SMT@Microsoft
AFM 2007

Leonardo de Moura and Nikolaj Bjagrner

{leonardo, nbjorner } @microsoft.com.

Microsoft Research

SMT@Microsoft — p.1/36



Introduction

» Industry tools rely on powerful verification engines.
» Boolean satisfiability (SAT) solvers.

» Binary decision diagrams (BDDs).

» Satisfiability Modulo Theories (SMT)
» The next generation of verification engines.

» SAT solvers + Theories
» Arithmetic
» Arrays

» Uninterpreted Functions
» Some problems are more naturally expressed in SMT.

» More automation.

SMT@Microsoft — p.2/36



Example

r+ 2=y = f(read(write(a,x,3),y —2)) = fly —x + 1)

SMT@Microsoft — p.3/36



Example

T+ 2 =y = f(read(write(a,x,3),y — 2)) = fly —x+ 1)

» Theory: Arithmetic

SMT@Microsoft — p.3/36



Example

r+ 2=y = f(read(write(a,x,3),y —2)) = fly —x + 1)

» Theory: Arrays
» Usually used to model the memory/heap.
» read: array access.

» write: array update.

SMT@Microsoft — p.3/36



Example

r+ 2=y = f(read(write(a,z,3),y —2)) = f(y —x + 1)

» Theory: Free functions.

» Useful for abstracting complex operations.

SMT@Microsoft — p.3/36



SMT@Microsoft: Solver

» Z3 is a new SMT solver developed at Microsoft Research.
» Development/Research driven by internal customers.

» Textual input & APIs (C/C++, .NET, OCaml).

» Free for non-commercial use.

» http://research. mcrosoft.conm projects/z3

SMT@Microsoft — p.4/36


http://research.microsoft.com/projects/z3

SMT@Microsoft: Applications

» Test-case generation:
Pex, SAGE, and Vigilante.
» Verifying Compiler:
Spec#/Boogie, HAVOC, and VCC.

» Model Checking & Predicate Abstraction:

SLAM/SDV and Yoqi.

» Bounded Model Checking (BMC):

AsmL model checker.

» Other: invariant generation, crypto, etc.

SMT@Microsoft — p.5/36



Roadmap

» Test-case generation
» Verifying Compiler
» Model Checking & Predicate Abstraction.

» Future

SMT@Microsoft — p.6/36



Test-case generation

» Test (correctness + usabillity) is 95% of the deal:

» Dev/Testis 1-1 in products.

» Developers are responsible for unit tests.

» Tools:
» Annotations and static analysis (SAL, ESP)
» File Fuzzing

» Unit test case generation

SMT@Microsoft — p.7/36



Security Is Critical

» Security bugs can be very expensive:
» Cost of each MS Security Bulletin: $600K to $Millions.

» Cost due to worms (Slammer, CodeRed, Blaster, etc.):

$Billions.

» The real victim is the customer.

» Most security exploits are initiated via files or packets:

» EX: Internet Explorer parses dozens of files formats.

» Security testing: hunting for million-dollar bugs
» Write A/V (always exploitable),
» Read A/V (sometimes exploitable),
» NULL-pointer dereference,

» Division-by-zero (harder to exploit but still DOS attack), ...

SMT@Microsoft — p.8/36



Hunting for Security Bugs

» Two main techniques used by “black hats”:
» Code inspection (of binaries).

» Black box fuzz testing.

» Black box fuzz testing:
» A form of black box random testing.
» Randomly fuzz (=modify) a well formed input.

» Grammar-based fuzzing: rules to encode how to fuzz.

» Heavily used in security testing
» At MS: several internal tools.

» Conceptually simple yet effective in practice
Has been instrumental in weeding out 1000 of bugs

during development and test.

SMT@Microsoft — p.9/36



Automatic Code-Driven Test Generation

Given program with a set of input parameters.

Generate inputs that maximize code coverage.

SMT@Microsoft — p.10/36



Automatic Code-Driven Test Generation

Given program with a set of input parameters.
Generate inputs that maximize code coverage.
Example:
Input x, vy
z=x+Y
If z > x — y Then
Return z
Else

Error

SMT@Microsoft — p.10/36



Automatic Code-Driven Test Generation

Given program with a set of input parameters.
Generate inputs that maximize code coverage.

