
A Brief Introduction to the PVS2C Code Generator AFM’17, May 19–20, Menlo Park CA, USA

A Brief Introduction to the PVS2C Code Generator
Natarajan Shankar

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025, USA

shankar@csl.sri.com

ABSTRACT
We present a brief tutorial on the PVS2C code generator for produc-
ing C code from an applicative fragment of the PVS specification
language. This fragment roughly corresponds to a self-contained
functional language. The tutorial covers the generation of C code
for numeric data types and associated operations, arrays, recursive
data types, and higher-order operations.

ACM Reference format:
Natarajan Shankar. 2017. A Brief Introduction to the PVS2C Code Generator.
In Proceedings of Automated Forma Methods, Menlo Park CA, USA, May 19–20
(AFM’17), 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Specification languages are meant to capture the “what” of com-
putation while programming language express the “how”. For this
reason, a specification language need not be executable. However,
many specification languages do contain executable sublanguages.
Execution is useful for validating specifications, generating veri-
fied software and systems, and for performing large calculations
within proofs. Code generation makes it possible to construct ex-
ecutable systems without having to formalize programming no-
tations and their semantics within the specification language, or
building special-purpose verification tools that target these pro-
gramming languages.

The Prototype Verification System (PVS) is an interactive proof
assistant with an expressive specification language based on higher-
order logic. The type system admits predicate subtypes, dependent
tuple, record, and function types, and recursive datatypes. The lan-
guage also supports parametric theories. The expression language
includes function application, lambda abstraction, quantification,
conditional expressions, LET-binding, and record/tuple/function up-
dates. The quantifier-free fragment of the language can be viewed
as an applicative language.

This work was supported by NSF Grant CSR-EHCS(CPS)-0834810, NASA Cooperative
Agreement NNA10DE73C, and by DARPA under agreement number FA8750-12-C-
0284 and FA8750-16-C-0043. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of NSF, NASA, DARPA or the
U.S. Government.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AFM’17, May 19–20, Menlo Park CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

There are two basic problems in mapping an applicative lan-
guage to an imperative one. The first is that applicative semantics
require copying on updates. This kind of copying can be very expen-
sive: sorting a 1000-element array can involve thousands of copies.
It is therefore important to identify and exploit opportunities for
in-place updates. The second problem is of course the execution of
an applicative program can generate memory that is no longer ref-
erenced and needs to be garbage-collected. In PVS2C [1], reference
counting is used to address both issues. In simple terms, an array
can be updated in place when its reference count is one, and it can
be garbage collected when its reference count drops to zero. Since
reference cycles cannot be created when executing PVS, reference
counting does ensure that no live references are collected and all
dead references are garbage-collected. More strongly, references
are released as soon as possible so as to maximize the opportunities
for in-place updates. The execution of well-typed PVS expressions
is safe: the only possible runtime errors are when the execution ex-
hausts heap or stack space. Typechecking, particularly through the
discharging of type correctness condition (TCC) proof obligations,
ensures that there can be no buffer overflows, null dereferences,
uncaught exceptions, division by zero, etc.

Though PVS2C targets the C programming language, the trans-
lation from PVS to C is factored through an intermediate represen-
tation (IR) that can be used to target other programming languages.
The IR is based on A-normal form [2]. The pvs2ir operation trans-
lates PVS expressions into the IR. This translation basically involves
flattening expressions to create variable bindings for subexpres-
sions. The IR includes some type information to help track array
sizes. The ir2c operation maps IR expressions into C by essentially
converting the LET-bindings into assignments. The PVS2C gener-
ator can be invoked as M-x pvs-c-theory with the cursor on a
theory in a .pvs file. The code generator generates a header and
code file for the given theory as well as for any theories that are in
the import chain. The code generator currently handles Boolean,
numeric, record, tuple, recursive datatypes, and function types.
Fixed width, uni-dimensional arrays are handled using C arrays,
and the others are treated as function types. We are working on
extending the translation to dependently sized array types and
polymorphic types. We present a short tutorial on the use of the
prototype implementation of PVS2C.

