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ABSTRACT
State-based transition systems can take advantage of a symbolic

representation of the concepts of state and transition in order to au-

tomatically solve verification questions that could not be otherwise

tackled in terms of explicit representation of the transition system.

We report here our experience in developing solutions, approaches

and supporting tools of verification problems regarding the Ab-

stract State Machines (ASMs), a transition system which can be

considered as an extension of Finite State Machines. We present the

symbolic representation of an ASM and of its computational model

in terms of the Yices SMT solver. We also discuss two scenarios

of verification questions regarding the ASMs for which the sym-

bolic representation helped us to formalize and solve the problem

by satisfiability checking, namely automatic proof of correct ASM

refinement and runtime verification.
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1 INTRODUCTION
The architectural and behavioural complexity of modern systems

and the need to guarantee critical properties yet at the early stages

of the system life-cycle, require a rigorous development process

based on the use of formal methods for system specification, vali-

dation and verification. Formal models can be used to understand

if the system under development satisfies the given requirements

(validation) and guarantees system properties (verification).
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Specification can be given in operational style, when the system

behaviour is expressed in terms of states and computation steps, or

in declarative style, when the system is specified in terms of holding

properties. There has been an endless debate about which style

fits better the designer needs: some argue that with an operational

style designers tend to insert implementation details in the abstract

specifications, others observe that practitioners feel uncomfortable

with declarative notations like temporal logics. Operational speci-

fications are easier to write and understand; however, declarative

specifications could be more suitable for verification purposes.

Abstract State Machines (ASMs) [14] are a state-based opera-

tional formal method that has been widely used as a system engi-

neering method in different contexts: definition of industrial stan-

dards for programming and modeling languages, design of indus-

trial control systems, modeling service and cloud systems, design

and analysis of protocols, architectural design, language design,

verification of compilers, etc.

Originally defined by Y. Gurevich in 1993with the goal to sharpen

the Church-Turing thesis [18], along the years, ASMs have been

used in the field of software engineering to model systems and in-

vestigate their properties. To this aim, the usage of such formalism

provides benefits under several viewpoints. If we consider expres-
sive power, ASMs represent a general model of computation where

the static view of a system is represented by means of a mathemat-

ical algebra and its dynamics is given in terms of transition rules.

Concerning understandability, ASMs provide a way to describe

behavioral issues by means of pseudo-code working over abstract

data structures; therefore, ASM models are easily understandable

without strong mathematical skills. If we consider methodological
issues, the ASM formalism is the basis of a rigorous development

method based on the concept of a “ground model” representing a

precise but concise high-level formalization of the system, and on

the “refinement principle” that allows to capture all details of the

system design by a sequence of refined models till the desired level

of detail. For analysis purposes, the rigorous mathematical founda-

tion of ASMmodels, allows the application of formal techniques for

model validation and verification. From the implementation point
of view, the simple pseudo-code can be translated into a high level

programming language source code in a quite simple manner (even

automatically [12]).

To facilitate the practical usage of ASMs as software engineering

formal method and to overcome the lack of automated tool support

and poor tools integration around ASMs, in the past we worked on

the development of the ASMETA framework [7], allowing ASMs to

be used in an efficient and tool supported manner during the entire

software development life cycle. In [6, 8], we have also indicated

the process usually followed to develop systems from the definition

of informal requirements to code implementation and execution.

1

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


AFM 2017, May 2017, NASA Ames Research Center, USA Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene

It was by developing specific model analysis approaches around

ASMs that we came across the necessity of having a symbolic rep-

resentation of an ASM and of its computational model. Although

a representation of ASMs in the theorem prover PVS already ex-

ists [17], it requires some expertise in theorem proving in order to

be used. Therefore, we preferred to explore the use of Satisfiability

Modulo Theories (SMT) solvers that guarantee a higher degree of

automation. Thanks this representation in SMT, we were able to

reduce verification questions, that would have been unfeasible to

solve automatically by means of explicit representation of ASM

states and of ASM computations as explicit sequences of states, to

SMT problems. In particular, proving correctness of ASM model

refinement [5] and runtime verification through nondeterministic

ASMs [4] were solved as SMT satisfiability checking. In both cases,

the symbolic representation helps to formalize the problem in a very

concise way by means of a logical context representing ASM states

and computation steps, and to solve the problem as satisfability

checking of the context.

In this position paper, we present the symbolic representation

of an ASM and of its computational model in terms of a context

of the Yices SMT solver. We then introduce the formalization of

the two main ASM verification questions we tackled by the use

of Yices: proof of the correct ASM refinement and runtime verifi-

cation. Along the presentation, we discuss the problems we faced

to move from an explicit representation of the machine state and

its computation step to a symbolic one. We also motivate formal-

ization choices made for reducing a computational problem to a

satisfiability problem.

The paper is organized as follows. Sect. 2 briefly introduces

the Abstract State Machines. Sect. 3 presents the symbolic repre-

sentation in Yices of an ASM and how to build an SMT context

representing the initial state and the computation step from a given

ASM model. Sect. 4 discusses the problem of reducing to an SMT

problem satisfaction the question of verifying correctness of an

ASM model refinement step. Sect. 5 introduces the problem of run-

time verification using ASM nondeterministic models and shows

how to formalize its solution in terms of a symbolic SMT problem.

