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ABSTRACT

Automated formal methods and automated reasoning are intercon-
nected, as formal methods generate reasoning problems and incor-
porate reasoning techniques. For example, formal methods tools
employ reasoning engines to �nd solutions of sets of constraints,
or proofs of conjectures. From a reasoning perspective, the expres-
sivity of the logical language is often directly proportional to the
di�culty of the problem. In propositional logic, Con�ict-Driven
Clause Learning (CDCL) is one of the key features of state-of-the-
art satis�ability solvers. The idea is to restrict inferences to those
needed to explain con�icts, and use con�icts to prune a backtrack-
ing search. A current research direction in automated reasoning
is to generalize this notion of con�ict-driven satis�ability to a par-
adigm of con�ict-driven reasoning in �rst-order theories for satis-
�ability modulo theories and assignments, and even in full �rst-
order logic for generic automated theorem proving. While this is
a promising and exciting lead, it also poses formidable challenges.
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1 INTRODUCTION

Automated reasoning and automated formal methods, for the spec-
i�cation, analysis, veri�cation, or synthesis of systems, are inter-
connected, because logic is the calculus of computation, and rea-
soning about computer systems [4, 18, 50] may be more amenable
to automation than other less machine-oriented domains.

In automated reasoning, problems are typically presented as va-
lidity queries. A validity query asks whether a conjectureφ follows
from a set H of assumptions. Since mechanical methods prefer-
ably work refutationally, a validity query is usually reformulated
in refutational form, by asking whether H ∪ {¬φ} is unsatis�able.
Assumptions, conjectures, constraints are logical formulæ that ex-
press properties of an object of study, such as a system, a program,
a data type, a circuit, a protocol, a mathematical structure. As me-
chanical methods usually adopt clausal form, H ∪ {¬φ} is trans-
formed into a set S of clauses, where a set is interpreted as a con-
junction. Alternatively, one may be interested in knowing whether
a constraint φ can be added to a set of constraintsH so thatH ∪{φ}
is still satis�able. OnceH ∪{φ} has been turned into a set of clauses
S , the problem is the same, namely determining whether S has a
model or is unsatis�able.

The answer is either a proof S ⊢ � that S is inconsistent, hence
unsatis�able, where � is the empty clause, which represents a con-
tradiction, or else a model of S . If the problem was originally for-
mulated as a validity query, a proof means that φ follows from H ,
while a model represents a counter-example. If the problem was
originally formulated as a satis�ability query, a model represents
a solution, while a proof means that there is no solution.

Depending on the logic, these queries may be decidable (valid-
ity and satis�ability are both decidable), semi-decidable (validity is
semi-decidable, satis�ability is not semi-decidable), or undecidable
(validity and satis�ability are both undecidable).

An automated reasoning method or strategy is typically de�ned
by an inference system and a search plan. The inference system is a
set of inference rules, and the search plan is an algorithm equipped
with heuristics to control the application of the inference rules. The
application of an inference rule moves the system from one state
of the derivation to the next.

When the problem is decidable, an automated reasoning strat-
egy is expected to be a decision procedure, that requires it to be
sound, complete, and terminating, returning a proof whenever the
input is unsatis�able and a model whenever the input is satis�able.
When the problem is semi-decidable, an automated reasoning strat-
egy is expected to be a semi-decision procedure, that requires it to
be sound and complete, returning a proof whenever the input is un-
satis�able. In practice, however, instances of decidable problems
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may be too di�cult for the available computational resources, or
complete strategies may be too onerous, so that regardless of de-
cidability, automated reasoning tools may return either a proof, or
a model, or a “don’t know” answer. The degree to which “don’t
know” answers may be tolerated depends on the application.

Similar to other sub�elds of arti�cial intelligence, problems in
automated reasoning involve so much knowledge, that it is often
too cumbersome or too ine�cient to encode all of it in H and φ,
hence in the set S of clauses. Therefore, a common paradigm is
to reason modulo T , seeking proofs modulo T and restricting the
attention to T -models. For example, if T is the theory of equality,
we have equational reasoning, where the axioms of the theory of
equality are built into the inference system.T may also contain ad-
ditional axioms stating properties of symbols other than equality,
such as associativity and commutativity of function symbols.

If T is a theory such that T -satis�ability is decidable, reason-
ing modulo T is known as satis�ability modulo a theory (SMT),
and the knowledge about T is built in the algorithm implement-
ing the decision procedure for T -satis�ability. For example, if T is
the quanti�er-free fragment of the theory of equality, a congruence
closure algorithm decides the T -satis�ability of a set of equalities
and inequalities (cf. Chapter 9 of [18]). An algorithm that decides
the T -satis�ability of a set of ground literals in the signature of
T , or T -literals for short, is called a T -satis�ability procedure. An
algorithm that decides the T -satis�ability of a quanti�er-free for-
mula in the signature of T , or quanti�er-free T -formula for short,
is called aT -decision procedure. A quanti�er-free formulaφ is satis-
�able if and only if its existential closure ∃x̄ .φ is satis�able, where
x̄ are all the variables in φ. Then, ∃x̄ .φ is satis�able if and only if
φ̂ is satis�able, where φ̂ is φ with all variables replaced by Skolem
constants. Thus, the problem of deciding the T -satis�ability of a
quanti�er-free T -formula is equivalent to that of deciding the T -
satis�ability of a ground T -formula.

A reasoning method is model-based, if the state of a derivation
contains a representation of a candidate partial model, and infer-
ence and search for a model are intertwined, as inferences build
and transform the model while the model drives the inferences [8].
In a model-based strategy, a con�ict arises if one of the clauses of
S is false in the current candidate model. The strategy is deemed
con�ict-driven, if it uses inferences to explain and solve the con�ict
repairing the model.

