
More Automated Formal Methods?! If so, why, where & how?

Position Paper towards a Contributed Talk at AFM 2017 workshop associated with NFM 2017

 A. Chakrapani Rao

Warwick Manufacturing Group

(WMG), University of Warwick,
Coventry CV4 7AL

UK

A.Chakrapani-Rao.1@warwick.ac.uk

ABSTRACT

Formal Methods (FM) have been around for decades and many

have been improving all the time. Automated formal methods

techniques and tools have been making a mark in real world

applications across industry domains. So, why and where do we

need more automation? How much automation is required? This

paper attempts to cover an assessment on where I believe we are,

based on my own not-so-limited but diverse enough experience in

automated industry-strength formal methods and model based

systems engineering area, where we might need to get to and

possibly how. Key characteristics of future automation needed for

success are outlined. No attempt is made to be exhaustive as the

world of FMs is vast and the collective work of FM expert

researchers, developers and users is needed for exploration – “to

boldly meet future challenges which no FM has ever met before”!

CCS CONCEPTS

• Computing methodologies~Model verification and validation

• Software and its engineering~Model-driven software

engineering • Software and its engineering~Software

verification.

KEYWORDS

Automated, Interactive, Connected, Formal Methods, Systems

Engineering

ACM Reference format:

A. Chakrapani Rao. 2017. SIG Proceedings Paper in Word

Format. In Proceedings of AFM 2017, CA USA, May 2017

(AFM’17), 8 pages.

DOI:

INTRODUCTION

Systems and software engineering have undergone an

enormous transformation over the last several years. Most systems

and software developed today have been designed, developed and

tested using a variety of modelling languages, programming

languages and tools. The systems and software engineering

process models (eg., V-model, Agile) may also be quite different

depending on the industry domain, the size and nature of the

system or software, the particular company’s standards and

standards pertinent to the domain itself. Automation in the overall

systems engineering process, for example in automatic code

generation or in automated testing potentially bring enormous

benefits especially in terms of efficiency, consistency and

objectivity.

Figure 1 shows different phases of Systems Engineering within

the common process model, the V-model. The phases represent

distinct abstraction levels. Of course, within each phase, a model

may undergo refinements to result in a more detailed model for

that phase. Irrespective of the process model, each phase, within a

Model Based Design (MBD) workflow, consists of either a model

or, in reality, many models. For instance, the Requirements phase

may have requirements documents, DOORS database of

requirements and/or a SysML model. They are sometimes termed

the “Descriptive Model” [14]. Let’s refer to the requirements

documents as the Informal Model (IM) and the SysML model as

the Semiformal Model (SM). If we develop the requirements in a

formal language or provide precise semantics to a SysML model,

we could term it as the Formal Model (FM). In a similar way, we

could have different models at the Design phase etc. In other

words, a Phasei model could have one or more IM(s), SM(s)

and/or FM(s). Of course, in the context of systems engineering of

complex systems and system of systems, all models have

relevance. Whilst an IM may largely be based on natural

languages, an SM may be visual and hence more suitable for

AFM 2017, May 19th 2017, Menlo Park, CA USA A. Chakrapani Rao

2

communication amongst various stakeholders, despite not being

fully formal.

For a seamless Model Based Systems Engineering, there is a

need for relationships between these models and a level of

integration. We can define and refer to them as: IMip(n)IMjp(n),

IMip(n)FMip(m), FMip(n)FMjp(n) and so on where i) the first

subscript i, j etc. stand for the model number and ii) p(n) with

n=1,2 etc. denotes the phase number. This integration could be a

connection between model elements implemented as traceability

links or a tighter connection between parameters or model

attributes across models in different phases. Without such

relationships including potentially a tight integration, there are

likely to be problems in any analysis based on models which are

all used towards the final product and potentially in claiming

certification credits as per the standards across different domains.

For example, a formal analysis based on an incorrect FM derived

from an IM would be a costly effort with practically no benefits.

