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ABSTRACT

This article describes Salsa, an automatic tool to improve
the accuracy of the floating-point computations done in nu-
merical codes. Based on static analysis methods by abstract
interpretation, our tool takes as input an original program,
applies to it a set of transformation rules and then gener-
ates a transformed program which is more accurate than
the initial one. The original and the transformed programs
are written in the same imperative language. This article
is a concise description of former work on the techniques
implemented in Salsa, extended with a presentation of the
main software architecture, the inputs and outputs of the
tool as well as experimental results obtained by applying our
tool on a set of sample programs coming from embedded
systems and numerical analysis.
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1 INTRODUCTION

Floating-point numbers, whose specification is given by the
IEEE754 Standard [1, 28], are more and more used in many
industrial applications, including critical embedded software
and, obviously, numerical simulations. However, floating-
point arithmetic is prone to accuracy problems due to the
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round-off errors. The approximation becomes dangerous
when accumulated errors cause damages whose gravity varies
depending on the criticality of the application.

In this context, ensuring the correctness of the computa-
tions of embedded systems or numerical simulations is an
important but extremely difficult task. Some useful tools
and techniques have been developed for validating [4, 15, 16,
19, 30] and improving [24, 29] the accuracy of arithmetic
expressions in order to avoid numerical failures (in this arti-
cle, the accuracy refers to the difference between the exact
and the floating-point result). One limitation of these tools,
for example, Sardana [24] or Herbie [29], is that they are
applicable on a single arithmetic expression. In other words,
they cannot merge computations between the different lines
of the code. For example, they can do nothing on a code
written in 3-address style. To cope with this limitation, we
propose an automatic tool, Salsa, which takes programs
made of assignments, conditionals, loops, functions, etc. and
generates another program numerically more accurate using
a source-to-source transformation. This is possible thanks to
the set of intraprocedural and interprocedural transformation
rules defined in previous work [9, 13]. Salsa relies on static
analysis by abstract interpretation [5] to compute variable
ranges and round-off error bounds.

In this article, we present a comprehensive summary of
how Salsa works. An extended description is given in [8].
We give an overview of the formal intraprocedural [13] and
interprocedural [9] rules used in our transformation as well as
on how the transformation of expressions is done [24]. Then
we present the software architecture of the tool and, finally,
we give a set of benchmarks measuring the efficiency of Salsa
from several points of view: numerical accuracy, code size,
execution time, program transformation time.

The reminder of the article is organized as follows. Sec-
tion 2 describes related work. Section 3 presents the IEEE754
Standard and how to compute the error bounds. Section 4
details the transformation of arithmetic expressions, the in-
traprocedural and the interprocedural transformation of pro-
grams. Section 5 introduces the main architecture of our tool,
its inputs and outputs. Section 6 describes the implementa-
tion of our tool and its application to a number of example
programs. It also gives various experimental results obtained
by applying our tool to our set of examples. We conclude in
Section 7.



2 RELATED WORK

During the last fifteen years, several static analyses of the nu-
merical accuracy of floating-point computations have been in-
troduced. While these methods compute an over-approximation
of the worst error arising during the executions of a program,
they operate on final codes, during the verification phase
and not at implementation time. Static analyses based on
abstract interpretation [5, 6] have been proposed and imple-
mented in the Fluctuat tool [20, 21] which has been used
in several industrial contexts. A main advantage of this
method is that it enables one to bound safely all the errors
arising during a computation, for large ranges of inputs. It
also provides hints on the sources of errors, that is on the
operations which introduce the most important precision loss.
This latter information is of great interest to improve the
accuracy of the implementation. More recently, Darulova
and Kuncak have proposed a tool, Rosa, which uses a static
analysis coupled to a SMT solver to compute the propaga-
tion of errors [15]. None of the techniques mentioned above
generate more accurate programs.

Other approaches rely on dynamic analysis. For instance,
the Precimonious tool tries to decrease the precision of vari-
ables and checks whether the accuracy requirements are still
full filled [3]. Lam et al. instrument binary codes in or-
der to modify their precision without modifying the source
codes [26]. They also propose a dynamic search method
to identify the pieces of code where the precision should be
modified. Again, these techniques do not transform the codes
in order to improve the accuracy.

