
AFM’07: Second Workshop on

Automated Formal Methods

November 6, 2007

Atlanta, Georgia

John Rushby and Natarajan Shankar (Editors)

SRI International

Computer Science Laboratory

Menlo Park CA 94025 USA

{rushby | shankar}@csl.sri.com

Table of Contents

Specifying and Verifying Data Models in PVS: Preliminary Explorations
using a Text Book Example . 1

Venkatesh Choppella, Arijit Sengupta, Edward Robertson, Steve John-

son

Topology in PVS . 11
David Lester

Model Checking for the Practical Verificationist: A User’s Perspective
on SAL . 21

Lee Pike

Modelling and test generation using SAL for interoperability testing in
Consumer Electronics . 32

Srikanth mujjiga, Srihari Sukumaran

Extended Interface Grammars for Automated Stub Generation 41
Graham Hughes, Tevfik Bultan

Cooperative Reasoning for Automatic Software Verification 51
Andrew Ireland

Lightweight Integration of the Ergo Theorem Prover inside a Proof
Assistant . 55

Sylvain Conchon, Evelyne Contejean, Johannes Kanig, Stéphane Les-

cuyer

Using SMT solvers to verify high-integrity programs 60
Paul Jackson, Bill James Ellis, Kathleen Sharp

SMT-Based Synthesis of Distributed Systems . 69
Bernd Finkbeiner, Sven Schewe

i

Preface

This volume contains the proceedings of the Second Workshop on Automated
Formal Methods held on November 6, 2007, in Atlanta, Georgia, as part of the
Automated Software Engineering (ASE) Conference. The first AFM workshop
was held as part of the Federated Logic Conference in July 2006 in Seattle,
Washington. The focus of the AFM workshop is on topics related to the SRI
suite of formal methods tools including PVS, SAL, and Yices. We received 13
submissions of which 9 were accepted for presentation at the workshop.

In addition to the contributed papers, the conference included a presentation
by John Rushby on The Road Ahead for PVS, SAL, and Yices, a session of short
presentations of ongoing research, and a discussion of open source extensions and
enhancements of these verification tools.

We thank the distinguished members of the program committee as well as
the external referees for their thorough and thoughtful reviews of the submitted
papers. The paper submission and reviewing process was managed through the
Easychair conference management system. We also thank the organizers asso-
ciated with ASE 2007, including the conference general chair Kurt Stirewalt,
the program co-chairs Alexander Egyed and Bernd Fischer, the workshop chairs
Neelam Gupta and George Spanoudakis, and the publicity chair Yunwen Ye. We
also received help from the ACM Publications Coordinator Adrienne Griscti and
our SRI colleagues Bruno Dutertre, Sam Owre, and Ashish Tiwari.

We hope the AFM workshop series will continue to serve as a forum for
communication and cooperation between the developers and users of automated
formal verification tools.

John Rushby
Natarajan Shankar
Menlo Park, California

ii

Programme Chairs

John Rushby
Natarajan Shankar

Programme Committee

Tevfik Bultan
Marsha Chechik
Jin Song Dong
Jean-Christophe Filliatre
Bernd Finkbeiner
Marcelo Frias
Chris George
Mike Gordon
Constance Heitmeyer
Paul Jackson
Joseph Kiniry
Panagiotis Manolios
Paul Miner
David Monniaux
David Naumann
Paritosh Pandya
AndrÃs Pataricza
John Penix
Lee Pike
S Ramesh
Scott Stoller
Ofer Strichman
Neeraj Suri
Mark Utting
Michael Whalen
Brian Williams
Leonardo de Moura

External Reviewers

Mark-Oliver Stehr
Jun Sun
Yuzhang Feng

iii

Preliminary Explorations in Specifying and Validating
Entity-Relationship Models in PVS

Venkatesh Choppella
Indian Institute of Information
Technology and Management

– Kerala
Thiruvananthapuram, India

Arijit Sengupta
Wright State University

Dayton, OH, USA

Edward L. Robertson
Indiana University

Bloomington, IN, USA

Steven D. Johnson
Indiana University

Bloomington, IN, USA

ABSTRACT

Entity-Relationship (ER) diagrams are an established way
of doing data modeling. In this paper, we report our experi-
ence with exploring the use of PVS to formally specify and
reason with ER data models. Working with a text-book ex-
ample, we rely on PVS’s theory interpretation mechanism to
verify the correctness of the mapping across various levels of
abstraction. Entities and relationships are specified as user
defined types, while constraints are expressed as axioms. We
demonstrate how the correctness of the mapping from the
abstract to a conceptual ER model and from the conceptual
ER model to a schema model is formally established by us-
ing typechecking. The verification involves proving the type
correctness conditions automatically generated by the PVS
type checker. The proofs of most of the type correctness
conditions are fairly small (four steps or less). This holds
out promise for complete automatic formal verification of
data models.

Keywords

Data modeling, entity-relationship diagrams, mapping, for-
mal methods, PVS, type checking, data refinement.

1. INTRODUCTION
Data modeling is a fundamental prerequisite for the phys-

ical design and implementation of a database system. Data
modelers analyze the user’s requirements and build data
models, which are conceptual representations of real world
enterprises.

A data model consists of a set of type, function, rela-
tion and constraint definitions. This model is validated for
consistency and then used as a reference for further design
refinements and implementation. The model serves as a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM’07, November 6, Atlanta, GA, USA.
c©2007 ACM ISBN 978-1-59593-879-4/07/11...$5.00

specification to which the database design, usually speci-
fied in the form of a set of schemata, must conform. The
most popular conceptual modeling framework is the entity-
relationship (ER) model [11]. An ER model consists of a col-
lection of entities, and attributes of and relationships among
those entities. In addition, the model specifies constraints
between its various entity and relationship sets.

A good modeling framework should allow a designer to
(a) express and reason about data models at a high level
of abstraction in a semantically precise manner, (b) validate
the correctness of models across various levels of abstrac-
tion, and (c) explore design alternatives within correctness
boundaries. In this paper, we explore the first and second
problems: how to specify models at varying levels of ab-
straction using a specification language and then validate
mappings between abstraction levels. We plan to address
the third issue in a future paper.

1.1 Expressivity and correctness of mapping
in ER modeling

ER models have an underlying formal semantics based
on the elementary theory of sets and relations. Data mod-
elers, however, prefer to employ ER diagrams, which are
annotated, undirected graphs. The vertices in these graphs
are the objects of the model: attributes, entities, and re-
lationships. These objects are connected by edges which
related these objects. In addition, an ER model consists
of constraints. A limited set of decorations on vertices and
edges encode key attributes, and participation and cardi-
nality constraints. The diagrammatic approach allows for
easy construction and intuitive understanding of models.
But such notation does not easily extend to encoding ar-
bitrary constraints arising from complex business logic. As
a consequence, it becomes difficult for designers to express,
much less prove, the correctness of their conceptual design
and its mapping to a relational implementation. Design-
ers therefore employ natural language to informally express
nontrivial constraints. Natural language complements dia-
grammatic notation, but it is often the source of inaccuracies
and ambiguities in specifications.

1.2 Specifying data models in PVS
How well can we apply the principles and techniques from

formal specification languages to the ER data modeling prob-

23 October 2007

1

lem? We address this question by exploring the use of the
Prototype Verification and Specification (PVS) language [2]
for doing ER modeling. We look at two specific subprob-
lems: (a) how to specify and reason with a data model at
the abstract, ER and schema level, and, (b) how to prove
that the mapping from abstract to ER and ER to schema is
correct. Our preliminary experience indicates that the gen-
erality of PVS’s specification language, its rich type system
and libraries allow us to reason with our models in ways not
easily possible with ER diagrams. Furthermore, this reason-
ing forms the basis of verifying the correctness of mapping
between an ER model and the relational schemata that rep-
resent its implementation.

The mapping across different layers of abstraction of the
ER model is an instance of the more general problem of data
refinement: abstract, uninterpreted types and objects over
those types at higher levels of abstractions are provided in-
terpretations at the lower level of abstractions. To be sure,
the problem of specification and the step-wise refinement to
implementation has a long history in formal methods, soft-
ware engineering and data models as well. This includes for-
mally specifying the “Norman’s database” example in VDM,
RAISE and COLD-K [16, 18, 20, 37, 39]. Additionally, lan-
guages like Z, B and Alloy also come with various levels of
automated support for data refinement and formal valida-
tion [1, 4, 22].

PVS is a modern, general purpose specification language
with support for higher-order logic, dependent types, and
interactive theorem proving environment for verification and
typechecking. It is therefore natural to explore how well ER
modeling can be done in PVS.

All specifications, including requirements, conceptual data
models and logical models are expressed as theories in PVS.
A theory is a basic PVS module and consists of declarations
that define types, functions, axioms and theorems. Model-
specific data constraints are encoded as axioms. Hard-to-
anticipate constraints governing interactions between the
various elements of the model are generated automatically
type correctness conditions (TCCs). The modeler interac-
tively verifies these TCCs to ensure that the model is con-
sistent. The specification’s correctness depends on verifying
the type correctness conditions. For the example discussed
in this paper, the majority of TCCs have proofs that are
quite small and elementary. In general, however, the TCCs
can be hard or even impossible to prove. In the latter case,
this means that the specification is erroneous. PVS type-
checking is undecidable, and the modeler needs to interac-
tively prove theorems to typecheck a specification. Reason-
ing also proceeds by the modeler declaring, and then inter-
actively proving lemmas about the specification. The result
is a more powerful notation that allows arbitrary constraints
to be expressed precisely and unambiguously using a high
degree of abstraction.