We conclude the paper with Sect. 6, where we discuss strengths and

weaknesses of our symbolic representation of the ASMs and we out-

line possible further verification contexts where this representation

could be exploited.

2 ABSTRACT STATE MACHINES
Abstract State Machines (ASMs) [14] are an extension of FSMs,

where unstructured control states are replaced by states with arbi-

trarily complex data.

ASM states are algebraic structures, i.e., domains of objects with

functions and predicates defined on them. An ASM location, defined
as the pair (function-name, list-of-parameter-values), represents the
abstract ASM concept of basic object containers. The couple (lo-
cation, value) represents a machine memory unit. Therefore, ASM

states can be viewed as abstract memories.

Location values are changed by firing transition rules. They ex-

press the modification of functions interpretation from one state

to the next one. Note that the algebra signature is fixed and that

functions are total (by interpreting undefined locations f (x) with

value undef ). Location updates are given as assignments of the

form loc := v , where loc is a location and v its new value. They are

the basic units of rules construction. There is a limited but power-

ful set of rule constructors to express: guarded actions (if-then),
simultaneous parallel actions (par), sequential actions (seq), non-
determinism (existential quantification choose), and unrestricted

synchronous parallelism (universal quantification forall).
An ASM computation is, therefore, defined as a finite or infinite

sequence S0, S1, . . . , Sn , . . . of states of the machine, where S0 is an

initial state and each Sn+1 is obtained from Sn by firing the unique

main rule which in turn could fire other transitions rules. An ASM

can have more than one initial state.
During a machine computation, not all the locations can be

updated. Functions are classified as static (never change during any
run of the machine) or dynamic (may change as a consequence

of agent actions or updates). Dynamic functions are distinguished

between monitored (only read by the machine and modified by the

environment) and controlled (read and written by the machine). A

further classification is between basic and derived functions, i.e.,

those coming with a specification or computation mechanism given

in terms of other functions. It is possible to specify state invariants.
An ASM can be nondeterministic due to the presence of mon-

itored functions (external nondeterminism) and of choose rules

(internal nondeterminism).

A set of tools exists to support the ASM modeling process. Tools

are part of the ASMETA (ASMmETAmodeling) framework
1
[7], and

are strongly integrated in order to permit reusing information about

models during different development phases. ASMETA provides

basic functionalities for ASMmodel editing, and supports advanced

model analysis techniques (as validation, verification, testing, model

review, runtime verification, refinement proof, etc.).

3 ASM SYMBOLIC REPRESENTATION
An SMT problem is a decision problem for logical formulas with re-

spect to combinations of background theories expressed in classical

first-order logic with equality. An SMT instance is a generalization

of a boolean SAT instance in which various sets of variables are

replaced by predicates from a variety of underlying theories. SMT

solvers can be used, as in our case, as automatic theorem provers

by checking unsatisfiability. We use Yices [15] as SMT solver.

The following sections describe the mapping (in terms of map-
ping functions) from ASM models to Yices elements. The theories

needed for the mapping are: uninterpreted functions, and linear

and non-linear integer and real arithmetic.

The way to use the Yices elements obtained by such mapping

depends on the technique that uses them; we will give examples of

these usages in Sects. 4 and 5 inwhichwe describe howwe exploited

the ASM symbolic representation for proving ASM refinement

correctness and for runtime verification.

We first describe the mapping of the signature, of terms, of

function definitions, and of transition rules. Then, we describe

how to exactly capture the semantics of an ASM computation step,

and we provide the complete description of the mapping of the

initial state and of a generic step. We finally provide an example

1
http://asmeta.sourceforge.net/
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ASM domains declarations Yices
enum domain (define−type D

D = {E1, . . ., En } (scalar E1. . .EnD_undef))
Boolean bool

Integer int

Natural nat

Table 1: Tdom: Mapping schema of ASM domains to Yices

ASM function declaration Yices
funcType ∈ {controlled, monitored, derived, static}

funcType f: Dom (define fi :: Dom)
funcType f: D1 −> D2 (define fi :: (−> D1 D2))
funcType f: Prod(D1, . . ., Dn ) −> D (define fi :: (−> D1 . . . Dn
with n ≥ 2 D))

Table 2: Tf: Mapping schema of the ASM function declara-
tions to Yices at state i

of translation of a simple ASM model. The tool implementing the

translator is available online
2
.

Signature. The signature is given by the domains and the func-

tion declarations.

The mapping function Tdom from ASM domains to Yices types

is reported in Table 1. For each ASM enumerative domain, we

define a Yices scalar type. Basic type-domains Boolean, Integer, and

Natural have a straightforward mapping to a corresponding type in

Yices. For each domain, we also provide a constant representing the

undef value; for each enumerative domain D we add the constant

D_unde f , while for the Integer an Natural domains we select as

undef a value of the domain that cannot be assumed by any function

of the model
3
. We are not able to provide an undef value for the

Boolean domain and, therefore, we require boolean functions to

not assume the undef value. An alternative solution could be to

model the Boolean domain as a three-valued enumerative domain,

but this would greatly complicate the translation. Moreover, since

in ASMs rule guards are formulas [14] (note 51 at page 64) that

need to be always defined, boolean functions used in rule guards

cannot be undef: therefore, the limitation of the mapping is limited

to boolean functions not used in guards.