The rest of this paper is organized as follows. Section 2 is a
necessarily incomplete overview of the state of the art in con�ict-
driven methods. Section 3 advertises two recent con�ict-driven
methods: Semantically-GuidedGoal-Sensitive reasoning (SGGS), for
full �rst-order logic [15–17], and Con�ict-Driven Satis�ability (CD-
SAT), for satis�ability modulo a generic combination of theories,
and for a new class of problems called satis�ability modulo assign-

ments (SMA) [9, 10].

2 CONFLICT-DRIVEN METHODS

The con�ict-driven paradigmwas pioneered byCon�ict-DrivenCla-
use Learning (CDCL) for propositional satis�ability [41, 42, 45]. In
con�ict-driven methods that incorporate a CDCL-based SAT-solver
as a black-box, the con�ict-driven reasoning is propositional, even
if the method applies to a more general logic. These methods are

covered in Section 2.1. Other con�ict-driven methods generalize
the con�ict-driven principle to satis�abilitymodulo a theory. These
methods are treated in Section 2.2.

2.1 Con�ict-driven propositional reasoning

This section summarizes methods whose con�ict-driven compo-
nent is restricted to propositional logic. In other words, the can-
didate model and the con�ict-driven inferences are propositional,
with an abstraction function mapping �rst-order atoms to propo-
sitional atoms.

Satis�ability (SAT) is the problem of deciding the satis�ability of
a set S of clauses in propositional logic. The DPLL (Davis-Putnam-
Logemann-Loveland) procedure for SAT [20, 22, 23, 58] represents
a candidate partial model by a sequence of literals, called a trail,
and named M . The trail represents the partial model, also called
M , where all literals on the trail are true. If a literal L is in M , its
complement ¬L is false in M . If neither L nor ¬L is in M , both
literals are unde�ned.

The procedure starts by putting inM all input unit clauses, and
propagating their consequences in the form of implications and con-
�icts, an activity called Boolean clausal propagation (BCP). For im-
plications, assume that all literals of a clause C ∈ S but one, say L,
are false in M . Then literal L is an implied literal, and is added to
M with C as justi�cation, because extending M with L is the only
way to satisfy C . The discovery of an implied literal can be seen
in terms of inferences as the result of a sequence of unit resolution
steps using the literals in M as unit premises. For con�icts, when-
ever all literals of a clause C ∈ S are false in M , a con�ict emerges
withC as the con�ict clause. The discovery of a con�ict can be seen
in terms of inferences as the result of a sequence of unit resolution
steps yielding the empty clause �.

When no more propagations are possible and in the absence of
a con�ict, the procedure decides that a literal L is true by adding it
toM . A literal added toM by a decision is termed a decided literal.
A decision is merely a guess to advance the search. This opera-
tion is also termed case analysis or splitting, because for a literal
L there are two cases, as L is either true or false. After every deci-
sion, the procedure applies BCP to discover more implied literals or
a con�ict. When a con�ict arises, the procedure backtracks chrono-
logically, undoing the latest decision and all the propagations that
depend on it. The procedure returns “satis�able” if M |= S , and
“unsatis�able” if there is a con�ict and no decision to undo.

The Con�ict-Driven Clause Learning (CDCL) procedure [41, 42,
45] inherits from the DPLL procedure the representation of the
candidate model, BCP, and decisions. It also maintains the initial-
ization of the trail with input unit clauses, said to be stored at level
0. Then, every decision opens a subsequent decision level in the
trail: the decision level numbered n contains the n-th decided lit-
eral in the current trail and all implied literals discovered by BCP
as a consequence. The CDCL procedure behaves in a markedly dif-
ferent manner when a con�ict arises.

Suppose that C is a con�ict clause and contains a literal L, such
that ¬L is inM with justi�cation D. Then propositional resolution
is applied to resolveC and D upon L and ¬L. This inference is said
to explain the con�ict, as L is false because ¬L is true, and ¬L is
true, because D is in S and all other literals of D appear negated in



On Conflict-Driven Reasoning AFM 2017, May 2017, Menlo Park, CA, USA

M . The generated resolvent is still a con�ict clause, since all other
literals in C and D are false in M . A resolvent is a logical conse-
quence of S and can be added to S as a learned clause or lemma.
Such a step is called learning. In practice, S may be huge and the
procedure learns one clause per con�ict. How many resolutions to
do and which resolvent to learn is a heuristic choice.

The �rst unique implication point (1UIP) heuristic prescribes to
perform resolution until an asserting con�ict clauseC is generated.
Assume that n is the number of the current decision level. A con-
�ict clause C = L1 ∨ . . . ∨ Lk ∨ . . . ∨ Lm is asserting, or is an
assertion clause, if for only one of its literals, say Lk , the comple-
ment appears in decision level n of the trailM . For all other literals
Lj in C , with 1 ≤ j ≤ k − 1 or k + 1 ≤ j ≤ m, the complement
appears in a decision level smaller than n. As a special case, ¬Lj
appears in decision level 0, if ¬Lj is a unit clause in the input set
S . The 1UIP heuristic lets the procedure learn clause C and back-

jump to the smallest decision level where Lk is unde�ned and all
other literals ofC are false. Note that Lk is unde�ned in every level
smaller than n. This smallest decision level is guaranteed to exist,
because C is a con�ict clause, and therefore for all its literals the
complement is on the trail at some level. If this smallest decision
level is n− 1, backjumping reduces to backtracking. If this smallest
decision level is 0, the procedure backjumps to a state where only
input unit clauses are on the trail. After backjumping, the proce-
dure adds Lk to the trail, so that C is satis�ed and the con�ict is
solved. The CDCL procedure returns “satis�able” if M |= S , and
“unsatis�able” if there is a con�ict at level 0.