For specifying ER models, we rely on the use of modeling
constructs like functions and their various kinds (injections,
partial functions, etc.). For example, it seems more nat-
ural to model certain weak entities using functions rather
than relationships. In going from abstract to ER to schema,
we apply data refinement to map uninterpreted types first
to nested record types and then to flat record types. PVS
implements data refinement via the principle of theory inter-
pretations, an idea from universal algebra and logic in which
the axioms of one theory are interpreted as theorems by an-

Figure 1: ER diagram slice of Ullman and Widom
example [35, Chapter 2].

other [31]. We specify the example model as three separate
theories, each capturing on level of abstraction: the first
is an abstract model in which entity, attribute and relation
types are parameters. The second is an ER model defined by
instantiating the abstract theory with concrete record types
for entities and relations. The third is a schema model in
which entities and relations are implemented as flat records.
We then verify the correctness for the two mappings: from
abstract to ER, and ER to schema. This allows one to for-
mally state and prove that a data model at one level of
abstraction implements another, more abstract model.
Outline of rest of the paper:

The rest of the paper consists of the following sections:
Section 2 introduces an example model using an ER dia-
gram and points to specific limitations of the diagram ap-
proach. Section 3 defines an abstract data model for the
mini-example. Section 4 defines a record-based ER model
for the mini-example. Section 5 presents a schema-based
model of the mini-example. The next section, Section 6 ad-
dresses the issue of correctness of the mapping from the ER
to the schema level. Section 7 discusses the results of the
implementation: the sizes of the theories, and effort involved
in proving type correctness conditions and user defined lem-
mas. Section 8 compares our work with existing approaches
to data modeling in the literature. Section 9 discusses future
work and Section 10 concludes the paper.

2. EXAMPLE ER MODEL
We pick the movies example data model from Ullman and

Widom’s introductory college text on databases to explore
the approach of formally specifying and verifying a data
model [35, Chapter 2]. Due to limited space, we focus on a
self-contained slice of the example. The ER diagram of the
slice is shown in Figure 1. The PVS specification of the com-
plete example is discussed in an earlier technical report [12].
PVS source code for the complete example is available on-
line [3].

The model consists of studio and crew entities. A crew
is a unit of a studio. A studio has a name and address,
whereas a crew has a number.

An ER model defines the types of attributes, entities and
relationships. It also defines specific sets of entities and re-
lationships over these types. The diagram does not distin-

23 October 2007

2

guish between the types and the sets. When formalizing the
model, however, we need to make the distinction explicit.
Therefore, we use Studio, Crew, and Unit Of for entity
and relationship types, and studios set, crews set, and
unit of set for entity and relationship sets, respectively.

2.1 Constraints
In addition to the entity and relationship types and sets,

in the model shown in Figure 1, the following four con-
straints (of a total of twelve for the entire example) govern
the model’s semantics: key constraints (1) and (2), cardinal-
ity constraint (3), and referential integrity constraint (4).

1. The Name attribute is a key for studios set.

2. The Num (number) attribute and studios set, via
the unit of set, together form a key for crews set.
(See cardinality constraint 3.)

3. unit of set is many-to-one from crews set to studios set.

4. For every element in unit of set, the constituent
components belong to studios set and crews set.

In ER diagrams, key constraints are expressed by under-
lining key attribute names. crews set is weak; its key is
defined in terms of attributes from supporting relationships
in which it participates. In ER diagrams, double borders
identify weak entities and their supporting relationships. A
many-to-one relationship has a round arrow on the edge at
the “one” end the relation. Referential integrity means that
the entity components of each element of a relationship set
belong to their respective entity sets.

In the following sections, we build PVS theories for the
example model, one for each level of abstraction: a param-
eterized abstract level, ER level, and the schema level. The
type structure, entity set structure and the axioms used to
specify the constraints vary for each level of abstraction.

3. ABSTRACT DATA MODEL
An abstract specification of a data model consists of the

following kinds of objects:

• Attributes, entities, and relationship types, which are
all uninterpreted. We call these abstract entity types.

• Maps, which connect abstract entity types. Some maps
– those in correspondence with edges in the ER dia-
gram, but oriented – are called projectors.

• Abstract entity sets, which are sets over the corre-
sponding entity types.

• Constraints, which are specified as axioms over ab-
stract entity sets, abstract entity types, and maps, and
other functions.

The abstract specification is parameterized on the ab-
stract entity types, maps, and the abstract entity sets.

Continuing the example, movie param abstract (List-
ings 3.1-3.7) is a specification of the abstract model of the ex-
ample parameterized by abstract entity types (Listings 3.1),
projectors (Listing 3.2), and abstract entity sets (Listing 3.3).
The keyword TYPE+ posits that the types are non-trivial
(i.e., nonempty). The abstract entity types and projectors
together match the structure of the ER diagram in Figure 1.

Listing 3.1 (Abstract entity types).

movie_param_abstract[Name, Address, Num: TYPE+, 13

Studio, Crew: TYPE+, UnitOf: TYPE+, 14

Listing 3.2 (Projectors).

studio_name: [Studio -> Name], 15

studio_address: [Studio -> Address], 16

crew_num: [Crew -> Num], 17

unit_of_crew: [UnitOf -> Crew], 18

unit_of_studio: [UnitOf -> Studio], 19

Listing 3.3 (Abstract entity sets).

studios_set: set[Studio], 21

crews_set: set[Crew], 22

unit_of_set: set[UnitOf]]: THEORY 23

3.1 A theory for keys
In ER modeling, a key is an attribute or set of attributes

that uniquely determine an element of an entity set. In our
formalization of the abstract model, a key is identified not
by an attribute name, but by a key function, which is often
built using projectors that are injective. This is the natural
way to model keys, since attributes of an entity are accessible
using projector functions emanating from the entity.

Listing 3.4 (A theory for keys).

key[D:TYPE, S:set[D], R:TYPE, f:[D -> R]]: THEORY 25

BEGIN 26

ASSUMING 27

restriction_is_injective: AXIOM 28

injective?[(S), R] 29

(restrict[D,(S),R](f)) 30

ENDASSUMING 31

32

image_f_S: set[R] = image[D, R](f,S) 33

I: TYPE = (image_f_S) 34

h(s:(S)): I = f(s) 35

36

h_is_bijective: LEMMA bijective?(h) 37

getForKey: [I -> (S)] = inverse_alt(h) 38

forKey(r: R): lift[(S)] = 39

IF (member(r,image_f_S)) 40

THEN up(getForKey(r)) ELSE bottom ENDIF 41

END key 42

The theory for keys in Listing 3.4 defines the condition
under which an abstract attribute entity type R is a key
for uniquely identifying entities in a set S of elements of
type D. The goal is to identify a key function that maps
a key to a value in the entity set, if it exists. The function
f : D → R is often a projector, retrieving an attribute
in R from an entity in D. The elements of R qualify as
keys provided the restriction of f to S is injective. The
axiom in the theory captures this assumption. To see why
this formulation implies the existence of a key function, let
I ⊆ R be the image of f on S. Since f restricted to S

is injective, h : S → I defined as equal to f over S is a
bijection. Therefore the function g from R to the lifted
domain S⊥ is a key function. g extends the bijective function
h−1 : I → S to the domain R and range S⊥. For an element
k ∈ R, g maps k to h−1(k), if k is I, and to ⊥ otherwise.

We now instantiate the key theory with different entity
types and sets to obtain specific key constraints. The axiom
in Listing 3.5, line 33 posits the injectivity of the restriction

23 October 2007

3

Listing 3.5 (Key constraint on studios set).

studio_name_injective_on_studios_set: 33

AXIOM 34

injective?[(studios_set), Name](35

restrict[Studio, (studios_set),Name] 36

(studio_name)) 37

38

IMPORTING key[Studio, (studios_set), 39

Name, studio_name] AS studio_key 40

41

studio_for_name: [Name -> 42

lift[(studios_set)]] = studio_key.forKey 43

Listing 3.6 (Referential integrity of unit of set).

unit_of_ref_integrity: AXIOM 49

FORALL (u: (unit_of_set)): 50

member(unit_of_studio(u),studios_set) 51

AND member(unit_of_crew(u),crews_set) 52

of the projection studio name to studios set. The axiom
justifies the existence of a key function studio for name

mapping names to the lifted domain of studios (line 42).

3.2 Referential integrity constraints
Referential integrity is specified in terms of projector func-

tions and abstract entity sets. If f : A −→ B is a projector
from abstract entity type A to B, and a and b are, respec-
tively, the entity sets of type A and B, then, referential
integrity on the projector f emanating from the abstract
entity type A of a is the property that ∀x ∈ a.f(a) ∈ b.
Coming back to our example, the axiom on line 49 of List-
ing 3.6 is the referential integrity constraint on the projec-
tors of unit of set.

3.3 Cardinality constraints
We consider the specification of the cardinality constraint

on unit of set as an example.
In Listing 3.7, the image of the derived projector func-

tion unit of crew studio on unit of set is used to de-
fine the binary relation unit of (line 62). The cardinal-
ity constraint on unit of set boils down to declaring that
the binary relation is a total function from crews set to
studios set. This yields two projectors crew studio and
crew studio num.

