

A Data Centric Approach for Modular Assurance

The Fourth Layered Assurance Workshop December 6th 2010

The Real-Time Middleware Experts

Gabriela F. Ciocarlie Heidi Schubert Rose Wahlin

Mixed Criticality Systems

- Any system that has multiple assurance requirements
 - Safety, at different assurance levels
 - Security, at different assurance levels
- Example: Unmanned Air Vehicle
 - Flight control is safety critical
 - Payload management is mission critical
- Ideally a system is built from components each with their own assurance requirements

The Challenge

- Design a modular plug-and-play architecture to reduce cost and reuse components
- Components must interact
 - The behavior of one component can affect another
 - It can be advantageous to have components at different criticality levels exchange data
 - Once a component interacts with another, then the whole system must be certified, not the individual components

The Solution

- Move from a component-interaction model to a datacentric model
- The data-centric model defines the data types and attributes in the system
- A component complies with the data model in terms of data it sends and receives
- This decouples applications

Agenda

- Introduction
- Data Centric Architecture
 - Modularity
 - Separation Kernels
 - Anonymous Publish-Subscribe
 - OMG Data Distribution Service
- Feasibility Study
- Conclusions
- Future Work

The Modular Approach

Monolithic Approach

- Certify whole system
- Connection oriented
- Tightly coupled
- Hard to evolve

Modular approach

- Certify components
- Data oriented
- Loosely coupled
- Evolvable

The Data Contract

- First, all exchanged data in the system is defined
- Next, data characteristics are defined
 - For example "airspeed" is flagged as flight critical
- Then components define data delivery attributes
 - A flight critical component specifies data rate that flight critical data must be delivered
- This creates a "data contract"

Data Centric Approach for Mixed-Criticality Systems

Data contract includes

- Data type
- Name
- Quality of Service

Validation

- Component validation does it conform to the data model
- System validation is there a producer at correct assurance level for each required data

Realization of a Mixed-Criticality System

- Separation kernels
 - Guarantees isolation of components
 - Controls data flow

- Anonymous publish-subscribe
 - Used to implement the data model and distribute data

Separation Kernels

- Partial solution for mixed-criticality systems certification
- Isolation and Control
 - Each guest operating system (OS) runs in its own partition
 - Each guest OS is isolated over both time and space
 - Information flows are tightly controlled
 - Components can be pre-certified and composed quickly into new configurations

Challenge

 Do not address interdependency between components or interactions between components on separate computers

Anonymous Publish-Subscribe

- Effective communication architecture
- Applications simply publish what they know and subscribe to what they need
- Networking middleware provides the functionality for:
 - discovering publishers and subscribers
 - handling network traffic and errors
 - delivering the data

Challenge

Require effort to migrate from a point-to-point component interaction model

OMG Data Distribution Service (DDS)

- Data-centric publish-subscribe middleware for real-time communication
 - Strong data typing
 - Quality-of-Service (QoS) parameters
 - e.g., deadlines for message delivery, bandwidth control, reliability model control, failover and backup specification, data filtering etc.
- DDS QoS parameters characterize:
 - the data contracts between participants
 - the properties of the overall data model
 - real-time communication and delivery requirements on a per-data-stream basis

Agenda

- Introduction
- Data Centric Architecture
- Feasibility Study
- Conclusions
- Future Work

Wind River VxWorks MILS and RTI Data Distribution Service

VxWorks MILS Separation Kernel

Wind River Hypervisor Technology

Hardware (Processor + Board)

Study Overview

Scenario 1: Failover of Lower Criticality

Scenario 2: Lower Criticality Floods the Network

Conclusions

 Mixed-criticality systems certification still has a long way to go

- We can leverage:
 - Isolation and control capabilities through separation kernels
 - Modularity through a data-centric architecture
- It is possible to build mixed criticality systems that provide:
 - Modularity
 - Evolvability
 - Fault tolerance

Future Work

 Identify and analyze the characteristics of the DDS data models that lead to an efficient certification process

 Formally demonstrate the applicability of our approach to mixed-criticality systems

Acknowledgments

- Wind River provided their MILS platform as well as for valuable feedback
- United States Air Force contract FA8650-10-M-3025
 - The content of this work is the responsibility of the authors and should not be taken to represent the views or practices of the U.S. Government or its agencies.