Table 2 reports the mapping Tf from ASM function declarations

to the corresponding Yices definitions in terms of uninterpreted

functions. Note that ASM function declarations must be translated

for a generic state i , since they could be added to the logical context
multiple times for different states: for this reason, Tf is parametrized

with the state i that is reported in the mapped function name. Both

0-ary functions and n-ary functions (with n > 0) have a straightfor-

ward representation in terms of Yices definitions. Note that there is

no difference in the mapping of the declaration of different types of

ASM functions (i.e., controlled, monitored, derived, static); only the

way to determine their values is mapped in different ways. Static

2
The tool can be downloaded from http://asmeta.sourceforge.net/download/asm2SMT.

html.

3
Note that, in general, we cannot statically determine such value.

ASM term Yices
Boolean term: b b
with b ∈ {true, false}
Integer term: h h
with h ∈ Z

Natural term: hn h
with h ∈ N

Enumeration term: E E
Location term: f fi

Location term: (fi Tt(a1, i) . . . Tt(an , i))
f(a1, . . ., an )withn ≥ 1

if guard then Tthen (if Tt(guard, i) Tt(Tthen, i)
else Telse endif Tt(Telse, i))

(forall
x1 in D1, . . ., xn in Dn
with cond[x1, . . ., xn])

(and c1 . . . cm ) withm =
∏n

j=1
|D j |

where for each

dk = (d1, . . . ,dn ) ∈ D1 × . . . × Dn :
ck = Tt(cond[x1 7→ d1, . . . ,xn 7→ dn], i)

(exists
x1 in D1, . . ., xn in Dn
with cond[x1, . . ., xn])

(or c1 . . . cm ) withm =
∏n

j=1
|D j |

where for each

dk = (d1, . . . ,dn ) ∈ D1 × . . . × Dn :
ck = Tt(cond[x1 7→ d1, . . ., xn 7→ dn], i)

Table 3: Tt: Mapping schema of ASM terms to Yices at state i

and derived functions have their own definition mapped as Yices

definitions (see next but one section), while updates of controlled

functions are mapped in the translation of transition rules. In ASMs,

monitored functions are not updated by transition rules, but their

value is determined by the environment; therefore, their mapping

does not require anything but the declaration: in this way, they can

assume any value of their domain. This allows us to easily model

the external nondeterminism due to the environment.

Terms. Both function definitions and transition rules (whose

mapping is described in the following two sections) contain terms.

Table 3 shows the mapping Tt that maps ASM terms in Yices. Since

terms can contain function names, Tt is parametrized with state i .
The mapping of Boolean, Natural, Integer, and enumeration

terms is straightforward. AnASM location term ismapped as a Yices

function application, where function arguments are the translation

of the location parameters values. The conditional term (7th row

in Table 3) is mapped in a conditional expression. Forall and exists

terms are respectively mapped as conjunction and disjunction of

the condition cond instantiated over all the possible tuples d1, . . . ,

dn . Although in ASMs the two terms can quantify over infinite

domains, the AsmetaL language requires domains D1, . . . , Dn to be

finite: therefore, the described mapping in SMT is feasible, although

the obtained formula could be particularly big in case the domains

are big
4
. Note that we could have mapped these terms using the

Yices forall and exists quantified expressions; however, since

Yices is not complete when quantifiers are used
5
, a Yices context

4
However, since usually the translation in SMT is done for verification purposes, in

order to keep the execution time reasonable the domains are usually not too big.

5
http://yices.csl.sri.com/old/language.shtml#language_quantifiers

3

http://asmeta.sourceforge.net/download/asm2SMT.html
http://asmeta.sourceforge.net/download/asm2SMT.html
http://yices.csl.sri.com/old/language.shtml#language_quantifiers


AFM 2017, May 2017, NASA Ames Research Center, USA Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene

containing quantifiers often cannot be evaluated by the solver (it

returns the unknown result). Therefore, we preferred to adopt this

more verbose mapping that, however, can be always evaluated.

Derived and static functions. In ASMs, besides dynamic functions,

the user can introduce derived functions defined by a law over the

current state and static functions defined by a law over a number of

parameters. These functions cannot be updated by transition rules,

but they come with their own definition (i.e., they are functions

in the mathematical sense). Their definition is mapped by Td as

shown in Table 4. For a 0-ary function, the mapping simply consists

in creating equality of the function name with the translation of

the function body (using the mapping function of terms Tt shown
in Table 3). For n-ary functions (with n > 0), instead, the mapping

consists in the conjunction of the mapping of the single locations.

Note that, also in this case, we could have mapped these function

definitions using the Yices forall quantified expression; however,

as seen before, we could risk to obtain a formula that cannot be

always evaluated.

Transition rules. Table 5 reports the mapping function Tr for

transitions rules. It produces a formula that symbolically represents

the ASM transition relation. The formula is built by recursively

applying the mapping starting from the main rule (last row in the

table); the formula is usually asserted in the Yices context in order

to represent a generic ASM step (more details on this will be given

in Sect. 3.2).

In an update rule (first row of Table 5), the location term on the

left-hand side of the rule refers to the next state, while the term
on the right-hand side of the rule refers to current state. For this
reason, the updated term is mapped with parameter i + 1, whereas

the term on the right side is mapped with parameter i .
An ASM parallel rule for the parallel execution of a set of rules,

is mapped as conjunction of the mappings of the single rules.

A complete ASM conditional rule (with the else branch) is mapped

using the Yices conditional expression, while a partial conditional

rule (without the else branch) is mapped as an implication.