Satis�ability modulo theory (SMT) is the problem of deciding
the satis�ability of a set S of ground clauses modulo a theoryT . The
DPLL(T ) paradigm for SMT integrates a theory solver, or T -solver
for short, and a CDCL-based SAT-solver [48]. Since the SAT-solver
accepts only propositional clauses, �rst-order ground atoms are
abstracted to propositional variables, sometimes called proxy vari-
ables. The interface between SAT-solver and T -solver consists es-
sentially of two rules. TheT -con�ict rule detects that a set of literals
L1, . . . ,Lk inM is inconsistent inT . TheT -propagation rule discov-
ers that a set of literals L1, . . . ,Lk inM derives inT a literal L, and
adds L toM with theT -lemma ¬L1 ∨ . . .∨¬Lk ∨ L as justi�cation.
DPLL(T ) features no creation of new atoms, meaning atoms that do
not appear in S . Indeed, the T -propagation rule requires that the
atom of L occurs in the existing set of clauses, and clauses learned
by CDCL are propositional resolvents made of input atoms.

If T is a combination of theories T1, . . . ,Tn , the Ti -solvers need
to agree on the interpretation of whatever is shared among the the-
ories. If they are disjoint, meaning that they do not share function
or predicate symbols other than equality, the theory solvers need
to agree on the cardinalities of the domains for shared sorts and
on an arrangement of shared constant symbols, that tells which
are equal and which are not.

The equality sharing method is the standard approach to this
combination problem (cf. [46, 47] and Chapter 10 of [18]). It re-
quires the theories to be stably in�nite, so that the common car-
dinality of the shared domains can be implicitly assumed to be
countably in�nite. An arrangement is computed by having each
Ti -solver propagate any disjunction of equalities c1 ≃ d1 ∨ . . . ∨

cn ≃ dn between shared constants that is entailed in Ti by the Ti -
subproblem. The case analysis for these disjunctions, as well as for
any other disjunction generated by a Ti -solver, is entrusted to the
SAT-solver.

If T is a combination of theories T1, . . . ,Tn , the T -solver inte-
grated in DPLL(T ) is a combination of the Ti -solvers by equaliy
sharing, and the notion that a disjunction c1 ≃ d1 ∨ . . . ∨ cn ≃ dn
is handled by the SAT-solver is termed splitting on demand [3, 40].
The DPLL(T ) framework is extended to allow the generation of a
�nite number of “new” atoms, namely the proxy variables for the
equalities c1 ≃ d1, . . . , cn ≃ dn .

Another way to implement equality sharing is model-based the-

ory combination (MBTC) [25, 53]. It assumes that the Ti -solvers
build partialTi -models. Then, eachTi -solver propagates, by adding
it toM , any equality s ≃ t between ground terms that is true in the
current candidate Ti -model, rather than entailed (disjunctions of)
equalities between shared constants. Such an equality s ≃ t may
cause a con�ict, precisely because it is not necessarily a logical con-
sequence inTi of theTi -subproblem. If this happens, backjumping
retracts it. Also MBTC does not generate new atoms, because the
propagation of an equality s ≃ t is allowed only if s and t appear
in the existing set of clauses. MBTC applies mostly to fragments of
arithmetic, where domain of interpretation and interpretation of
theory symbols are �xed by an intended model (e.g., the integers),
and algorithms that can update the candidate partial model after a
con�ict are known [25, 30].

MBTC is an approach to the implementation of equality shar-
ing in the context of an SMT-solver built on top of a CDCL-based
SAT-solver. Thus, con�icts are still handled and reasoned about in
propositional logic. However, with its notion of allowing the prop-
agation of equalities that are true in a current candidate partial
theory model, but not necessarily in all models, MBTC prepares
the ground for con�ict-driven theory reasoning.

MBTC is applied also in the DPLL(Γ+T ) reasoning engine that
integrates an ordering-based inference system Γ for �rst-order logic
with equality in the DPLL(T ) framework [12, 13, 24]. An ordering-
based inference system assumes a well-founded ordering on terms,
literals, and clauses, and comprises expansion inference rules, such
as ordered resolution, ordered paramodulation, and superposition,
and contraction inference rules, such as subsumption and simpli-
�cation. The well-founded ordering is used to de�ne the contrac-
tion rules and to restrict the expansion rules. Equipped with a fair
search plan, such an inference system provides (1) a semi-decision
procedure for validity in �rst-order logic with equality, and (2) T -
satis�ability procedures for the quanti�er-free fragments of the
theory of equality and of several theories of data structures [1, 2,
6, 7], including arrays with or without extensionality.

DPLL(Γ+T ) is designed to determine the T -satis�ability of sets
of clauses in the form S = P ⊎ R, where T is a combination of the-
ories T1, . . . ,Tn , P is a set of ground clauses with occurrences of
T -symbols, and R is a set of non-ground clauses where T -symbols
do not occur. Variables in non-ground clauses are implicitly uni-
versally quanti�ed. The set R may be the axiomatization of a the-
ory for which we do not have a built-in satis�ability procedure.
Thus, this kind of problem is more general than deciding the T -
satis�ability of a set of ground clauses. The idea is to use the generic
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inference system Γ to reason about the axiomatized theory, pre-
cisely because Γ o�ers complete quanti�er reasoning, since it is
refutationally complete for �rst-order logic with equality.

DPLL(Γ+T ) integrates Γ into DPLL(T ) by letting it use R-literals
inM , including those propagated by MBTC, as premises of Γ-infe-
rences. Since these literals may be withdrawn upon backjumping,
they arememorized in clauses as hypotheses, and DPLL(Γ+T ) works
with hypothetical clauses. Conclusions of Γ-inferences inherit the
hypotheses of their parents. When backjumping removes literals
fromM , the hypothetical clauses that depend on them are also re-
moved.

Integrating an ordering-based inference system with a solver
that performs a backtracking search presents both di�culties and
opportunities. A di�culty is that one needs to prevent the unsound
situation where a clause C is deleted by subsumption or simpli�-
cation with a clause D and then D is removed upon backjumping.
DPLL(Γ +T ) solves this problem by adapting the contraction in-
ference rules of Γ for hypothetical clauses in such a way that C
is deleted, if D cannot be removed by backjumping before C , and
only disabled otherwise. While deletion is �nal, a disabled clause
C will be re-enabled, if D is removed by backjumping.