Figure 1: Models in Systems Engineering

 Figure 2 depicts the many different models that may be part

of any phase in the systems engineering process.

Figure 2: Phases and models

Figure 3 depicts the fact that there may be implicit or explicit

connections between the different models. In a typical large scale

project, within the industry, models may have been created in

such a way that there are inconsistencies between them!

Hence, the success of automated formal methods techniques and

tools depends, in my opinion, on the following key factors:

1. How well connected they are to the other models

(whether other FMs or SMs or IMs) in the overall

process?

a. Let’s call it as the Connectivity property. This

“connection” may take one or more forms, as

appropriate; for example, simple “traceability

links” between model elements across phases

or an advanced level model integration

connecting system-level attributes from a

system requirements (descriptive) model to

appropriate parameters in an analysis model

[9, 14].

b. We may optionally grade it on a scale from

Level 0 to Level 3 where Level 0 is Totally

Unconnected and Level 3 is Seamlessly

Connected.

2. How well automated are the formal methods techniques

and tools?

a. Let’s call it as the Automation property.

b. We may optionally grade it on a scale from

Level 0 to Level 3 where Level 0 is Fully

Manual and Level 3 is Fully Automated.

3. How synergistic are they to cater to the varied needs of

the users?

a. Let’s call it as the Synergy property.

b. We may optionally grade it on a scale from

Level 0 to Level 3 where Level 0 is No User

Interaction and Level 3 is Fully Synergistic.

Figure 3: Model Connections within and across Phases or

Abstraction Levels

The above points will be illustrated with some examples, from

my experience within a few projects [1-10, 18, 24], in the next

section.

More Automated Formal Methods?! If so, why, where & how? AFM 2017, May 2017, Moffett Field, CA USA

 3

Automation with formal methods as well as systems

engineering will benefit from improvements and/or new

developments in the following areas:

1. Systems Engineering

i) Traceability between different model elements, for

example a set of requirements in an informal

requirement model (i.e, the IM) to a relevant part

of the design in a semi-formal design model (i.e.,

the SM).

ii) Automatic generation of an analysis model, eg., a

system-level simulation model (i.e., SM), from a

descriptive model, eg., a system-level model in

SysML (i.e., SM).

iii) Automatic code generation (say C code i.e., SM)

from a design model, say a Statechart based model

(i.e, SM), such that it is correct-by-construction.

iv) Automatic generation of information to support

change management when one model in a linked

set of models changes.

v) Automatic checking of models for specific

modelling guidelines, eg., MISRA generic

modelling design and style guidelines.

2. Formal Methods

i) Automatic generation of specification properties

from pre-defined patterns in a natural language.

ii) Automatic formal verification of real-life design

level models, via model-checking.

iii) Automatic checking of healthiness conditions of

software, eg., run-time errors like divide-by-zero,

via static checking.

iv) Automatic theorem proving based on tool-in-built

proof strategies captured from experts.

v) Automatic refinement of models, eg., abstract

specification in ITL, towards an executable model,

e.g., an executable Tempura program.

vi) Automatic generation of test cases from a model,

eg., TargetLink model, to support testing at

different levels of abstraction like Model-in-the-

Loop and Software-in-the-Loop.

vii) Automatic decomposition of a large model into

sub-models together with top-level property into

sub-properties for compositional verification.

viii) Automated tools to assist in education and training

in the area of formal methods.

ix) Automation in the integration of different

complimentary formal techniques and tools, e.g.,

model-checking and theorem-proving, to address

the scalability issues in model-checkers.

x) Automatic synthesis of a design model from formal

specification.

The above list may need to be expanded, of course, and by

‘automatic’, full automation is not implied. The level of

automation may need to be appropriate to the specific process

with the user kept in the loop, as necessary, for confidence not

only in the techniques and tools but also in the overall process and

the resulting artefacts. In addition, effective human and machine

collaboration may be needed for proofs due to incompleteness and

undecidability issues [12].