An ASM forall rule (5th row in Table 5) requires that rule R is

executed in parallel with all the values of x1 . . .xn that make guard
true. The rule is mapped as a conjunction of implications stating

that if guard evaluated with values d1 . . .dn holds, then also the

mapping of rule R (instantiated with values d1 . . .dn ) must hold.

As said before for the forall term and for function definitions, we

could use the Yices forall quantifier for the translation: however,

the obtained Yices context would often produce the unknown result

when evaluated.

An ASM choose rule requires that rule R is executed once with

some values of x1 . . .xn (nondeterministically chosen) that make

guard true (if any). The mapping (6th row in Table 5) first creates a

definition cvij for each logical variable x j of the choose rule
6
; then,

it expresses the choose rule through an implication stating that if a

tuple of values d1 . . .dn exists that make the guard true, then the

translation of the guard and of R must hold. Note that the nonde-

terminism of the choose rule semantics (internal nondeterminism)

is compactly embedded in the Yices symbolic representation: any

6
Note that also the definitions for choose rules variables must be parametrized by the

state i , since they must be created for each step asserted in the logical context.

model of the Yices formula (in terms of cvi
1
. . . cvin ) is a tupled1 . . .dn

that allows to execute R7: we exploit this feature in the runtime

verification of nondeterministic systems described in Sect. 5.

An alternative version of the choose rule allows to specify a

rule Ro that must be executed if R cannot be executed because

guard cannot be true. The mapping in Yices (7th row in Table 5)

is similar to the previous one, but a conditional expression is used

instead of the implication: the mapping of rule Ro is specified as

else expression.

Similarly to what happens in the translation of the forall and

exists terms, the size of the formula obtained by the translation of

the forall and choose rules grows with the size of domain D1, . . . ,

Dn ; however, the translation is always feasible since the domains

are required to be finite by the starting notation AsmetaL.

3.1 Computation step semantics
In ASMs, a computation step is performed by evaluating the transi-

tion rules (starting from the main rule), collecting (in the update
set) all the updates of controlled locations, and applying the up-

dates. Controlled locations that are not updated keep their value

unchanged. The formula obtained by applying the mapping func-

tion Tr to the transition rules (Table 5) correctly determines the

update set, but does not guarantee this latter condition. Therefore,

for each controlled location fi , we add the following formula

unchLocif = (=> (not (or guard1 . . . guardn )) (= fi+1 fi ) )

being guard1, . . ., guardn the conditions upon which fi is updated,
and fi+1

the location in the next state. Conditions guard1, . . ., guardn
are statically derived from the transition rules that lead to the up-

dates of the location. Let CF i be all the controlled locations of the

ASM model at level i; we define the following formula that asserts

the condition for all the locations in CF i :

unchLocsi =
∧

f ∈CF i

unchLocif

3.2 Initial state and generic step
We here show how the initial state and a generic step can be repre-

sented by using the mapping described in the previous sections.

Let us consider an ASM M = ⟨sig, funcDefs, funcInit, r_main⟩,
where sig is the signature, funcInit = {fi

1
, . . . , fip } the function

initializations and funcDefs = {fd
1
, . . . , fdq } the function definitions.

We define predicates init and stepi to formalize the initial state and

the generic step i of the machine, as follows:

init = (and Td(fi1) . . . Td(fip ))

stepi = (and Tr(r_main, i ) unchLocsi Td(fdi
1
) . . . Td(fd

i
q ))

The initial state is determined by the mapping of the controlled

function initializations. A generic step is determined by the map-

ping of the main rule, by the condition on the controlled locations

that do not have to change their value, and by the definition of the

derived functions at state i8.

7
Actually, in order to fully describe the semantics of the ASM choose rule, we need to

avoid that the mapping of R holds when the guard cannot be true. This is guaranteed

by additional formulas that state that locations that are not updated do not have to

change their value, as explained in Sect. 3.1.

8
Note that transition rules could read the value of derived functions at state i .
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ASM function definition Yices
function f = fd (= fi Tt(fd, i))

function f(x1 in D1, . . ., xn in Dn ) = fd[x1, . . ., xn]

with n ≥ 1 and D1={d
1

1
, . . ., d1

m1

} . . . Dn={d
n
1
, . . ., dnmn

}

(and (= Tt(f(d1

1
, . . ., dn

1
), i) Tt(fd[x1 7→ d1

1
, . . ., xn 7→ dn

1
], i) )

. . . (= Tt(f(d1

m1

, . . ., dnmn
), i) Tt(fd[x1 7→ d1

m1

, . . ., xn 7→ dnmn
], i) ) )

Table 4: Td: Mapping schema of ASM function definitions to Yices at state i

ASM transition rule Yices
updatedLoc := updTer Tt(updatedLoc, i + 1) = Tt(updTer, i)
par R1 . . . Rn endpar (and Tr(R1, i) . . . Tr(Rn , i))
if guard then Rthen else Relse endif (if Tt(guard, i) Tr(Rthen, i) Tr(Relse, i))
if guard then Rthen endif (=> Tt(guard, i) Tr(Rthen, i))

forall x1 in D1, . . ., xn in Dn with guard[x1, . . ., xn] do
R[x1, . . ., xn]

(and r1 . . . rm ) withm =
∏n

j=1
|D j |

where for each dk = (d1, . . ., dn ) ∈ D1 × . . .× Dn
rk = (=> Tt(guard[x1 7→ d1, . . ., xn 7→ dn], i)

