sei.cmu.edu/aadl
Feiler, Nov 2010 1

Software Engineering Institu

© 2010 Carnegie Mellon University

www.aadl.info I

http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en

WS
O

The ASSERT process = “Applying Model-Driven Engineering Conceépt
build High-Integrity systems in the IST-ASSERT process” by Jerome Hugues

System
Model

y equivalent

ft?;rnatcd proof-based Sy’,\’ﬂ:

. Software Enginee™”
“Real e Sy S Of the messages per tool
1
b mmemmmm o, ASN1 compiler :
: (asnlc) :
1 |
\ 4 1 1 \4
C code C cod v C code
Behavior code. Behavior
—Data structuresi+
Data structures| »Data structures|
Encoder/decoder]

System and Software Architecture Using
AADL

+ware Engineering Institute | Carnegie Mellon Eeiler Nov 2010 15

© 2010 Carnegie Mellon University

= So

Aerospace Vehicle Systems Institute

AVSI is a global cooperative of aerospace companies,
government organizations, and academic institutions

Past AVSI projects have covered the breadth
LOGKHEED MARTIN 4’ of aerospace systems and current research
Rockwel/ mclude_s_pro_jects in th_e areas of reI!ablllty,
Collins Honeywell certification, and virtual integration.
2 Hamilton Sundstrand / The System Architecture Virtual

<7’/
DRICH

Integration program is an AVSI program

A Unitad Technologies Comparny Goo
/AVS I addressing virtual integration of systems.
a7 STA L
&/ 4
AIRBUS [i | TEXAS AsM ,

UNIVERSITY
TEXAS ENGINEERING
EXPERIMENT STATION

—
—i—

=== Software Engineering Institute ‘ Carnegie Mellon

SEl was selected as the
contractor to help work the
proof-of-concept Effort

.Z \ EFLGEITNEG

June 09

How Are We to Address This Issue?

Analysis & Validation through
Virtual Integration!

But what exactly does that mean?

une 09

SAVI Approach: Integrate, Then Build
dSAVI is

* A changed acquisition paradigm to facilitate systems
Integration
s+ Aresearch effort to define the standards and technologies
needed to effect virtual integration
*» Built on the three-legged stool of
v Model-based,
v Proof-Based, and
v Component-Based engineering
s Structured/transformable data interfaces
* A global collaboration

dSAVI is not

“ A software tool or a design tool
s A continuation of current system development practices

June 09

Modified Business Model

System Integrator defines a new product using internal repository of virtual “parts”
Specifications for virtual subystems sent to suppliers
Proposed and developed subsystem models incrementally provided to integrator

Repository Repository -
‘ Model Exchange ‘
2 Via Standardized v CMSM
/parse & Interchange N
™ Process Modify Create OEE Process Modify Create
\ | |)
Modified CM/SM Modified CM/SM
Existing cM/sM Virtually | New cm/sm Existing cM/sm Virtually | new cmism
]) v
Integrate New SM @egrate -

Specs
Issues ‘ Issues ‘ |

&

—New Product Definition

New SM
New SM

Issues

New SM

Virtual Systems Integration
Uncovers Errors Earlier in Development

Standarized architecture language
with strong semantics, the Model

% Bus and Model Repository concepts
\) <: in SAVI enable...

MatLab
SimuLink TOPCASED
— Wy,
p y Cost
1000,2
_y Xx% cost reduction

SAVI project scope

1l

; &
SAVI project impact

=

... early validation of system and
vV Vv v v v A4
CORsystemSystoms . Els Plus

embedded software system , ,
E ’_VC E Systems : SySleS '
iarchnecturei specification! design idevelopment: htegration

behavior to
reduce integration errors.

