
The Measurement Library∗
Representing Physical Types in PVS

Ashlie B. Hocking
Dependable Computing

Charlottesville, VA
ben.hocking@dependablecomputing.com

M. Anthony Aiello
Dependable Computing

Charlottesville, VA
tony.aiello@dependablecomputing.com

ABSTRACT
Cyber-physical systems model physical phenomena, implicitly or
explicitly, in order to interact with the real world. Representation of
physical phenomena, including dimensionality and units, using the
PVS type system provides users with the ability to create speci�ca-
tions that more accurately describe cyber-physical systems. This
paper discusses two related libraries that each present a di�erent
approach to providing functionality for using units in PVS. Objec-
tives in creating the libraries include: soundness, ease of use, ease
of readability, and e�ect on provability.

CCS CONCEPTS
• Software and its engineering → Formal software veri�ca-
tion; Speci�cation languages; Semantics;

KEYWORDS
PVS, formal speci�cation, real-world types

ACM Reference format:
Ashlie B. Hocking and M. Anthony Aiello. 2017. The Measurement Library.
In Proceedings of Automated Formal Methods, Mo�ett Field, CA, USA, May
19, 2017 (AFM’17), 8 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Creating a strong speci�cation of cyber-physical systems is di�-
cult. Correctly describing a cyber-physical system with a formal
speci�cation requires an accurate and consistent representation
of the physical phenomena shared between the system and the
real world. Furthermore, many proofs of properties guaranteed by
the speci�cation rely on accurate modeling of these phenomena.
Failing to accurately represent these phenomena invalidates proofs
that would otherwise be sound. These invalid proofs may lead to
an inability to detect failures, which may in turn lead to accidents.

In this paper, we present two approaches to encoding measure-
ments in PVS speci�cations that enable �rst-class representation
of physical phenomena using physical types. When we use the
term measurement, we refer to a value and a unit, where units
∗Approved for Public Release; Distribution Unlimited (Case Number: 88ABW-2017-
1472)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AFM’17, Mo�ett Field, CA, USA
© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

including dimensionality (e.g., distance vs. time), system of measure-
ment (e.g., metric or imperial), and scaling (e.g., km vs. mm). Both
approaches are captured in an open-source library, which can be
found at the dcpvslib project on GitHub [5].

Our objectives in creating the library include:
(1) Soundness: the library must enable users to detect mistakes,

e.g., in unit composition.
(2) Readability: the library must enable readers to easily spot

mistakes without using the prover.
(3) Ease of use: the library must make adding measurements

easy to use, since ease of use increases likelihood that the
library will be applied.

(4) E�ect on provability: use of the library must not unduly
increase the complexity of completing proofs.

Designing approaches that represent systems of units while
preventing implicit combination of units from di�ering systems re-
quires tradeo�s between simplicity and rigor. To explore these trade-
o�s, we have created two di�erent approaches, a system-templated
library (Section 4) and a system-�eld library (Section 5).

2 MOTIVATING EXAMPLES
To support readability and ease of use, we want to be able to write
PVS statements such as those shown in Listing 1.

Listing 1: Motivating PVS snippets

This notation is not only immediately familiar to readers, but also
makes it is easy to combine units. The expressiveness of the PVS
type system allows this representation while ensuring that opera-
tions on measurements will be type correct. For example, PVS gen-
erates type-correctness conditions (TCCs) to verify that dividing
Newtons by squared centimeters results in a pressure. Integrating
dimensional analysis into type checking is a key feature of this ap-
proach: no additional e�ort is required on the part of users to ensure
that measurements are handled correctly in their speci�cations.

Using measurements, we want to prevent certain types of opera-
tions that are indicative of errors. For example, adding meters to
centimeters implicitly or combining units from di�erent systems
of measurement implicitly indicates that the speci�cation may be
incorrect. Either operation may be correct, but we require that such
operations include explicit steps so that we can detect errors.

https://github.com/DependableComputing/dcpvslib

AFM’17, May 19, 2017, Mo�e� Field, CA, USA A. B. Hocking and M. A. Aiello

For example, consider a speci�cation (Figure 1) that adds 10
(meters) to 25 (centimeters). Without explicitly de�ned units, this
yields 35 (something) instead of 10.25 (meters) or 1,025 centimeters.
While the addition of these two values makes physical sense, in
order to avoid ambiguity a speci�cation should de�ne how the result
should be represented (meters, centimeters, or something else). An
implicit conversion to the speci�ed unit (meters to centimeters or
centimeters to meters) could then be assumed by a type-checking
library. However, our experience with creating speci�cations for
Simulink models convinces us that requiring the conversion to be
explicit (e.g., by multiplying 25 centimeters by 1 meter per 100
centimeters) will reduce the likelihood that mistakes will be made
involving units.