There are alternative possibilities in terms of further approach

to automation: i) focus on the FMs and develop it as an area

where all phases of the software-intensive system development

lifecycle are addressed via FMs and ii) involve the FM within an

overall process consisting of IMs, SMs and FMs as appropriate.

The other alternative of not involving any FMs at all may still be

suitable depending on the size and nature of the application but

even in such cases, due to the need for complimentary techniques

to improve product quality, the business case for some FMs could

indeed be favorable.

There is significant literature in terms of automation within a

specific formal analysis technique, for example model refinement

or parallelization of model-checking algorithms. Recent literature

on automated analysis has been discussed in [13] and covers

parallelization of model-checking algorithms, SAT and SMT

solving, runtime verification (for verifying single traces as

opposed to full models) and probabilistic systems’ verification.

Automated controller synthesis from formal specifications is

briefly covered in [7].

HOW CONNECTED, AUTOMATED AND

FLEXIBLE

The following are some examples, from personal experiences

in automated formal methods techniques and tools. They, i.e., the

then current state-of-the-art with those techniques and tools, are

used to illustrate their key connectivity, automation and/or

synergy properties. The purpose of these examples are merely to

propose a potential initial approach to assess the current state with

automation and plan future strategies for further automation.

EXAMPLE 1 – Formal Requirements

Analysis

In a recent project I was part of [1, 2], there was a need to

integrate existing requirements engineering methods and tools

with new formal methods based techniques and tools [19] for

requirements analysis. Whilst the existing requirements were

informal and semi-formal, the new formal tools had the capability

to analyze requirements for consistency and completeness. They

incorporated formal techniques like SAT solving. However, it was

AFM 2017, May 19th 2017, Menlo Park, CA USA A. Chakrapani Rao

4

unrealistic to expect large teams to start modelling requirements

using the new language involved, although based on natural

language. Hence, there was a need to bridge the gap and evolve

towards an integrated approach providing such advanced

requirements analyses. Due to this necessity in an industrial

environment, the team developed systems and methods for

integrating current state-of-the-art with newly developed internal

techniques and tools. The new implementation automated the

generation of suitable requirements artefacts not only to assist the

formal requirements modelling and analysis activities but also to

support regular requirements reviews carried out by relevant

domain experts. The purpose of this example is to illustrate the

needs of integrating formal methods techniques and tools to the

current state of the art, ie., FMIMs, rather than developing them

as a totally niche area.

The accomplishments of this project could be classed roughly

(“roughly” because, in my opinion, this is only for illustration) as

Connectivity Level 1, Automation Level 1 and Synergy Level 1.

To achieve a higher level of connectivity, automation and

synergy, there is need for going beyond proof-of-concept and pilot

projects by involving engineers, developers and researchers to

take the technology to higher Technology Readiness Levels

(TRLs) through technology transfer efforts.

Key features of the overall automated formal methods relating

to this example: Connection to informal models; automatic

generation of semi-formal and formal models; requirements-based

simulation.

EXAMPLE 2 – (Design-level, Formal)

Model Checking

In another industrial R&D project [18], one of our industrial

partners had a need to formally verify design models created in

MATLAB/Simulink and targeted for production code generation

using the TargetLink code generator. The team integrated formal

methods techniques and tools to this specific MBD environment

to create a prototype tool that was subsequently evaluated across

industry domains. Eventually, a commercial product was born that

is considered a pioneer in the formal verification area involving

Simulink/Stateflow models especially developed for production

code generation using dSPACE TargetLink. Several core

algorithms, techniques and tools evolved from other projects

including [24].

This example demonstrates the connectivity property due to

the model-checking techniques being integrated to the state-of-

the-art modelling environment across industry domains. The fact

that model-checking techniques provide counter-examples to

assist the user in understanding why a property failed

demonstrates a high level of synergy. Model-checking requires

only little intervention by users mainly for providing relevant

settings for the algorithm and hence the overall technique is

highly automated.