Time

\ Production
i Cost Savings

E xx% lead time reduction

'
Virtual lntegr' tio
-~

June 09

Architecture Design Language Requirements for-$&PL

Supporting Embedded Software System (ESS) Analyses

ESS architecture
concepts with

precise semantics

Checkable
consistency of
architecture
formation

Component-
based fidelity
multi-dimensional
modeling

Model scalability,
variability &
management

Standardized analysis
guantitative
assessment

Use of formal methods

Incremental change
impact detectable

Impact analysis across
quality attributes

Consistency &
guantitative analysis
early & throughout
development life cycle

Large scale system
modeling &
subcontractor
management

Software Engineering Institute | CarnegieMellon

ESS abstractions as language primitives

Semantics well-documented for each
component & interaction category

Compilable strongly typed language with standard

legality & consistency rules

EMF-based meta model drives XMI standard
Design & operational quality attributes

Hierarchical composable SW/HW/physical
components with interaction behavior & timing

Explicit support for templates, patterns,

incomplete models

Standard extensions via property sets & annex

sublanguages to core
Spec/instance separation

Type/implementation variation

Dynamic re-configurability

Packages to manage model space

AADL

Feiler, Nov 2010
© 2010 Carnegie Mellon University

21

SRVl

Version

1

W N

(<202 I

~N

10

Establish Model Bus infrastructure
Establish Model Repository Infrastructure
Inform Rol estimates through POC performance & results

Analyses be conducted across the system
Two or more analyses must be conducted
Analyses be conducted at multiple levels of abstraction

Analyses must validate system model consistency at
multiple levels of abstraction

Analyses must be conducted at the highest system level
abstraction

Model infrastructure must contain multiple model
representations

Model infrastructure must contain multiple communicating
components

PoC Prioritized Requirements

Process
Process
Process

Analysis
Analysis
Analysis

Analysis
Analysis
Model

Model

Benefits of System Architecture Virtual Integration (SAVI)
Predictive Validated

plementation

Top-Level
Verification Items

=

— generation of test cases
«— updating models with actual data

. AADL & SysML
Carnegle Mellon Feiler, July 2009

© 2008 Carnegie Mellon University

“AADL
SAVI Proof Of Concept Demo

Incremental Multi-Fidelity Multi-dimensional
Multi-Layered Architecture Modeling & Analysis

Aircraft system: (Tier 1 IMA System: (Tier 2)
Engine, I}Fanding%earl Cockpit, ... Hardware Iglatfnrm, software partitions

- - - =] Power, MIPS, RAM capacity & budgets
Weight, Electrical, Fuel, Hydraulics, . .. -. | End-to-end flow latency

ap—re 1

Subcontracted software subsystem: (Tier 3)
Tasks, periods, execution time

Software allocation, schedulability
Generated executables

......................

-
P

Additional Opportunities:
el e Safety & security analysis
' ety [ault modeling & impact analysis
What-if trade studies

OEM & Subcontractor:

Subsystem proposal validation
Functional integration consistency
ARINC 429 protocol mappings

B System & software system
B [ntegrator & subcontractor virtual integration

== VVILVWAIT LIIYIICTI Y HISULULG | LaALHUTZICIVICLIvULL Feiler. Nov 2010 <

© 2010 Carnegie Mellon University

Proof-of-Concept Demonstration - (4/4)

a Did the results from this PoC Demonstration
indicate that the System Architecture
Virtual Integration (SAVI) methodology is
technically feasible to pursue?

UNANIVOUSTSEST

a Core concepts were demonstrated on three
different models, BUT...

» Scalability was not fully explored

» Open issues with AADL (ADL used in PoC) are to be explored
* Meets needs of all Use Cases?

* Full compatibility with DoDAF version 27?
June 09

ﬁ ROI study is part of SEI & AVSI SAVI collaboration AR5

Cost Reduction through Rework Avoidance

— Based on research

to apply

ROI =

NPV (Cost to develop SAVI discc d at 10%) * Years

Cost reduction ranges from $717M (7.8%) to $2,391M (26.1%) on a $9,176M
new airplane project (2014-2018)

Every increase of 1% in defect removal efficiency resuits in a

conservative cost reduction of $22M
Estimates based on conservative assumptions

- Based on industry data from SAVI participants

- Model assumes development of a single large aircraft in the 2014-2018
timeframe

- Savings largely driven by reduction of rework via discovery of
requirements related problems earlier in the development lifecycle

- ROI does not include savings in maintenance & field upgrades, schedule
overrun, loss of life & equipment, mission delay

- Conservative — used research investment of $108M, 2.5x expected,
2010-2014.