3.4 Weak entities and foreign keys
Listing 3.8 shows how weak entities and foreign keys are

specified at the abstract level. The injectivity of the de-
rived projector crew studio num is used to axiomatize the
key constraint on crews set and yield the key function

Listing 3.7 (Cardinality constraint on unit of set).

unit_of_crew_studio(u:UnitOf): 58

[Crew, Studio] = 59

(unit_of_crew(u), unit_of_studio(u)) 60

61

unit_of: set[[Crew,Studio]] = 62

image(unit_of_crew_studio,unit_of_set) 63

64

function_unit_of: AXIOM 65

FORALL (cr: (crews_set)): 66

exists1(LAMBDA(s: (studios_set)): 67

unit_of(cr,s)) 68

Listing 3.8 (Key constraint on crews set).

crew_studio(cr: (crews_set)): (studios_set) 74

= the(s:(studios_set) | unit_of(cr,s)) 75

76

crew_studio_num(c:(crews_set)): 77

[Studio, Num] = 78

(crew_studio(c), crew_num(c)) 79

80

crew_studio_num_injective_on_crews_set: 81

AXIOM 82

injective?[(crews_set), [Studio, Num]] 83

(crew_studio_num) 84

85

% crew_for_studio_num % key 86

Listing 4.1 (Attr. and Entity Types).

movie_rec: THEORY 13

BEGIN 14

% Attribute Types 15

% --------------- 16

NameEntity: TYPE+ 17

AddressEntity: TYPE+ 18

NumEntity: TYPE+ 19

20

% Entity and Relationship Types 21

% ----------------------------- 22

StudioEntity: TYPE = [# name: NameEntity, 23

address: AddressEntity #] 24

studio_entity_name(s:StudioEntity) 25

: NameEntity = s‘name 26

studio_entity_address(s:StudioEntity) 27

: AddressEntity = s‘address 28

29

CrewEntity: TYPE = 30

[# num: NumEntity, studio: StudioEntity #] 31

crew_entity_num(c: CrewEntity) 32

: NumEntity = c‘num 33

crew_entity_studio(c: CrewEntity) 34

: StudioEntity = c‘studio 35

36

UnitOfEntity: TYPE = 37

[# crew: CrewEntity, studio: StudioEntity #] 38

unit_of_entity_crew(unit_of: UnitOfEntity) 39

: CrewEntity = unit_of‘crew 40

unit_of_entity_studio(unit_of: UnitOfEntity) 41

: StudioEntity = unit_of‘studio 42

END movie_rec 43

crew for studio num. The entity set crews set is weak;
the projection function crew studio num involves unit of set,
which is an abstract entity “foreign” to crews set.

4. RECORD-BASED ER MODEL
At the abstract level discussed in the previous section,

we do not distinguish between attribute, entities and rela-
tionship types. Nor is the internal structure of these types
revealed. At the ER level, entity and relationship types are
records. Attribute types, are, however, left uninterpreted
because their structure has no role to play at this level. The
record types may be nested, as in the case of relationship
types. The record types for the example are defined in the
theory movie rec (Listing 4.1). Projectors now correspond
to record selectors. The infix back quote operator in the
PVS code indicates record selection.

4.1 Instantiating abstract to ER
The ER model is obtained from the parameterized ab-

stract model by instantiating the abstract theory with suit-
able types, both concrete and abstract (uninterpreted). The
theory movie er (Listings 4.2–4.3) specifies the ER model

23 October 2007

4

Listing 4.2 (Entity and Relationship sets).

movie_er: THEORY 14

BEGIN 15

IMPORTING props 16

IMPORTING movie_rec 17

18

studios_entity_set: set[StudioEntity] 19

crews_entity_set: set[CrewEntity] 20

unit_of_entity_set: set[UnitOfEntity] 21

Listing 4.3 (Instantiating movie param abstract).

IMPORTING movie_param_abstract[23

NameEntity, AddressEntity, NumEntity, 24

StudioEntity, CrewEntity, UnitOfEntity, 25

26

studio_entity_name, studio_entity_address, 27

crew_entity_num, 28

unit_of_entity_crew, unit_of_entity_studio, 29

30

studios_entity_set, crews_entity_set, 31

unit_of_entity_set] 32

END movie_er 33

for the example. First, the theory movie rec containing
record type defintions and another helper theory is included
(Listing 4.2, line 17). Next, (Listing 4.2, lines 19–21), con-
stants for entity and relationship sets are defined but their
value is left unspecified, that is, they remain uninterpreted.

Finally (Listing 4.3), the theory movie param abstract

is instantiated. As a result, the abstract types, projectors,
abstract entity sets and constraints between them are all
instantiated to use the record types and projectors of of
movie rec This completes the definition of the ER model.
Note that the only things left unspecified are the uninter-
preted attribute types (Listing 4.1) and the uninterpreted
entity set constants (Listing 4.2). The correctness of the
mapping of the abstract model to the record-based ER model
is discussed in Section 6.1.

5. SCHEMA-LEVEL IMPLEMENTATION
The schema level types are flat (non-nested) record types.

Sets over schema types are called tables in database par-
lance. All types at this level are concrete primitive types.
The choice of what concrete types to use (primitive types
such as varchars, integers, etc.) is a design decision that is
specific to each schema implementation. In our example, we
choose to implement the name and address attribute types
as strings. The schema level specification of our example
is given in the movie schema theory (Listing 5.1, lines 20–
22), which starts by grounding the attribute types. These
types define an interpretation (lines 24-27) for the unspeci-
fied types in movie rec. The choice of primitive types, how-
ever, does not affect the specification at this level. Schema
types are defined as flat records (Listing 5.2). Note that
some of the schema types, like StudioSchema, rely on al-
ready flat record types. Type refinement across the three
levels is summarized in Table 1.

As a design decision, we choose to identify the schema
types UnitOfSchema and CrewSchema. This optimization
effectively eliminates the need for a separate unit of table

(Listing 5.3).

Theory Abstract ER Schema

Attributes - - Primitive

Entities - Nested Flat

Relationships - Nested Flat

Table 1: Data type refinement in theories across
levels of abstraction. Types are either uninterpreted
(denoted by ‘-’), primitive, flat records, or nested
records.

Listing 5.1 (Interpreting Attribute Types).

movie_schema: THEORY 15

BEGIN 16

IMPORTING props 17

IMPORTING function_results 18

19

NameP: TYPE = string 20

AddressP: TYPE = string 21

NumP: TYPE = nat 22

23

IMPORTING movie_rec{{ 24

NameEntity:= NameP, 25

AddressEntity:= AddressP, 26

NumEntity:= NumP}} 27

Listing 5.2 (Schema Types).

StudioSchema: TYPE = StudioEntity 29

30

studio_schema_name(31

s:StudioSchema): NameP = s‘name 32

33

CrewSchema: TYPE = 34

[# num: NumP, studio_name: NameP #] 35

36

crew_schema_studio_name_num(37

c: CrewSchema): [NameP,NumP] = 38

(c‘studio_name, c‘num) 39

40

UnitOfSchema: TYPE = CrewSchema 41

Listing 5.3 (Table Definitions).

studios_table: set[StudioSchema] 45

crews_table: set[CrewSchema] 46

unit_of_table: set[UnitOfSchema] = crews_table 47

48

% Derived Tables 49

% -------------- 50

studio_names_table: set[NameP] = 51

image(studio_schema_name,(studios_table)) 52

studio_name_crew_nums_table: set[[NameP,NumP]] = 53

23 October 2007

5

Listing 5.4 (Key Constraint on studios table).

studio_schema_name_injective: AXIOM 62

injective?[(studios_table), NameP] 63

(restrict[StudioSchema, (studios_table), 64

NameP](studio_schema_name)) 65

66

%studios_entry_for_name: % key 67

Listing 5.5 (Ref. Integrity of unit of table).

unit_of_table_ref_integrity: AXIOM 87

FORALL (u: (unit_of_table)): 88

member(u‘studio_name, studio_names_table) 89

Listing 5.6 (Cardinality on unit of table).

studio_for_crew(cr: (crews_table)) 91

: (studios_table) = 92

studios_entry_for_name(cr‘studio_name) 93

94

unit_of: set[[(crews_table), 95

(studios_table)]] = graph(studio_for_crew) 96

97

function_unit_of: LEMMA 98

function?[(crews_table), 99

(studios_table)](unit_of) 100

Listing 5.7 (Key Constraint on crews table).

crew_schema_studio_name_num_injective: 106

LEMMA 107

injective?[(crews_table), [NameP, NumP]] 108

(crew_schema_studio_name_num) 109

110

% crew_entry_for_studio_num: % key 111

5.1 Constraints
While the constraints on the conceptual ER model are

predicates over entity sets, at the schema level, they are
encoded as predicates over tables.

The key constraint on studios table (Listing 5.4) ax-
iomatizes the injectivity of studio schema name projector
on studios table. studios entry for name, the resulting
key function, is obtained like studio for name is in List-
ing 3.5.
Referential Integrity of unit of table: Because crews table

and unit of table are synonymous (Listing 5.3), the refer-
ential integrity for unit of table (Listing 5.5, lines 87–89)
needs to specify the constraint only on the studio compo-
nent of the unit of table. It is instructive to compare the
definition of this constraint at the table level with the con-
straint unit of ref integrity on unit of set (line 49 of
Listing 3.6).
Cardinality constraint on unit of table: The function
studio for crew (Listing 5.6, lines 91–93) is a composition
of the key function studios entry for name with the pro-
jector derived from the studio name field. The cardinality
constraint of unit of table is thus automatically satisfied
(Listing 5.6, lines 98–100).
Key Constraints of crews table: the projection function
crew schema studio name num (Listing 5.2) is injective on
crew table because CrewSchema is defined in terms of a
studio name and a number attribute.

Constraint PVS Specification

1

studio name injective on studios set:
AXIOM (Listing 3.5)
studio schema name injective:
AXIOM (Listing 5.4)

2

crew studio num injective on crews set:
AXIOM (Listing 3.8)
crew schema studio name num injective:
LEMMA (Listing 5.7)

3
function unit of: AXIOM (Listing 3.7)
function unit of: LEMMA (Listing 5.5)

4

unit of ref integrity: AXIOM (List-
ing 3.6)
unit of table ref integrity: AXIOM
(Listing 5.5)

Table 2: Specification of constraints across movie

theories. For each row, the entry in the left cell
refers to the constraint in English in Section 2.1. For
the right cell, the upper entry is the constraint in
the abstract model (Section 3) and the lower entry
is the constraint in the schema model (Section 5).