A distinctive opportunity is the possibility of allowing specula-

tive inferences: the user can tentatively add to the set of clauses an
arbitrary clause. The system will search for a model that satis�es
both the input set S and the speculatively added clauses. DPLL(Γ+T )
keeps track of clauses added by speculative inferences in the trail
M , and if such a clause causes an inconsistency, it will be retracted
upon backjumping. In this way, the speculative inferences are re-
versible. The crux is to add clauses that may induce termination on
satis�able inputs, such as equations that limit term depth by rewrit-
ing: if S is satis�able, it may happen that the search for a model of
S does not terminate, but the search for a model of S that also sat-
is�es the speculatively added clauses terminates. DPLL(Γ+T ) is (1)
a semi-decision procedure for validity of generic problems in the
form S = P ⊎R, and (2) aT -decision procedure with speculative in-

ferences for problems S = P ⊎ R that satisfy additional hypotheses.
Examples include axiomatizations of type systems [13].

A feature of DPLL(Γ+T ) is that it applies each reasoner to han-
dle the part of the problem that it is best for: DPLL(T ) deals with
ground clauses, while Γ sees non-ground R-clauses and ground
unit R-clauses in M . The two engines communicate through M ,
making DPLL(Γ+T )model-based. However, the con�ict-driven part
is propositional as in DPLL(T ). We consider next methods that lift
con�ict-driven reasoning to the theory level.

2.2 Con�ict-driven theory reasoning

In con�ict-driven theory reasoning, the mechanisms to explain a
con�ict, learn a lemma, and solve the con�ict, work within the T -
solver itself, and not only at the propositional level in the SAT-
solver. In other words, theT -solver implements a con�ict-drivenT -
satis�ability procedure. Such procedures exist for linear real arith-
metic [21, 38, 44], linear integer arithmetic [36, 53, 55], non-linear
arithmetic [37], and �oating-point binary arithmetic [31].

Some progress has been made towards a con�ict-driven T -sa-
tis�ability procedure for the theory of arrays with extensionality

[19], by developing the notion of lemmas on demand [29]. The idea

of lemmas on demand is that a theory solver should generate only
theory lemmas that explainwhy some contents of the trailM is in-
consistent with respect to the theory. In other words, theory propa-
gation should bemodel-based and con�ict-driven. In propositional
logic, lemmas on demand is the same as CDCL, with propositional
resolvents as lemmas.

Although there are decision procedures for the theory of ar-
rays with extensionality [52], SMT-solvers often reason about it by
reading the theory axioms as part of the input set S , and heuristi-
cally instantiating the universally quanti�ed variables in the the-
ory axioms. In this regard, the di�erence of approach between
SMT-solvers and generic theorem provers that instantiate by uni-
�cation the universally quanti�ed variables in the theory axioms
is less dramatic than commonly thought.

Of greater relevance to this analysis is the di�erence between
generating potentially all lemmas, as in a saturation process, and
generating lemmas in a con�ict-driven manner. The decision pro-
cedure with lemmas on demand features rules that propagate read
operations over arrays, and generate lemmas of the form ¬L1 ∨
. . . ∨ ¬Lk ∨ L, where L1, . . . ,Lk are true and L is false in the cur-
rent candidate model M , whereas L should be true according to
the axioms of the theory [19]. The lemma reveals that M is not
a theory model and tells why. Often lemmas are instances of ax-
ioms, so that lemmas on demand can be regarded as model-based
con�ict-driven axiom instantiation.

The next problem is how to get a con�ict-drivenT -decision proce-
dure. Con�ict-driven T -satis�ability procedures [21, 31, 36–38, 44]
are not compatible in general with DPLL(T ), and therefore one
cannot get a con�ict-driven T -decision procedure by plugging a
con�ict-driven T -satis�ability procedure into DPLL(T ). A reason
of incompatibility is precisely that DPLL(T ) does not allow the
creation of new atoms, whereas a con�ict-driven T -satis�ability
procedure may explain a con�ict by generating a clause that con-
tains new atoms [26]. Addressing this issue is a motivation for the
design of MCSAT, that stands for model-constructing satis�ability

[26]. MCSAT is a paradigm for con�ict-drivenT -decision procedures
for satis�ability modulo a single generic theoryT [26]. It has been
instantiated to the combined theories of equality and linear real
arithmetic [35], to non-linear integer arithmetic [34], and to the
theory of bit-vectors [56].

MCSAT merges the propositional model of CDCL with the the-
ory models of MBTC, by allowing the trail M to contain both lit-
erals and assignments of concrete values to free �rst-order vari-
ables. For example, the trail may contain a literal L, meaning the
assignment L ← true , and assignments such as x ← 3. Therefore,
the trail is viewed as carrying an assignment to represent a can-
didate partial model. Furthermore, MCSAT generalizes CDCL to
any theory that can be equipped with clausal inference rules to ex-
plain theory con�icts. Thus, the existence of a con�ict-explanation
inference mechanism emerges as the key ingredient for a con�ict-
driven procedure. The possibility of learning a clause generated
by the con�ict-explanation inference, and using it to amend the
candidate partial model follows.

The con�ict-explanation inferences generate clauses that may
contain new ground atoms in the signature of the theory, beyond
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what is allowed by DPLL(T ) even with splitting on demand. As-
signments to �rst-order variables and new atoms are involved in
decisions, propagations, con�ict detections, and explanations, on
a par with Boolean assignments and input atoms. This means that
the con�ict-driven T -satis�ability procedure is not integrated as a
black-box satellite, but cooperateswith the SAT-solver on the same
level. The CDCL procedure itself is a con�ict-drivenT -satis�ability
procedure where T is propositional logic.