Spiral Development Planned

Q Three lterations to Reach TRL 9

SAVI
Concept Loop
Proof of Concept Loop AFE#58
Technology Demonstration Loop AFEs#60-67
Development “Productionization” Loop
Sustainment Loop(s)

QSchedule Roadmap Next

June 09

Cooperative Engineering of Systems: A Mu AADL
notation Single Source Repository Approach

Embedded System Engineering System Engineering

SysML

Application Software
Runtime Architecture

Physical System

Architecture

(interface with embedded
SW/HW)

Physical

Components

(mechanical , electrical, heat)

Modelica

Application Software
Components
(source code)

Java, UML, Simulink

Control
Engineering

Application
Software
Engineering

Mechanical
Computer Platform Engineering
Architecture -

(processors & networks)

Hardware

Electrical CepoE s
. . (circuits & logic)
Engineering VHDL

%% Software Engineering Institute | Carnegie Vit

Feiler, Nov 2010
© 2010 Carnegie Mellon University

A Fault Propagation Use Case AADL

System & Embedded Software Loop

The Software

The System Computer
Hydraulic Control Software } System

N U

\\ B
R’ j A

Hydraulic System [Pump control
Pump fallure due to SW _ S

:

&
e
fﬁ

Computer System
Bus failure

Avionics Software
Auto-pilot
Flight control

AV|on|cs System
Unresponsive flaps affect
flight control

—_ Use of AADL Error Model
ﬁ Annex for Fault Propagation

Mode,:g ‘ =

AADL Model of Physical System Application Software, Computer System

System and Software Architecture Using
AADL 29

=== Software Engineering Institute ‘ CarnegieMellon = w0y 2010

© 2010 Carnegie Mellon University

~ZAVSI

AEROSPACE VEHICLE SYSTEMS INSTITUTE

Behavior Analysis Demo. — Aims (4)

4. To demonstrate

the integratic
of multi-mod
representatic
within the

EPoCD Archi-

tecture Fram
work AADL

yster Instance Diagram Arcrat Alrcrafl s

ral imgl { unnamed

n
el

=
7

HydraalicPowes

Signals

rugder

empenage

> Etecticalpomer
> HydrauscPower
P> FusiSuply

p> Signals

20U

ElectricalPowsr
HydraulicPowsr

> Signals

ElectricalSupply
FuelSupply
Signale

HydraulicPower

Signals

P EtectiicalPower
P> HydraulicPower

D Signais

gl
I EtectricaiPawer

[HydraulicPower

huing

b ElectricalPower
I HyoraulicPowst
> AiPower

I FuelSuppty

> Signals

Nt

[EctricalPowsr

P> Signals

I> AuxElectricaiSupply

e P> HydiauscPoner_ BLO1
AsPowsr | ElectricalSupply
I Fusisuaply [ArPomsr
P Sgrals [AsDetwery
s
[ElecticalPower
I HydraulicPower
> signals
ToEiage
ElectrcalPawer — e
HytrauicPover Bty P> MaiaEtectrcaisupply et .
= I FosElecPawer BLOElecPower < NAV e
I NaVElecPover HYDElecPower [P Signals

FUEElecPower <

> ElectricalSupply

HydraulicPowsr

AuxFuelSupply > Signals

EincticalSopply
D> HydraubePonar
76S_HydrauicPower

LDG_HydraulicPower

model.

Measured

ermor_fo_position

Mecha

Measured
Grellowi

Command

Commandedy |
>

Transla

Fij

Tmagents)

Mechatronic
Actuator Model

Ram Position

Ram_Fozition

To Wokspace2

[

Saber
Configuratio

First arder
Compensater
Ka =2, Kb =50

Fraference_1

nical
tional

pa_&

0.25" diameter,
10 #tleng

n

Propottional
Walve Actuator

4iay Directional
Wakre

Pipe_B
0.25" diameter,
10 ftlong

sl q ’

Hydraulic Cylinder

dxp
[EtecticalPower

[P HydraulicPawer

D Signais

rsple

[ElectacalPower
I> HydraulicPower

D> signas

D EtecticalPower
[HydraulicPower
> Signals

——

I HydmgicPowsr

> AiPowe

> FuelSupply

> signale

ey
.o

DscicalPower

> HyagePoner

. —
> maPower ® &> EiactricalSupply
FuelSupply
> sqmats

I

)
i

.