25

Twenty-Five
Centimeters

 (cm)

Sum (?)

1
Out (?)

10

Ten Meters
(m)

Figure 1: Attempting to add 10 m and 25 cm in Simulink

Delta
Height

Prelim New
Height

1
Prior Height

2
Flow Rate

3
Delta Time

 > 0

Enforce
Non-Negative0

Zero

1
New Height

Figure 2: Calculating the new �uid height in a tank

Similarly, consider a model of a tank where the height of the
liquid in the tank is based on the tank size and the amount of
liquid entering and leaving the tank, as shown in Figure 2. The PVS
speci�cation for this model is shown in Listing 2.

Listing 2: PVS model of tank calculation without units

This PVS theory generates no TCCs; it is trivially type consistent.
However, if we add units to this model, as shown in Listing 3 the
model generates unprovable TCCs.

Listing 3: PVS model of tank calculation with inconsistent
units

The problem with this model is that multiplying the �ow rate (vol-
ume per second) times the time (seconds) yields a volume, not a
length. For a tank with a cross-sectional area of 1 m2, the new height
can be calculated by adding to the previous height the volume of
liquid entering and the subtracting the volume of liquid leaving.
However, the operations in this model do not yield the correct
units. Moreover, if these operations were used without review for a
tank whose cross-sectional area is not 1 m2, the operations would
produce entirely incorrect results.

The correct PVS speci�cation for this model, with units, is pro-
vided in Listing 4.

Listing 4: PVS model of tank calculation with consistent
units

Informal representations of units or dimensionality allow the
user to detect this kind of mistake, but require manual veri�cation of
the correctness and consistency of measurements. These informal
representations are subject to errors of oversight. For example,
consider the mistake of dividing by a conversion factor when one
should be multiplying by a conversion factor. A careful reader
might �nd this mistake, but a reader who is expecting the formula
to be correct could easily overlook the mistake. Formalization of
representations of units and dimensionality allows these kinds of
mistakes to be detected automatically, increasing assurance that
the speci�cation is correct.

3 METHODS
Speci�cation of a measurement type should include value, dimen-
sionality, scaling, and system of measurement. Measurement types
should support basic operations (PMDAS — power, multiplication,
division, addition, and subtraction) while preventing invalid opera-
tions (e.g., addition of meters and centimeters).

The Measurement Library AFM’17, May 19, 2017, Mo�e� Field, CA, USA

3.1 Dimensionality
Dimensionality includes those aspects identi�ed by the Interna-
tional System of Units:

• Length
• Mass
• Time
• Electric Current
• Thermodynamic Temperature
• Amount of Substance
• Luminous Intensity
• Angle

The measurement libraries are designed to be extensible: additional
dimensionality aspects can be added as required. Similar to work
done elsewhere (see Subsection 6.2), dimensionality can be thought
of as a vector of powers so that length (e.g., 1 m) corresponds to
[1, 0, 0, 0, 0, 0, 0, 0] and speed (e.g., 1 m/s) to [1, 0,−1, 0, 0, 0, 0, 0].
This representation makes operations on measurements straight-
forward.

3.2 Scaling
Scaling is a conversion factor from an arbitrary scale factor to a
base representation. For example, if meters is the base representa-
tion, then centimeters will have a scale factor of 0.01, so that 10
centimeters = 10 x 0.01 meters. As another example, since watts
are de�ned as kg * m / s2, if grams, meters, and seconds are used as
a base representation, then watts will have a scale factor of 1,000
and kilowatts will have a scale factor of 1,000,000. Scaling provides
two bene�ts:

(1) a means of discriminating meters (scale = 1) from centime-
ters (scale = 0.01), and

(2) a means of supporting custom measurements, such as RPM
per 5 ms [6].