.
Table 2 summarizes the different constraints of the mini-

example. The constraints are specified at three levels: nat-
ural language (Section 2), and PVS specification in the ab-
stract model and the schema-level model. Because of repre-
sentation decisions made at the schema level (namely, iden-
tifying the implementation of unit of table with that of the
crews table, some constraints expressed as axioms at the
abstract level are lemmas at the schema level. In addition,
the axiom unit of table ref integrity, combined with
the equivalence of representation between unit of table

and crews table is strong enough to implement the ax-
iom unit of ref integrity, the integrity constraint for the
unit of abstract entity set.

6. THEORY INTERPRETATIONS AND THE

CORRECTNESS OF MAPPING
We have seen how to specify a data model at three levels

of abstraction. How are these models related, and in what
sense is a data model valid with respect to another? We rely
on PVS’s notion of implementation between theories [31]. A
data model A is valid with respect to a model B if the the-
ory specifying model B provides an implementation of the
theory specifying A. When A is valid with respect to B, we
say there is a valid mapping from A to B. PVS has two
separate, but related notions of implementation: instantia-
tion and interpretation. Both of these are specified using the
IMPORT keyword and used in the example specification.

6.1 Theory instantiation and abstract to ER
In PVS, a parametric theory A may be instantiated by

a theory B using an ‘IMPORT A’ statement in B. This
supplies actual arguments to the parametric types and con-
stants of A. All of A’s parameterized definitions and theo-

23 October 2007

6

rems are available as instances in B, with the actual argu-
ments to the parameters supplied in IMPORT statement in
B. For B to correctly implement A, however, all the type
correctness conditions, if any, generated by the IMPORT
must be proved.

When movie param abstract is instantiated in the the-
ory movie er (Listing 4.3), no TCCs are generated. This
is not entirely unexpected, since the record types and en-
tity sets at the ER model level are obtained by a direct in-
stantiation of the corresponding parameters at the abstract
level. This establishes the correctness of the mapping from
movie param abstract to movie er.

6.2 Theory interpretation and ER to schema
In PVS, a theory A containing types, constant definitions,

axioms and theorems may be interpreted by theory B if B

provides an interpretation for the uninterpreted types and
constants of A in such a way that the axioms of A may be in-
terpreted as theorems in B. B thus becomes an “implemen-
tation” of A, demonstrating A’s consistency with respect to
B, provided the TCCs generated by the IMPORT in B of
theory A are all proved.

To show that the schema model correctly interprets the
ER model, we need to construct an interpretation for the
uninterpreted types, constants (entity sets) and also prove
as theorems the axioms in the ER model. This requires some
effort since the schema model and the ER model operate
at different but non-abstract type levels: ER models with
nested records, and schema models with flat records.

Finally, the only uninterpreted objects in movie er are
the attribute types by virtue of importing movie rec, and
the entity sets (Listing 4.1). The schema model provides an
interpretation for the attribute types (IMPORT statement
in Listing 5.1). The parameter list to the import is a map-
ping uninterpreted-constant := interpreted-value. Next, we
see how the interpretation of entity sets is constructed.

6.3 Entity construction
To build an interpretation for entity sets, we start by con-

structing an interpretation of the entity elements of the ER
model using entries, which are elements of the tables in the
schema model. Entity construction is done by defining a
set of functions that construct an entity from a table entry
(Listing 6.1). These functions are then used to interpret the
entity sets (Listing 6.2) of the ER model. Recall that these
entity sets were defined as uninterpreted constants in the
ER model. Finally, the IMPORT statement of PVS is used
to create an interpretation of the ER model’s entity sets
in terms of the tables in the schema model (Listing 6.3).
Figure 2 illustrates the different notions of implementation
(importing) used amongst the PVS theories in our example
models.

6.4 Verifying type correctness conditions
The typechecking of the specifications and import state-

ments in PVS automatically generates type correctness con-
ditions. The theories movie param abstract and movie schema

generate one and five TCCs respectively. The theories movie rec

and movie er generate no TCCs. The library theories (not
shown) together generate three TCCs. None of these proofs
are difficult to do. The completion of the proofs of the TCCs
implies that the mapping between the ER model and the
schema level is sound. Proof statistics for the PVS specifi-

Listing 6.1 (Entity Construction).

studio_instance_for_entry 129

(s:(studios_table)): StudioEntity = s 130

131

crew_instance_for_entry 132

(c: (crews_table)): CrewEntity = 133

LET n = c‘num, sn = c‘studio_name IN 134

LET se = 135

studios_entry_for_name(sn) 136

IN LET st = 137

studio_instance_for_entry(se) 138

IN (# num:= n, studio:= st #) 139

140

unit_of_instance_for_entry 141

(u: (unit_of_table)): UnitOfEntity = 142

LET cr = crew_instance_for_entry(u) 143

IN LET st = crew_entity_studio(cr) 144

IN (# crew:= cr, studio:= st #) 145

146

Listing 6.2 (Entity Sets from Tables).

studio_instances_set: set[StudioEntity] = 150

studios_table 151

152

crew_instances_set: set[CrewEntity] = 153

image(crew_instance_for_entry, 154

crews_table) 155

156

unit_of_instances_set: set[UnitOfEntity] = 157

image(unit_of_instance_for_entry, 158

unit_of_table) 159

Listing 6.3 (Interpreting movie er).

IMPORTING movie_er{{ 161

studios_entity_set := studio_instances_set, 162

crews_entity_set := crew_instances_set, 163

unit_of_entity_set := 164

unit_of_instances_set}} 165

END movie_schema 166

Schema Theory

Record Defs

 ER Theory
Parameterized

Abstract

Theory

Instantiate

Interpret

Interpret

Import

Figure 2: A high level view of the import relation-
ships between different theories implementing the
movie example. (Not all theories used are shown.)

23 October 2007

7

Theory Lines TCCs Lemmas

props 7 0 1

function results 21 0 4

key 18 3 1

movie rec 45 0 0

movie er 32 0 0

movie param abstract 133 4 3

movie schema 308 15 2

Total 564 22 11

Table 3: TCCs and user formulas in the different
theories used to implement the complete movie ex-
ample [3].

cation of the complete Ullman and Widom example [3, 12]
are shown in Section 7.

7. RESULTS
The number of lines of code, the number of TCCs gener-

ated, and the number of user formulas in each of the seven
theories constituting the specification of the complete movie
example [3, 12] are shown in Table 3. The abstract and
schema specifications make up the bulk of the source code
(441 lines out a total of 564). A total of 22 TCCs are gen-
erated. These are divided amongst the abstract and schema
specifications, and the key library theory. The rest of the
theories do not generate any TCCs, including movie er.
There is, on an average, about one tcc generated for every
30 lines of code. The specification also consists of 11 user-
defined lemmas. Together with the TCCs, the total number
formulas that need to be proved is 33. Not surprisingly, the
bulk of the TCCs generated are for the theory movie schema

(15 of 22).
The distribution of the sizes of proofs of these 33 formulas

is shown in Figure 3. All but two of them are of four or less
steps in length and almost three-fourths are of length two or
less. Fortunately, the two lemmas with much longer proofs
(25 and 47 steps) are independent of the example model;
they belong to library theories.

The results of Figure 3 encourage us to speculate that
even as the number of model-specific constraints increase,
the number of TCCs will increase, but not the sizes of their
proofs. We expect that the number of generated TCCs to be
proportional to the number of constraints in the model. We
assume that the arity of relationships and the number of at-
tributes on an entity is bounded. This implies that number
of constraints varies linearly as the size of the ER diagram.
This leads us to conjecture that the number of TCCs gen-
erated is at most linear in the size of the ER diagram of the
model.

1 step

36.4%

 12

2 steps

36.4%

 12

3 steps

9.1%

 3
4 steps

12.1%

 4

>= 25 steps

6.1%

 2

Figure 3: Distribution of the 33 proofs for the im-
plementation of the full movie data model of Sec-
tion 2 according to size (in number of user proof
steps). All but two of the proofs are four steps or
less.

The proofs in our implementation all use only elementary
proof steps and PVS’s built-in strategies like GRIND. User-
defined PVS proof strategies have not been used. Their use
could further reduce the size of some of the longer proofs.

8. RELATED RESEARCH
Formalizing conceptual models for database applications

was the original motivation for Codd’s relational model and
the conceptual ER model of Chen, which are both based on
the theory of sets and relations [11, 13]. The relatively more
recent object-oriented models [9] and object-relational mod-
els [32] also employ formal notations for their presentation.

Languages like Datalog are popular with the logic pro-
gramming and deductive database community [10, 19]. Neu-
mann and others use Datalog for building a framework for
reasoning with data models [23, 30]. This approach relies
on encoding instances, models and metamodels as Datalog
programs. Integrity constraints are encoded as predicates
and verification is done by querying these predicates for vi-
olations. However, Datalog is a highly restricted variant of
Prolog and as such is only slightly more powerful than rela-
tional algebra and relational calculus, which form the core of
the dominant databse query language, SQL. This restriction
is because databases are often so large that even quadratic
evaluation times are unreasonable. Datalog evaluations are
thus explicitly decidable while PVS type-checking is not.

There are many papers recognizing the need for a for-
mal approach to data modeling [6, 8, 33, 34]. This is also
the case with modeling in related areas like object oriented
software engineering and UML[7, 38]. There has also been
work on the importance of conceptual models in the con-
text of development [25], in business processes and business

23 October 2007

8

intelligence [29], and in decision support systems [24].
Extensions to the ER model have been proposed with rea-

soning, semantics and constraint specification features [15].
Constraint specification has also been considered in the con-
text of object-oriented databases and UML [21]. A generic
specification process of diagram languages such as the ER
model has also been reserached [28]. Specification languages
are common in knowledge-based systems [17] and seman-
tic databases [5]. Conceptual model-based verification and
validation have also been researched in the context of spe-
cific applications such as diagnosis [36]. UML and OCL
have been modeled formally using PVS [26]. In the ontol-
ogy space, PVS has been used to formalize OWL and ORL
specifications [14]. More recently, Mandelbaum et al. have
proposed a data domain language PADS/ML for building
a uniform automatic compilation framework of data models
for data in ad hoc formats [27]. Their approach is promis-
ing, but is focused towards data analysis, and not modeling
per se.