Tr(R[x1 7→ d1, . . ., xn 7→ dn], i) )

choose x1 in D1, . . ., xn in Dn with guard[x1, . . ., xn] do
R[x1, . . ., xn]

for each xj : (define cvij :: Dj )

(=> Tt(exists x1 in D1, . . ., xn in Dn with guard[x1, . . ., xn], i)
(and Tt(guard[x1 7→ cvi

1
, . . ., xn 7→ cvin], i)

Tr(R[x1 7→ cvi
1
, . . ., xn 7→ cvin], i) ) )

choose x1 in D1, . . ., xn in Dn with guard[x1, . . ., xn] do
R[x1, . . ., xn]

otherwise Ro

for each xj : (define cvij :: Dj )

(if Tt(exists x1 in D1, . . ., xn in Dn with guard[x1, . . ., xn], i)
(and Tt(guard[x1 7→ cvi

1
, . . ., xn 7→ cvin], i)

Tr(R[x1 7→ cvi
1
, . . ., xn 7→ cvin], i) )

Tr(Ro) )

main rule r_main = mainBody Tr(mainBody, i)
Table 5: Tr: Mapping schema of ASM transition rules to Yices at state i

3.3 Example of SMT translation
As an example, we consider a tank that can be either filled or

emptied. At every step, the tank level can be increased/decreased of

up to 3 units of product. The tank is full when it contains 50 units of

product. Such tank can be modeled by a simple ASM, as shown in

Code 1. The function level records the number of units in the tank;

in the initial state the tank is empty. Boolean function full signals
whether the tank is full; the function is derived because its value

depends on the value of function level. In the main rule, a choose

rule nondeterministically increments/decrements the level of the
tank of at most three units at a time, not exceeding the maximum

capacity. Code 2 shows the translation of the ASM code in Yices.

The Yices context contains the definition of the initial state and of a

step starting from the initial state. Note that such context represents

all the possible computations that can be done in one step.

4 REFINEMENT PROOF
One of the key concepts of the ASM method is model refinement
that prescribes that a complete system model should be obtained

asm Tank

import StandardLibrary
signature:
domain Level subsetof Integer
domain IncrDom subsetof Integer
dynamic controlled level: Level

derived full: Boolean

definitions:
domain Level = {0..50}

domain IncrDom = {−3..3}

function full = (level = 50)

main rule r_Main =

choose $x in IncrDom with level + $x >= 0 and level + $x <= 50 do
level := level + $x

default init s0:
function level = 0

Code 1: ASM model of the Tank case study

through a chain of refined models: starting from a high-level ab-

stract description of the system, more precise models should be

5
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;; signature state 0
(define level0::(subrange 0 50))
(define full0::bool)
;; initial state
(assert (= level0 0))

;; logic variables for choose rule − step 0
(define x0State0::(subrange −3 3))
;; signature state 1
(define level1::(subrange 0 50))
;; step 0
(assert (and

;; transition rules
(=> (or

(and (>= (+ level0 −3) 0) (<= (+ level0 −3) 50))

(and (>= (+ level0 −2) 0) (<= (+ level0 −2) 50))

(and (>= (+ level0 −1) 0) (<= (+ level0 −1) 50))

(and (>= level0 0) (<= level0 50))

(and (>= (+ level0 1) 0) (<= (+ level0 1) 50))

(and (>= (+ level0 2) 0) (<= (+ level0 2) 50))

(and (>= (+ level0 3) 0) (<= (+ level0 3) 50))

(and
(and (>= (+ level0 x0State0) 0) (<= (+ level0 x0State0) 50))

(= level1 (+ level0 x0State0))))

;; unchanged locations
(=>

(not (and (>= (+ level0 x0State0) 0) (<= (+ level0 x0State0) 50)))

(= level0 level1)

)

;; derived functions definitions
(= full0 (= level0 50))

))

Code 2: Yices context of the Tank model (one simulation
step)

obtained by iteratively adding more details (possibly reaching a

model that is very close to the implementation). A notion of correct

refinement has been originally presented in [13]; given an abstract

model A and a refined model R, a proof of correct refinement must

be able to associate each R-run with some A-run, according to

some desired schema (1-1, 1-m, or n-m) and a conformance relation

between abstract and refined states. Note that refinement proof

checks a property related to the construction of the model, i.e., that

the model has been correctly refined. Such property is independent

of the particular model; model-dependent properties regarding the

behaviour of the model should be specified using temporal logics

and verified using the ASMETA model checker [1].

Automatically proving the original notion of refinement would

require to explicitly represent ASM runs of the two machines and

compare them using, for example, techniques as model checking.

However, developing a technique able to prove any refinement

schema for any model is almost impossible. Actually, in our experi-

ence in modeling with ASMs [6, 8], we observed that a particular

type of 1-m refinement occurs. We called it stuttering refinement:

Definition 4.1 (Stuttering Refinement). An ASM R is a correct

stuttering refinement of an ASM A if and only if each R-run can

be split in a sequence of subruns ρ̃0, ρ̃1, . . . and there is an A-run

S0, S1, . . . such that for each ρ̃i it holds ∀S̃ ∈ ρ̃i : conf (S̃, Si ).