Example:

Input x, vy

2= +Y

If 2z > & — y Then
Return 2

Else

Error

Solve z=ax4+yNz>x—y

SMT@Microsoft — p.10/36



Automatic Code-Driven Test Generation

Given program with a set of input parameters.
Generate inputs that maximize code coverage.
Example:
Input x, vy
2= +Y
If 2z > & — y Then
Return z
Else

Error

Solve z=ax4+yNz>x—y
—cz=1,y=1

SMT@Microsoft — p.10/36



Automatic Code-Driven Test Generation

Given program with a set of input parameters.
Generate inputs that maximize code coverage.

Example:

Input x, vy

2= +Y

If 2z > & — y Then
Return z

Else

Error

Solve z =2+ yA-(z>x—1y)

SMT@Microsoft — p.10/36



Automatic Code-Driven Test Generation

Given program with a set of input parameters.
Generate inputs that maximize code coverage.
Example:
Input x, vy
2= +Y
If 2z > & — y Then
Return z
Else

Error

Solve z =2+ yA-(z>x—1y)
—c=1,y=—1

SMT@Microsoft — p.10/36



Method: Dynamic Test Generation

» Run program with random inputs.
» Collect constraints on inputs.
» Use SMT solver to generate new inputs.

» Combination with randomization: DART
(Godefroid-Klarlund-Sen-05)

SMT@Microsoft — p.11/36



Method: Dynamic Test Generation

» Run program with random inputs.
» Collect constraints on inputs.
» Use SMT solver to generate new inputs.

» Combination with randomization: DART
(Godefroid-Klarlund-Sen-05)

Repeat while finding new execution paths.

SMT@Microsoft — p.11/36



DARTIsh projects at Microsoft

» SAGE (CSE) implements DART for x86 binaries and merges it with

“fuzz” testing for finding security bugs.

» PEX (MSR-Redmond FSE Group) implements DART for .NET
binaries in conjunction with “parameterized-unit tests” for unit

testing of .NET programs.

» YOGI (MSR-India) implements DART to check the feasibility of

program paths generated statically using a SLAM-like tool.

» Vigilante (MSR Cambridge) partially implements DART to

dynamically generate worm filters.

SMT@Microsoft — p.12/36



Inital Experiences with SAGE

25+ security bugs and counting. (most missed by blackbox fuzzers)

» OS component X
4 new bugs: “This was an area that we heavily fuzz tested
In Vista”.

» OS component Y
Arithmetic/stack overflow in y.dll

» Media format A

Arithmetic overflow; DOS crash in previously patched

component

» Media format B & C

Hard-to-reproduce uninitialized-variable bug

SMT@Microsoft — p.13/36



Pex

» Pex monitors the execution of .NET application using the CLR

profiling API.

» Pex dynamically checks for violations of programming rules, e.g.

resource leaks.

» Pex suggests code snippets to the user, which will prevent the

same failure from happening again.

» Very instrumental in exposing bugs in .NET libraries.

SMT@Microsoft — p.14/36



Test-case generation & SMT

» Formulas are usually a big conjunction.
» Incremental: solve several similar formulas.
» “Small models”.

» Arithmetic X Machine Arithmetic.

SMT@Microsoft — p.15/36



Test-case generation & SMT

» Formulas are usually a big conjunction.

» Pre-processing step.

» Eliminate variables and simplify input formula.

» Significant performance impact.
» Incremental: solve several similar formulas.
» “Small models”.

» Arithmetic X Machine Arithmetic.

SMT@Microsoft — p.15/36



Test-case generation & SMT

» Formulas are usually a big conjunction.

» Incremental: solve several similar formulas.

» New constraints can be asserted.
» push and pop: (user) backtracking.
» Reuse (some) lemmas.

» “Small models”.

» Arithmetic X Machine Arithmetic.

SMT@Microsoft — p.15/36



Test-case generation & SMT

» Formulas are usually a big conjunction.
» Incremental: solve several similar formulas.

» “Small models”.

» Given a set of constraints (, find a model M that minimizes

the value of the variables x, . . ., x,.

» Arithmetic X Machine Arithmetic.

SMT@Microsoft — p.15/36



Test-case generation & SMT

» Formulas are usually a big conjunction.
» Incremental: solve several similar formulas.

» “Small models”.