3.3 Operations
3.3.1 Multiplication/Division. Multiplying (dividing) measure-

ment m1 by m2 should return a measurement with the following
properties:

• a value equal to the value ofm1 multiplied (divided) by the
value ofm2,

• dimensions equal to the dimensions ofm2 added to (sub-
tracted from) the dimensions ofm1,

• the same system of measurement asm1 andm2, and
• a scale equal to the scale ofm1 multiplied (divided) by the

scale ofm2,.
A precondition of multiplying (dividing) m1 by m2 is that they
belong to the same system of measurement.

3.3.2 Exponentiation. The operation of raising a measurement
m to a power p should return a measurement with the following
properties:

• a value equal to the value ofm raised to the power p,
• dimensions equal to the dimensions ofm multiplied by the

power p,
• the same system of measurement asm, and
• a scale equal to the scale ofm raised to the power p.

Negative exponentiation should obviously be allowed, for example
to support speed (distance per time). However, less obviously, non-
integer exponentiation should also be supported, for example to
support the statcoulomb, which is represented in CGS as cm3/2 g1/2
s−1.

3.3.3 Addition/Subtraction. Adding (subtracting) measurement
m1 and m2 should return a measurement with the following prop-
erties:

• a value equal to the value ofm2 added to (subtracted from)
the value ofm1,

• dimensions equal to the dimensions ofm1 andm2,
• the same system of measurement asm1 andm2, and
• the same scale asm1 andm2.

Preconditions of adding (subtracting)m1 andm2 are:
• m1 andm2 must have the same dimensions,
• m1 and m2 must have the same system of measurement,

and
• m1 andm2 must have the same scale.

3.3.4 Comparisons. Comparing measurementm1 andm2 natu-
rally requires that the two measurements have the same dimensions.
As discussed in Section 2, our goal is to not allow implicit conver-
sions between units with di�erent scales (e.g., m and cm). To that
end, comparisons also require that the two measurements have the
same scale and system of measurement. While we could allow com-
parison between measurements with di�erent scales by having the
comparison be between the base values, or the product of the scale
and the value, such comparisons would not yield the same results
as the comparisons done within typical model-based development
packages or in typical programming languages (unless explicitly
including a package that supports units). E.g., if a Simulink model
compared a constant of 2 m and a constant of 15 cm, it would �nd
that 15 cm > 2 m, so this is not a comparison we support. Thus,
comparisons have the same preconditions as addition and subtrac-
tion. Note that such comparisons can still be made by performing
explicit conversions, so that one could verify that 15 * cm * m /
(100 * cm) < 2 * m. Similarly, if one wants to check to see if 10
* m = 1000 * cm, one �rst needs to explicitly convert the equality
to 10 * m * 100 * cm / m = 1000 cm in order to properly form
the question. As with addition, our goal is to reduce the chances
of inadvertently using the wrong units, and in our experience re-
quiring explicit conversions between units with di�erent scales (or
systems of measurement) is the best way to achieve this.

3.4 System of Measurement
Systems of measurement represent a set of base units, standard
combinations of those units, and rules relating them to each other.
The measurement library current supports the SI and Imperial
systems of measurement. Other systems can be added by users.

In this paper, we discuss two approaches to specifying a system
of measurement:

(1) specify the system of measurement as a template variable
to the theory, and

(2) specify the system of measurement as a �eld in the mea-
surement type.

AFM’17, May 19, 2017, Mo�e� Field, CA, USA A. B. Hocking and M. A. Aiello

We discuss the advantages and disadvantages of these two ap-
proaches in the following sections.

4 SYSTEM-TEMPLATED LIBRARY
As shown in Listing 5, the system-templated library is param-
eterized by measurement_systems: an enumeration of METRIC,
IMPERIAL.

Listing 5: Header of the measurement theory in the system-
templated library

Within this library a measurement type is de�ned as shown in
Listing 6.

Listing 6: Measurement type in the system-templated li-
brary

Units are de�ned in this library by instantiated versions of tem-
plated theories, where di�erent systems use di�erent scaling factors.
For example, the imperial_lengths theory is de�ned in Listing 7.

Listing 7: The imperial lengths theory

4.1 Predicates
In this approach, two predicates are required to support opera-
tions on measurements: dimension_match? and unit_match?. The
dimension_match? predicate is shown in Listing 8, and tells us that
two measurements have identical dimensions.

