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ABSTRACT 

Formal Methods (FM) have been around for decades and many 

have been improving all the time.  Automated formal methods 

techniques and tools have been making a mark in real world 

applications across industry domains. So, why and where do we 

need more automation? How much automation is required? This 

paper attempts to cover an assessment on where I believe we are, 

based on my own not-so-limited but diverse enough experience in 

automated industry-strength formal methods and model based 

systems engineering area, where we might need to get to and 

possibly how. Key characteristics of future automation needed for 

success are outlined. No attempt is made to be exhaustive as the 

world of FMs is vast and the collective work of FM expert 

researchers, developers and users is needed for exploration – “to 

boldly meet future challenges which no FM has ever met before”! 
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INTRODUCTION 
 

Systems and software engineering have undergone an 

enormous transformation over the last several years. Most systems 

and software developed today have been designed, developed and 

tested using a variety of modelling languages, programming 

languages and tools. The systems and software engineering 

process models (eg., V-model, Agile) may also be quite different 

depending on the industry domain, the size and nature of the 

system or software, the particular company’s standards and 

standards pertinent to the domain itself. Automation in the overall 

systems engineering process, for example in automatic code 

generation or in automated testing potentially bring enormous 

benefits especially in terms of efficiency, consistency and 

objectivity. 

 

Figure 1 shows different phases of Systems Engineering within 

the common process model, the V-model. The phases represent 

distinct abstraction levels. Of course, within each phase, a model 

may undergo refinements to result in a more detailed model for 

that phase. Irrespective of the process model, each phase, within a 

Model Based Design (MBD) workflow, consists of either a model 

or, in reality, many models. For instance, the Requirements phase 

may have requirements documents, DOORS database of 

requirements and/or a SysML model. They are sometimes termed 

the “Descriptive Model” [14]. Let’s refer to the requirements 

documents as the Informal Model (IM) and the SysML model as 

the Semiformal Model (SM). If we develop the requirements in a 

formal language or provide precise semantics to a SysML model, 

we could term it as the Formal Model (FM). In a similar way, we 

could have different models at the Design phase etc. In other 

words, a Phasei model could have one or more IM(s), SM(s) 

and/or FM(s). Of course, in the context of systems engineering of 

complex systems and system of systems, all models have 

relevance. Whilst an IM may largely be based on natural 

languages, an SM may be visual and hence more suitable for 
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communication amongst various stakeholders, despite not being 

fully formal. 

 

For a seamless Model Based Systems Engineering, there is a 

need for relationships between these models and a level of 

integration. We can define and refer to them as: IMip(n)IMjp(n), 

IMip(n)FMip(m), FMip(n)FMjp(n) and so on where i) the first 

subscript i, j etc. stand for the model number and ii) p(n) with 

n=1,2 etc. denotes the phase number.  This integration could be a 

connection between model elements implemented as traceability 

links or a tighter connection between parameters or model 

attributes across models in different phases. Without such 

relationships including potentially a tight integration, there are 

likely to be problems in any analysis based on models which are 

all used towards the final product and potentially in claiming 

certification credits as per the standards across different domains. 

For example, a formal analysis based on an incorrect FM derived 

from an IM would be a costly effort with practically no benefits. 

 

Figure 1: Models in Systems Engineering 

 Figure 2 depicts the many different models that may be part 

of any phase in the systems engineering process. 

 

Figure 2: Phases and models 

Figure 3 depicts the fact that there may be implicit or explicit 

connections between the different models. In a typical large scale 

project, within the industry, models may have been created in 

such a way that there are inconsistencies between them! 