Finally, another related research axis concerns the compile-
time optimization of programs to improve the accuracy of the
floating-point computation in function of given ranges for the
inputs, without modifying the formats of the numbers [17].
The Sardana tool takes arithmetic expressions and optimize
them using a source-to-source transformation. Herbie op-
timizes the arithmetic expressions of Scala codes. While
Sardana uses a static analysis to select the best expression,
Herbie uses dynamic analysis (a set or random runs). A
comparison of these tools is given in [14]. These techniques
are limited to arithmetic expressions.

3 FLOATING-POINT ARITHMETIC

In this section, we present briefly the IEEE754 Standard [1].
Next, we describe how the round-off errors are computed.

3.1 The IEEE754 Standard

Floating-point numbers are used to represent real numbers [1,
18]. Because of their finite representation, round-off errors
arise during the computations which may cause damages
in critical contexts. The IEEE754 Standard formalizes a
binary floating-point number as a triplet of sign, mantissa
and exponent. We consider that a number x is written:

x = s · (d0.d1 . . . dp−1) · be = s ·m · be−p+1 , (1)

where, s is the sign ∈ {−1, 1}, b is the basis, b = 2, m is
the mantissa, m = d0.d1 . . . dp−1 with digits 0 ≤ di < b,

0 ≤ i ≤ p − 1, p is the precision and e is the exponent
e ∈ [emin, emax]. IEEE754 Standard specifies some particular
values for p, emin and emax.

IEEE754 Standard defines four rounding modes for elemen-
tary operations over floating-point numbers. These modes
are towards −∞, towards +∞, towards zero and to the near-
est respectively denoted by ↑+∞, ↑−∞, ↑0 and ↑∼. Let R be
the set of real numbers and F be the set of floating-point
numbers (we assume that only one format is used at the
time, e.g. single or double precision). The semantics of the
elementary operations specified by the IEEE754 Standard is
given by Equation (2).

x ~r y =↑r (x ∗ y) , with ↑r: R→ F (2)

where a floating-point operation, denoted by ~r, is computed
using the rounding mode r ∈ {↑+∞, ↑−∞, ↑0, ↑∼} and ∗ ∈
{+,−,×,÷} is an exact operation. Obviously, the results
of the computations are not exact because of the round-off
errors. This is why, we use also the function ↓r: R→ R that
returns the round-off error. We have

↓r (x) = x− ↑r (x) . (3)

3.2 Error Bound Computation

In order to compute the errors during the evaluation of
arithmetic expressions [27], we use values which are pairs
(x, µ) ∈ F × R ≡ E where x is the floating-point number
used by the machine and µ is the exact error attached to F,
i.e., the exact difference between the real and floating-point
numbers as defined in Equation (3). For example, the real
number 1

3
is represented by the value v = (↑∼

(
1
3

)
, ↓∼

(
1
3

)
) =

(0.333333, ( 1
3
− 0.333333)). The semantics of the elementary

operations on E is defined in [27].
Our tool uses an abstract semantics [5] based on E. The

abstract values are represented by a pair of intervals. The
first interval contains the range of the floating-point values
of the program and the second one contains the range of the
errors obtained by subtracting the floating-point values from
the exact ones. In the abstract value (x], µ]) ∈ E], x] is the
interval corresponding to the range of the values and µ] is
the interval of errors on x]. This value abstracts a set of
concrete values {(x, µ) : x ∈ x] and µ ∈ µ]} by intervals in
a component-wise way. We now introduce the semantics of
arithmetic expressions on E]. We approximate an interval
x] with real bounds by an interval based on floating-point
bounds, denoted by ↑] (x]). Here bounds are rounded to the
nearest, see Equation (4).