Listing 8: Speci�cation of dimension_match? predicate

Listing 9: Speci�cation of unit_match? predicate

The unit_match? predicate, which uses the dimension_match?
is shown in Listing 9 and is true when two measurements have the
same dimensions and scale.

To support the comparison operations discussed in Subsection 3.3.4,
we also de�ne a comparable? predicate that is identical to the
unit_match? predicate.

In addition to the generic predicates de�ned above, measurement
subtypes (e.g., length) have predicates de�ned as part of their type
de�nition. For example, the type length is de�ned in terms of the
predicate length? shown in Listing 10.

Listing 10: Speci�cation of length? predicate

4.2 Operations
4.2.1 Multiplication/Division. Multiplication and division are

de�ned by the rules provided in Subsection 3.3.1. The speci�cation
of the multiplication operation is shown in Listing 11. Because the
system of measurements is speci�ed as a theory template variable,
the precondition that the systems match is not explicit.

Listing 11: Speci�cation of the multiplication operator

The Measurement Library AFM’17, May 19, 2017, Mo�e� Field, CA, USA

Listing 12: Speci�cation of the ˆ operator

4.2.2 Exponentiation. Exponentiation is de�ned in terms of mul-
tiplication (or division for negative powers). The speci�cation of
the ˆ operation is shown in Listing 12. While the function expt only
allows non-negative integers, the ˆ operator handles all integers.

Fractional powers can be attained through the use of sqrt, as
shown in Listing 13. While using integer exponentiation and square
roots to create units such as the statcoulomb discussed in Subsec-
tion 3.3.2 is somewhat awkward, these units can be de�ned once
and reused with ease. Currently, the library does not support arbi-
trary powers (e.g., one-third), but this is only because there has not
yet been a reason to support arbitrary powers.

Listing 13: Speci�cation of the sqrt operation

4.2.3 Addition/Subtraction. Addition and subtraction are de-
�ned by the rules provided in Subsection 3.3.3. The speci�cation
of the addition operator is shown in Listing 14. The unit_match?
predicate is used to guarantee the precondition requirements for
addition that the two measurements have the same dimensions and
scale.

Listing 14: Speci�cation of the addition operator

4.2.4 Comparisons. Comparison operations (e.g., <) have the
same preconditions as addition/subtraction. For example, the <
operator is de�ned as shown in Listing 15, where base_value is
the product of value and scaling.

Listing 15: Speci�cation of the less than operator

4.3 Analysis
Unfortunately, with the system-templated library, it becomes possi-
ble to inadvertently combine units from di�erent systems so that m
* ft is valid. One could de�ne a predicate to check for whether a
unit is consistently scaled as a power of ten as shown in Listing 16.

Listing 16: Speci�cation of the power_of_ten_measurement
predicate

Because imperial units are always de�ned with a scaling fac-
tor that is not a power of ten (with the exception of units that are
system-agnostic such as seconds), the power_of_ten_measurement?
predicate can be used to identify measurements that are metric.
However, this predicate will miss certain situations where custom
metric units have scaling factors that are not powers of ten. The
decision to use METRIC as a baseline (so that m has a scaling factor
of 1 and ft has a scaling factor of 0.3048, for example) instead
of IMPERIAL was made primarily for our preference of the met-
ric system, but is also supported by the potential utility of the
power_of_ten_measurement? predicate.

The system-�eld library addresses this limitation.

5 SYSTEM-FIELD LIBRARY
The system-�eld library uses a �eld to track the system of measure-
ment. In the system-�eld library, a measurement type is de�ned as
shown in Listing 17.

Listing 17: Measurement type in the system-�eld library

In this library, possible values for system_enum are NOT_APPLICABLE
(for dimensionless measurements), ANY (for units that are system
agnostic, such as seconds), METRIC, and IMPERIAL. Units are de�ned
in this library by specifying the appropriate system of measurement
(and scaling where applicable) as shown in Listing 18.

Both meters and other lengths are de�ned in the lengths theory,
with other lengths shown in Listing 19.

AFM’17, May 19, 2017, Mo�e� Field, CA, USA A. B. Hocking and M. A. Aiello

Listing 18: Speci�cation of meters

Listing 19: Speci�cation of various length units

As mentioned previously, some units are de�ned to be system
agnostic, such as s de�ned in the times theory and Hz de�ned in
the frequencies theory.