 

Hence, the success of automated formal methods techniques and 

tools depends, in my opinion, on the following key factors: 

 

1. How well connected they are to the other models 

(whether other FMs or SMs or IMs) in the overall 

process? 

a. Let’s call it as the Connectivity property.  This 

“connection” may take one or more forms, as 

appropriate; for example, simple “traceability 

links” between model elements across phases 

or an advanced level model integration 

connecting system-level attributes from a 

system requirements (descriptive) model to 

appropriate parameters in an analysis model 

[9, 14]. 

b. We may optionally grade it on a scale from 

Level 0 to Level 3 where Level 0 is Totally 

Unconnected and Level 3 is Seamlessly 

Connected. 

 

2. How well automated are the formal methods techniques 

and tools? 

a. Let’s call it as the Automation property. 

b. We may optionally grade it on a scale from 

Level 0 to Level 3 where Level 0 is Fully 

Manual and Level 3 is Fully Automated. 

 

3. How synergistic are they to cater to the varied needs of 

the users? 

a. Let’s call it as the Synergy property. 

b. We may optionally grade it on a scale from 

Level 0 to Level 3 where Level 0 is No User 

Interaction and Level 3 is Fully Synergistic. 

 

Figure 3: Model Connections within and across Phases or 

Abstraction Levels 

The above points will be illustrated with some examples, from 

my experience within a few projects [1-10, 18, 24], in the next 

section. 
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Automation with formal methods as well as systems 

engineering will benefit from improvements and/or new 

developments in the following areas: 

 

1. Systems Engineering 

 

i) Traceability between different model elements, for 

example a set of requirements in an informal 

requirement model (i.e, the IM) to a relevant part 

of the design in a semi-formal design model (i.e., 

the SM). 

ii) Automatic generation of an analysis model, eg., a 

system-level simulation model (i.e., SM), from a 

descriptive model, eg., a system-level model in 

SysML (i.e., SM). 

iii) Automatic code generation (say C code i.e., SM) 

from a design model, say a Statechart based model 

(i.e, SM), such that it is correct-by-construction. 

iv) Automatic generation of information to support 

change management when one model in a linked 

set of models changes. 

v) Automatic checking of models for specific 

modelling guidelines, eg., MISRA generic 

modelling design and style guidelines. 

 

2. Formal Methods 

 

i) Automatic generation of specification properties 

from pre-defined patterns in a natural language. 

ii) Automatic formal verification of real-life design 

level models, via model-checking. 

iii) Automatic checking of healthiness conditions of 

software, eg., run-time errors like divide-by-zero, 

via static checking. 

iv) Automatic theorem proving based on tool-in-built 

proof strategies captured from experts. 

v) Automatic refinement of models, eg., abstract 

specification in ITL, towards an executable model, 

e.g., an executable Tempura program. 

vi) Automatic generation of test cases from a model, 

eg., TargetLink model, to support testing at 

different levels of abstraction like Model-in-the-

Loop and Software-in-the-Loop. 

vii) Automatic decomposition of a large model into 

sub-models together with top-level property into 

sub-properties for compositional verification. 

viii) Automated tools to assist in education and training 

in the area of formal methods. 

ix) Automation in the integration of different 

complimentary formal techniques and tools, e.g., 

model-checking and theorem-proving, to address 

the scalability issues in model-checkers. 

x) Automatic synthesis of a design model from formal 

specification. 

 

The above list may need to be expanded, of course, and by 

‘automatic’, full automation is not implied. The level of 

automation may need to be appropriate to the specific process 

with the user kept in the loop, as necessary, for confidence not 

only in the techniques and tools but also in the overall process and 

the resulting artefacts. In addition, effective human and machine 

collaboration may be needed for proofs due to incompleteness and 

undecidability issues [12]. 

 

There are alternative possibilities in terms of further approach 

to automation: i)  focus on the FMs and develop it as an area 

where all phases of the software-intensive system development 

lifecycle are addressed via FMs and ii) involve the FM within an 

overall process consisting of IMs, SMs and FMs as appropriate. 

The other alternative of not involving any FMs at all may still be 

suitable depending on the size and nature of the application but 

even in such cases, due to the need for complimentary techniques 

to improve product quality, the business case for some FMs could 

indeed be favorable. 