For termination, MCSAT requires that new atoms come from a
�nite basis. A procedure that applies systematically the inference
rules to enumerate all atoms in the �nite basis would be too ine�-
cient. The key point is that the inference rules are applied only to
explain con�icts and amend the current partial assignment, so that
the generation of new atoms is model-based and con�ict-driven.
In this sense, MCSAT is a faithful lifting of CDCL to SMT, with
�rst-order inferences for theory explanation, beyond explanation
by propositional resolution.

3 GENERAL CONFLICT-DRIVEN METHODS

While satis�ability in propositional logic is decidable, in �rst-order
logic validity is semi-decidable and satis�ability is not even semi-
decidable. Nonetheless, theorem-proving approaches often are con-
ceived and understood �rst for propositional logic and then gener-
alized to full �rst-order logic. Section 3.1 presents the main fea-
tures of a method named SGGS that lifts CDCL to �rst-order logic
[15–17]. An alternative approach is con�ict resolution [33, 51]. Sec-
tion 3.2 returns to SMT with a summary of an inference system
named CDSAT, that generalizes MCSAT to generic combinations
of theories [9, 10]. Section 3.3 discusses how also the SMT prob-
lem itself can be generalized to the SMA problem, for satis�ability
modulo assignments.

3.1 SGGS

SGGS, or Semantically-Guided Goal-Sensitive reasoning, brings the
con�ict-driven style to �rst-order logic [15–17]. It is simultane-

ously �rst-order, model-based, semantically-guided, goal-sensitive,
and proof con�uent, a rare combination of features.

In �rst-order logic variables in clauses are implicitly universally
quanti�ed, atoms have in�nitely many ground instances, and there
are in�nitely many interpretations, so that guessing truth values
of atoms is too uninformed. SGGS adopts an initial interpretation I

for semantic guidance, and employs SGGS clause sequences to rep-
resent �rst-order models. An SGGS clause sequence is a sequence
of possibly constrained clauses with selected literals. A sequence Γ
represents an interpretation I [Γ], that is I modi�ed to satisfy the
selected literals in Γ. Thus, the SGGS clause sequence plays the role
of the trail in CDCL, and literal selection is the �rst-order analogue
of propositional decision.

Example 3.1. Assume that S includes the clauseson(a,b ),on(b,c ),
дreen(a), and ¬дreen(c ). If I is the all-negative interpretation, that
makes all negative literals true, the SGGS-derivation starts with
the SGGS clause sequence Γ = on(a,b ), on(b,c ), дreen(a). In a unit
clause its only literal is obviously selected. I [Γ] is the interpretation
that makes all positive literals false except on(a,b ), on(b,c ), and
дreen(a). If I is the all-positive interpretation, that makes all pos-
itive literals true, the SGGS-derivation starts with Γ = ¬дreen(c ),

and I [Γ] is the interpretation that makes all negative literals false
except ¬дreen(c ). CDCL would put all input unit clauses on the
trail. SGGS assumes a guiding interpretation and modi�es it lazily,
because dealing with �rst-order models is much heavier than deal-
ing with propositional models.

SGGS generalizes BCP to �rst-order clausal propagation. BCP is
based on the symmetry of truth values in propositional logic: if
L is true, ¬L is false, and if L is false, ¬L is true. Since variables
in �rst-order literals are implicitly universally quanti�ed, if L is
true, ¬L is false, but if L is false, we only know that at least one
ground instance of ¬L is true. To address this discrepancy, SGGS
introduces uniform falsity: a �rst-order literal is uniformly false, if
all its ground instances are false. This stronger notion of falsity
restores the symmetry: if L is true, ¬L is uniformly false, and if L
is uniformly false, ¬L is true.

Every literal in an SGGS clause sequence Γ must be either I -true
(true in I ) or I -false (uniformly false in I ), so that it represents the
truth value in I of all its ground instances. Every clause C in Γ

must have a selected literal L: the clause with L selected is written
C[L]. I -false literals are preferred for selection. An I -true literal is
selected only in a clause whose literals are all I -true; such a clause
is termed I -all-true. SGGS aims at building a model of S : if I |= S ,
the search halts immediately; if I 6 |= S , SGGS seeks to build an I [Γ]
that di�ers from I where needed to satisfy S , hence the preference
for I -false literals.

Example 3.2. S = {R(x, f (x )), ¬R(x, x ), ¬R(x,y) ∨R(y, x )} pre-
sents an irre�exive, symmetric, reachability relation R such that
every state x has a successor f (x ). If I is all negative, SGGS builds
the sequence Γ = [R(x, f (x ))], ¬R(x, f (x )) ∨ [R( f (x ), x )]: in the
second clause, which is binary, the positive literal is preferred for
selection, denoted by the square brackets, because it is I -false. Then
SGGS halts as I [Γ] |= S .

A �rst-order clause is a con�ict clause if all its literals are uni-
formly false in I [Γ]. A literal L is uniformly false in I [Γ], if all its
ground instances appear negated among those that a preceding se-
lected literal M makes true in I [Γ]. In this sense, L depends onM .

Example 3.3. Given S = {P (x ), ¬P (x )∨R(a, x ), ¬P (x )∨¬R(x, b )}
and I all negative, SGGS builds the sequence Γ = [P (x )], ¬P (x ) ∨
[R(a,x )], ¬P (a) ∨ [¬R(a,b )]: literals ¬P (x ) and ¬P (a) are uni-
formly false in I [Γ], because P (x ) is selected; literal ¬R(a,b ) is uni-
formly false in I [Γ], because R(a,x ) is selected; and the last clause
in Γ is in con�ict with I [Γ]. Note that this clause is I -all-true.