2 A SMALL EXAMPLE
We first present a small example to illustrate the flow with the
theory smallswap shown below. The type nat32 is a subtype that
captures the C type uint_32. The pvs2ir translator uses the Com-
mon Lisp ground evaluator [3] to evaluate such expressions. This

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

also holds for the numrows parameter. The type smallarray repre-
sents an array of size 5. The swap operation is defined to exchange
A(i) with A(j).
swap : THEORY
BEGIN

nat32: TYPE = below(exp2(32))

numrows: nat32 = 5

rows: TYPE = below(numrows)

smallArray: TYPE = [rows -> nat32]

A: VAR smallArray

swap(A, (i, j : rows)): smallArray =
A WITH [(i) := A(j),

(j) := A(i)]

test: smallArray =
(LET A = (LAMBDA (i: rows): i)
IN swap(A, 2, 3))

END swap

This generates the IR shown below. The two lookups of A(j) and
A(i) are bound to the variables ivar_7 and ivar_10, respectively.
The swap operation is made up of two updates. The variables are
printed with their type information. Note that several of the variable
occurrences are as arguments to the last operator. This operator
marks the last occurrence of a variable in an evaluation path. It
is used in the C translator for helping account for references. The
whole definition is represented as a lambda expression where the
body is given a return type following the arrow ‘->’.
(lambda ((ivar_1 swap_smallArray) (ivar_2 (subrange 0 4))

(ivar_3 (subrange 0 4)))
'->
swap_smallArray
(let ivar_4
(subrange 0 4294967295)
(let ivar_7
(subrange 0 4294967295)
(lookup (ivar_1 swap_smallArray) (ivar_3 (subrange 0 4)))
(last (ivar_7 (subrange 0 4294967295))))

(let ivar_5
(subrange 0 4294967295)
(let ivar_10
(subrange 0 4294967295)
(lookup (ivar_1 swap_smallArray) (ivar_2 (subrange 0 4)))
(last (ivar_10 (subrange 0 4294967295))))

(let ivar_17
swap_smallArray
(update (last (ivar_1 swap_smallArray))
(last (ivar_2 (subrange 0 4)))
(last (ivar_4 (subrange 0 4294967295))))

(let ivar_22
swap_smallArray
(update (last (ivar_17 swap_smallArray))
(last (ivar_3 (subrange 0 4)))
(last (ivar_5 (subrange 0 4294967295))))
(last (ivar_22 swap_smallArray)))))))

The operation ir2c generates the C counterpart of the IR transla-
tion. Two files: swap_c.h and swap_c.c are generated. The header
file swap_c.h contains the following include declarations.
#include <stdio.h>

#include <stdlib.h>

#include <inttypes.h>

#include <stdbool.h>

#include <string.h>

#include <gmp.h>

#include "pvslib.h"

#include "exp2_c.h"

It also contains the type definition corresponding to the smallArray
type. The array is defined by a struct that has a reference count
field count, and the C array elems. We also define five operations
for each such aggregate type: new, which constructs a fresh array;
release, which decreases the reference count by one while freeing
the struct if the reference count drops to zero; copy, which does a
shallow copy; equal, which is a recursive equality test; and update,
which performs an update.
struct swap_smallArray_s { uint32_t count;
uint32_t elems[5]; };

typedef struct swap_smallArray_s * swap_smallArray_t;

extern swap_smallArray_t new_swap_smallArray(void);

extern void release_swap_smallArray(swap_smallArray_t x);

extern swap_smallArray_t copy_swap_smallArray(swap_smallArray_t x);

extern bool_t equal_swap_smallArray(swap_smallArray_t x, swap_smallArray_t y);

extern swap_smallArray_t
update_swap_smallArray(swap_smallArray_t x, uint32_t i, uint32_t v);

The file swap_c.c contains the definitions of the above operations,
as well as the definition of swap. Each sub-expression in the IR
definition of swap is translated with a return variable, where each
LET-binding turns into an assignment with a possible casting. It
might seem surprising that there is no explicit reference counting in
the definition. The update operation manages the reference count
for the array being updated. Since the two update operations are
applied to variables marked as last, they will be executed in place
if the reference count of the array passed into the operation as
ivar_1 has a reference count of one.
extern swap_smallArray_t f_swap_swap(swap_smallArray_t ivar_1,

uint8_t ivar_2,
uint8_t ivar_3){

swap_smallArray_t result;
uint32_t ivar_4;
uint32_t ivar_7;
ivar_7 = (uint32_t)ivar_1->elems[ivar_3];
ivar_4 = (uint32_t)ivar_7;
uint32_t ivar_5;
uint32_t ivar_10;
ivar_10 = (uint32_t)ivar_1->elems[ivar_2];
ivar_5 = (uint32_t)ivar_10;
swap_smallArray_t ivar_17;
ivar_17 = (swap_smallArray_t)

update_swap_smallArray(ivar_1, ivar_2, ivar_4);
swap_smallArray_t ivar_22;
ivar_22 = (swap_smallArray_t)

update_swap_smallArray(ivar_17, ivar_3, ivar_5);
result = (swap_smallArray_t)ivar_22;

return result;
}

The generated programs can be tested by means of a hand-
written main such as the one shown below.
#include "swap_c.h"

int main(){
swap_smallArray_t result;
result = f_swap_test();
printf("\n result->count = %u", result->count);
printf("\n");
for (uint32_t i = 0; i < f_swap_numrows(); i++){
printf("a[%u] = %u; ", i, result->elems[i]);