9. FUTURE WORK
This work is an initial step in the building of (semi) au-

tomated frameworks based on formal specification of data
models. There are several directions for future work:
Automation: It should be relatively straightforward to au-
tomatically generate the PVS specification from an ER di-
agram. The second aspect of the automation involves gen-
erating automatic proofs of type correctness conditions and
the correctness lemmas. Since most of the proofs involved a
few steps, we expect that it should be possible to automate
most, if not all of the proofs. This is a positive indication
for building future tools based on this methodology.
Scaling: We have explored the approach with a small, text
book example with about 12 constraints. Industry scale data
modeling includes hundreds of constraints between dozens of
entities and relationship types. We plan to use data models
from industry case studies to investigate how our approach
scales. The success of this scaling will be heavily dependent
on the level of automation that can be achieved in generating
the proofs of correctness and TCCs.
Trigger generation: Triggers are the practical implication
of constraints. It should be possible to automatically trans-
late constraints into triggers, which are tests that ensure the
invariants are maintained at the end of every update to the
database. However, while constraints are typically stated in
terms of global properties, an efficient trigger should involve
computation proportional to the size of the update to the
database, not the size of the database itself.
Impact on design exploration: Model verification has
an important role in allowing the designer to explore various
design options during the modeling phase. in each case, the
verification framework ensures that the design is explored
within the boundaries of correctness. We plan to investigate
how our framework supports such a correct-by-construction
design methodology.
Working with other models: We have applied the speci-
fication language approach to traditional entity-relationship
models of data. It should be interesting to consider formal
specification of data models, like object models and their
mapping to relations.

10. CONCLUSIONS
We have shown how data models may be specified and rea-

soned within PVS at different levels of abstraction. In par-
ticular, we have demonstrated how the support for higher-
order functions, type checking, and interactive theorem prov-
ing in PVS allows the data modeler to reason about the in-
teractions between the various data constraints. These are
usually harder to do when using ER diagrams alone.

While design verification plays an important role in other
disciplines (hardware and program verification), it has gen-
erally received less attention in ER data modeling. We be-
lieve this is due to the limited use of standard, formal no-
tations and languages with verification support to express
reasoning about data models. The work presented in this
paper is a demonstration that general purpose specification
languages like PVS with their powerful typechecking sup-
port can fill this gap.

Acknowledgements: We thank Sam Owre of SRI for
patiently answering many of our queries on PVS.

11. REFERENCES
[1] The B-method. http://vl.fmnet.info/b/. Visited

October 2007.

[2] PVS: Prototype Verification System.
http://www.csl.sri.com/pvs. Visited October 2007.

[3] PVS source code accompanying [12] and this paper.
http://www.iiitmk.ac.in/∼choppell/research/

code/movie-data-model/index.html Visited October
2007.

[4] The Z notation. http://vl.zuser.org/. Visited
October 2007.

[5] S. Abiteboul and R. Hull. IFO: A formal semantic
database model. ACM Transactions on Database
Systems, 12:525–565, 1987.

[6] G. D. Battista and M. Lenzerini. Deductive
entity-relationship modeling. IEEE Trans. Knowl.
Data Eng., 5(3):439–450, 1993.

[7] R. Breu, U. Hinkel, C. Hofmann, C. K. B. Paech,
B. Rumpe, and V. Thurner. Towards a formalization
of the unified modeling language. In M. Aksit and
S. Matsuoka, editors, Proceedings of ECOOP’97 –
Object Oriented Programming. 11th European
Conference, volume 1241 of LNCS, pages 344–366.
Springer, 1997.

[8] D. Calvanese, M. Lenzirini, and D. Nardi. Logics for
Databases and Information Systems, chapter
Description Logics for Conceptual Data Modeling.
Kluwer Academic, 1998.

[9] R. Cattell, D. Barry, D. Bartels, M. Berler,
J. Eastman, S. Gamerman, D. Jordan, A. Springer,
H. Strickland, and D. Wade. The Object Database
Standard: ODMG 2.0. Morgan Kaufmann, 1997.

[10] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming
and Databases (Surveys in Computer Science).
Springer, 1990.

[11] P. P. Chen. The entity-relationship model: Toward a
unified view of data. ACM Transactions on Database
Systems, 1(1):9–37, March 1976.

[12] V. Choppella, A. Sengupta, E. Robertson, and S. D.
Johnson. Constructing and Validating
Entity-Relationship models in the PVS Specification
Language: A case study using a text-book example.

23 October 2007

9

http://vl.fmnet.info/b/
http://www.csl.sri.com/pvs
http://www.iiitmk.ac.in/~choppell/research/code/movie-data-model/index.html
http://www.iiitmk.ac.in/~choppell/research/code/movie-data-model/index.html
http://vl.zuser.org/

Technical Report 632, Indiana University Computer
Science, April 2006.

[13] E. Codd. A relational model for large shared data
banks. Communications of the ACM, 6(13):377–387,
June 1970.

[14] J. S. Dong, Y. Feng, and Y. F. Li. Verifying OWL and
ORL ontologies in PVS. In Z. Liu and K. Araki,
editors, 1st International Colloquium on Theoretical
Aspects of Computing (ICTAC) 2004, volume 3407 of
LNCS, pages 265–279. Springer, 2005.

[15] G. Engels, M. Gogolla, U. Hohenstein, K. Hulsmann,
P. Lohr-Richter, G. Saake, and H.-D. Ehrich.
Conceptual modeling of database applications using
extended ER model. Data Knowledge Engineering,
9:157–204, 1992.

[16] L. M. G. Feijs. Norman’s database modularized in
COLD-K. In J. A. Bergstra and L. M. G. Feijs,
editors, Algebraic Methods II - theory, tools and
applications, volume 490 of LNCS, pages 205–229.
Springer, 1991.

[17] D. Fensel. Formal specification languages in knowledge
and software engineering. The Knowledge Engineering
Review, 10(4), 1995.

[18] J. Fitzgerald and C. Jones. Modularizing the formal
description of a database system. In C. H. D. Bjorner
and H. Langmaack, editors, VDM ’90: VDM and Z -
Formal Methods in Software Development, volume 428
of LNCS, pages 189–210, 1990.

[19] H. Gallaire, J. Minker, and J.-M. Nicolas. Logic and
databases: A deductive approach. ACM Comput.
Surv., 16(2):153–185, 1984.

[20] C. George. The NDB database specified in the RAISE
specification language. Formal Aspects of Computing,
4(1):48–75, 1992.

[21] M. Gogolla and M. Richters. On constraints and
queries in UML. In M. Schader and A. Korthaus,
editors, The Unified Modeling Language – Technical
Aspects and Applications, pages 109–121.
Physica-Verlag, Heidelberg, 1998.

[22] D. Jackson. Software Abstractions: Logic, Language
and Analysis. MIT Press, 2006.

[23] N. Kehrer and G. Neumann. An EER prototyping
environment and its implemetation in a datalog
language. In G. Pernul and A. M. Tjoa, editors,
Entity-Relationship Approach - ER’92, 11th
International Conference on the Entity-Relationship
Approach, Karlsruhe, Germany, October 7-9, 1992,
Proceedings, volume 645 of Lecture Notes in Computer
Science, pages 243–261. Springer, 1992.

[24] R. Kimball. Is ER modeling hazardous to DSS?
DBMS Magazine, October 1995.

[25] C. H. Kung. Conceptual modeling in the context of
development. IEEE Transactions on Software
Engineering, 15(10):1176–1187, 1989.

[26] M. Kyas, H. Fecher, F. S. de Boer, J. Jacob,
J. Hooman, M. van der Zwaag, T. Arons, and
H. Kugler. Formalizing UML models and OCL
constraints in PVS. In Proceedings of the Semantic
Foundations of Engineering Design Languages
(SFEDL ’04), pages 39–47, 2005.

[27] Y. Mandelbaum, K. Fisher, D. Walker, M. Fernandez,
and A. Gleyzer. PADS/ML: A Functional Data

Description Language. In Proceedings of the ACM
Symposium on Principles of Programming Languages,
pages 77–83. ACM Press, January 2007.

[28] M. Minas. Specifying diagram languages by means of
hypergraph grammars. In Proc. Thinking with
Diagrams (TwD’98), pages 151–157, Aberystwyth,
UK, 1998.

[29] L. Moss and S. Hoberman. The importance of data
modeling as a foundation for business insight.
Technical Report EB4331, NCR, November 2004.

[30] G. Neumann. Reasoning about ER models in a
deductive environment. Data and Knowledge
Engineering, 19:241–266, June 1996.

[31] S. Owre and N. Shankar. Theory interpretations in
PVS. Technical Report SRI-CSL-01-01, SRI
International, April 2001.

[32] M. Stonebraker and D. Moore. Object Relational
DBMSs: The Next Wave. Morgan Kaufmann, 1995.

[33] A. ter Hofstede and H. Proper. How to formalize it?
formalization principles for information systems
development methods. Information and Software
Technology, 40(10):519–540, 1998.

[34] B. Thalheim. Entity-Relationship Modeling:
Foundations of Database Technology. Springer-Verlag,
2000.

[35] J. D. Ullman and J. Widom. A First Course in
Database Systems. Prentice Hall, 2 edition, 2002.