Today, there are several more commercial tools for example

the Simulink Design Verifier, for Simulink/Stateflow and SCADE

Design Verifier, for SCADE models. The users have a choice in

terms of not only their MBD tools but also how they choose to do

their formal verification project activities. They are all examples

of integration of FMSMs. Within the core of the formal

methods techniques involved, there are different specific

techniques such as Bounded Model Checking, Complete Model

Checking and SAT Solving which are all brought to the user in a

convenient manner. It is worth stating that the Simulink models

were once verified by translating them to SCADE models [11]. In

this case, accurate translation of a Simulink/Stateflow model to a

SCADE model was important as was automation. Automated

formal methods techniques and tools are now being increasingly

evaluated and used within the industry for many use cases.

Although model-checking is highly automated, there can be

several challenges with respect to i) using the requirements and

formalizing them as appropriate properties i.e,, functional,

temporal, reachability in terms of graphical states or variable

values, ii) preparing the models for formal analysis by taking care

of any unsupported blocks and datatypes and iii) interpreting the

results from the model-checker to carry out any further analysis.

The accomplishments of this Example 2 project could be

classed “roughly” as Connectivity Level 2, Automation Level 2

and Synergy Level 2.

Key features of the overall automated formal methods relating

to this and other similar examples: Connection to semi-formal

models; automatic generation of formal models (so that the users

are transparent to formal methods); scenario for reachability

analysis (with a range of choices of selection of states in the

model – hence involving the user); automatic generation of

counter-example, if any; providing corresponding test harness for

simulation.

EXAMPLE 3 – Formal Property

Specification

Requirements specification has been a hard problem not only

in the formal domain but also in the informal! It is non-trivial to

write numerous requirements, typically in thousands, that are free

from ambiguities, inconsistencies and incompleteness when they

are also written by several diverse stakeholders with inherent

natural language issues not making it any easier for them. In terms

of specifying properties (based on requirements), especially

involving temporal logic, it becomes even harder. In the case of

the formal verification project for ML/SL/TL mentioned in

Example 2, a pattern language was defined and implemented

based on related work on Symbolic Timing Diagrams (STD) [16,

22]. The pattern provided a template to capture properties by

stating i) whether the property had to be satisfied after an optional

More Automated Formal Methods?! If so, why, where & how? AFM 2017, May 2017, Moffett Field, CA USA

 5

“N” steps (of execution of the model), immediately or after

reaching a particular condition “R”, ii) whether the property was

an invariant, iterative or whether it had to be satisfied initially

once, and iii) what the mapping of given terms in the pattern, for

example “P” and “Q” were to model variables and values. An

example pattern in shown in Figure 4 indicating its usage below

the graphical illustrations. The set of patterns developed was well

received by customers and similar approaches are noticeable or

emerging in other tools as well. However, this by no means is a

conquered area and still poses challenges which requires further

research, automation and training! Nevertheless, this effort, across

the research and development community, shows how the formal

methods and tools can be in synergy with users’ necessities,

especially convenience, ease of use of formal notations and

languages. In a large team environment, possibly across global

locations, languages and cultures, an easy-to-use visual pattern

language and tool support helps. Appropriate visual descriptions

to explain the pattern are a bonus in addition to the automation

involved. Such efforts are crucial to make the formal techniques

and tools accessible to the current state-of-the-art and a wide

spectrum of users.

Figure 4: An example pattern with visual descriptions

The accomplishments of this project could be classed

“roughly” as Connectivity Level 2, Automation Level 2 and

Synergy Level 2.

Key features of the overall automated formal methods relating

to this and other similar examples: Connection to informal

models; abstraction of temporal logic details from the user;

automatic generation of formal models.