A �rst-order literal L is implied, with clauseC as justi�cation, if
L is the only literal of C that is not uniformly false in I [Γ]. SGGS
ensures that every I -all-true clause in Γ is either a con�ict clause
or the justi�cation of its selected literal. To this end, SGGS uses
assignment functions to keep track of the dependence of I -true lit-
erals on I -false selected literals: an I -all-true clause whose literals
are all assigned to I -false selected literals is a con�ict clause; an I -
all-true clause whose literals, except the selected one, are assigned,
is a justi�cation.

Example 3.4. Continuing Example 3.3, literals ¬P (x ) and ¬P (a)
are assigned to [P (x )]; literal ¬R(a,b ) is assigned to [R(a,x )]; and
the last clause in Γ is in con�ict with I [Γ] as all its literals are as-
signed.
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All SGGS clause sequences in the above examples are generated
by applications of the SGGS-extension inference rule, that adds to
the sequence an instance E of a clause C ∈ S and selects one of
its literals. The instance E is built in order to capture the ground
instances of C such that I [Γ] 6 |= C , so that the resulting sequence
(e.g., ΓE) will satisfy them.

Example 3.5. In Example 3.2, clause ¬R(x, f (x )) ∨ [R( f (x ), x )]
is an instance of input clause ¬R(x,y) ∨ R(y, x ). SGGS generates
it by unifying literal ¬R(x,y) in this input clause with the selected
literal [R(x, f (x ))] which is already on the trail. Recall that every
�rst-order clause has its own variables. Let us rename the variables
of the input clause as ¬R(u,v ) ∨ R(v,u ). Then the applied most
general uni�er (mgu) is α = {u ← x,v ← f (x )}. The meaning
is as follows. Initially, because I is all negative, the second and
the third clause in S are satis�ed by I , but the �rst one is not.
Thus, SGGS generates Γ = [R(x, f (x ))] by an SGGS-extension with
empty mgu. At this point, I [Γ] satis�es the �rst and the second
clause, but not the third one. Which ground instances of the third
clause have been lost? Precisely those where ¬R(u,v ) uni�es with
[R(x, f (x ))]. Thus, SGGS extends the model to recapture these in-
stances by adding ¬R(x, f (x )) ∨ [R( f (x ), x )].

However, it is not always the case that an SGGS-extension adds
a clause E whose selected literal extends I [Γ], because E may be a
con�ict clause. In such a case, SGGS explains the con�ict by a re-
stricted formof �rst-order resolution, called SGGS-resolution. SGGS-
resolution resolves an I -false literal L in E with the implied I -true
literal M , whose selection in Γ makes L uniformly false in I [Γ].
Thus, SGGS-resolution resolves the con�ict clause E with the I -all-
true clauseD that is the justi�cation ofM in Γ. The resolvent is still
in con�ict. This series of explanation inferences by SGGS-resolution
terminates when either the empty clause � or an I -all-true con�ict
clause is generated.

The generation of � signals that the input set S is unsatis�able.
Otherwise, SGGS moves the I -all-true con�ict clause, say E[L], to
the left of the clause D[M] whose selected I -false literal M makes
E’s I -true selected literal L uniformly false in I [Γ]. The e�ect of
this SGGS-move is to learn E[L] and solve the con�ict by �ipping

the truth value of all ground instances of L. At this point, D[M] is
in con�ict, so that SGGS-resolution intervenes to resolve E[L] and
D[M] upon L andM . Prior to the move, SGGS may partition D[M]
by E[L] as in the following:

Example 3.6. Continuing Example 3.4, we can see why ¬R(a,b )
is selected in con�ict clause ¬P (a)∨[¬R(a,b )]: in an I -all-true con-
�ict clause, SGGS prescribes to select the literal that is assigned
rightmost, so that when the clause moves left to solve the con-
�ict, the only literal in the clause that will be unassigned is the
selected one, and the clauses changes status from con�ict clause
to learned justi�cation of an implied literal. The move consists of
moving ¬P (a) ∨ [¬R(a,b )] to the left of ¬P (x ) ∨ [R(a,x )]. How-
ever, SGGS does not do that, because changing the truth value of
all ground instances of [R(a,x )] in order to satisfy [¬R(a,b )] is too
much. The philosophy of SGGS is to be con�ict-driven and change
I [Γ] only as far as it is needed to solve the con�ict. SGGS partitions
¬P (x ) ∨ [R(a,x )] by ¬P (a)∨ [¬R(a,b )] producing Γ = [P (x )], x .
b ⊲ ¬P (x ) ∨ [R(a,x )], ¬P (b ) ∨ [R(a,b )], ¬P (a) ∨ [¬R(a,b )]. Next,

SGGS-move yields Γ = [P (x )], x . b ⊲¬P (x ) ∨ [R(a, x )], ¬P (a) ∨
[¬R(a,b )], ¬P (b ) ∨ [R(a,b )]. SGGS-resolution resolves ¬P (a) ∨
[¬R(a,b )] and ¬P (b ) ∨ [R(a,b )] to generate Γ = [P (x )], x .
b ⊲¬P (x ) ∨ [R(a, x )], ¬P (a) ∨ [¬R(a,b )], ¬P (b ) ∨ [¬P (a)], where
the resolvent ¬P (b ) ∨ [¬P (a)] is another I -all-true con�ict clause.
The selection of ¬P (a) is arbitrary, since both¬P (b ) and ¬P (a) are
assigned to [P (x )].

As shown in the above example, in SGGS-resolution, the resol-
vent replaces the parent that is not I -all-true. All clauses that have
literals assigned to the deleted resolution parent are also deleted.
In other words, the resolvent replaces the con�ict clause, not the
justi�cation, like in CDCL. Partitioning a clause D[M] by a clause
E[L] replaces D[M] by a partition, D1[M1], . . . ,Dn [Mn], that is, a
set of clauses that together represent the same ground instances
as D[M], but have disjoint selected literals. Furthermore, the set
of ground instances of atom(L) is equal to the set of ground in-
stances of atom(Mj ) for some j, 1 ≤ j ≤ n, where atom(L) de-
notes the atom of literal L. In other words, partitioning D[M] by
E[L] splinters D[M] in such a way to expose the non-empty inter-
section between the ground instances of L and those of M , where
intersection ignores sign. Partitioning introduces constraints, that
are a kind of Herbrand constraints [14, 17].