↑] ([x, x]) = [↑∼ (x), ↑∼ (x)] . (4)

We denote by ↓] the function that abstracts the concrete
function ↓∼. Every error associated to x ∈ [x, x] is included
in ↓] ([x, x]). For a rounding mode to the nearest, we have

↓] ([x, x]) = [−y, y] with y =
1

2
ulp

(
max(|x|, |x|)

)
. (5)

Formally, the unit in the last place, denoted by ulp(x), consists
of the weight of the least significant digit of the floating-point
number x. Equations (6) and (7) give the semantics of the
addition and multiplication over E], for other operations
see [27]. If we sum two numbers, we must add the errors



on the operands to the error produced by the round-off of
the result. When multiplying two numbers, the semantics is
given by the development of (x]1 + µ]1) × (x]2 + µ]2).

(x]1, µ
]
1)+(x]2, µ

]
2) =

(
↑] (x]1 +x

]
2), µ

]
1 +µ

]
2+ ↓

] (x]1 +x
]
2)
)
, (6)

(x]1, µ
]
1)× (x]2, µ

]
2) =

(
↑] (x]1 × x

]
2), x

]
2 × µ

]
1 + x]1 × µ

]
2

+ µ]1 × µ
]
2+ ↓] (x

]
1 × x

]
2)
)
.

(7)

4 TRANSFORMATION FOR
NUMERICAL ACCURACY

In this section, we briefly present how to transform pro-
grams in order to improve their numerical accuracy. We
start by presenting the transformation of arithmetic expres-
sions introduced by [24]. Then we give the principles of the
transformation of both intraprocedural and interprocedural
programs.

4.1 Transformation of Expressions

We briefly introduce former work [24, 31] to semantically
transform arithmetic expressions using Abstract Program
Expression Graph (APEG). This data structure remains in
polynomial size while dealing with an exponential number
of equivalent expressions. To prevent any combinatorial
problem, APEGs hold in abstraction boxes many equivalent
expressions up to associativity and commutativity. A box
containing n operands can represent up to 1×3×5...×(2n−3)
possible formulas. In order to build large APEGs, two algo-
rithms are used (propagation and expansion algorithms). The
first one searches recursively in the APEG where a symmetric
binary operator is repeated and introduces abstraction boxes.
Then, the second algorithm finds a homogeneous part and
inserts a polynomial number of boxes. In order to add new
shapes of expressions in an APEG, one propagates recursively
subtractions and divisions into the concerned operands, prop-
agate products, and factorizes common factors. Finally, an
accurate formula is searched among all the equivalent formu-
las of the APEG using the abstract semantics of Section 3.2.

Example 4.1. An example of APEG is given in Fig-
ure 1. When an equivalence class (denoted by a dotted el-
lipse) contains many sub-APEGs p1, . . . , pn then one of the
pi, 1 ≤ i ≤ n, must be selected in order to build an expression.

A box ∗(p1, . . . , pn) represents any parsing of the expression

2 a

×

+

b

□

+(a,a,b)

×

c ×

+

c b c

×

a a

+×

× +

Figure 1: APEG for the expression e =
(
(a+a)+b

)
×c.

p1 ∗ . . .∗pn. For instance, the APEG p of Figure 1 represents
all the following expressions:

A(p) =



(
(a+ a) + b

)
× c,

(
(a+ b) + a

)
× c,(

(b+ a) + a
)
× c,

(
(2× a) + b

)
× c,

c×
(
(a+ a) + b

)
, c×

(
(a+ b) + a

)
,

c×
(
(b+ a) + a

)
, c×

(
(2× a) + b

)
,

(a+ a)× c+ b× c, (2× a)× c+ b× c,
b× c+ (a+ a)× c, b× c+ (2× a)× c


.

In this example, the last step of the transformation consists
of evaluating all the expressions in A(p) with the abstract
semantics of Section 3.2 to select the most accurate one. �

4.2 Intraprocedural Transformation

In this section, we focus on the transformation of commands
which is done using a set of rewriting rules formally defined
in [13]. Our language is made of assignments, conditionals,
loops, etc. The transformation relies on several hypotheses.
First of all, programs are assumed to be in static single assign-
ment form (SSA form) [7]. The principle of this intermediary
representation is that every variable may be assigned only
once in the source code and must be assigned before its use.
Salsa puts programs in SSA form after passing them. The
second hypothesis is that we optimize a target variable chosen
by the user. Our transformation is defined by rules using
states 〈c, δ, C, ν, β〉 where

• c is a command,
• δ is a formal environment δ : V → Expr which maps

variables of V to expressions. Intuitively, this envi-
ronment records the expressions assigned to variables
in order to inline them later on in larger expressions,

• C ∈ Ctx is a single hole context [23] that records
the program enclosing the current command to be
transformed,

• ν ∈ V denotes the target variable that we aim at
optimizing,

• β ⊆ V is a list of assigned variables that should not
be removed from the code. Initially, β = {ν}, i.e.,
the target variable ν must not be removed.