EXAMPLE 4 – (Formal, Code Level)

Static Analysis

In a project based on static checking [4], a key part of the

research was to evaluate tools in terms of how “sound” and

“accurate” they were in detecting defects. Soundness property of

the technique ensures that there are no false negatives whereas a

high level of accuracy ensures that false positives are kept to a

minimum. This is analogous to other industries, such as the

medical domain, where testing techniques have not only got to be

sound but also accurate and affordable by all or a vast majority of

people. Despite a technique having some inherent shortcomings, it

may still have its place for quick checks before users going on to

more powerful and/or other complimentary analyses. Although

the formal methods automation level can be considered high here,

there is a need to provide the user more assistance in making

sense of the results much the same as a doctor needs to quickly

analyze the results and suggest a particular treatment to the patient

quickly enough! For instance, any false positives would need

adequate tool assistance and useful guidance to resolve them.

The tools were evaluated using a diagnostic test-suite

consisting of various C programs both from the public domain as

well as some internal code. Apart from soundness and accuracy, a

number of other criteria were considered including usability and

whether the tool used previous results to speed up its new

analysis.

The accomplishments of this project could be classed

“roughly” as Connectivity Level 2, Automation Level 2 and

Synergy Level 2.

Key features of the overall automated formal methods relating

to this and other similar examples: Connection to semi-formal

models; color coding of analysis for reviews.

EXAMPLE 5 – Formal Test Generation

In the area of formal methods based automatic test generation,

I was involved in an engineering production project [10], within

the automotive industry, for assessing the coverage of test cases

and improving them. Test cases were initially developed manually

based on requirements and experience from on-field issues

encountered in previous versions of the software. As requirements

and models evolved in successive projects, there was no clear idea

on structural coverage of models based on the existing test cases.

Hence formal methods based automatic test case generation was

utilized to automatically generate test cases for the gaps in

structural coverage. Here, the formal methods technique of test

case generation was well-connected to the models used and had

immediate relevance in the systems engineering workflow. The

overall level of automation was good although certain custom

scripts had to be developed. In terms of synergy with the user, it

was much higher than with “model-checking” as the coverage

concepts were well-known from code-level coverage analysis and

the technique was more of a push-button approach.

The accomplishments of this project could be classed

“roughly” as Connectivity Level 3, Automation Level 2 and

Synergy Level 3.

AFM 2017, May 19th 2017, Menlo Park, CA USA A. Chakrapani Rao

6

Key features of the overall automated formal methods relating

to this example: Connection to semi-formal models; automatic

generation of formal models; test case generation for specific

coverage criteria; identification of gaps in coverage for existing

test cases.

EXAMPLE 6 – Formal Specifications

During my research work for my doctorate [8], I was involved

in developing a visual language and prototype tool to support

Interval Temporal Logic (ITL), used for specification of

(execution) behaviors, especially electronic system-level digital

circuits. As my undergraduate (UG) and graduate level

backgrounds were in materials science and engineering, I had a

good foundation in mathematics and I quite liked the idea of the

mathematics and logic behind ITL and Tempura, the ITL’s

executable subset. I also had a great liking for programming (in

FORTRAN and Pascal) and used FORTRAN extensively for

scientific computations, during my UG days, out of my own

interest, hours on end! Time was spent on developing and running

code, in many iterations, to get results that would have been

unachievable through manual computations. However, during the

doctoral studies, when I had my first awareness of formal

methods, I also encountered the challenges first hand! I learnt that

visualization and tool support enhance the uptake and usefulness

of formal methods, whether it is for education or use within a

research or commercial environment. It seems that, to bridge the

gap, the gap must disappear, in some ways, through appropriate

level of visual aids, automation and synergism to/with the

diversity of users.

This example illustrates that there are many facets to any

automation for formal methods including the need to support

education and training needs.

Although this project was for a PhD dissertation and not for

connecting to industrial state-of-the-art models, the

accomplishments of this project could be classed “roughly” as

Connectivity Level 1, Automation Level 1 and Synergy Level 1.