A S0
// S1

// S2
// S3

R S̃0

≡

KS

// S̃1

≡

KS

// S̃2

≡
dd

// S̃3

≡

ii

// S̃4

≡

KS

// S̃5

≡

KS

︸︷︷︸
ρ0

︸                      ︷︷                      ︸
ρ1

︸︷︷︸
ρ2

︸︷︷︸
ρ3

Figure 1: Stuttering refinement: relation between runs

Predicate conf formalizes the conformance relation between states

of the abstract machine and states of the refined machine:

Definition 4.2 (Conformance). Let S be a state of the abstract ma-

chine A (called abstract state), S̃ a state of the refined machine R
(called refined state). The two states are conformant iff correspond-

ing locations of interest have equivalent values, i.e.,

conf (S̃, S) iff ∀lR∀lAcorrLoc(lR , lA) → JlRKS̃ = JlAKS
where corrLoc is a one-to-one correspondence between the locations
of interest (i.e., locations on which compare the states) of A and R.

Fig. 1 shows the correspondence between a refined R-run and

an abstract A-run.

Proving refinement with SMT. Proving stuttering refinement, dif-

ferently from the more general notion of refinement [13], does not

require to explicitly represent the abstract and refined runs, but

can be reduced to the proof of two properties, similarly to what is

done in [20] for compiler verification.

Theorem 4.3. If the following properties hold

∀S̃ : (init(S̃) → ∃S : (init(S) ∧ conf (S̃, S))) (1)

∀S̃∀S̃ ′∀S :

©­«
step(S̃, S̃ ′)
∧

conf (S̃, S)

ª®¬→ ©­«
∃S ′ : (step(S, S ′) ∧ conf (S̃ ′, S ′))

∨

conf (S̃ ′, S)

ª®¬


(2)

then R is a stuttering refinement of A. init(S) holds iff S is an initial
state, and step(S, S ′) holds iff the state S ′ can be reached by S in one
simulation step.

We name property (1) as initial refinement, and property (2) as

step refinement. Such properties are expressed in terms of states

of the abstract and refined machines; we must reduce them to a

symbolic representation in order to be able to express them using

our encoding. In order to do this, we give the following definitions.

Let
¯fA = [fa1

, . . . , fan ] be the functions of the abstract machine

A and
¯f ′A = [fa

′
1
, . . . , fa′n ] their renamed copy in the next state.

In the same way,
¯fR = [fr1

, . . . , frm ] and ¯f ′R = [fr
′
1
, . . . , fr ′m ] are

functions of the refinedmachineR. In these lists, the first L functions
are the locations of interest. We split a list of functions

¯f between

the functions corresponding to locations of interest and those which

are not related in the conformance relation:
¯f = ¯f c + ¯f nc .

Now, we can express the predicates init, step, and conf used in

Thm. 4.3, in terms of the function lists of the abstract and refined

machines, and rewrite Formulas 1 and 2 as follows
9
:

initR ( ¯fR ) → (∃ ¯f ncA : initA( ¯f cR +
¯f ncA )) (3)

9
In [5], we show how Formulas 3 and 4 are derived from Formulas 1 and 2.

6
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(define fr1 :: Dr1) . . . (define frm :: Drm )

(define initR :: bool initR ( ¯fR ))
(define existsInitA :: bool

(exists ((faL+1 DaL+1) . . . (fan Dan )) initA( ¯f cR +
¯f ncA ) ) )

(assert (not (=> initR existsInitA) ) )

(check)

Code 3: Yices context for proving initial refinement

(define fr1 :: Dr1) . . . (define frm :: Drm )

(define fr′
1
:: Dr1) . . . (define fr′m :: Drm )

(define faL+1 :: DaL+1) . . . (define fan :: Dan )

(define stepR :: bool stepR ( ¯fR , ¯f ′R ))
(define existsStepA :: bool

(exists ((fa′L+1
DaL+1) . . . (fa

′
n Dan )) stepA( ¯f cR +

¯f ncA ,
¯f c′R +

¯f nc′A ) ) )

(define stutteringState :: bool (and (= fr
′
1
fr1) . . . (= fr

′
L frL ) ) )

(assert (not (=> stepR (or existsStepA stutteringState) ) ) )

(check)

Code 4: Yices context for proving step refinement

stepR ( ¯fR , ¯f ′R ) →
©­«

∃ ¯f nc′A : stepA( ¯f cR +
¯f ncA ,

¯f c ′R +
¯f nc′A )

∨
¯f c ′R =

¯f cR

ª®¬ (4)

The two properties can be mapped in Yices using the mapping

described in Sect. 3. Therefore, the automatic proof of stuttering

refinement can be reduced to a satisfability checking problem i.e., to

two Yices contexts
10
. The two symbolic properties have two useful

characteristics w.r.t. the formulation in terms of states:

• the universal quantifications over states are substituted by the

introduction of new function symbols (by Herbrandization); such

formulation is suitable for checking validity with a logical solver;

• since conformance between abstract and refined states con-

sists in the equality between functions having the same name in

the abstract and in the refined machine, we can express the confor-

mance relation by simply using only one copy of the variables. Such

formulation is convenient, since it reduces the number of functions

in the logical context and also the complexity of the formula, so

reducing the complexity of the problem.

For Formula 3, we build the Yices context shown in Code 3.