}
printf("\n");

}

Compiling and executing this program generates.
result->count = 1

a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 2; a[4] = 4;

3 ARITHMETIC OPERATIONS
We next examine the translation of arithmetic operations. The
theory arithops shows some of the types and a few variations on
addition.

2

arithops: THEORY
BEGIN

uint8: TYPE = below(exp2(8))
uint16: TYPE = upto(exp2(16) - 1)
uint32: TYPE = upto(exp2(32) - 1)
uint64: TYPE = upto(exp2(64) - 1)
uint128: TYPE = upto(exp2(128) - 1)

int8: TYPE = subrange(-exp2(7), exp2(7) - 1)
int16: TYPE = subrange(-exp2(15), exp2(15) - 1)
int32: TYPE = subrange(-exp2(31), exp2(31) - 1)
int64: TYPE = subrange(-exp2(63), exp2(63) - 1)
int128: TYPE = subrange(-exp2(127), exp2(127) - 1)
addu8u8_u8: uint8 = 127 + 128
addu8u8_u16: uint16 = 255 + 255
addu8u16_u16: uint16 = 255 + 65000
addu16u8_u16: uint16 = 65000 + 255
addu16u16_u16: uint16 = 32768 + 32767
addu16u16_u8: uint8 = (LET x : uint16 = 127,

y : uint16 = 128
IN x + y)

addu16u16_u32: uint32 = 65535 + 65535
addu16u32_u32: uint32 = 65535 + 4294900000
addu32u32_u32: uint32 = 2094900000 + 2094900000
addu32u32_u16: uint16 = (LET x : uint32 = 32000,

y : uint32 = 32000
IN x + y)

END arithops

We show the generated code for the last operation addu32u32_u16.
This code fragment illustrates the casting between the different
numeric types. PVS2C handles casting between signed and un-
signed 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit numbers, as well as
multi-precision representations.

extern uint16_t f_arithops_addu32u32_u16(void){
uint16_t result;
uint32_t ivar_1;
ivar_1 = (uint32_t)32000;
uint32_t ivar_2;
ivar_2 = (uint32_t)32000;
result = (uint16_t)(ivar_1 + ivar_2);
return result;

}

The multi-precision computations use the Gnu Multi-Precision
(GMP) library. The operations employ a different calling convention
where the first argument to the operation is the variable used for
recording the result.

extern void f_arithops_addu32u32_nat(mpz_t result){
uint32_t ivar_1;
ivar_1 = (uint32_t)4294967295;
uint32_t ivar_2;
ivar_2 = (uint32_t)4294967295;
mpz_set_ui(result, (uint64_t)ivar_1);
mpz_add_ui(result, result, (uint64_t)ivar_2);

}

PVS record datatypes are represented as C structs with the corre-
sponding fields. The PVS declaration for the record type smallPair
is shown below as consisting of three fields: left, right, and mid.

smallPair: TYPE = [# left, right : smallArray, mid: nat32 #]

The corresponding C type is shown below.

struct smallswap_smallPair_s {
uint32_t count;
smallswap_smallArray_t left;
uint32_t mid;
smallswap_smallArray_t right;};

typedef struct smallswap_smallPair_s * smallswap_smallPair_t;

As with arrays, the record types also have five generated oper-
ations for creating a new object, copying an object, checking for
equality, updating an object, and releasing the object.

extern smallswap_smallPair_t new_smallswap_smallPair(void);

extern void release_smallswap_smallPair(smallswap_smallPair_t x);

extern smallswap_smallPair_t copy_smallswap_smallPair(smallswap_smallPair_t x);

extern bool_t
equal_smallswap_smallPair(smallswap_smallPair_t x, smallswap_smallPair_t y);

extern smallswap_smallPair_t
update_smallswap_smallPair_left(smallswap_smallPair_t x,

smallswap_smallArray_t v);

extern smallswap_smallPair_t
update_smallswap_smallPair_mid(smallswap_smallPair_t x, uint32_t v);

extern smallswap_smallPair_t
update_smallswap_smallPair_right(smallswap_smallPair_t x,

smallswap_smallArray_t v);

PVS n-tuples are treated as record types with fields project_1
to project_n.