The team working in this research area have developed various

other features such as an animation tool for Tempura and

integration with other formal techniques such theorem proving

[15].

Key features of the overall automated formal methods relating

to this and other similar examples: Visual language; animation;

executable specifications; connection to other formal methods

including theorem proving.

A recently concluded project I was involved in, where

automated formal methods were used, is the Proving Integrity of

Complex Systems of Systems (PICASSOS) project which was

part-funded by the UK Advanced Manufacturing Supply Chain

Initiative (AMSCI) [21]. The project was a collaboration led by

Ricardo, with partners Jaguar Land Rover, Johnson Matthey

Battery Systems, YorkMetrics, D-RisQ and the universities of

Oxford, Coventry and Warwick. End-of-project dissemination

presentations and other information can be accessed from [21].

Current and future applications which will benefit from

advances in automation with regard to MBSE and Formal

Methods include Connected and Autonomous Vehicles.

Techniques like machine learning will pose challenges not only to

the various formal methods techniques, tools and the automation

involved but also to the overall systems engineering process.

Meeting such new challenges will help ensure that the relevant

desired properties (wrt. safety, security etc.) are satisfied by the

complex systems and systems of systems involved!

New and improved automated formal methods may benefit

from the reuse potential in various core formal techniques and

tools but caution must be exercised to leverage them

appropriately, with a suitable systems engineering process, so that

they have key properties, such as the ones discussed in this

position paper, for success.

KEY CONSIDERATIONS RELATING TO

AUTOMATION

In this section, the role of standards and risks with automation

are discussed briefly.

Standards

Standards, such as DO-178C, provide a number of objectives

that need to be satisfied based on the safety-criticality level of

software. In case automation is involved, as in the case of

automatic code generators for producing code from design

models, the automatic code generation tool would need to be

qualified to a particular tool qualification level [17]. After such a

tool qualification, the automatically generated code may undergo

less review than a manually coded one and hence brings

efficiency and more confidence in the code and the overall

process.

In the case of DO-178C, there are three different categories of

tools identified and accordingly, the tool qualification process

would be different. Some formal methods tools may help in

reducing the activities with the development as well as

verification part of the process and hence, after suitable

qualification, such a tool may be very valuable in some safety-

critical systems’ projects.

More Automated Formal Methods?! If so, why, where & how? AFM 2017, May 2017, Moffett Field, CA USA

 7

Similar standards for other industry domains, for example ISO

26262 for automotive, have emerged more recently, and adopt

similar principles.

Risks

Whilst automation brings many benefits in all industries such

as semiconductor manufacturing, in terms of speed and accuracy,

it is known to have some drawbacks, especially when it comes to

automation of complex tasks where human interaction and/or

awareness is also crucial. For example, inadequate training in

autopilot technology and/or inadequate design of the user

interface in the cockpit, sometimes combined with other system

failures or weather scenarios, have resulted in air crashes. As a

result, it must be understood that there are many risks to

automation [20] and hence must be factored into the overall

process planning.

CONCLUSIONS

To summarize, Figure 5 visually depicts that the eventual

successful launch of a product depends on how the various

models, whether IM, SM or FMs, are developed but also whether

they are used both in a seamless and timely manner!

Figure 5: Success / failure in an eventual product launch!

Hence, I wish to state that, yes! indeed we require more

automated formal methods but at the same time, they have to be

well connected with the overall systems and software engineering

process, the level of automation must be high enough to abstract

the user from the intricacies of the formal notations and

mathematics involved but at the same time be synergistic with a

varied level of users, be it beginners or experts in background

theory! For each different formal method consisting of a formal

language and associated analysis techniques and tools, we need to

have an idea of the current state in order to take it to the next

level! As the overall process is a mix of models at varying degrees

of formality, the role of guidelines becomes crucial at any level of

abstraction.

