
SMT@Microsoft

AFM 2007

Leonardo de Moura and Nikolaj Bjørner

{leonardo, nbjorner}@microsoft.com.

Microsoft Research

SMT@Microsoft – p.1/36

Introduction

Industry tools rely on powerful verification engines.

Boolean satisfiability (SAT) solvers.

Binary decision diagrams (BDDs).

Satisfiability Modulo Theories (SMT)

The next generation of verification engines.

SAT solvers + Theories

Arithmetic

Arrays

Uninterpreted Functions

Some problems are more naturally expressed in SMT.

More automation.

SMT@Microsoft – p.2/36

Example

x + 2 = y ⇒ f(read(write(a, x, 3), y − 2)) = f(y − x + 1)

SMT@Microsoft – p.3/36

Example

x + 2 = y ⇒ f(read(write(a, x, 3), y − 2)) = f(y − x + 1)

Theory: Arithmetic

SMT@Microsoft – p.3/36

Example

x + 2 = y ⇒ f(read(write(a, x, 3), y − 2)) = f(y − x + 1)

Theory: Arrays

Usually used to model the memory/heap.

read: array access.

write: array update.

SMT@Microsoft – p.3/36

Example

x + 2 = y ⇒ f (read(write(a, x, 3), y − 2)) = f (y − x + 1)

Theory: Free functions.

Useful for abstracting complex operations.

SMT@Microsoft – p.3/36

SMT@Microsoft: Solver

Z3 is a new SMT solver developed at Microsoft Research.

Development/Research driven by internal customers.

Textual input & APIs (C/C++, .NET, OCaml).

Free for non-commercial use.

http://research.microsoft.com/projects/z3

SMT@Microsoft – p.4/36

http://research.microsoft.com/projects/z3

SMT@Microsoft: Applications

Test-case generation:

Pex, SAGE, and Vigilante.

Verifying Compiler:

Spec#/Boogie, HAVOC, and VCC.

Model Checking & Predicate Abstraction:

SLAM/SDV and Yogi.

Bounded Model Checking (BMC):

AsmL model checker.

Other: invariant generation, crypto, etc.

SMT@Microsoft – p.5/36

Roadmap

Test-case generation

Verifying Compiler

Model Checking & Predicate Abstraction.

Future

SMT@Microsoft – p.6/36

Test-case generation

Test (correctness + usability) is 95% of the deal:

Dev/Test is 1-1 in products.

Developers are responsible for unit tests.

Tools:

Annotations and static analysis (SAL, ESP)

File Fuzzing

Unit test case generation

SMT@Microsoft – p.7/36

Security is Critical

Security bugs can be very expensive:

Cost of each MS Security Bulletin: $600K to $Millions.

Cost due to worms (Slammer, CodeRed, Blaster, etc.):

$Billions.

The real victim is the customer.

Most security exploits are initiated via files or packets:

Ex: Internet Explorer parses dozens of files formats.

Security testing: hunting for million-dollar bugs

Write A/V (always exploitable),

Read A/V (sometimes exploitable),

NULL-pointer dereference,

Division-by-zero (harder to exploit but still DOS attack), ...
SMT@Microsoft – p.8/36

Hunting for Security Bugs

Two main techniques used by “black hats”:

Code inspection (of binaries).

Black box fuzz testing.

Black box fuzz testing:

A form of black box random testing.

Randomly fuzz (=modify) a well formed input.

Grammar-based fuzzing: rules to encode how to fuzz.

Heavily used in security testing

At MS: several internal tools.

Conceptually simple yet effective in practice

Has been instrumental in weeding out 1000 of bugs

during development and test.

SMT@Microsoft – p.9/36

Automatic Code-Driven Test Generation

Given program with a set of input parameters.

Generate inputs that maximize code coverage.

SMT@Microsoft – p.10/36

Automatic Code-Driven Test Generation

Given program with a set of input parameters.

Generate inputs that maximize code coverage.

Example:

Input x, y

z = x + y

If z > x − y Then

Return z

Else

Error

SMT@Microsoft – p.10/36

Automatic Code-Driven Test Generation

Given program with a set of input parameters.

Generate inputs that maximize code coverage.