 

There is significant literature in terms of automation within a 

specific formal analysis technique, for example model refinement 

or parallelization of model-checking algorithms. Recent literature 

on automated analysis has been discussed in [13] and covers 

parallelization of model-checking algorithms, SAT and SMT 

solving, runtime verification (for verifying single traces as 

opposed to full models) and probabilistic systems’ verification. 

Automated controller synthesis from formal specifications is 

briefly covered in [7]. 

HOW CONNECTED, AUTOMATED AND 

FLEXIBLE 
 

The following are some examples, from personal experiences 

in automated formal methods techniques and tools. They, i.e., the 

then current state-of-the-art with those techniques and tools, are 

used to illustrate their key connectivity, automation and/or 

synergy properties. The purpose of these examples are merely to 

propose a potential initial approach to assess the current state with 

automation and plan future strategies for further automation. 

EXAMPLE 1 – Formal Requirements 

Analysis 
 

In a recent project I was part of [1, 2], there was a need to 

integrate existing requirements engineering methods and tools 

with new formal methods based techniques and tools [19] for 

requirements analysis. Whilst the existing requirements were 

informal and semi-formal, the new formal tools had the capability 

to analyze requirements for consistency and completeness. They 

incorporated formal techniques like SAT solving. However, it was 
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unrealistic to expect large teams to start modelling requirements 

using the new language involved, although based on natural 

language. Hence, there was a need to bridge the gap and evolve 

towards an integrated approach providing such advanced 

requirements analyses. Due to this necessity in an industrial 

environment, the team developed systems and methods for 

integrating current state-of-the-art with newly developed internal 

techniques and tools. The new implementation automated the 

generation of suitable requirements artefacts not only to assist the 

formal requirements modelling and analysis activities but also to 

support regular requirements reviews carried out by relevant 

domain experts. The purpose of this example is to illustrate the 

needs of integrating formal methods techniques and tools to the 

current state of the art, ie., FMIMs, rather than developing them 

as a totally niche area. 

 

The accomplishments of this project could be classed roughly 

(“roughly” because, in my opinion, this is only for illustration) as 

Connectivity Level 1, Automation Level 1 and Synergy Level 1. 

To achieve a higher level of connectivity, automation and 

synergy, there is need for going beyond proof-of-concept and pilot 

projects by involving engineers, developers and researchers to 

take the technology to higher Technology Readiness Levels 

(TRLs) through technology transfer efforts. 

 

Key features of the overall automated formal methods relating 

to this example: Connection to informal models; automatic 

generation of semi-formal and formal models; requirements-based 

simulation. 

EXAMPLE 2 – (Design-level, Formal) 

Model Checking 
 

In another industrial R&D project [18], one of our industrial 

partners had a need to formally verify design models created in 

MATLAB/Simulink and targeted for production code generation 

using the TargetLink code generator. The team integrated formal 

methods techniques and tools to this specific MBD environment 

to create a prototype tool that was subsequently evaluated across 

industry domains. Eventually, a commercial product was born that 

is considered a pioneer in the formal verification area involving 

Simulink/Stateflow models especially developed for production 

code generation using dSPACE TargetLink. Several core 

algorithms, techniques and tools evolved from other projects 

including [24]. 

 

This example demonstrates the connectivity property due to 

the model-checking techniques being integrated to the state-of-

the-art modelling environment across industry domains. The fact 

that model-checking techniques provide counter-examples to 

assist the user in understanding why a property failed 

demonstrates a high level of synergy. Model-checking requires 

only little intervention by users mainly for providing relevant 

settings for the algorithm and hence the overall technique is 

highly automated. 