ACKNOWLEDGMENTS

This position paper contribution for a proposed talk has been

written based on my background and experience in the area of

formal methods and systems engineering acquired at not only

various global academic, industrial R&D organizations but also

within the automotive and aerospace industries, including the

European Commission funded Advanced Design Tools for

Aircraft Systems And Airborne Software project at OFFIS R&D

Institute, Germany, Premium Automotive R&D Programme, UK,

General Motors Technical Centre, India and Rolls-Royce

Sheffield UTC, UK. I wish to acknowledge all colleagues, with

diverse backgrounds and experiences, with whom I had the

chance to work with, including those who hired me for the

specific job and role in the first place! Relevant experience

considered includes the research and development as well as

evaluation of formal methods techniques and tools, application in

pilot projects within industry and technology transfer of industry-

strength automated formal methods to support Model Based

Systems Engineering across industry domains, primarily

automotive and aerospace. Experiences from interaction with

aerospace and automotive system, software and safety engineers

as well as other researchers whilst in different roles, including a

technology transfer role, have been influential in my continuing

interest in a career in this area. The personal opinions expressed

are based on an attempt to understand the progress of the state-of-

the-art as I experienced it, in my own career, and, of course,

debatable! Last but not the least, I wish to acknowledge the

support of WMG’s PICASSOS and UK Connected and Intelligent

Transport Environment (UKCITE) projects for supporting my

attendance at NFM 2017 and AFM 2017.

REFERENCES
[1] A Chakrapani Rao, M. Dixit and R. Sethu. 2015. Systems and methods for

generating high-quality formal executable software feature requirements. (Oct.

2015). United States Patent No. 9,152,385, Filed Feb. 22nd 2012, Issued Oct. 6th

2015.

[2] A Chakrapani Rao, M. Dixit and R. Sethu. 2011. Formal Requirements

Analysis Techniques for Software-Intensive Automotive Electronic Control

Systems. SAE Technical Paper 2011-01-1002 (Apr. 2011). DOI:

http://dx.doi.org/ 10.4271/2011-01-1002.

[3] A Chakrapani Rao, R. McMurran and P. Jones. 2008. A Critical Analysis of

Model-Based Formal Verification Efforts within the Automotive Industry. SAE

Int. J. Passeng. Cars - Electron. Electr. Syst. 1(1) (2009) 77-83. DOI:

http://dx.doi.org/ 10.4271/2008-01-0220.

[4] A. Rao, R. McMurran, R. Peter Jones, M. A. Smith, N. Tudor and A. Burnard.

2007. Assessing the real worth of software tools to check the healthiness

conditions of automotive software. In proceedings of the 3rd Institution of

Engineering and Technology Conference on Automotive Electronics. IET, UK,

1-8.

[5] A Chakrapani Rao. 2014. Model Based Systems Engineering for Complex

Aerospace Systems. Invited Talk at Airbus (as part of UK-India Education and

Research Initiative (UKIERI) visit from University of Sheffield, UK),

Bengaluru, India, March 12th 2014.

[6] A Chakrapani Rao, A. C. Rajeev and A. Yeolekar. 2011. Applying Design

Verification Tools in Automotive Software V&V. SAE Technical Paper 2011-

01-0745 (Apr. 2011). DOI: http://dx.doi.org/ 10.4271/2011-01-0745.

[7] A. Chakrapani Rao and Jun Liu. 2014. Advances in Addressing Challenges in

Complex Control Systems Design. Proceedings of the Third International

Conference on Advances in Control and Optimization of Dynamical Systems,

Indian Institute of Technology Kanpur, India, March 13-15, 2014.

[8] A. Chakrapani Rao. 2002. A Visual Framework for Formal Systems

AFM 2017, May 19th 2017, Menlo Park, CA USA A. Chakrapani Rao

8

Development Using Interval Temporal Logic. PhD Thesis, De Montfort

University, UK.