[36] F. van Harmelen and A. ten Teije. Validation and
verification of conceptual models of diagnosis. In
Proceedings of the Fourth European Symposium on the
Validation and Verification of Knowledge Based
Systems (EUROVAV97), pages 117–128, Leuven,
Belgium, 1997.

[37] A. Walshe. Case Studies in Systematic Software
Development, chapter NDB: The Formal Specification
and Rigorous Design of a Single-User Database
System. Prentice Hall, 1990.

[38] J. Warmer and A. Kleppe. The Object Constraint
Language: Precise modeling with UML. Object
Technology Series. Addison Wesley, 1998.

[39] N. Winterbottom and G. Sharman. NDB: A
non-programmer database facility. Technical Report
TR.12.179, IBM Hursley Laboratory, England,
September 1979.

23 October 2007

10

Topology in PVS

Continuous Mathematics with Applications

David R Lester
School of Computer Science, Manchester University

Manchester M13 9PL, United Kingdom

dlester@cs.man.ac.uk

ABSTRACT
Topology can seem too abstract to be useful when first en-
countered. My aim in this paper is to show that – on the
contrary – it is the vital building block for continuous math-
ematics. In particular, if a proof can be undertaken at the
level of topology, it is almost always simpler there than when
undertaken within the context of specific classes of topology
such as those of metric spaces or Domain Theory.

Categories and Subject Descriptors
MSC 54 [General Topology]: Topological Spaces; MSC
03B35 [General Logic]: Mechanization of Proofs and Log-
ical Operations

Keywords
Continuous Mathematics, Probability, Programming Lan-
guage Semantics, Proof Assistants, PVS, Theorem Provers,
Topology

1. INTRODUCTION
Topology can seem too abstract to be useful when first en-
countered. My aim in this paper is to show that – on the
contrary – it is the vital building block for continuous math-
ematics. In particular, if a proof can be undertaken at the
level of topology, it is almost always simpler there than when
undertaken within the context of specific classes of topology
such as those of metric spaces or Domain Theory.

And why might continuous mathematics be of interest to
proponents of formal methods? This is a hard question for
me as a relative outsider to the field to answer. However, I
would suggest that although proofs about the internal work-
ings of programs can – and should – be framed in terms of
discrete mathematics, when it comes to formal requirements
capture, having some credible model of the outside world
with which the computer system is supposed to interact is
vital. If that outside world is continuous – as it inevitably is
for control systems – how else do we show that the program

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM’07, November 6, Atlanta, GA, USA.
c©2007 ACM ISBN 978-1-59593-879-4/07/11...$5.00

works properly, other than by showing that it interacts with
the relevant differential equations correctly? Other than the
use of proof assistants, there is nothing new in this approach:
this is the same technique we used at Hawker-Siddeley val-
idating 8080-based control systems in the 1970s. The com-
pleted system was connected directly to an analog computer
simulating the operating environment, many properties of
the assembly code having already been proven correct using
pencil and paper.

I will discuss two particular applications that I’ve imple-
mented on top of the topology library: probability theory
and compiler correctness. Only the second of these areas
has been properly developed, but enough progress has been
made to be confident of the outcome in the first case. An
abortive attempt to deal with differentiation in an arbitrary
Hilbert Space will be obliquely alluded to.

So, perhaps the most useful way to read this paper, is as
a précise of the “Pitfalls I’ve fallen into, and how to avoid
them” kind. They’ll be plenty of them, I’m afraid.

2. WHAT IS A TOPOLOGY?
A topology is a set of open sets, obeying certain conditions
on the open sets. Before listing these conditions, it’s proba-
bly best to give the motivating definition for topology: that
of continuity.

Definition 1. A function f : T1 → T2 is continuous if, and
only if, the inverse image of every open set in T2 is an open
set in T1.

It is now immediate that the identity function is continuous,
as is the composition of two continuous functions. Compare
the composition proof to the equivalent metric space proof
given in Appendices A and B. Notice that the instantiations
in the topological proof could be easily mechanized, whilst
the skill and judgement required to correctly instantiate in
the metricized proof – not to mention the precise ordering
in which we interleave instantiation and witnessing – make
for a rather hard mechanization process. And then, when
we consider continuous functions between Scott Topologies
(which are not metricizable), we have to perform yet an-
other proof that the composition of two (Scott-)continuous
functions will be (Scott-)continuous.

What constraints are there in picking the open sets? Firstly,
we insist that both the empty and full sets are open. Next,

23 October 2007

11

that the union of any collection of open sets is open and
finally that the intersection of any two open sets is open.
And that’s it! So, why am I insisting that this is such a
big deal? Quite simply, if you are dealing with continuous
mathematics, then this is the fundamental definition that
you are using, even if it is often well hidden.

Instead of attempting to convince you of the beauty of the
theory, I’ll instead provide a few examples of practical ap-
plications: in particular general probability theory, and de-
notational semantics. Before we do this, it will be as well to
look at more restrictive topologies.

Definition 2. A topology is Hausdorff if given distinct x,
y, there exist disjoint open sets U and V containing x and
y respectively.

We note that every metric space (of which more later) is
Hausdorff, and that in a hausdorff space every convergent
sequence of points has a unique limit.

Another useful concept is that of compactness. With this
property we make induction available as a proof technique
for any compact set.

Definition 3. A set A is compact if for every open cover
U there is a finite V ⊆ U and V is also an open cover. U is
an open cover of A if each element of U is an open set and
A ⊆ S

U .

The Bourbaki-istes ([6]) amongst you may wish to argue that
the above definition is that of quasi-compactness, reserving
the term “compact” for a quasi-compact set in a hausdorff
space. Gratifyingly, such petty distinctions cause much more
trouble than they are worth in PVS.

We will also be interested in methods to generate a topology
from a base (or basis) set. As an example, consider how
we can use the open intervals (a, b) to generate any open
set in the usual topology for R. We will be particularly
concerned with those topologies that have a countable base:
such topologies are called second countable. The usual real
topology is countably-based as the rational open intervals
constitute such a base.

As part of the proof of the generalized Heine-Borel Theorem
(see later), we take the opportunity to show that in a sec-
ond countable topological space we can reduce the covering
problem to a merely countable one (the proof consists of 648
lines in lindelof.prf).

Theorem 1 (Lindelöf’s Covering Theorem). In a
second countable topological space every open cover of the
space has a countable subcover.

I’m not entirely convinced that the following should live
within the topology library, but two other topics are needed
to define measure theory: σ-algebras and Borel sets and
functions. A σ-algebra contains the empty set and is closed
under the operations of taking complements and countable

unions. The smallest σ-algebra over T therefore consists of
just the empty set and the fullset T ; the largest is the power
set P(T). Note carefully, the power set is “too big” to be
used when the cardinality of T is uncountable.

The Borel sets of a topological space are then the members
of the σ-algebra generated by the open sets of the topology.
As an example, consider the Borel sets of R. Every open,
closed, semi-open and semi-closed interval in R is a Borel
set, along with countable unions of such intervals.

Finally, we define Borel functions.

Definition 4. A function f : T1 → T2 is Borel if, and only
if, the inverse image of every Borel set in T2 is a Borel set
in T1.

It is a matter of moments (20 lines of .prf) to prove that
every continuous function is also a Borel function.

2.1 Summary
The library of results for general topology has 202 theorems,
the proof of which requires 15,654 lines in the .prf files. This
library has been released. The textbook used is largely [22]
supplemented by material in [2, 3].

3. PROBABILITY
One possible approach to probability is to distinguish contin-
uous and discrete random variables. Initially, this appears to
work. However, as the theorems become deeper (and more
general) the distinction becomes ever more irritating. It is
also worth bearing in mind that there are random variables
that are neither continuous nor discrete; whether they have
a practical use other than as counter-examples is a moot
point.

The target I have set myself is to prove the Central Limit
Theorem.

Theorem 2 (Central Limit Theorem). Let X1, X2,

. . . Xn be a sequence of independent identically-distributed
random variables with finite means µ and finite non-zero
variances σ2 and let Sn = X1 +X2 + · · · +Xn. Then

Sn − nµ√
nσ2

converges in distribution to a random variable that is dis-
tributed N(0, 1) as n −→ ∞.

I intend to prove this by manipulating the characteristic
functions of the Xn; with enough machinery in place, this
appears to be relatively straightforward. However, as we
shall see, providing sufficient machinary necessitates a con-
siderable amount of preliminary work.

First, a definition. The 3-tuple (Ω, F , P) is a Probability
Space under the following conditions.

Definition 5. A Probability Space has three components:
a Sample Space (Ω); a σ-algebra of permitted events (F);

23 October 2007

12

and a probability measure P : F → [0, 1]. There are obvi-
ously constraints on the probability measure: we require
P({}) = 0, P(Xc) = 1 − P(X), and that if the Xn are
pairwise-disjoint, then P(

S

∞

n=0
Xn) =

P

∞

n=0
P(Xn).

Definition 6. The characteristic function of a random vari-
able X is the function φ : R → C given by:

φ(t) = E(eitX)

At once our problems begin: should we use the complex
numbers provided in the NASA libraries? (No: using this
library causes the PVS automatic strategies involving com-
mutativity and associativity to be switched-off — even for
real-valued expressions.) We note that unless we wish to
prove this result twice (once for continuous random vari-
ables and again for discrete ones), we will need to define the
expectation operator E in terms of the underlying probabil-
ity measure P associated with the random variable X:

E(X) =

Z

ω∈Ω

X(ω)dP.

This means that the characteristic function is defined as
the Lebesgue-Stieltjes Integral of eitω with respect to the
probability measure P:

φ(t) =

Z

ω∈Ω

e
itω
dP.

The link to Fourier Convolutions is now clear. At this point
work on the probability library ceased, until such time as
the Fourier Transform material became available.