Example:

Input x, y

z = x + y

If z > x − y Then

Return z

Else

Error

Solve z = x + y ∧ z > x − y

SMT@Microsoft – p.10/36

Automatic Code-Driven Test Generation

Given program with a set of input parameters.

Generate inputs that maximize code coverage.

Example:

Input x, y

z = x + y

If z > x − y Then

Return z

Else

Error

Solve z = x + y ∧ z > x − y

=⇒ x = 1, y = 1

SMT@Microsoft – p.10/36

Automatic Code-Driven Test Generation

Given program with a set of input parameters.

Generate inputs that maximize code coverage.

Example:

Input x, y

z = x + y

If z > x − y Then

Return z

Else

Error

Solve z = x + y ∧ ¬(z > x − y)

SMT@Microsoft – p.10/36

Automatic Code-Driven Test Generation

Given program with a set of input parameters.

Generate inputs that maximize code coverage.

Example:

Input x, y

z = x + y

If z > x − y Then

Return z

Else

Error

Solve z = x + y ∧ ¬(z > x − y)

=⇒ x = 1, y = −1

SMT@Microsoft – p.10/36

Method: Dynamic Test Generation

Run program with random inputs.

Collect constraints on inputs.

Use SMT solver to generate new inputs.

Combination with randomization: DART

(Godefroid-Klarlund-Sen-05)

SMT@Microsoft – p.11/36

Method: Dynamic Test Generation

Run program with random inputs.

Collect constraints on inputs.

Use SMT solver to generate new inputs.

Combination with randomization: DART

(Godefroid-Klarlund-Sen-05)

Repeat while finding new execution paths.

SMT@Microsoft – p.11/36

DARTish projects at Microsoft

SAGE (CSE) implements DART for x86 binaries and merges it with

“fuzz” testing for finding security bugs.

PEX (MSR-Redmond FSE Group) implements DART for .NET

binaries in conjunction with “parameterized-unit tests” for unit

testing of .NET programs.

YOGI (MSR-India) implements DART to check the feasibility of

program paths generated statically using a SLAM-like tool.

Vigilante (MSR Cambridge) partially implements DART to

dynamically generate worm filters.

SMT@Microsoft – p.12/36

Inital Experiences with SAGE

25+ security bugs and counting. (most missed by blackbox fuzzers)

OS component X

4 new bugs: “This was an area that we heavily fuzz tested

in Vista”.

OS component Y

Arithmetic/stack overflow in y.dll

Media format A

Arithmetic overflow; DOS crash in previously patched

component

Media format B & C

Hard-to-reproduce uninitialized-variable bug

SMT@Microsoft – p.13/36

Pex

Pex monitors the execution of .NET application using the CLR

profiling API.

Pex dynamically checks for violations of programming rules, e.g.

resource leaks.

Pex suggests code snippets to the user, which will prevent the

same failure from happening again.

Very instrumental in exposing bugs in .NET libraries.

SMT@Microsoft – p.14/36

Test-case generation & SMT

Formulas are usually a big conjunction.

Incremental: solve several similar formulas.

“Small models”.

Arithmetic × Machine Arithmetic.

SMT@Microsoft – p.15/36

Test-case generation & SMT

Formulas are usually a big conjunction.

Pre-processing step.

Eliminate variables and simplify input formula.

Significant performance impact.

Incremental: solve several similar formulas.

“Small models”.

Arithmetic × Machine Arithmetic.

SMT@Microsoft – p.15/36

Test-case generation & SMT

Formulas are usually a big conjunction.

Incremental: solve several similar formulas.

New constraints can be asserted.

push and pop : (user) backtracking.

Reuse (some) lemmas.

“Small models”.

Arithmetic × Machine Arithmetic.

SMT@Microsoft – p.15/36

Test-case generation & SMT

Formulas are usually a big conjunction.

Incremental: solve several similar formulas.

“Small models”.

Given a set of constraints C , find a model M that minimizes

the value of the variables x0, . . . , xn.

Arithmetic × Machine Arithmetic.

SMT@Microsoft – p.15/36

Test-case generation & SMT

Formulas are usually a big conjunction.

Incremental: solve several similar formulas.

“Small models”.