Example 3.7. Continuing Example 3.6, clause ¬P (b ) ∨ [¬P (a)]
partitions clause [P (x )], yielding Γ = x . a⊲[P (x )], [P (a)], ¬P (a)∨
[¬R(a,b )], ¬P (b ) ∨ [¬P (a)], where x . b ⊲ ¬P (x ) ∨ [R(a,x )] has
been deleted: SGGS allows us to delete a clause that has a literal
(here ¬P (x )) assigned to a clause (here [P (x )]) that gets partitioned.
The alternative is to recursively partition x . b ⊲¬P (x )∨ [R(a, x )]
into ¬P (a) ∨ [R(a, a)] and x . b,x . a ⊲ ¬P (x ) ∨ [R(a,x )], and
assign ¬P (a) to [P (a)] and x . b,x . a ⊲ ¬P (x ) to x . a ⊲

[P (x )]. Note that x . b ⊲ ¬P (x ) ∨ [R(a, x )] cannot simply re-
main in Γ, because x . b ⊲ ¬P (x ) has nowhere to be assigned
after [P (x )] has been partitioned. By SGGS-move we get Γ = x .

a⊲[P (x )], ¬P (b )∨[¬P (a)], [P (a)], ¬P (a)∨[¬R(a,b )]. Then SGGS-
resolution resolves ¬P (b ) ∨ [¬P (a)] and [P (a)] to give Γ = x .

a ⊲ [P (x )], ¬P (b ) ∨ [¬P (a)], [¬P (b )], where ¬P (a) ∨ [¬R(a,b )] is
deleted, because its literal ¬P (a) was assigned to the deleted reso-
lution parent.

Another reason for deleting ¬P (a) ∨ [¬R(a,b )] in the above ex-
ample is that it is disposable: in SGGS a clause C in ΓCΓ′ is dis-
posable, if it is satis�ed by I [Γ]. SGGS-deletion deletes disposable
clauses eagerly.

Example 3.8. Continuing Example 3.7, clause [¬P (b )] partitions
clause x . a⊲[P (x )], generating Γ = x . a,x . b⊲[P (x )], [P (b )],
¬P (b ) ∨ [¬P (a)], [¬P (b )]. By SGGS-move we get Γ = x . a,x .

b⊲[P (x )], [¬P (b )], [P (b )], ¬P (b )∨[¬P (a)]. Then SGGS-resolution
yields Γ = x . a,x . b ⊲ [P (x )], [¬P (b )], �, ¬P (b ) ∨ [¬P (a)].

Fairness of an SGGS-derivation ensures that inferences that are
in�nitely often possible are not neglected. It also ensures that ev-
ery con�ict is solved before further SGGS-extensions. SGGS is refu-
tationally complete: if the input S is unsatis�able, any fair SGGS-
derivation from S is a refutation. It is also model complete in the
limit: if S is satis�able, the limiting sequence of any fair SGGS-
derivation from S represents a model of S , where both limiting
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sequence and derivation may be in�nite. SGGS is �exible with re-
spect to goal-sensitivity: it is goal-sensitive, if I satis�es the clauses
issued from the assumptions H , but not those from the negation
¬φ of the conjecture. SGGS is proof con�uent, because it gets out
of con�ict by moving a clause in Γ, without undoing steps by back-
tracking or backjumping. This suggests that a backtracking search
may not be an essential ingredient of con�ict-driven reasoning.

3.2 CDSAT

CDSAT, for Con�ict-Driven Satis�ability, extendsMCSAT to generic
combinations of disjoint theories [9, 10]. This involves clarifying
the requirements that the theoriesT1, . . . ,Tn and their solvers need
to ful�ll, in order to ensure the soundness, completeness, and ter-
mination of the combined system.

CDSAT pushes further the philosophy ofMCSAT of considering
the CDCL procedure as one of n con�ict-drivenT -satis�ability pro-
cedures that cooperate to build a model in the trail. Accordingly,
CDSAT regards atoms, literals, clauses and even formulæ as terms
of sort prop (from proposition), a special sort that every theory sig-
nature is required to have. The assertion of a literal L in the trail
is viewed as an assignment L ← true , and assignments such as
L ← true and x ← 3, where x is a free �rst-order variable, are
treated in a completely uniform manner.

The trail is de�ned as a sequence of assignments, rather than
as a sequence of literals. Furthermore, the notion of assignment
is generalized to allow assignments to non-variable terms for both
Boolean and �rst-order assignments. Thus, also input problems are
written as assignments: in order to determine the satis�ability of
a set of clauses S = {C1, . . . ,Cm }, CDSAT is given as input the
assignment {C1 ← true, . . . ,Cm ← true }.

Concrete values such as 3 are not necessarily in the signatures
of the theories. Therefore, CDSAT assumes theory extensions that
add to the signatures as many constants as needed to name the con-
crete values (e.g., all the integers), including truth values. These
extensions are required to be conservative, meaning that reason-
ing in the extension does not change the problem. Formally, the
extension T+

k
of theory Tk is conservative, if any T+

k
-unsatis�able

set S of clauses is also Tk -unsatis�able. Thus, if CDSAT discovers
T+
k
-unsatis�ability, the problem is Tk -unsatis�able; if the problem

is Tk -satis�able, there is aT
+

k
-model that CDSAT can build.

The combination of theoriesT1, . . . ,Tn is realized by the cooper-
ation of theory modules I1, . . . , In , where theory modules are infer-
ence systems that work on assignments. Theory modules are the
abstract counterpart of theory solvers or theory plugins [35]. The-
ory modules for propositional logic, and the quanti�er-free frag-
ments of the theory of equality, linear rational arithmetic, and the
theory of arrays with extensionality are provided as examples [9,
10]. Every theory module Ik is responsible for deciding assign-
ments, and for the inferences that lead to propagate assignments,
and detecting, explaining, and solving con�icts, in its theory Tk .