 

Today, there are several more commercial tools for example 

the Simulink Design Verifier, for Simulink/Stateflow and SCADE 

Design Verifier, for SCADE models. The users have a choice in 

terms of not only their MBD tools but also how they choose to do 

their formal verification project activities. They are all examples 

of integration of FMSMs. Within the core of the formal 

methods techniques involved, there are different specific 

techniques such as Bounded Model Checking, Complete Model 

Checking and SAT Solving which are all brought to the user in a 

convenient manner. It is worth stating that the Simulink models 

were once verified by translating them to SCADE models [11]. In 

this case, accurate translation of a Simulink/Stateflow model to a 

SCADE model was important as was automation. Automated 

formal methods techniques and tools are now being increasingly 

evaluated and used within the industry for many use cases. 

 

Although model-checking is highly automated, there can be 

several challenges with respect to i) using the requirements and 

formalizing them as appropriate properties i.e,, functional, 

temporal, reachability in terms of graphical states or variable 

values, ii) preparing the models for formal analysis by taking care 

of any unsupported blocks and datatypes and iii) interpreting the 

results from the model-checker to carry out any further analysis. 

 

The accomplishments of this Example 2 project could be 

classed “roughly” as Connectivity Level 2, Automation Level 2 

and Synergy Level 2. 

 

Key features of the overall automated formal methods relating 

to this and other similar examples: Connection to semi-formal 

models; automatic generation of formal models (so that the users 

are transparent to formal methods); scenario for reachability 

analysis (with a range of choices of selection of states in the 

model – hence involving the user); automatic generation of 

counter-example, if any; providing corresponding test harness for 

simulation. 

 

EXAMPLE 3 – Formal Property 

Specification 
 

Requirements specification has been a hard problem not only 

in the formal domain but also in the informal! It is non-trivial to 

write numerous requirements, typically in thousands, that are free 

from ambiguities, inconsistencies and incompleteness when they 

are also written by several diverse stakeholders with inherent 

natural language issues not making it any easier for them. In terms 

of specifying properties (based on requirements), especially 

involving temporal logic, it becomes even harder. In the case of 

the formal verification project for ML/SL/TL mentioned in 

Example 2, a pattern language was defined and implemented 

based on related work on Symbolic Timing Diagrams (STD) [16, 

22]. The pattern provided a template to capture properties by 

stating i) whether the property had to be satisfied after an optional 
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“N” steps (of execution of the model), immediately or after 

reaching a particular condition “R”, ii) whether the property was 

an invariant, iterative or whether it had to be satisfied initially 

once, and iii) what the mapping of given terms in the pattern, for 

example “P” and “Q” were to model variables and values. An 

example pattern in shown in Figure 4 indicating its usage below 

the graphical illustrations. The set of patterns developed was well 

received by customers and similar approaches are noticeable or 

emerging in other tools as well. However, this by no means is a 

conquered area and still poses challenges which requires further 

research, automation and training! Nevertheless, this effort, across 

the research and development community, shows how the formal 

methods and tools can be in synergy with users’ necessities, 

especially convenience, ease of use of formal notations and 

languages. In a large team environment, possibly across global 

locations, languages and cultures, an easy-to-use visual pattern 

language and tool support helps. Appropriate visual descriptions 

to explain the pattern are a bonus in addition to the automation 

involved. Such efforts are crucial to make the formal techniques 

and tools accessible to the current state-of-the-art and a wide 

spectrum of users. 

 

 

Figure 4: An example pattern with visual descriptions 

 

The accomplishments of this project could be classed 

“roughly” as Connectivity Level 2, Automation Level 2 and 

Synergy Level 2. 

 

Key features of the overall automated formal methods relating 

to this and other similar examples: Connection to informal 

models; abstraction of temporal logic details from the user; 

automatic generation of formal models. 