The antecedent of the implication is represented through the SMT

definition initR , and the consequent by definition existsInitA.
For Formula 4, we build the Yices context shown in Code 4. The

antecedent of the implication is represented by definition stepR .
The consequent is represented by the disjunction of definitions

existsStepA and stutteringState; the latter one models the equality

of vectors in the stuttering state (i.e.,
¯f c ′R =

¯f cR in Formula 4) as a

conjunction of equalities.

As usual, since we need to prove validity of formulas, we check

that their negation is unsatisfiable. Therefore, if the two Yices in-

stances are proved unsatisfiable, the refinement is proved correct.

However, step refinement condition is sufficient but not necessary:

when Formula 4 is proved not valid (i.e., the corresponding SMT

instance is satisfiable), we cannot state that the refinement is not

correct. Nevertheless, when refinement is not proved correct, the

10
The tool implementation of the approach is available at http://asmeta.sourceforge.

net/download/asmrefprover.html.

SMT solver returns a model that we can inspect to understand

whether it is really the case that the refinement is not correct, or it

is a false negative result (i.e., the model represents a state that is not

reachable); in the latter case, we can strengthen the properties using

an invariant that restricts the set of states that must be inspected

in the proof [5].

5 RUNTIME VERIFICATION
Another use of the encoding proposed in Sect. 3, is for runtime

verification of Java code w.r.t. its ASM specification. This idea,

implemented in a tool called CoMA [3], consists in observing the

behaviour of a Java object OC during its execution and checking

that its observed elements conform to the expected state of its

specification ASMC . A suitable link must be established between

OC fields and pure methods (i.e., methods that cannot change OC
state) and the ASMC state; this can be done by code annotation.

This link identifies the conformance relation (in brief conf ) among

OC andASMC states. Moreover, the designer must designate a set of

methods, called changing methods, whose invocation corresponds

to an ASM step. The runtime verification can be performed by

checking that the following schema holds:

(OC ) (ASMC)

s

execution of changing method m
��

conf // S

simulation step
��

s ′
conf // S ′

In case of deterministic behaviour (of both the specification and

the implementation), runtime verification requires that the next

state s ′ of OC conforms to the next state S ′ of the specification.

Conformance can be verified by simulation: if OC conforms to

ASMC in the current state, observed the next state s ′ of OC , the

monitor checks that it conforms to the next state S ′ ofASMC , which

can be obtained by applying its transition rules. During simulation,

the monitor stores and updates only the current state S of the

specification.

In case of nondeterministic behaviours, runtime verification can

become complex since the specification takes into account all the

possible correct system evolutions. The nondeterminism due to

monitored quantities (e.g., the system inputs or external actions),

called external, is still easy to monitor: once these quantities are

fixed by the environment, the system behaves deterministically.

However, in most cases, the specification is internally nondeter-

ministic, sometimes even when the system is deterministic. For

instance, when the system makes random choices, the specification

must be nondeterministic. Moreover, nondeterministic specifica-

tions can be useful when the modeler wants to be more abstract

(with less implementation details) than the corresponding system.

Nondeterminism in the behavioural specifications can simplify the

representation of complex functionalities and achieve a better sep-

aration of concerns [10].

When the behaviour is nondeterministic, the monitor must en-

sure that the relation shown in Fig. 2 holds. Formally, it can be

defined as follows.

Definition 5.1. Conformant set Given a Java object OC , let sn
be the state obtained after n executions of changing methods. We

7
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(OC ) (ASMC)

s

m
��

conf // {S1,

step

zz
step

''

step
��

. . . Sk }

step

ww

step

%%
s ′

conf (s′,S′i )

33

conf (s′,S′j )

99S ′
1

. . . S′i . . . S′j . . . S ′n

Figure 2: Conformance checking with nondeterminism

call confSet(sn ) the set of ASM states reachable in n steps and con-

formant with sn .

Definition 5.2. Runtime conformance A class C is runtime

conforming to its specification ASMC if the following conditions

hold:

1) the initial state s0 of the computation ofOC conforms to at least
one initial state S0 of the computation of ASMC , i.e., ∃S0 initial

state of ASMC such that conf (s0, S0);

2) for every change step (s,m, s ′)with s the current state ofOC , for

each S ∈ confSet(s) ∃(S, S ′) step of ASMC , such that conf (s ′, S ′).

Runtime conformance can be checked as shown in Fig. 2: as-

suming the current Java state s is conformant with the ASM states

confSet(s) = {S1, . . . , Sk }; the Java state s
′
is produced by the exe-

cution of the methodm at the state s; ASM states S ′
1
, . . . , S ′n are

reachable in one step from confSet(s); the Java state s ′ is checked
conformant with at least one state S ′j .

Example 5.3. Let us consider the Tank case study. If the confor-

mance link between the ASM specification and the Java program

is only based on the value of function full (since the level value is
not observable, for example), then the ASM is nondeterministic. At

each step, the ASM has between 4 and 7 possible next states; at

most one next state can have value true for full. Therefore, if the
implementation is correct and the value of full is false, more than

one of the possible next ASM states can be conformant with the

implementation.

Dealing with this kind of monitoring in an explicit state approach

would require to keep track of all the possible states to which the

monitored system can be conformant. At the ith step of monitoring,

the framework should record in the set confSet(si ) (see Def. 5.1)
the ASM states reachable in i steps of simulation that are confor-

mant with the current Java state (as proposed in [16]). If confSet(si )
becomes empty, then an error is found.