As Reimann integration is available to us in the NASA anal-
ysis library, why don’t we use that instead? The first prob-
lem is that we would need to extend the material to deal
with indefinite integrals (look carefully at the definition of
characteristic functions above to see why). Consider the at-
tempted “definition” of indefinite integral as the limit of the
following sequence of definite integrals:

Z n

−n

fdx −→
Z

∞

−∞

fdx,

as n −→ ∞. If f is the identity function then each integral
on the left is 0, but the right-hand side is undefined. Care
is clearly required.

The second clue that we will need to adopt a more sophisti-
cated approach to integration is the presence of a σ-algebra
in the definition of a probability space. One might also con-
sider the name of the third component as a“probability mea-
sure” a big hint. Although we could persist with Riemann
integration, many theorems would be less general than they
might be and theorems characterizing the density functions
become impossible to prove.

The high point of the material already undertaken is prob-
ably Bayes’ Theorem on conditional probability.

Theorem 3 (Bayes’ Theorem). Provided B is non-
null, and

Sn

i=0
Ai = Ω, then for 0 ≤ j ≤ n, the conditional

probability of Aj given B is:

P(Aj | B) =
P(B | Aj)P(Aj)

Pn

i=0
P(B | Ai)P(Ai)

This constitutes a mere 100 lines of proof in conditional.prf.

3.1 Summary
A fair amount of preliminary work has already been under-
taken (Bayes Theorem for example). The library for proba-
bility currently has 62 theorems, the proof of which requires
10,985 lines in the .prf files. This library is not yet linked
with the measure theory and is consequently not ready for
release. Indeed, with PVS 4.0 there are problems saving the
pvscontext in the measure theory library that are a cause
for concern. Most of the material comes from [12], though
some of the more general material on products of probability
spaces comes from [13].

There is currently nothing in this library that is not already
in Hurd and Nedzusiaks’ work [14, 16, 17].

4. MEASURE THEORY
Having considered and disgarded Riemann Integration to de-
scribe probabilities, we are forced to consider doing a“proper
job”. How bad can it be?

Firstly, we note that we will almost certainly wish to deal
with sets of measure ∞, so our measure functions µ : F →
R>0. Having learnt the lesson of a direct implementation of
the complex numbers, this time we are explicit in the use of
extended non-negative reals, and do not attempt to embed
them within the PVS number field library. The somewhat
grubby use of x_add for the addition operator on the ex-
tended non-negative reals (R>0) works perfectly, in the sense
that it does not cause the switch-off of the default strategies
for the reals that we will subsequently require.

The other general library concerns properties of summation
over sets. Anticipating the need to use this function for
discrete probability, I made it capable of handling summa-
tion over countable sets (provided that the image under the
function was absolutely convergent). What I forgot (pace
Hilbert Space) is that provided only countably many ele-
ments of the set are non-zero then once more we merely
require absolute convergence of the non-zero elements of the
image. I propose that we modify my sigma set.pvs so that a
set is “permissible” precisely when it is: finite, or when the
non-zero elements of its image are absolutely convergent (we
require absolute convergence so that the summation may be
attempted in any order). This generalization could replace
the finite version currently available in the NASA library.

We now define the Measure Spaces within which integration
can take place.

Definition 7. A measure space is a 3-tuple (T, S, µ), where
S is a σ-algebra over T , and µ : S → R>0 satisfies:

• µ({}) = 0; and

23 October 2007

13

• P

∞

n=0
µ(Xn) = µ(

S

∞

n=0
Xn) for all collectionsX which

are pairwise disjoint.

For the cogniscenti, we now present two theorems that re-
quire a great deal of effort, and yet are treated very lightly
in the text books. We begin with Berberian Theorem 4.1.20.

Theorem 4. If u is a sequence of measurable functions
that converges pointwise to f : T → R, then f is measurable.

This took a mere 537 lines to prove in measure space.prf.
But it remains conceptually one of the trickier proofs to
perform.

The next result is “trivial” and “obvious”, which I’m rapidly
learning to treat as a synonym for “boring”, “long-winded”
and generally “not worth the effort”. (This is Berberian
Theorem 4.3.7).

Theorem 5. If P is a finite partition of the integrable
step function i, then

R

idµ =
P

p∈P
i(x ∈ p).µ(p)

The import of this theorem is that it does not matter how we
divide up an integrable step function into a sum of character-
istic functions, the integral remains the same. Keen students
of mathematics may wish to attempt a shorter proof of this
result. At the present time I wish to submit this proof as
a candidate for the longest single proof attempted in PVS.
9606 lines of isf.prf are taken up by the proof. Other than
that, the theorem is completely ignorable: it is merely an
induction argument over the cardinality of the finite set P .

I regard the following theorems as the highlights of the cur-
rent development.

Theorem 6. If f is integrable, and h is a measurable
function with |h| ≤ M almost everywhere, then fh is in-
tegrable and

Z

|fh|dµ ≤M

Z

|f |dµ.

Theorem 7. For two integrable functions f and g, and
E measurable:

f = g a.e. if, and only if ∀E.
Z

E

fdµ =

Z

E

gdµ

Most of the effort in proving these theorems lies in setting up
the framework, rather than anything intrinsically difficult in
the theorems themselves.

The next few targets in this library are obvious: firstly, prove
Beppo-Levi’s Monotone Convergence Theorem, Lebesgue’s
Dominated Convergence Theorem, and Fatou’s Lemma. This
should be a day’s work. Next, since product measures are by
and large completed, work on the Hahn-Kolmogorov Exten-
sion Theorem, before turning attention to the Tonelli-Fubini
Theorems about the manipulation of iterated integrals.

The next big piece of work is to prove Lebesgue’s Crite-
rion for Riemann Integrability. Without this result (that,
for “sensible” functions, the two integration methods agree),
we are unable to perform much practical integration. Recall
that the easy way to compute an integral is to differenti-
ate and then use the “Fundamental Theorem of Calculus”.
The Lebesgue equivalent is much trickier to use and fiendish
to define and prove (it uses Dini-derivatives to handle the
derivative at points of discontinuity).

Nevertheless, Lebesgue’s Criterion for Riemann Integrability
is a vital component in the next target: proving that Fourier
Transforms exists and have the properties we require. This
will be grubby and time-consuming, but forms a bridge to
the definition and calculation of a characteristic function for
a Random Variables.

Apart from a few basic properties of sequences and series
of real numbers, we appear to be largely divorced from the
fundamentals of topology.

Until – that is – we attempt to prove the following funda-
mental property of the Lebesgue Outer Measure λ∗.

Definition 8. If we represent the length of an interval I as
λ(I), then the Lebesgue Outer Measure of a set A, denoted
λ∗(A), is defined as:

λ
∗(A) = inf

(

∞
X

n=0

λ(In) | A ⊆
[

In

)

where In ranges over all possible sequences of open intervals.

Lemma 8. For any bounded interval I:

λ
∗(I) = λ(I)

For this, we need Heine-Borel (either over the usual topology
for R, or preferably for R

n).

4.1 Summary
The library for measure theory currently has 590 theorems,
the proof of which requires 121,916 lines in the .prf files. This
library is releasable, but would be much improved with the
convegence theorems, Riemann-Lebesgue Criterion, Tonelli-
Fubini and Convolution Theorems incorporated. Some of
the easier material derives from [23], but the majority comes
from [3]. Product measure spaces are dealt with by Halmos
in [13].

Whilst the material defining Measures and Measure Spaces
contains little that is not already present in Hurd and Bialas’
work [14, 4, 5], the material on measure theoretic integration
is potentially something new in the realm of PVS theorem
proving.

5. METRIC SPACES
Initially, I thought that relatively little would be required
in this library; much of the action would take place either
above (in topology) or below (in normed space). It turns
out I was wrong. We need to show two key results: that the
reals are complete, and the Heine-Borel Theorem.

23 October 2007

14

Definition 9. The function d : T, T → R>0 is a metric, if

d(x, y) = 0 if, and only if, x=y;
d(x, y) = d(y, x);
d(x, z) ≤ d(x, y) + d(y, z).

If in addition every cauchy sequence is convergent, then the
metric space (T, d) is said to be complete.

Definition 10. A set X is totally bounded if, for every r >
0, there is a finite set of open balls of radius r covering the
set X.

Theorem 9 (Heine-Borel (Generalized)). In a com-
plete metric space, a set is compact if, and only it it is totally
bounded.

Much of this has been proved, but the proof is incomplete.
The following special case has been proved.

Theorem 10 (Heine-Borel (for R)). The closed in-
terval [a, b] ∈ R is compact.

The key preliminary result (that the real topology is com-
plete) had already been proved in the analysis library. One
other pretty result is the equivalence of continuity and uni-
form continuity in a compact space.

Theorem 11. In a compact space, a function is continu-
ous if, and only if, it is uniform continuous.

The proof of (⇒) exploits the compactness to reduce the
problem to a finite case, and then uses induction to complete
the proof. The proof of (⇐) is trivial.

5.1 Summary
The library for metric spaces currently has 86 theorems, the
proof of which requires 15,730 lines in the .prf files. I am
in the middle of adjusting the interface to this library; it
is therefore not ready for release. Material in this library
comes primarily from [22], augmented by results in [2, 3].

Much of the material in this library is covered in the pre-
existing NASA analysis library. However, the proposed new
library generalizes the current version extensively. For ex-
ample, with the current NASA/PVS library, it is not pos-
sible to state that the tan(x) function is continuous on the
open set X = {x | x 6= π(k + 1

2
)}; with the new library

such statements are perfectly acceptable. This would ease
the use of the properties of trigonometric functions in the
NASA/PVS trig library considerably. Obviously, defining
the metric over an arbitrary type rather than a connected
subset of the reals also has the potential to extend the ap-
plicability of the library.