5.1 Predicates
The system-�eld library requires far more predicates. While the
dimension_match? predicate in this library is de�ned identically to
the dimension_match? predicate in the system-templated library,
the unit_match? predicate requires multiple helper predicates. The
explicit_system? predicate separates the METRIC and IMPERIAL
explicit systems of measurement from the NOT_APPLICABLE and
ANY system_enum options. Because the NOT_APPLICABLE option is
only valid for dimensionless quantities, not all measurements are
valid. The valid_measurement? predicate, shown in Listing 20 is
true for valid measurements.

Listing 20: Speci�cation of the valid_measurement? predi-
cate

In the system-�eld library, determining whether two systems
“match” is more complicated than determining if the systems are
identical. The system_match? predicate shown in Listing 21 is true
if two measurements have matching systems.

Listing 21: Speci�cation of the system_match? predicate

Note that the system_match? predicate is not transitive. For
example, if measurement x is METRIC, measurement y is ANY, and
measurement z is IMPERIAL, then system_match?(x, y) is true,
and system_match?(y, z) is true, but system_match?(x, z) is
not.

The unit_match? predicate is shown in Listing 22.
The preferred_system? predicate is used when determining

what system of measurement to use for the result of mathemat-
ical operations. For example, if dividing two measurements and
the �rst measurement is METRIC and the second measurement is

Listing 22: Speci�cation of unit_match? predicate

ANY, then the �rst measurement is the preferred system and the
preferred_system? predicate will be true.

Listing 23: Speci�cation of preferred_system? predicate

We also de�ne a comparable? predicate that is similar to the
unit_match? predicate, but allows zero values to be compared
regardless of whether units match.

In addition to the generic predicates de�ned above, measurement
subtypes (e.g., length) have predicates de�ned as part of their type
de�nition.

5.2 Operations
5.2.1 Multiplication/Division. Multiplication and division are

de�ned similarly to how they are de�ned in Subsection 4.2.1. How-
ever, because the system of measurements is speci�ed by a �eld,
the precondition that the systems match is explicit. The speci�ca-
tion of the multiplication operation is shown in Listing 24. As with
addition, the preferred_system? predicate is required to ensure
that multiplication is commutative.

Listing 24: Speci�cation of the multiplication operator

The Measurement Library AFM’17, May 19, 2017, Mo�e� Field, CA, USA

5.2.2 Exponentiation. As shown in Listing 25, exponentiation
is de�ned similarly to how it is de�ned in Subsection 4.2.2. The
primary di�erence in this library is that the raising a measure-
ment to the zero power results in a dimensionless quantity with
scale and value 1, but with the same system of measurement as
the original measurement. The choice to preserve the system of
measurement, rather than using NOT_APPLICABLE or ANY was made
for both simplicity of implementation and ease of use.

Listing 25: Speci�cation of the ˆ operator

5.2.3 Addition/Subtraction. Addition and subtraction are de-
�ned similarly to how they are de�ned in Subsection 4.2.3. The
speci�cation of the addition operator is shown in Listing 26. The
preferred_system? predicate is used to determine which system
of units the result should be in cases where one of the measure-
ments is zero-valued and without an explicit system. This predicate
is required to ensure that addition is commutative.

Listing 26: Speci�cation of the addition operator

5.2.4 Comparisons. Comparison operations (e.g., <) are de�ned
similarly to how they are de�ned in Subsection 4.2, except that
these operations rely on the comparable? predicate as de�ned in
this section.

5.3 Analysis
The system-�eld library prevents accidental mixtures of systems of
units (such as befell the Mars Climate Orbiter [13]). Conversions
from one system of units to another require their own theory and
must be explicitly de�ned as transmutations as shown in Listing 27.

A consequence of the system-�eld library being more rigorous
than the system-template library is that far more TCCs are gener-
ated, and these TCCs are often more complex.