» Given a set of constraints (, find a model M that minimizes

the value of the variables x, . . ., .
» Eager (cheap) Solution:

Assert C'.
While satisfiable
Peek x; such that M [x;] is big

Assert x; < ¢, where ¢ is a small constant

Return last found model

» Arithmetic X Machine Arithmetic.

SMT@Microsoft — p.15/36



Test-case generation & SMT

» Formulas are usually a big conjunction.

» Incremental: solve several similar formulas.

» “Small models”.

» Given a set of constraints C', find a model M that minimizes
the value of the variables x, . . ., .

» Refinement:
» Eager solution stops as soon as the context becomes

unsatisfiable.
» A “bad” choice (peek x;) may prevent us from finding a good

solution.
» Use push and pop to retract “bad” choices.

» Arithmetic X Machine Arithmetic.

SMT@Microsoft — p.15/36



Test-case generation & SMT

» Formulas are usually a big conjunction.
» Incremental: solve several similar formulas.
» “Small models”.

» Arithmetic X Machine Arithmetic.

» Precision X Performance.

» SAGE has flags to abstract expensive operations.

SMT@Microsoft — p.15/36



Roadmap

» Test-case generation
» Verifying Compiler
» Model Checking & Predicate Abstraction.

» Future

SMT@Microsoft — p.16/36



The Verifying Compiler

A verifying compiler uses automated reasoning to check the

correctness of a program that is compiles.

Correctness is specified by types, assertions, ...and other
redundant annotations that accompany the program.
Hoare 2004

SMT@Microsoft — p.17/36



Spec# Approach for a Verifying Compiler

» Source Language

» C# + goodies = Spec#
» Specifications

» method contracts,

» Invariants,

» field and type annotations.

» Program Logic

» Dijkstra’s weakest preconditions.

» Automatic Verification
» type checking,
» verification condition generation (VCG),

» automatic theorem proving (SMT)

SMT@Microsoft — p.18/36



Spec# Approach for a Verifying Compiler

» Spec# (annotated C#) — Boogie PL — Formulas
» Example:

class C{
private int a, z;
Invariantz > 0
public void M()
requiresa!=0
{ z=100/a; }

SMT@Microsoft — p.19/36



Microsoft Hypervisor

» Meta OS: small layer of software between hardware and OS.
» Mini: 60K lines of non-trivial concurrent systems C code.
» Critical: must guarantee isolation.

» Trusted: a grand verification challenge.

SMT@Microsoft — p.20/36



Tool: A Verified C Compiler

» VCC translates an annotated C program into a Boogie PL program.
» Boogie generates verification conditions.

» A C-ish memory model
» Abstract heaps

» Bit-level precision
» The verification project has very recently started.
» It is a multi-man multi-year effort.

» More news coming soon.

SMT@Microsoft — p.21/36



Tool: HAVOC

» HAVOC also translates annotated C into Boogie PL.

» It allows the expression of richer properties about the program

heap and data structures such as linked lists and arrays.
» Used to check NTFS-specific properties.

» Found 50 bugs, most confirmed.
» 250 lines required to specify properties.
» 600 lines of manual annotations.

» 3000 lines of inferred annotations.

SMT@Microsoft — p.22/36



Verifying Compilers & SMT

» Quantifiers, Quantifiers, ...
» Modeling the runtime.
» Frame axioms (“what didn’t change”).
» User provided assertions (e.g., the array is sorted).
» Prototyping decision procedures (e.g., reachabillity, partial
orders, ...).
» Solver must be fast in satisfiable instances.

» First-order logic is undecidable.

» Z3: pragmatic approach
» Heuristic Quantifier Instantiation.

» E-matching (i.e., matching modulo equalities).

SMT@Microsoft — p.23/36



E-matching

» E-matching is NP-hard.
» The number of matches can be exponential.

» In practice:
» Indexing techniques for fast retrieval: E-matching code trees.

» Incremental E-matching: Inverted path index.

» It is not refutationally complete.

SMT@Microsoft — p.24/36



Roadmap

» Test-case generation
» Verifying Compiler
» Model Checking & Predicate Abstraction.

» Future

SMT@Microsoft — p.25/36



SLAM: device driver verification

» http://research. mcrosoft. cont sl am
» SLAM/SDV is a software model checker.
» Application domain: device drivers.