The environment δ is used to discard assignments from pro-
grams and to re-insert the expressions when the variables are
read, in order to build larger expressions.

Let us consider first assignments. If (i) the variable v of
some assignment v = e does not exist in the domain of δ, if
(ii) v 6∈ β and if (iii) v 6= ν then we memorize e in δ and
we remove the assignment from the program. Otherwise, if
one of the conditions (i), (ii) or (iii) is not satisfied then we
rewrite this assignment by inlining the variables saved in δ
in the concerned expression. Note that, when transforming
programs by inlining expressions in other expressions, we get
larger formulas. In our implementation, when dealing with
too large expressions, we create intermediary variables and
we assign to them the sub-expressions obtained by slicing the
global expression at a given level of the syntactic tree. The
last step consists of re-inserting these intermediary variables
into the main program.



Example 4.2. For example, let us consider the program
below in which three variables x, y and z are assigned. We
assume that z is the variable that we aim at optimizing and
a = 0.1, b = 0.01, c = 0.001 and d = 0.0001 are constants.

〈x = a + b ; y = c + d ; z = x + y , δ, [], [z]〉
→ν〈nop ; y = c + d ; z = x + y, δ′ = δ[x 7→ a + b], x = a + b; [], [z]〉
→ν〈nop ; nop ; z = x + y, δ′′ = δ′[y 7→ c + d], x = a + b; y = c + d; [], [z]〉
→ν〈nop ; nop ; z = ((d + c) + b) + a, δ′′, x = a + b; y = c + d; [], [z]〉

(8)

In Equation (8), the environment δ and the context C are
initially empty and the list β contains the target variable z.
We remove the variable x and memorize it in δ. So, the line
corresponding to the variable discarded is replaced by nop and
the new environment is δ = [x 7→ a+ b]. We then repeat the
same process on the variable y. For the last step, we may
not remove z because it is the target variable. Instead, we
substitute, in z, x and y by their values in δ and we transform
the expression using the technique described in Section 3.2.

�

Our tool also transforms conditionals. If a certain condition
is always true or false, then we keep only the right branch,
otherwise, we transform both branches of the conditional.
When it is necessary, we re-inject variables that have been
discarded from the main program.

For a sequence c1; c2, the first command c1 is transformed
into c′1 in the current environment δ, C, ν and β and a new
context C′ is built which inserts c′1 inside C. Then c2 is
transformed into c′2 using the context C[c′1; []], the formal
environments δ′ and the list β′ resulting from the transfor-
mation of c1. Finally, we return the state 〈c′1 ; c′2, δ

′′, β′′〉.
Other transformations have been defined for while loops.

A first rule makes it possible to transform the body of the
loop assuming that the variables of the condition have not
been stored in δ. In this case, the body is optimized in the
context C[whileΦ e do []] where C is the context of the loop.
A second rule builds the list V = V ar(e) ∪ V ar(Φ) where
V ar(Φ) is the list of variables read and written in the Φ
nodes of the loop. The set V is used to achieve two tasks:
firstly, it is used to build a new command c′ corresponding
to the sequence of assignments that must be re-inserted.
Secondly, the variables of V are removed from the domain
of δ and added to β. The resulting command is obtained by
transforming c′;whileΦ e do c with δ′ and β ∪ V .

4.3 Interprocedural Transformation

In this section, we show how we transform functions using
a set of rewriting rules formally defined in [8, 9]. For the
sake of simplicity, in our formal definitions, we only consider
functions with one single argument only. However, in our
implementation we support functions with many arguments.
The generalization is straightforward. In addition, we assume
that any program p has a function named main which is
the first function called when executing p, and the returned
variable v consists of the target variable at optimizing ν = {v}
with ν ∈ V. Recall that V denotes the set of identifiers.