Exploiting the Yices representation of the ASMs, we reduce the

runtime conformance checking in the presence of nondeterminism

to the satisfiability checking of an STM problem. We symbolically

represent the set of states RSi reachable in i steps of the ASM

execution, and the transition relation induced by the ASM transition

rules between states in RSi and their successor states in RSi+1.

These formulas establish the logical context.

Algorithm 1 CoMA-SMT: monitoring procedure

1: (assert init) ◃ Context initialization

2: i ← 0

3: while oC .m() is invoked do
4: (assert stepi ) ◃ Extend context at level i
5: sJava ← [|oC |] ◃ Observed Java state after step i
6: javaValConstr ← getValues(sJava) ◃ Get observed values

7: (assert javaValConstr) ◃ Add observed values

8: if (check) = UNSAT then ◃ Is SAT?

9: return NotConformantException
10: end if
11: i ← i + 1

12: end while

Example 5.4. Let us consider the Tank case study. The ASM states

reachable in one step can be symbolically described as level = 0 ∧ (
level − 3 ≤ level′ ≤ level + 3), where level′ represents the updated
version of level.

Informally, in order to perform the conformance checking, we

build a logical context with the initial state and then we extend

the context by asserting a set of formulas stating the values of

the observed elements in the implementation current state. Yices is

used to check the satisfiability of the obtained context. If the context

becomes unsatisfiable, then the implementation is not conformant.

Alg. 1 depicts the monitoring procedure of the proposed approach

(called CoMA-SMT).

At the beginning, the framework initializes the context (line 1)

with the initial state (see Sect. 3.2). The monitoring consists of a

never ending loop in which, when a Java changing methodm is

executed (line 3), the following actions are executed:

• the context is extended for describing the transition relation

between ASM states at the current level i and the possible next

states at level i + 1 (line 4) by stepi as defined in Sect. 3.2;

• from the Java state sJava, obtained after the changing method

execution (line 5), and from the linking between the specification

and the code, the framework builds the formula javaValConstr in
which the linked ASM locations are forced to assume the actual val-

ues of the corresponding Java elements (line 6). Let f i+1

1
, . . . , f i+1

д
be the locations linked to Java fields or methods (i.e., the observed

elements) andv1, . . . ,vд the values of the linked fields and methods

at state i + 1. Formula javaValConstr is built as follows:
(and (= fi+1

1
v1) . . . (= fi+1

д vд ))
• formula javaValConstr is asserted in the logical context (line 7);
• the logical context is checked for satisfiability (line 8):

– if the context is unsatisfiable, it means that the implemen-

tation is not conformant with the specification. In this case,

the monitoring is interrupted by throwing an error message

(line 9);

– otherwise, if the context is still satisfiable, it means that the

implementation is conformant and the monitoring can con-

tinue.

Experiments have shown that CoMA-SMT (i.e., the SMT-based

runtime verification approach) has better performances than CoMA

(i.e., the explicit state approach) when the degree of nondeterminism

is high [4]. However, the introduced overhead is still not negligible

8
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(around 5 ms per step for the Tank case study); moreover, experi-

ments have also shown that CoMA-SMT does not scale well when

the logical context grows after each simulation step. Therefore,

techniques should be devised in order to keep the size of the logical

context (and, therefore, the computation time) reasonable.

6 CONCLUSION AND FUTUREWORK
We have presented a translation of ASMs to SMT that we used

for two purposes, namely proving refinement and runtime confor-

mance checking in the presence of nondeterminism. Our experience

with SMT is very positive: in the refinement correctness prover, we

only needed the formalization of a single step since the proof is

inductive, while in the runtime checker we were able to represent

(step by step) the reachable conformant states thanks to the support

for incremental solving of the SMT solver. The use of the declarative

style of SMT theories allowed us to easily deal with nondetermin-

istic behaviours by not having to explicitly keep track of all the

possible states. One problem we faced is how to express what does

not change (see Sect. 3.1) and, in this, operational notations are still

better than declarative approaches. Note that we could use BDDs

to symbolically represent ASM states; however, for bounded model

checking it has been shown that a SAT/SMT approach scales bet-

ter [11, 19]. So, since both our runtime verification and refinement

approaches have several commonalities with BMC, we believe that

the SMT approach has still several advantages.

As future work, we plan to employ our encoding in other V&V

activities. In [2], we presented an approach for doing model review
of ASMs that checks some meta-properties that any model should

guarantee. The approach is sound and complete but, since based

on model checking, does not scale well. As future work, we plan to

detect possible inconsistencies of the ASM model using the SMT

representation (e.g., an inconsistent context is a signal of the pres-

ence of inconsistent updates); that approach could be not always

complete: it could only find a meta-property violation, but fail in

proving their validity. However, we believe that SMT would scale

much better than the pure model checking approach and we plan

to apply induction for proving meta-properties.

In [9], we presented a formalization of self-adaptive systems in

terms of ASMs. One problem with self-adaptive systems is how

to resolve conflicts of different adaptation scenarios at runtime; in

general, among n adaptation scenarios that are applicable in a given

state,m ≤ n scenarios can simultaneously fire without conflicts.

We plan to exploit the SMT representation to find the maximum

subset of adaptation scenarios that can simultaneously fire.

Finally, we plan to exploit the symbolic representation for check-

ing model-dependent behavioural properties, in a classical formal

verification approach like that presented in [21].
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