 

EXAMPLE 4 – (Formal, Code Level) 

Static Analysis 
 

In a project based on static checking [4], a key part of the 

research was to evaluate tools in terms of how “sound” and 

“accurate” they were in detecting defects. Soundness property of 

the technique ensures that there are no false negatives whereas a 

high level of accuracy ensures that false positives are kept to a 

minimum. This is analogous to other industries, such as the 

medical domain, where testing techniques have not only got to be 

sound but also accurate and affordable by all or a vast majority of 

people. Despite a technique having some inherent shortcomings, it 

may still have its place for quick checks before users going on to 

more powerful and/or other complimentary analyses. Although 

the formal methods automation level can be considered high here, 

there is a need to provide the user more assistance in making 

sense of the results much the same as a doctor needs to quickly 

analyze the results and suggest a particular treatment to the patient 

quickly enough! For instance, any false positives would need 

adequate tool assistance and useful guidance to resolve them. 

The tools were evaluated using a diagnostic test-suite 

consisting of various C programs both from the public domain as 

well as some internal code. Apart from soundness and accuracy, a 

number of other criteria were considered including usability and 

whether the tool used previous results to speed up its new 

analysis. 

 

The accomplishments of this project could be classed 

“roughly” as Connectivity Level 2, Automation Level 2 and 

Synergy Level 2. 

 

Key features of the overall automated formal methods relating 

to this and other similar examples: Connection to semi-formal 

models; color coding of analysis for reviews. 

 

EXAMPLE 5 – Formal Test Generation 
 

In the area of formal methods based automatic test generation, 

I was involved in an engineering production project [10], within 

the automotive industry, for assessing the coverage of test cases 

and improving them. Test cases were initially developed manually 

based on requirements and experience from on-field issues 

encountered in previous versions of the software. As requirements 

and models evolved in successive projects, there was no clear idea 

on structural coverage of models based on the existing test cases. 

Hence formal methods based automatic test case generation was 

utilized to automatically generate test cases for the gaps in 

structural coverage. Here, the formal methods technique of test 

case generation was well-connected to the models used and had 

immediate relevance in the systems engineering workflow. The 

overall level of automation was good although certain custom 

scripts had to be developed. In terms of synergy with the user, it 

was much higher than with “model-checking” as the coverage 

concepts were well-known from code-level coverage analysis and 

the technique was more of a push-button approach. 

 

The accomplishments of this project could be classed 

“roughly” as Connectivity Level 3, Automation Level 2 and 

Synergy Level 3. 
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Key features of the overall automated formal methods relating 

to this example: Connection to semi-formal models; automatic 

generation of formal models; test case generation for specific 

coverage criteria; identification of gaps in coverage for existing 

test cases. 

 

EXAMPLE 6 – Formal Specifications 
 

During my research work for my doctorate [8], I was involved 

in developing a visual language and prototype tool to support 

Interval Temporal Logic (ITL), used for specification of 

(execution) behaviors, especially electronic system-level digital 

circuits. As my undergraduate (UG) and graduate level 

backgrounds were in materials science and engineering, I had a 

good foundation in mathematics and I quite liked the idea of the 

mathematics and logic behind ITL and Tempura, the ITL’s 

executable subset. I also had a great liking for programming (in 

FORTRAN and Pascal) and used FORTRAN extensively for 

scientific computations, during my UG days, out of my own 

interest, hours on end! Time was spent on developing and running 

code, in many iterations, to get results that would have been 

unachievable through manual computations.  However, during the 

doctoral studies, when I had my first awareness of formal 

methods, I also encountered the challenges first hand! I learnt that 

visualization and tool support enhance the uptake and usefulness 

of formal methods, whether it is for education or use within a 

research or commercial environment. It seems that, to bridge the 

gap, the gap must disappear, in some ways, through appropriate 

level of visual aids, automation and synergism to/with the 

diversity of users. 

 

This example illustrates that there are many facets to any 

automation for formal methods including the need to support 

education and training needs. 

 

Although this project was for a PhD dissertation and not for 

connecting to industrial state-of-the-art models, the 

accomplishments of this project could be classed “roughly” as 

Connectivity Level 1, Automation Level 1 and Synergy Level 1. 

 

The team working in this research area have developed various 

other features such as an animation tool for Tempura and 

integration with other formal techniques such theorem proving 

[15]. 