Basically, our interprocedural transformation follows the
same objective as the intraprocedural one. We aim at creating

large arithmetic expressions which can be recombined into
more accurate ones as explained in Section 4.1. The large the
expressions are the more opportunities we have to rewrite
them. In the case of functions, we may either inline the body
of a function into the caller or evaluate lazily the arguments,
specially when they correspond to large expressions. We also
use a specialization rule with respect to the arguments of
the function since this also improves the accuracy in many
contexts. In the rest of this section, we give a brief description
of each of these three transformation rules.

The first rule consists of inlining the body of the function
into the calling function. This makes it possible to create
larger expressions in the caller. Then the new program can
be more optimized by applying the intraprocedural transfor-
mation rules previously seen in Section 4.2.

The second transformation rule is used when we deal with
a small number of calls to a large function in the original
program. The idea is to specialize the function with respect
to the argument by passing the abstract value of the argument
to the function when the variability of the interval is small
(for example whenever it contains less than ω floating-point
numbers). By variability, we mean that the distance between
the lower bound and the upper bound of an interval is small.
If the variability of the interval i = [i, i] is smaller than a
parameter ω then, we apply the second rule, we substitute
the variable u of the function f by the abstract value of the
parameter. In practice, we choose ω = 24 × ulp(max(|i|, |i|)
where ulp(x) is defined in Section 3.2. Note that we conserve
the original function in our code when the condition on the
variability is not satisfied.

The last rule consists of substituting the formal expression
of the parameters of a given function call to the formal param-
eters inside the body of the called function. It can be seen as
a lazy evaluation of the parameters in the caller. By apply-
ing this rule, we obtain the new function whose parameters
are the variables of the expressions of the arguments. Then
we rewrite the new function by using the intraprocedural
transformation rules to optimize the numerical accuracy of
the computations. In addition, in the calling site z = f(e),
we substitute V ar(e) to e in the arguments. For example, if
V ar(e) = x the call becomes z = f(x).

5 THE SALSA TOOL

In this section, we present our tool, Salsa. We detail its
architecture, its inputs (files, parameters), its outputs and
we describe the process followed by Salsa to improve the
accuracy of programs given as inputs. After the presentation
of Salsa, we give an example of application of our programs
transformation.

5.1 Architecture

In this section, we describe the main architecture of our tool
as shown in Figure 2. Salsa is based on the transformation
described in Section 4. Written in OCaml, our tool is made of
several modules. Salsa transforms the programs using the
Salsa-Intra, Salsa-Function and Sardana modules.
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Figure 2: Software architecture of Salsa.

• Parser: It takes programs in a C-like language with
annotations (an example of program written in Salsa

syntax is given in Figure 2), puts the program in
SSA form and returns the syntactic tree,

• Static-Analyzer: It is based on abstract interpre-
tation to compute the numerical accuracy of pro-
grams. The static analyzer infers safe ranges and
computes error bounds for each variable at each con-
trol point of the program for all the possible entries
specified by intervals. To produce a more precise
over-approximation of the maximum error, a work
in progress consists of integrating the affine arith-
metic [22] in our analyzer,

• Sardana: It improves the accuracy of arithmetic ex-
pressions [25]. Sardana takes as entry an arithmetic
expression with free variables plus ranges for the
free variables and returns a new expression more
accurate than the original one and we assume that
the variables belongs to the given ranges using the
APEG described in Section 4.1,

• Salsa-Intra: It implements the intraprocedural
transformation rules described in former work [13].
This module, takes a source program, calls the static
analyzer to compute safe ranges for the variables at
the current control point and then calls Sardana on
the expression of the current control point with the
ranges computed by the static analyzer,

• Salsa-Function: It implements the interprocedural
transformation rules presented in Section 4.3 and
detailed in [9]. This module transforms the functions
as described in Section 4.3 (eg. by inlining, special-
ization, etc) and calls Salsa-Intra on the body of
the transformed functions.