Structural Finite
Element Model

30

o AADL
AADL and Safety-Criticality

Fault management

« Architecture patterns in AADL
— Redundancy, health monitoring, ...
- Fault tolerant configurations & modes

Dependability

- Error Model Annex to AADL
- Specification of fault occurrence and fault propagation information
- Use for hazard and fault effect modelingexase eccormae

public

- Reliability & fault tree analysis e reer mtel

error model Basic

Behavior validation o ¢ ercor erent;

Error_Free: initial error state:;

® BehaVIOr Annex to AADL Permanent_Failure: error state;
° Model Checklng na g;:i};_}e_Failure: in out error propagstion:
° Source COde Validatlon error model implementation Easic.MNominal

transitions
Error_Free -[Failed, in Visible Failure]-> Permanent_ Failure:
Permanent_Failure -[out Visible Failure]-> Permanent Failure:
properties
A F QOzourrence =» poisson 10E-4 applies to Failed:
ConSISten Cy CheCkIng Of Opourrence => poisson 10E-6 applies to Visible Failure:
Lt . end Basic.Nominal;
safety-criticality levels

System and Software Architecture Using
AADL 31

%%%oftware Engineering Institute ‘ CarnegieMellon 22 010

© 2010 Carnegie Mellon University

AADL Error Annex

“AADL

AADL annex that supports various forms of reliability and safety analysis
Defines error model

State transition diagram that represents normal and failed states

Error models can be associated with hardware components, software
components, connections, and “system” (composite) components

Error model consists of

State definitions

Propagations from and to other components
Probability distribution and parameter definitions
Allowed state transitions and probabilities

error model implementation example.general
transitions
ErrorFree-[Fail]->Failed;

Failed-[Repair]->ErrorFree;

ErrorFree-[in Failvisible]->Failed:;

=== Software Engineering Institute |SEFETEIEREE

ul) sjqisIAlied—

Repair Fai
(mu) (lambpda)

32

d goud ‘(1no)
a|qIsiAlie

-

Leverage Connectivity in AADL Models

AADL

Fault propagation at the application logic level, at the hardware level,

and between the two levels.

Provides compositional model specification approach

Architecture defines propagation paths for software and hardware

Component A

Component B

Processor 1 Bus

= N = = = =

Processor 2

== Software Engineering Institute ‘ Carnegie Mellon

System and Software Architecture Using

AADL 33
Feiler, Nov 2010

© 2010 Carnegie Mellon University

AADL transformation

[OSATE-A] Error Model \
rror iviode FMEA
. —_— FMEA
[Editor] [Generator] [|
AADL
Architecture
Model Stochastic Activity
OCNASTIC ACIIV]
] Network Models
-
AADL Error
Model i o
Mark 1o Mark O
Error Model @©O——0 o <lp o
Editor waco LT o
O——0 —> O e
osATEA | = T e R
[] O——@® Maﬁ—”ilb“"ar”
ot
* ADAPT Tool (Ana Rugina, LAAS-CNRS) e ADAPT-MOBIUS Converter
— Packaged as an eclipse plug-in — Takes in the ADAPT XML file.
— Takes in AADL architecture and error behavior _ Converts a GSPN to a Mobius Stochastic
information Activity Network

— Converts to a general stochastic petri net

) .) — Outputs SAN information to an XML format.
— Outputs GSPN information to an XML file

34

From System Requirements to
Software Requirements
Formalized requirements
Focus on safety-criticality
requirements

(")

Mission
Requirements
Function
Behavior
Performance
_ _J

/" Safety-criticality
Requirements
Reliability
Safety

_ Security Y,

End-to-end System Validation and Verification

L L AADL
Reliability Validation & Improvement Framework

System & Software Assurance
Sufficient justified confidence that mission &
safety-criticality requirements (claims) are met
Evidence through reviews, analysis, testing,

and validated assumptions

Model Repository

Architecture-centric Model-based Engineering
Architecture model with well-defined semantics

(AADL)

Incremental validation through virtual integration
Consistency across analysis dimension

System
Implementation

Architecture
Model

Component
Models

Performance
Analysis

& Safety
Analysis

Interaction
Behavior
Analysis

Static Analysis
Formal methods to
complement testing
End-to-end V&V of mission
and safety-criticality
requirements

=== Software Engineering Institute

Carnegie Mellon

System and Software Architecture Using
AADL
Feiler, Nov 2010

© 2010 Carnegie Mellon University

35

AADL

Incremental Architecture-centric Validation & Verification
Improves Qualification Confidence