Listing 27: Speci�cation of the transmutation type

6 DISCUSSION
6.1 Comparison of Libraries
The four primary objectives in creating the libraries are:

(1) Soundness
(2) Ease of use
(3) Ease of readability
(4) E�ect on provability

6.1.1 Soundness. Both libraries are logically sound. However,
the system-�eld library prevents the accidental combination of sys-
tems of units, while the system-templated library does not. Thus, for
speci�cations where implicit combinations of units from di�erent
systems should not be allowed, the system-templated library may
allow speci�cations that violate this requirement. For speci�cations
where implicit conversions from one system of units to another
are allowed, the system-templated library performs the necessary
unit checking to ensure units are consistently used, since units are
de�ned in this library so that conversions happen automatically
per their scaling �eld.

6.1.2 Ease of Use and Ease of Readability. Both libraries are vir-
tually identical in terms of ease of use and readability The libraries
only di�er in this objective for speci�cations where di�erent sys-
tems of units are combined. In speci�cations with mixed systems
of units, in the system-�eld library conversions from one system to
another must be made explicitly, making this library slightly harder
to use than the system-templated library. Which library is more
readable for speci�cations with mixed systems of units depends on
preferences for explicitness or implicitness.

6.1.3 E�ect on Provability. In the system-templated library, all
measurements are valid and compatible with respect to multiplica-
tion. This results in fewer TCCs and often simpler proofs. While the
system-�eld library supports rigorous analysis of units and elim-
inates the possibility of multiplying m * ft, its use often results
in complex type-correctness conditions (TCCs) and increases the
di�culty of proving theorems, compared to the system-templated
library. In most cases, these TCCs are automatically proven by
the built-in prover strategies, but occasionally these TCCs must
be manually proven. When TCCs must be manually proven, the
proofs are usually simple to complete, with the (grind) strategy
frequently su�cing.

6.2 Related Work
Previous work has been done to use dimensional analysis in speci-
�cations, both in Z [3] and Simulink [9, 11].

AFM’17, May 19, 2017, Mo�e� Field, CA, USA A. B. Hocking and M. A. Aiello

In the Z implementation of Hayes and Mahoney [3], a mea-
surement is de�ned using the � operator between a value and a
unit. To represent a speed of 5 m/s, they would use the notation
5 � L · (T ⇑ −1). Systems of measurement are embedded in the
de�nition of L and T. Scales are not part of measurement, so the
unit mm would be represented as 0.001 � L. This implementation
does not support exponentiation to non-integer values.

In DimSim, dimensions are de�ned by annotating speci�c Simulink
blocks (e.g., source/sink blocks) using a form of vector notation [9].
In this notation, a speed measurement would be annotated with
〈L = 1,M = 0,T = −1〉. The system of measurement is implicit (not
speci�ed), and scaling is not a part of this annotation, so it does not
detect mistakes such as adding centimeters to meters.

SimCheck uses a similar approach to DimSim with annotations
being associated with speci�c Simulink blocks using a form of vec-
tor notation [11]. For example, to indicate that block RelativeSpeed
is a speed, an annotation block would be created in the model con-
taining the statement unit(RelativeSpeed) = [1, 0, -1, 0, 0, 0, 0].
As with DimSim, the system of measurement is implicit (not speci-
�ed), and scaling is not a part of this annotation.

While these approaches are useful, we believe that our approach
of indicating a speed of 5 m/s by the notation of 5 ∗m/s is more
intuitive to read and write. Our approach also makes the system
of measurement explicit, allowing our libraries to detect mistakes
caused by mixing systems of measurement. Finally, we include a
scale factor, so that both cm and m can be used in a speci�cation
and mistakes can be found if the two are used incorrectly.

Dimensional and unit analysis is also supported in a variety of
programming languages (e.g., F# [7], Fortress [1], GHC Haskell [2],
and Java [10]). Of particular interest is a prototype application
from Xiang et al. that binds real-world types (including measure-
ments) associated with cyber-physical systems with the supporting
software [8, 12].

7 CONCLUSION
7.1 Future Work
The two libraries discussed in this paper focus on value, dimension-
ality, scaling, and system of measurement. However, there are other
properties of physical phenomena that could be represented, includ-
ing uncertainty of measurements, latency, and reference frames[4].
Future work will research means to incorporate additional real-
world information into PVS in a manner that is easy to read, easy
to use, and practical for proving important properties in PVS.