For each program transformed, Salsa-Intra re-starts the
transformation while no more improvement of the accuracy
is obtained. Finally, Salsa returns as output a file contain-
ing the transformed program with better accuracy and the
accuracy improvement.

5.2 Inputs/Outputs

In this section, we specify the various inputs and outputs of
Salsa. The tool takes as input a file that specifies ranges for
the free variables of the program. These free variables are
either introduced by the user to specialize the program for a
class of executions or come from the sensors that transform
physical measurements into digital data values in the case

of embedded systems (typically these variables are declared
volatile in C codes). These global variables are initialized
thanks to the primitive assert at the beginning of each
program (see Figure 3). In assert id = [a, b, c, d], the interval
used is of form [a, b, c, d] where

• The first pair of values a, b consists of the range of
floating-point value,

• The second pair c, d consists of the error range
associated to the floating-point interval [a, b].

The end of assertions is indicated by the keyword %Salsa%.
Currently, Salsa optimizes one variable only, called the target
variable. It consists of the variable returned by the main func-
tion of the program. Salsa depends on several parameters
which tune its behavior. The main parameters are:

• sliceSize: This number corresponds to the height
of the syntactic tree where we slice the arithmetic
expressions. Basically Salsa builds very large expres-
sions in order to have more opportunities to rewrite
them into more accurate one. sliceSize is applied
when we deal with very large expressions after inlin-
ing and substituting to avoid too large expressions

// Begin of assertions or Global environment

assert m = [8.0,8.0, 0.0 ,0.0]

assert c = [5.0,5.0, 0.0 ,0.0]

// End of assertions

%Salsa%

// begin of Program

double main (){

// Begin of initialization

eold = 0.0 ; t = 0.0 ; i = 0.0 ; kp = 9.4514 ;

kd = 2.8454 ; dt = 0.2 ; invdt = 5.0 ; m = 0.0 ;

// End of initialization

while (t < 100.0) {

e = c - m ;

p = kp * e ;

i = integral(i,m,c,dt) ;

d = kd * invdt * (e - eold) ;

r = p + i + d ;

eold = e ;

m = m + r * 0.01 ;

t = t + dt ;

}

return r ; // Target variable

}

double integral(double ii, double mm,double cc,double ddt){

ki = 0.69006 ;

res = ii + (ki * ddt * (cc-mm)) ;

return res ;

}

Figure 3: Salsa files.



in the optimized program. After slicing the expres-
sions, we associate them to intermediary variables
named TMP. For example if sliceSize= 2, the as-
signment x = ((a+ b) + c) + (d+ e) is rewritten into
TMP1 = (a+ b) + c; TMP2 = d+ e; x = TMP1 + TMP2,

• ω: This number gives the width of the intervals corre-
sponding to the values of the arguments of a function.
In our interprocedural transformation module, the
intervals must contain at most ω = 24 floating-point
numbers. Our rule selector uses ω to determine if it
performs function specialization or laziness. If the
abstract values of the parameters have width less
than ω then we use specialization rule otherwise we
use laziness rule,

• widen: It consists of the number of iterations that
we can do before applying the widening in the static
analysis.

5.3 Example of Transformation
The PID Controller [2, 13] is a widely used algorithm in
embedded and critical systems, like aeronautic and avionic
systems. It keeps a physical parameter (m) at a specific
value known as the setpoint (c). An original PID program
is given in Figure 3. The function integral computes the
integral of the error by the rectangle rule. The error being
the difference between the setpoint and the measure, the
controller computes a correction based on the integral i and
derivative d of the error and also from a proportional error
term p. We have

p = kp×e, i = i+(ki × e× dt) , d = kd×(e−eold)×
1

dt
. (9)

The weighted sum of these terms determines the reactivity,
the robustness and the speed of the PID algorithm. If we take
for example the PID program given in Figure 3, we have: the
inputs are the measurement m and the setpoint c, the output
the response r, the target variable is r that corresponds to
the returned variable in the main function, the sliceSize

parameter is equal to 5 and the widen parameter is equal to
10.