Requirements <’ l V] \ >

| _ Acceptance
Engineering Deployment Test
Build
o <
NC.E .8
—_
& o
System NI o GCJ A
Design = oON
o O Target y
g o Build
(%2}
N D 't
S
< :_ c >
Software O @ |1
Architectural «—» <T: é >
Design : — Integration
Integration Test
Build

Component Design
S&fet;\i/are Validation
gn
Build the Build the
System Code Assurance Case
Development Test
—_ System and Software Architecture Using
=== Software Engineering Institute ‘ CarnegieMellon 52 . 2010 36

© 2010 Carnegie Mellon University

AADL
AADL: Security Modeling

Confidentiality concerns that sensitive data should only be
disclosed to or accessed/modified by authorized users, i.e.,
enforcing prevention of unauthorized disclosure of information.

Objective: Model security attributes for an architecture to verify
that data is properly accessed and handled by users and
applications.

Confidentiality frameworks

- Bell-LaPadula framework: military applications

- Chinese wall framework: commercial applications

(Src1: output
Producer1 -

4y Src2:
Producer2

c2
(unclassified, {B})

« Access role/role-based access framework
« MILS

(I Comp:
_Computer

System and Software Architecture Using
AADL 37

=== Software Engineering Institute CarnegieMellon = w0y 2010

© 2010 Carnegie Mellon University

3| WW Technology Group

I;d f-1 The Dependability Solution Provider

Model Based Analysis for Information Assurance

EDICT IA Vision EDICT Information Assurance
An integrated tool suite for the specification, D;fi:g“ a Certnflatlon Ewronment
. . . nformation Assurance Requirements

design, evaluation and deployment of high Ll —. . $ " Domain Specification
Conﬁ dence SyStemS Application Properties
« Aninnovative approach for Property Based

— |A domain specific modeling and systematic Analysis

evaluation and analysis Information Assurance Functional Design
— Integration with standard development and — Functional Architecture

E_'_X Information Flow / Partitioning
Architectural Properties

certification processes

« Utilize a Model Driven development approach to
support the specification and evaluation of Property Based '
system properties throughout the system lifecycle Analysis
.) Information Assurance Detailed Design
« Support for modeling and analysis of MILS o ﬁj Detailed Architecture Design
design approaches — ,.—— Component Properties

Provide views and tools that are tuned to the
needs of system stakeholders cross cutting
concerns and activities

Open Modeling and Tool Platform

— Architects — Security Engineers - Certifiers * _EC"pse _Platform for tool portability and open
- Utilize analysis after system deployment to Integration
support * AADL for system architecture modeling
— Upgrades — Changes In Threat — Changes In XML based information storage
Operations

WW Technology Group
© Copyright 2009 All rights reserved.

i

=

Architecture-Centric Virtual Integration Impact

* Reduce the risks
— Analyze system early and throughout life cycle
— Understand system wide impact
— Validate assumptions across system

 |ncrease the confidence
— Validate models to complement integration testing
— Validate model assumptions in operational system
— Evolve system models in increasing fidelity

* Reduce the cost

— Fewer system integration problems (SAVI ROI)

— Fewer validation steps through use of validated
generators

Back-Up AADL

The SAVI demo video can be watched over the web at

www.aadl.info/aadl/savi/2009POCDemo/avsisaviPOCDemo35min.html

Design, Verification and Implementation of MILS Systems
Julien DELANGE, Laurent PAUTET

TELECOM ParisTech -- delange@enst.fr, pautet@enst.fr
Fabrice KORDON

LIP6, Univ. P & M. Curie -- fabrice.kordon@lip6r

System and Software Architecture Using

=== Software Engineering Institute | CarnegieMellon 22> . “

© 2010 Carnegie Mellon University

http://www.aadl.info/aadl/savi/2009POCDemo/avsisaviPOCDemo35min.html
http://www.aadl.info/aadl/savi/2009POCDemo/avsisaviPOCDemo35min.html
http://www.aadl.info/aadl/savi/2009POCDemo/avsisaviPOCDemo35min.html
http://www.aadl.info/aadl/savi/2009POCDemo/avsisaviPOCDemo35min.html
http://www.aadl.info/aadl/savi/2009POCDemo/avsisaviPOCDemo35min.html