 

Key features of the overall automated formal methods relating 

to this and other similar examples: Visual language; animation; 

executable specifications; connection to other formal methods 

including theorem proving. 

 

A recently concluded project I was involved in, where 

automated formal methods were used, is the Proving Integrity of 

Complex Systems of Systems (PICASSOS) project which was 

part-funded by the UK Advanced Manufacturing Supply Chain 

Initiative (AMSCI) [21]. The project was a collaboration led by 

Ricardo, with partners Jaguar Land Rover, Johnson Matthey 

Battery Systems, YorkMetrics, D-RisQ and the universities of 

Oxford, Coventry and Warwick. End-of-project dissemination 

presentations and other information can be accessed from [21]. 

 

Current and future applications which will benefit from 

advances in automation with regard to MBSE and Formal 

Methods include Connected and Autonomous Vehicles. 

Techniques like machine learning will pose challenges not only to 

the various formal methods techniques, tools and the automation 

involved but also to the overall systems engineering process. 

Meeting such new challenges will help ensure that the relevant 

desired properties (wrt. safety, security etc.) are satisfied by the 

complex systems and systems of systems involved! 

 

New and improved automated formal methods may benefit 

from the reuse potential in various core formal techniques and 

tools but caution must be exercised to leverage them 

appropriately, with a suitable systems engineering process, so that 

they have key properties, such as the ones discussed in this 

position paper, for success. 

KEY CONSIDERATIONS RELATING TO 

AUTOMATION 
 

In this section, the role of standards and risks with automation 

are discussed briefly. 

 

Standards 
 

Standards, such as DO-178C, provide a number of objectives 

that need to be satisfied based on the safety-criticality level of 

software. In case automation is involved, as in the case of 

automatic code generators for producing code from design 

models, the automatic code generation tool would need to be 

qualified to a particular tool qualification level [17]. After such a 

tool qualification, the automatically generated code may undergo 

less review than a manually coded one and hence brings 

efficiency and more confidence in the code and the overall 

process. 

 

In the case of DO-178C, there are three different categories of 

tools identified and accordingly, the tool qualification process 

would be different. Some formal methods tools may help in 

reducing the activities with the development as well as 

verification part of the process and hence, after suitable 

qualification, such a tool may be very valuable in some safety-

critical systems’ projects. 
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Similar standards for other industry domains, for example ISO 

26262 for automotive, have emerged more recently, and adopt 

similar principles. 

 

Risks 
 

Whilst automation brings many benefits in all industries such 

as semiconductor manufacturing, in terms of speed and accuracy, 

it is known to have some drawbacks, especially when it comes to 

automation of complex tasks where human interaction and/or 

awareness is also crucial. For example, inadequate training in 

autopilot technology and/or inadequate design of the user 

interface in the cockpit, sometimes combined with other system 

failures or weather scenarios, have resulted in air crashes. As a 

result, it must be understood that there are many risks to 

automation [20] and hence must be factored into the overall 

process planning. 

CONCLUSIONS 
 

To summarize, Figure 5 visually depicts that the eventual 

successful launch of a product depends on how the various 

models, whether IM, SM or FMs, are developed but also whether 

they are used both in a seamless and timely manner! 

 

Figure 5: Success / failure in an eventual product launch! 

Hence, I wish to state that, yes! indeed we require more 

automated formal methods but at the same time, they have to be 

well connected with the overall systems and software engineering 

process, the level of automation must be high enough to abstract 

the user from the intricacies of the formal notations and 

mathematics involved but at the same time be synergistic with a 

varied level of users, be it beginners or experts in background 

theory! For each different formal method consisting of a formal 

language and associated analysis techniques and tools, we need to 

have an idea of the current state in order to take it to the next 

level! As the overall process is a mix of models at varying degrees 

of formality, the role of guidelines becomes crucial at any level of 

abstraction. 
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