After transformation, Salsa returns the program shown in
Figure 4. Salsa asserts that the relative error of computation
on r in the PID program is improved from 1.6226e−15 to
7.4200e−17 (see Table 1).

6 EXPERIMENTATION

In this section, we aim at evaluating the performances of
Salsa from various points of views. Obviously, we aim at
evaluating how much the numerical accuracy is improved
but also the impact on the code size, execution time and
program transformation time. To do this, we have taken a
set of examples introduced in other articles and coming from
different domains. We give hereafter, a brief description for
each of them.

• Odometry: It consists of computing the position (x, y)
of a two wheeled robot by odometry [13],

assert m = [8.0,8.0, 0.0 ,0.0]

assert c = [5.0,5.0, 0.0 ,0.0]

%Salsa%

double main() {

t = 0.0 ; m = 0.0 ; eold = 0.0 ; i = 0.0 ;

while (t < 100.0) {

p = ((5.0 - m) * 9.4514) ;

i = integral(i,m,5.0 ,0.2) ;

d = (((5.0 - m) - eold) * 14.226999999999997) ;

eold = (5.0 - m) ;

r = ((p + i) + d) ;

m = (m + (0.01 * r)) ;

t = (t + 0.2) ;

} ;

return r ;

}

double integral(double ii,double mm,double cc ,double ddt) {

res = (ii + ((0.69006 * (cc - mm)) * ddt)) ;

return res ;

}

Figure 4: Transformed PID program.

• PID: It keeps a physical parameter at a specific value
known as the setpoint [13] as seen in Section 5.3,

• Lead-Lag System: It consists of a dynamical sys-
tem including a mass and a spring which tries to
move the mass from an initial position to a desired
position [13],

• Runge-Kutta 4: It integrates an order 1 ordinary
differential equation [13],

• Newton-Raphson’s method: It is a numerical method
used to compute the successive approximations of
the zeros of a real-valued function [10],

• Simpson’s method: It is an improvement of the
trapeze rule for numerical integration [12],

• Rocket: It computes the positions of a rocket and
a satellite in space. It consists of simulating their
trajectories around the earth using the cartesian and
polar systems, in order to project the gravitational
forces in the system composed of the earth, the rocket
and the satellite [11]. This code is larger than the
former ones.

In Table 1, we give for each program:

• The upper bound of the original absolute error on
the target variable obtained by static analysis as
defined in Section 3.2,

• The upper bound of the absolute error on the target
variable obtained after optimization,

• The original relative error obtained by dividing the
absolute error by the upper bound of the interval of
the value of the target variable,

• The relative error after transformation,
• The transformation time required to transform the

programs.

The improvements of the relative errors on each code are
also displayed in Figure 5. For example, if we take the
PID controller previously presented in Section 5.3, its ini-
tial absolute error of computation is 4.66802e−14 while its
absolute error of computation after transformation is equal
to 2.13462e−16. We remark that the numerical accuracy of



Code Original Absolute Transformed Absolute Original Relative Transformed Relative Transformation

Error Error Error Error Time (s)

Odometry 5.55168e-14 2.13253e-14 7.7719e-16 3.7346e-16 0.047

PID Controller 4.66802e-14 2.13462e-16 1.6226e-15 7.4200e-17 0.121

Lead-Lag System 1.61083e-13 1.42663e-14 7.1038e-17 1.1145e-17 0.009

Runge-Kutta 4 1.26621e-15 2.77237e-16 7.1105e-16 1.6766e-16 0.022

Newton-Raphson 3.21484e-14 1.07444e-15 1.0937e-15 8.9536e-17 0.022

Simpson’s Method 1.91875e-10 9.44669e-15 1.1605e-13 6.2320e-18 0.620

Rocket Trajectory 2.85693e-07 6.04012e-10 3.7310e-11 7.8882e-13 0.086

Table 1: Improvement of the numerical accuracy of programs and their transformation time measurements.