Given a set of constraints C , find a model M that minimizes

the value of the variables x0, . . . , xn.

Eager (cheap) Solution:

Assert C .

While satisfiable

Peek xi such that M [xi] is big

Assert xi < c, where c is a small constant

Return last found model

Arithmetic × Machine Arithmetic.

SMT@Microsoft – p.15/36

Test-case generation & SMT

Formulas are usually a big conjunction.

Incremental: solve several similar formulas.

“Small models”.

Given a set of constraints C , find a model M that minimizes

the value of the variables x0, . . . , xn.

Refinement:

Eager solution stops as soon as the context becomes

unsatisfiable.

A “bad” choice (peek xi) may prevent us from finding a good

solution.

Use push and pop to retract “bad” choices.

Arithmetic × Machine Arithmetic.

SMT@Microsoft – p.15/36

Test-case generation & SMT

Formulas are usually a big conjunction.

Incremental: solve several similar formulas.

“Small models”.

Arithmetic × Machine Arithmetic.

Precision × Performance.

SAGE has flags to abstract expensive operations.

SMT@Microsoft – p.15/36

Roadmap

Test-case generation

Verifying Compiler

Model Checking & Predicate Abstraction.

Future

SMT@Microsoft – p.16/36

The Verifying Compiler

A verifying compiler uses automated reasoning to check the

correctness of a program that is compiles.

Correctness is specified by types, assertions, . . . and other

redundant annotations that accompany the program.

Hoare 2004

SMT@Microsoft – p.17/36

Spec# Approach for a Verifying Compiler

Source Language

C# + goodies = Spec#

Specifications

method contracts,

invariants,

field and type annotations.

Program Logic

Dijkstra’s weakest preconditions.

Automatic Verification

type checking,

verification condition generation (VCG),

automatic theorem proving (SMT)
SMT@Microsoft – p.18/36

Spec# Approach for a Verifying Compiler

Spec# (annotated C#) =⇒ Boogie PL =⇒ Formulas

Example:

class C {

private int a, z;

invariant z > 0

public void M()

requires a != 0

{ z = 100/a; }

}

SMT@Microsoft – p.19/36

Microsoft Hypervisor

Meta OS: small layer of software between hardware and OS.

Mini: 60K lines of non-trivial concurrent systems C code.

Critical: must guarantee isolation.

Trusted: a grand verification challenge.

SMT@Microsoft – p.20/36

Tool: A Verified C Compiler

VCC translates an annotated C program into a Boogie PL program.

Boogie generates verification conditions.

A C-ish memory model

Abstract heaps

Bit-level precision

The verification project has very recently started.

It is a multi-man multi-year effort.

More news coming soon.

SMT@Microsoft – p.21/36

Tool: HAVOC

HAVOC also translates annotated C into Boogie PL.

It allows the expression of richer properties about the program

heap and data structures such as linked lists and arrays.

Used to check NTFS-specific properties.

Found 50 bugs, most confirmed.

250 lines required to specify properties.

600 lines of manual annotations.

3000 lines of inferred annotations.

SMT@Microsoft – p.22/36

Verifying Compilers & SMT

Quantifiers, Quantifiers, . . .

Modeling the runtime.

Frame axioms (“what didn’t change”).

User provided assertions (e.g., the array is sorted).

Prototyping decision procedures (e.g., reachability, partial

orders, . . .).

Solver must be fast in satisfiable instances.

First-order logic is undecidable.

Z3: pragmatic approach

Heuristic Quantifier Instantiation.

E-matching (i.e., matching modulo equalities).

SMT@Microsoft – p.23/36

E-matching

E-matching is NP-hard.

The number of matches can be exponential.

In practice:

Indexing techniques for fast retrieval: E-matching code trees.

Incremental E-matching: Inverted path index.

It is not refutationally complete.

SMT@Microsoft – p.24/36

Roadmap

Test-case generation

Verifying Compiler

Model Checking & Predicate Abstraction.

Future

SMT@Microsoft – p.25/36

SLAM: device driver verification

http://research.microsoft.com/slam/

SLAM/SDV is a software model checker.

Application domain: device drivers.