Recursive datatypes in PVS are introduced with constructors
along with their recognizers and accessors. The declaration for
numlist introduces a datatype with two constructors: nnull and
ncons, where nnull has no accessors and the recognizer nnull?,
and ncons has two accessors: ncar and ncdr, and the recognizer
ncons?.

numlist: DATATYPE
BEGIN
nnull: nnull?
ncons(ncar: nat32, ncdr: numlist): ncons?

END numlist

The translation to C first generates a parent datatype with just
the count field for the reference count and an index field for mark-
ing the index of the constructor.
struct drev_numlist_adt_s {

uint32_t count;
uint8_t drev_numlist_adt_index;};

typedef struct drev_numlist_adt_s * drev_numlist_adt_t;

For each nontrivial constructor, there is a struct extending the
parent struct with the relevant fields. For example, the construc-
tor ncons yields the struct definition below extending the struct
drev_numlist_adt_s.
struct drev_ncons_s {

uint32_t count;
uint8_t drev_numlist_adt_index;
uint32_t ncar;
drev_numlist_adt_t ncdr;};

typedef struct drev_ncons_s * drev_ncons_t;

Datatype updates are handled in the same way as structs so that
it is possible to define destructive counterparts for appending and
reversing lists. PVS2C does not yet handle parametric datatypes
nor parametric theories.

PVS2C handles closures by first generating a parent C struct for
the function type with fields for

• The reference count
• The unary function pointer fptr
• The multiary function pointer mptr
• The release function pointer rptr
• The copy function pointer cptr, and
• A hashtable for storing function updates.

The corresponding C representation is defined below. The actual
value representing a closure also contains a field for for the bindings
for the free variables.
struct closr_closure_0_s { uint32_t count;

uint32_t (* fptr)(struct closr_closure_0_s *, uint32_t);
uint32_t (* mptr)(struct closr_closure_0_s *, uint32_t);
void (* rptr)(struct closr_closure_0_s *);
struct closr_closure_0_s * (* cptr)(struct closr_closure_0_s *);
closr_closure_0_htbl_t htbl;};

3

4 CONCLUSIONS
The PVS2C code generator translates an applicative fragment of
PVS into C code. The generated C code is self-contained and does
not rely on a run time. The generated code preserves the type safety
of the typechecked PVS. It can only crash by exhausting resource
bounds. The generated C code is comparable in efficiency to the
corresponding hand-crafted C, and a lot faster than the Common
Lisp code generated from PVS.

We are working on extending the translation to cover paramet-
ric theories, dependently-sized arrays, and strings. We also plan
to integrate it with the random testing capability in order to test
the generated code on large sets of test vectors. The intermediate
language is independently useful and we plan to support it with
various forms of static analysis that can improve the quality of the
generated code. Eventually, we would also like to handle specifica-
tions of concurrent systems so that we can generate monitors and
entire systems starting from abstract specifications.

Acknowledgments. This work was supported by NASA NRA
NNA13AC55C, NSF Grant CNS-0917375, and DARPA under agree-
ment number FA8750-12-C-0284 and FA8750-16-C-0043. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of NASA,
NSF, DARPA, or the U.S. Government. We thank the anonymous
referees for their constructive feedback.

REFERENCES
[1] Gaspard Férey and Natarajan Shankar. Code generation using a formal model of

reference counting. In Sanjai Rayadurgam and Oksana Tkachuk, editors, NASA
Formal Methods: 8th International Symposium, NFM 2016, Minneapolis, MN, USA,
June 7-9, 2016, Proceedings, pages 150–165, Cham, 2016. Springer International
Publishing.

[2] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations (with retrospective). In Kathryn S. McKinley,
editor, Best of PLDI, pages 502–514. ACM, 1993.

[3] Natarajan Shankar. Static analysis for safe destructive updates in a functional
language. In A. Pettorossi, editor, 11th International Workshop on Logic-based
Program Synthesis and Transformation (LOPSTR 01), Lecture Notes in Computer
Science, pages 1–24. Springer-Verlag, 2002. Available at ftp://ftp.csl.sri.com/pub/
users/shankar/lopstr01.pdf.

4

ftp://ftp.csl.sri.com/pub/users/shankar/lopstr01.pdf
ftp://ftp.csl.sri.com/pub/users/shankar/lopstr01.pdf

	Abstract
	1 Introduction
	2 A Small Example
	3 Arithmetic Operations
	4 Conclusions
	References