7.2 Summary
Mistakes in speci�cations arising from the improper representa-
tion of physical phenomena can mask fundamental �aws in those
speci�cations. Identifying these mistakes during the speci�cation
phase of development can reduce the total cost of development.
The PVS libraries discussed here provide a manner to accurately
model dimensionality, scaling, and system of measurement in cyber-
physical systems in a manner that is easy to read, easy to use, and
without signi�cant proof overhead. These libraries can be incor-
porated in automatic translations from Simulink models into the
PVS speci�cation language to allow useful properties to be proven
about the Simulink models[6].

These libraries are open source and are publicly available at
https://github.com/DependableComputing/dcpvslib.

ACKNOWLEDGMENT
The authors thank Toyota InfoTechnology Center, USA and Toyota
Motor Corporation for their support. This work was funded in part
by USAF AFLR/RQQA contract FA8650-14-C-2528.

REFERENCES
[1] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen,

Sukyoung Ryu, Guy L Steele Jr, Sam Tobin-Hochstadt, Joao Dias, Carl Eastlund,
and others. 2007. The Fortress Language Speci�cation. (2007).

[2] Adam Gundry. 2015. A typechecker plugin for units of measure: Domain-speci�c
constraint solving in GHC Haskell. In ACM SIGPLAN Notices, Vol. 50. ACM,
11–22.

[3] Ian J Hayes and Brendan P Mahony. 1995. Using units of measurement in formal
speci�cations. Formal Aspects of Computing 7, 3 (1995), 329–347.

[4] Ashlie B. Hocking. 2015. Real-World Contracts - Rich Semantics for For-
mal Interfaces. (June 2015). http://www.mys5.org/Proceedings/2015/Day_3/
2015-S5-Day3_1055_Hocking.pdf

[5] Ashlie B. Hocking. 2017. Dependable Computing PVS libraries. (2017). https:
//github.com/DependableComputing/dcpvslib

[6] Ashlie B Hocking, M Anthony Aiello, and John C Knight. 2015. Static analysis
of physical properties in Simulink models. In Software Reliability Engineering
Workshops (ISSREW), 2015 IEEE International Symposium on. IEEE, 8–11.

[7] Andrew Kennedy. 2010. Types for units-of-measure: Theory and practice. In
Central European Functional Programming School. Springer, 268–305.

[8] John Knight, Jian Xiang, and Kevin Sullivan. 2016. A Rigorous De�nition of
Cyber-Physical Systems. Trustworthy Cyber-Physical Systems Engineering (2016),
47.

[9] Sam Owre, Indranil Saha, and Natarajan Shankar. 2012. Automatic dimensional
analysis of cyber-physical systems. In FM 2012: Formal Methods. Springer, 356–
371.

[10] JSR-108 project. 2004. Unit (Java Units API). (2004). http://jsr-108.sourceforge.
net/javadoc/javax/units/Unit.html

[11] Pritam Roy and Natarajan Shankar. 2011. SimCheck: a contract type system for
Simulink. Innovations in Systems and Software Engineering 7, 2 (2011), 73–83.

[12] Jian Xiang, John Knight, and Kevin Sullivan. 2015. Real-World Types and Their
Application. In International Conference on Computer Safety, Reliability and Secu-
rity (SAFECOMP).

[13] T. Young, J. Arnold, T. Brackey, M. Carr, D. Dwoyer, R. Fogleman, R. Jacobson, H.
Kottler, P. Lyman, and J. Maguire. 2000. Mars Program Independent Assessment
Team Report. NASA STI/Recon Technical Report N (March 2000), 32462.

http://www.mys5.org/Proceedings/2015/Day_3/2015-S5-Day3_1055_Hocking.pdf
http://www.mys5.org/Proceedings/2015/Day_3/2015-S5-Day3_1055_Hocking.pdf
https://github.com/DependableComputing/dcpvslib
https://github.com/DependableComputing/dcpvslib
http://jsr-108.sourceforge.net/javadoc/javax/units/Unit.html
http://jsr-108.sourceforge.net/javadoc/javax/units/Unit.html

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Methods
	3.1 Dimensionality
	3.2 Scaling
	3.3 Operations
	3.4 System of Measurement

	4 System-Templated Library
	4.1 Predicates
	4.2 Operations
	4.3 Analysis

	5 System-Field Library
	5.1 Predicates
	5.2 Operations
	5.3 Analysis

	6 Discussion
	6.1 Comparison of Libraries
	6.2 Related Work

	7 Conclusion
	7.1 Future Work
	7.2 Summary

	References