» Architecture
c2bp C program ~~ boolean program (predicate abstraction).
bebop Model checker for boolean programs.
newton Model refinement (check for path feasibility)

» SMT solvers are used to perform predicate abstraction and to

check path feasibility.

» c2bp makes several calls to the SMT solver. The formulas are

relatively small.

SMT@Microsoft — p.26/36


http://research.microsoft.com/slam/

Predicate Abstraction: c2bp

» Given a C program P and I = {py,...,p,}.

» Produce a boolean program B (P, F')

» Same control flow structure as P.

» Boolean variables {b1,...,b,} to match {py, ...

» Properties true of B(P, F') are true of P.

» Example F' = {z > 0,2 = y}.

, Dn }-

SMT@Microsoft — p.27/36



Abstracting Expressions via £’

» Impliesy(e)
» Best boolean function over F' that implies e
» ImpliedBy(€)
» Best boolean function over F' that is implied by e

» ImpliedBy(e) = —Impliesy(—e)

SMT@Microso ft — p.28/36



Computing Impliesy(€)

» mintermm = [; A ... Al,, where [; = p;, or [; = —p;.
» Implies(e) is the disjunction of all minterms that imply e.

» Nalive approach
» Generate all 2" possible minterms.

» For each minterm m, use SMT solver to check validity of
m — €.

» Many possible optimizations.

SMT@Microsoft — p.29/36



Computing Impliesy(e) : Example

» F={z<y,x=2}
»e:y>1

» Minterms over P
» X > Y, T F 2
»x <Y, T F 2
» T > Y, T =2
» x < Y, T = 2

» Impliesp(e) = {zr < y,z = 2}

SMT@Microso ft — p.30/36



Newton

» Given an error path 7 in the boolean program 5.

» Is 7 a feasible path of the corresponding C program?
» Yes: found a bug.

» No: find predicates that explain the infeasibility.
» Execute path symbolically.

» Check conditions for inconsistency using SMT solver.

SMT@Microsoft — p.31/36



Model Checking & SMT

» All-SAT

Fast Predicate Abstraction.

» Unsatisfiable Cores

Why the abstract path is not feasible?

SMT@Microsoft — p.32/36



Roadmap

» Test-case generation
» Verifying Compiler
» Model Checking & Predicate Abstraction.

» Future

SMT@Microsoft — p.33/36



Future work

» New theories:
» Sets (HAVOC, VCC)
» Partial orders (Spec#/Boogie)
» Inductive data types (Pex)

» Non linear arithmetic (Spec#/Boogie)
» Proofs (Yoqi)

» Better support for quantifiers.

SMT@Microsoft — p.34/36



Quantifiers in Z3 2.0

» Better feedback when “potentially satisfiable”.
» Why is the “candidate model” not a model?

» Stream of “candidate models” (K. Claessen).

» Decidable fragments:
» BSR class (no function symbols).

» Array property class (A. Bradley and Z. Manna).

» Model finding by (unsound) reductions to decidable fragments.

SMT@Microsoft — p.35/36



Conclusion

» SMT Is hot at Microsoft.
» Z3 I1s a new SMT solver.

» Main applications:
» Test-case generation.
» Verifying compiler.

» Model Checking & Predicate Abstraction.

SMT@Microsoft — p.36/36



	Introduction
	Example
	SMT@Microsoft: Solver
	SMT@Microsoft: Applications
	Roadmap
	Test-case generation
	Security is Critical
	Hunting for Security Bugs
	Automatic Code-Driven Test Generation
	Method: Dynamic Test Generation
	DARTish projects at Microsoft
	Inital Experiences with SAGE
	Pex
	Test-case generation & SMT
	Roadmap
	The Verifying Compiler
	Spec# Approach for a Verifying Compiler
	Spec# Approach for a Verifying Compiler
	Microsoft Hypervisor
	Tool: A emphcol {V}erified emphcol {C} emphcol {C}ompiler
	Tool: HAVOC
	Verifying Compilers & SMT
	E-matching
	Roadmap
	SLAM: device driver verification
	Predicate Abstraction: c2bp
	Abstracting Expressions via $F$
	Computing $mt {Implies}_F(e)$
	Computing $mt {Implies}_F(e):
Example$
	Newton
	Model Checking & SMT
	Roadmap
	Future work
	Quantifiers in Z3 2.0
	Conclusion