The cooperation among the theory modules consists of having
them all contribute to transform the trail. Since the theories have
di�erent signatures and the signatures are mixed on the trail, ev-
ery theory module has its own theory view of the trail. CDSAT
develops further the intuition, already in MCSAT and SGGS, that

the essence of a con�ict-driven approach is the explanation of con-
�icts. In CDSAT a con�ict is a set of assignments. For the purpose
of explanation, every assignment A in the trail that is not a deci-
sion is associated with a set of preceding assignments J thatAwas
inferred from. Thus, if A becomes part of a con�ict, it can be ex-
plained away by replacing it with J . Propositional resolution, as in
a CDCL explanation, is a special instance of the CDSAT explana-
tion mechanism. The inference system of CDSAT is parametrized
by a global basis, which is the source of new terms that theorymod-
ules can employ in their inferences. CDSAT is sound and complete
for combinations of disjoint theories, assuming that at least one
of the theories has information about the cardinalities of the do-
mains to interpret the shared sorts. Assuming that all theories are
stably in�nite is a special way of having this information. Similar
to MCSAT, �niteness of the global basis ensures termination.

Clearly, there is no reason to restrict CDSAT to inputs of the
form {C1 ← true, . . . ,Cm ← true }. CDSAT accepts input prob-
lems containing both Boolean and �rst-order assignments. For ex-
ample, one may need to decide the satis�ability of a quanti�er-free
formula φ in a combination of theories, given an assignment to
some of the free variables inφ, whether propositional or �rst-order.
Therefore, CDSAT addresses a more general problem than SMT,
that we call SMA for satis�ability modulo assignments. For SMA
problems, the input format presupposes the theory extensions.

3.3 Satis�ability modulo assignments

During the search, a con�ict-driven reasoner maintains a partial
candidate model represented by an assignment. This suggests the
more general problem of satis�ability modulo assignments (SMA),
de�ned as the problem of deciding the satis�ability of a set S of
clauses modulo a theory T with respect to an initial assignment J
to some of the terms in S , including both propositional and �rst-
order terms. If J is empty, SMA reduces to SMT; if both J andT are
empty, SMA reduces to SAT, while an intermediate state of a SAT
or SMT search is an SMA instance. In CDSAT, there is no distinc-
tion between S and J , that are united to form the input assignment.

The answer to an SMA problem is either “satis�able” with a
model of S extending J , or “unsatis�able” with a set of clauses E
that follows from S and is false in J . The set E is an explanation,
because it explains why S is unsatis�able under J . The concept of
explanation generalizes those of unsatis�able core and interpolant.
In SAT, an unsatis�able core of S is a set of clauses that follows from
S and is unsatis�able. An unsatis�able core explains why S is un-
satis�able, and the smaller it is with respect to the subset ordering
⊆, the more precise it is regarded. If J is also written as a set of
clauses, a (reverse) interpolant of S and J is a formula that follows
from S and is inconsistent with J (cf. [11] for a survey of inter-
polation systems for ground proofs). MCSAT uses interpolants in
arithmetic as explanations [26].

SMA arises in several contexts, such as enumeration of models,
parallelization, and optimization. Themodels of a SAT or SMT prob-
lem can be enumerated by solving a series of SMA problems where
each initial assignment J excludes the models already found. Ap-
proaches to parallel SAT by distributed search (cf. Section 4.1 in
[5]) solve a SAT problem with input set S , by solving in parallel
multiple instances of SMA with input set S and initial assignments
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J each containing a distinct guiding path [57] or cube [32]. An opti-
mization problem can be approached by solving a series of SMA
problems where each initial assignment J contains information
generated by the previous runs, in such a way that the series con-
verges towards an optimal solution. For example, this concept ap-
peared in the presentation of [28] about adapting to optimization
the satis�ability procedure of [27, 37] for the theory of algebraic
reals.

4 DISCUSSION

The big picture sees various approaches to extend con�ict-driven
reasoning to the �rst-order level. From the SMT side, the process
started with generalizations of Con�ict-Driven Clause Learning
(CDCL) from propositional logic to several fragments of arithmetic
[21, 31, 36–38, 44]. These methods o�er con�ict-drivenT -satis�abi-
lity procedures. By being generic with respect to the theory,Model-

Constructing Satis�ability (MCSAT) encompasses these predeces-
sors, and by integrating theory reasoning and propositional rea-
soning in all aspects of deduction and search, it provides a par-
adigm for con�ict-driven T -decision procedures [26, 34, 35, 56]. In
turn, Con�ict-Driven Satis�ability (CDSAT) generalizes MCSAT to
generic combinations of theories and satis�ability modulo assign-
ments (SMA) problems, where a partial assignment may also be
part of the input problem [9, 10].

From the theorem-proving side, Semantically-Guided Goal-Sen-

sitive (SGGS) reasoning [15–17] and con�ict resolution [33, 51] lift
CDCL to �rst-order logic. A comparison between SGGS and or-
dering-based theorem provers (e.g., [39, 43, 49, 54]) is premature,
because SGGS still needs to be implemented and extended to �rst-
order logic with equality. The point of SGGS is not to reprove
the theorems that other approaches have already conquered, but
rather to explore new domains or hard problems, where its con�ict-
driven character may be rewarding. The identi�cation of such clas-
ses of problems is also an objective. Similarities between SGGS and
CDSAT include the notion of mapping a literal, in SGGS, or an as-
signment, in CDSAT, to the literals, or assignments, respectively,
that it depends on, and the notion that a model be part of the input
problem, as SGGS assumes an initial interpretation for semantic
guidance, while CDSAT accepts SMA problems. The future may
witness further convergence.
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