Architecture

c2bp C program boolean program (predicate abstraction).

bebop Model checker for boolean programs.

newton Model refinement (check for path feasibility)

SMT solvers are used to perform predicate abstraction and to

check path feasibility.

c2bp makes several calls to the SMT solver. The formulas are

relatively small.

SMT@Microsoft – p.26/36

http://research.microsoft.com/slam/

Predicate Abstraction: c2bp

Given a C program P and F = {p1, . . . , pn}.

Produce a boolean program B(P, F)

Same control flow structure as P .

Boolean variables {b1, . . . , bn} to match {p1, . . . , pn}.

Properties true of B(P, F) are true of P .

Example F = {x > 0, x = y}.

SMT@Microsoft – p.27/36

Abstracting Expressions via F

ImpliesF (e)

Best boolean function over F that implies e

ImpliedByF (e)

Best boolean function over F that is implied by e

ImpliedByF (e) = ¬ImpliesF (¬e)

SMT@Microsoft – p.28/36

Computing ImpliesF (e)

minterm m = l1 ∧ . . . ∧ ln, where li = pi, or li = ¬pi.

ImpliesF (e) is the disjunction of all minterms that imply e.

Naive approach

Generate all 2n possible minterms.

For each minterm m, use SMT solver to check validity of

m =⇒ e.

Many possible optimizations.

SMT@Microsoft – p.29/36

Computing ImpliesF (e) : Example

F = {x < y, x = 2}

e : y > 1

Minterms over P

x ≥ y, x 6= 2

x < y, x 6= 2

x ≥ y, x = 2

x < y, x = 2

ImpliesF (e) = {x < y, x = 2}

SMT@Microsoft – p.30/36

Newton

Given an error path π in the boolean program B.

Is π a feasible path of the corresponding C program?

Yes: found a bug.

No: find predicates that explain the infeasibility.

Execute path symbolically.

Check conditions for inconsistency using SMT solver.

SMT@Microsoft – p.31/36

Model Checking & SMT

All-SAT

Fast Predicate Abstraction.

Unsatisfiable Cores

Why the abstract path is not feasible?

SMT@Microsoft – p.32/36

Roadmap

Test-case generation

Verifying Compiler

Model Checking & Predicate Abstraction.

Future

SMT@Microsoft – p.33/36

Future work

New theories:

Sets (HAVOC, VCC)

Partial orders (Spec#/Boogie)

Inductive data types (Pex)

Non linear arithmetic (Spec#/Boogie)

Proofs (Yogi)

Better support for quantifiers.

SMT@Microsoft – p.34/36

Quantifiers in Z3 2.0

Better feedback when “potentially satisfiable”.

Why is the “candidate model” not a model?

Stream of “candidate models” (K. Claessen).

Decidable fragments:

BSR class (no function symbols).

Array property class (A. Bradley and Z. Manna).

Model finding by (unsound) reductions to decidable fragments.

SMT@Microsoft – p.35/36

Conclusion

SMT is hot at Microsoft.

Z3 is a new SMT solver.

Main applications:

Test-case generation.

Verifying compiler.

Model Checking & Predicate Abstraction.

SMT@Microsoft – p.36/36

	Introduction
	Example
	SMT@Microsoft: Solver
	SMT@Microsoft: Applications
	Roadmap
	Test-case generation
	Security is Critical
	Hunting for Security Bugs
	Automatic Code-Driven Test Generation
	Method: Dynamic Test Generation
	DARTish projects at Microsoft
	Inital Experiences with SAGE
	Pex
	Test-case generation & SMT
	Roadmap
	The Verifying Compiler
	Spec# Approach for a Verifying Compiler
	Spec# Approach for a Verifying Compiler
	Microsoft Hypervisor
	Tool: A emphcol {V}erified emphcol {C} emphcol {C}ompiler
	Tool: HAVOC
	Verifying Compilers & SMT
	E-matching
	Roadmap
	SLAM: device driver verification
	Predicate Abstraction: c2bp
	Abstracting Expressions via F
	Computing $mt {Implies}_F(e)$
	Computing $mt {Implies}_F(e):
Example$
	Newton
	Model Checking & SMT
	Roadmap
	Future work
	Quantifiers in Z3 2.0
	Conclusion