Code Exec. timeo (s) Exec. timet (s) % Code sizeo (Bytes) Code sizet (Bytes) codesizeo
codesizet

Odometry 0.049 0.038 22.44 808 2.1 K 0.38

PID Controller 0.055 0.025 54.54 472 573 0.82

Lead-Lag System 0.049 0.046 6.12 618 752 0.82

Runge-Kutta 4 0.047 0.046 2.12 697 1.4 K 0.49

Newton-Raphson 0.059 0.047 20.33 465 1.1 K 0.42

Simpson’s Method 0.082 0.051 37.80 648 4.2 K 0.15

Rocket Trajectory 0.055 0.047 14.54 1.6K 2.9 K 0.55

Table 2: Execution time and code size measurements of programs.

the PID Controller is improved by 99.54%. In other words,
the absolute error of computation is reduced by 99.54%. If
we are interested in measuring the time needed by Salsa to
transform the PID Controller, we have that it takes 0.121 sec-
onds. On a more complex example like the Rocket program,
it takes 0.086 seconds to improve its accuracy for a total of
more than 100 lines of code.

Beside accuracy measurements, we are also interested in
examining the effects of Salsa on other criteria, related to
performances of the transformed codes. In Table 2, we give
for each program:

• The mean execution time in seconds obtained for
1000 runs of the original programs, Exec. timeo,

• The mean execution time after optimization obtained
for 1000 runs for each program, Exec. timet,
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Figure 5: Improvements of the relative errors of the
programs of Section6.

• The percentage of improvement of the execution
time,

• The code size of the original program, Code sizeo,
in Bytes,

• The code size of the transformed program, Code

sizet, in Bytes,
• The ratio between the code sizes of the original and

transformed codes.

For execution time measurements, all the programs have
been written in the C language and compiled with GCC 4.9.2,
and executed on Intel Core i7 in IEEE754 single precision
in order to emphasize the effect of the finite precision. Pro-
grams are compiled with the default optimization level -O2.
We have tried other levels of optimization without observing
significant changes in our results. The results show that by
transforming programs, we improve not only their accuracy
but we reduce their execution time too. More precisely, if we
take the PID Controller program, we shown in Table 2 that
the execution time needed by the original program is 0.055
seconds while its execution time after being transformed is
0.025 seconds. It means that, the execution time of the PID

Controller is reduced by 54.54%. This is mainly due to the
fact that Salsa performs partial evaluation during the trans-
formation and that computations with fewer operations often
generate less errors and are often privileged in the choice of
expressions in APEGs. By transforming programs, we may
create new variables when we deal with large expressions that
we associate to TMP variables. This explains the code size
before, code sizeo, and after transformation, code sizet
(in mean, the size of the optimized code is twice the size of
the original). Despite increasing the size of program, the
execution time of each program is widely reduced.



7 CONCLUSION

In this article, we have introduced Salsa, an automatic tool
to improve the numerical accuracy of computations of in-
traprocedural and interprocedural programs by automatic
transformation. We have detailed its architecture, and the
different inputs and the outputs that it supports. We have
tested Salsa across experimental results obtained on several
examples coming from embedded systems and numerical al-
gorithms. The results obtained show the efficiency of our
tool on the numerical accuracy of computations which are
improved by mean of 25.03%. Note that, this mean is a
geometric mean. We have also shown that Salsa improves
the execution time (by program specialization) but augments
the code size (a factor 2 in mean). The time taken by Salsa

to transform programs is also very short.
An interesting perspective consists of extending our work

to optimize parallel programs. In this direction, we aim
at solving new numerical accuracy problems like the order
in an operation in a distributed system. We are interested
also in studying the compromise between execution time,
computation performances, numerical accuracy and the con-
vergence acceleration of numerical methods. A key research
direction is to study the impact of accuracy optimization on
the convergence time of distributed numerical algorithms like
the ones used usually for high performance computing. In
addition, still about distributed systems, an important issue
concerns the reproducibility of the results: Different runs
of the same application yield different results on different
machines due to the variations in the order of evaluation of
the mathematical expression. We would like to study how
our technique could improve reproducibility.

A significant interest would be to extend the current work
with a case study concerning the optimization of several vari-
ables at the same time. In other words, we aim at improving
the numerical accuracy of the program on several control
points. That makes it possible to guess which variables are
favorite to be optimized simultaneously without deteriorating
the accuracy of the other variables.
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