[9] A. Chakrapani Rao. 2016. MBSE/SysML to NPSS Integration. Rolls-Royce

Sheffield UTC report RRUTC/Shef/R/16105, July 2016, Rolls-Royce UTC

Internal Technical Report, https://www.sheffield.ac.uk/systemsutc/index.

[10] A. Chakrapani Rao, Rupesh Kakade and Mohan Murugesan. 2013. Utilization

of Simulink verification and validation (V&V) and simulink design verifier

(SDV) for HVAC controls software. In: MATLAB Virtual Conference 2013 -

European Track, Sheffield, United Kingdom, March 20th 2013.

[11] A. Joshi and M.P. Heimdahl, 2005. Model-based safety analysis of Simulink

models using SCADE design verifier. In Computer Safety, Reliability, and

Security. 2005, Springer. p. 122-135.

[12] Christian S. Calude, Declan Thompson 2016. Incompleteness, Undecidability

and Automated Proofs. In Gerdt V., Koepf W., Seiler W., Vorozhtsov E. (eds)

Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in

Computer Science, vol 9890. Springer, Cham.

[13] Erika Ábrahám & Klaus Havelund. 2016. Some recent advances in automated

analysis. Int J Softw Tools Technol Transfer (2016) 18: 121.

doi:10.1007/s10009-015-0403-0.

[14] Hongman Kim, David Fried and Peter Menegay. 2012. Connecting SysML

Models with Engineering Analyses to Support Multidisciplinary System

Development. In 12th AIAA Aviation Technology, Integration, and Operations

(ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference, Aviation Technology, Integration, and Operations

(ATIO) Conferences. http://dx.doi.org/10.2514/6.2012-5632.

[15] ITL Publications. 2017. ITL Related Publications. (April 2017). Retrieved

April 2, 2017 from http://www.antonio -

cau.co.uk/ITL/itlhomepagese8.html#x9-200008.

[16] Konrad Feyerabend and Bernhard Josko. 1997. A visual formalism for real time

requirement specifications. In Miquel Bertran and Teodor Rus, editors,

Transformation-Based Reactive Systems Development, Proceedings, 4th

International AMAST Workshop on Real-Time Systems and Concurrent and

Distributed Software, ARTS'97, Lecture Notes in Computer Science 1231,

pages 156–168. Springer-Verlag, 1997.

[17] Leanna Rierson. 2013. DEVELOPING SAFETY-CRITICAL SOFTWARE A

Practical Guide for Aviation Software and DO-178C Compliance. CRC Press,

Taylor & Francis Group.

[18] OFFIS. Industrial Formal Verification Projects funded by automotive

companies including DiamlerChrysler and BMW . OFFIS R&D Institute,

Germany, 2001-04.

[19] P. Sampath, S. Arora and S. Ramesh. 2011. Evolving specifications formally.

In Proceedings of IEEE 19th International Requirements Engineering

Conference, Trento, 2011, pp. 5-14. doi: 10.1109/RE.2011.6051651.

[20] Peter G. Neumann. 1995. COMPUTER-RELATED RISKS. Addison-Wesley

Publishing Company, 1995.

[21] PICASSOS. 2017. Project’s end-of-project dissemination presentations and

other information. In proceedings of PICASSOS Formal Methods Seminar,

British Motor Museum, Gaydon, 28th Feb. 2017, Available from

http://picassos.info/.

[22] R. Schlör, B. Josko and D. Werth. 1998. Using a visual formalism for design

verification in industrial environments. In: Margaria T., Steffen B., Rückert R.,

Posegga J. (eds) Services and Visualization Towards User-Friendly Design.

Lecture Notes in Computer Science, vol 1385. Springer, Berlin, Heidelberg.

[23] SAE ARP4761. Guidelines and Methods for Conducting the Safety Assessment

Process on Civil Airborne Systems and Equipment. SAE International,

December 1996.

[24] SAFEAIR II. Advanced Design Tools for Aircraft Systems and Airborne

Software. Funded by the European Commission. OFFIS R&D Institute,

Germany, 2002.