6. PROGRAMMING LANGUAGE SEMAN-

TICS
At first it might seem strange that we need continuous math-
ematics to describe the behaviour of a computer program:
after all, aren’t computer programs notorious for their sen-
sitivity to even the smallest errors? The insight is that a
looping computer program is (hopefully) building a better
and better approximation to the desired answer.

The denotational semantics of a simple While language is
defined.

S[[x := a]] s = s[x 7→ A[[a]] s]
S[[skip]] s = s

S[[S1; S2]] = S[[S2]] ◦ S[[S1]]
S[[if b then S1 else S2]] = cond(B[[b]], S[[S1]], S[[S2]])
S[[while b do S]] = fix(F)

where F (g) = cond(B[[b]], g ◦ S[[S]], I)

For comparison a continuation semantics is also defined.

S[[x := a]] c s = c(s[x 7→ A[[a]] s])
S[[skip]] c s = c(s)
S[[S1; S2]] = S[[S1]] ◦ S[[S2]]
S[[if b then S1 else S2]] c = cond(B[[b]], S[[S1]] c, S[[S2]] c)
S[[while b do S]] = fix(F)

where F (g)(c) = cond(B[[b]], g ◦ S[[S]] g(c), c)

Using double fixpoint induction we show that the two se-
mantics are equivalent.

Theorem 12.

Scs[[S]] c = c ◦ Sds[[S]]

The current proof requires 1110 lines of the .prf file is to
show that the needed predicate P (φ, ψ) = ∀c : φ(c) = c ◦
ψ is admissible (by which we mean that if P is true for
all elements of a directed set D then P (

F

D) is also true.
Note carefully that we make no assumption that ψ or c are
continuous, they are merely arbitrary partial functions); a
mere 368 lines then suffice to perform the induction. It is
always possible I’m missing something obvious concerning
the admissibility of the predicate I’ve defined.

By now the urge to prove that a simple compiler was cor-
rect had become overwhelming [15]. An obvious first step
is to show that the direct semantics and a Structural Op-
erational Semantics were equivalent. (442 and 636 lines of
the .prf file were required for each induction.) A bisimula-
tion then shows that this compiler and abstract machine are
equivalent. Rounding things out an equivalent natural se-
mantics and a sound and complete axiomatic semantics are
also provided.

An obvious next step is to define the computability of a
function in terms of a While program rather than as a hard-
to-read abstract machine-code program. That, however, re-
mains a task for another day.

One problem with the formulation of the denotational se-
mantics is that we have used fixpoints, without showing that
they exist (or indeed are unique). We now rectify this omis-
sion, and discover the link to continuity.

23 October 2007

15

6.1 Summary
Currently, the library of semantics for While has 99 theo-
rems, the proof of which requires 10,252 lines in the .prf
files. This library is now ready for release. The source for
this material is [18] which I still use as our final year under-
graduate text book. Alternative resources are provided in
[9, 11].

7. SCOTT TOPOLOGY
If we exclude the pathalogical case of the trivial partial order
(x ≤ y if, and only if, x = y), then the Scott Topology
is an example of a non-Hausdorff Topology. This was the
initial reason for attempting this material: had I captured
non-metricizable topology accurately? Before describing the
Scott Topology, we will need to discuss Directed Complete
Partial Orders. These are partial orders with an additional
property.

Definition 11. A non-empty set D is directed (under the
partial order ≤), if for any two elements x, y ∈ D there exists
z ∈ D with x ≤ z and y ≤ z.

A chain is a special case of directed set in which we restrict
z to be one or other of x or y. The partial order ≤ is then
said to be Directed Complete if every directed set has a least
upper bound. If, in addition, there is a least element, then
we have a Pointed Directed Complete Partial Order.

Definition 12. The element y is a member of the lower set
of the set S if, and only if, there is an element x ∈ S with
y ≤ x.

Obviously, there is a lower set associated with each element x
(consisting of all elements y ≤ x); we write this as down(x).
(Note: although lower set? is the same as Jerry James’
prefix?, my down function is defined over transitive relations
while Jerry’s almost equivalent function upto insists that
the relation be an order relation. As I recall, this subtle
distinction is enough to cause a problem. The matter of
lower set? versus prefix? is merely one of taste.

We are now ready to define the closed sets of the Scott Topol-
ogy.

Definition 13. A lower set L is a closed set of the Scott
Topology, if every directed subset of L has a least upper
bound in L.

After a certain amount of effort one determines that this
is indeed a topology. Next, we characterize the continuous
functions from one Scott Topology to another.

Definition 14. A function f : T1 → T2 is Scott Continuous
whenever

∀x, y ∈ T1 . x ⊑1 y ⇒ f(x) ⊑2 f(y) and

∀D . directed?(D) ⇒ f(
G

1

D) =
G

2

{f(x) | x ∈ D}

(⊑i and
F

i
are respectively the directed complete partial

order and least upper bound for Ti, i = 1, 2.)

A modicum of effort (733 lines in scott continuity.prf) suf-
fices to show the following equivalence.

Theorem 13. A function f : T1 → T2 is (topologically-)
continuous if, and only if, it is Scott Continuous.

Rather more effort (1221 lines in scott continuity.prf) is re-
quired to show that the following innocuous theorem is true.

Theorem 14. The pointwise-ordered set of continuous func-
tions f : T1 → T2 is directed complete.

A brief note on this theorem: much time can be wasted
trying to restrict the continuous functions so that only com-
putable funtions are permitted [1]. Instead, I propose that
we prove properties in the general setting and then deal with
the restrictions (c.f. constructive analysis and its projections
into classical analysis).

If we also insist that the partial order has a least element ⊥,
then we can define fixpoints.

Definition 15. Let φ : T → T be an increasing function,
then we define the least fixpoint of φ as

fix(φ) =

∞
G

n=0

{φn(⊥)}

If the function being fixpointed is not merely increasing, but
also continuous we have in addition:

Theorem 15. Let ψ : T → T be a continuous function,
then

ψ(fix(ψ)) = fix(ψ)

ψ(x) ⊑ x ⇒ fix(ψ) ⊑ x

The second result is the order-theoretic counterpart to Ba-
nach’s Contraction Theorem.

7.1 Summary
The library of results for the scott topology has 186 the-
orems, the proof of which requires 23,269 lines in the .prf
files. Although ready for release, ideally one would like to
deal with recursively defined Domains and to have dealt with
a λ-calculus of some sort [20]. This material is culled from
various sources. The driver is the material needed for the
denotational semantics in [18]. Other elements are derived
from [8, 21] and private conversations with Harold Simmons.

8. CONCLUSIONS
Although I have had to condense the presentation of the
work dramatically, hopefully enough of the content survives
to give a flavour of what can be achieved using PVS. The
primary goal is not to explore the mechanization of these
proofs, as by and large the proofs have little in common with
one another. Instead, the aim is to provide a solid founda-
tion on top of which such mechanizatio might be built. In

23 October 2007

16

other words, having built a sound foundation for measure
theoretic integration, one could then construct automatic
tools to perform tasks such as symbolic integration; expect-
ing an automated to tool to build the generalized founda-
tions of integration appears to be a mite optimistic.

I think that my conclusions about using PVS can be cap-
tured in two key ideas.

• If you need to extend the real numbers in some way
(the extended reals, complex numbers etc.), then leave
the representation explicit and do not, under any cir-
cumstances, embed the new number system into the
number field library.

• Always prove the most general results in the most ab-
stract setting available. If you don’t, it is inevitable
that you will almost surely need to re-prove your re-
sults later.

The first point is widely known, but bears repeating: us-
ing non-standard number systems confuses the PVS deci-
sion procedures sufficiently that it stops using it’s built-in
rules even on standard number systems. The second point
is equally well known, but the cost of re-engineering the in-
terface to a released library is much higher than the cost of
just doing the job properly in the first place.

I have omitted discussing a library for differentiation in
Hilbert Spaces (material derived from [10]), as I had inad-
vertently restricted the dimension of the space to be count-
able. In addition I had disobeyed the first rule above and
had developed a definition of ∇ (the differential operator)
on countably-dimensioned vector spaces of complex num-
bers. The system was completely unusable, as all of the
arithmetic manipulation (especially associativity and com-
mutativity) needed to be manually performed.

Are there any areas of mathematics where PVS is tricky to
deploy? Yes: category theory, and it’s “types” which mesh
badly with the PVS type system. The genuine tension is
then between a type system that adds value to proofs of
program correctness (say, PVS) and a system sufficiently lax
that category theory becomes expressible. For the mathe-
matical sub-topics alluded to in this paper there appear to
be few problems. That is to say: making the libraries suf-
ficiently general and usable is seldom a problem, unless one
is forced to go beyond the safe ground of the PVS reals
in one’s number systems. There is also the perennial is-
sue of accurately capturing mathematical concepts in PVS;
for topology, I claim that the applications outlined amply
demonstrate that the library is sufficiently general and use-
ful.

9. ACKNOWLEDGMENTS
Elements of this work have been undertaken at a number
of different institutions and with individuals who have been
kind enough to host me: NASA Langley (Rick Butler), NIA
(César Muñoz), Univesité de Perpignan (Marc Daumas).

My debt to the PVS community should be obvious. I am
aware that I have used copious amounts of material pro-

vided in the NASA PVS libraries by César Muñoz (vec-
tors), Jerry James (sets aux), Alfons Geser (orders), and
of course Bruno Dutertre and Rick Butler (analysis). If I’ve
omitted to mention you then please introduce yourself at
the Workshop. In Manchester, I have benefited from dis-
cussions about mathematical topics and perspectives with
Harold Simmons, Peter Aczel and Andrea Schalk.

The work outlined in this paper is partially funded by EP-
SRC grant EP/DO 7908X/1.

10. REFERENCES
[1] S. Abramsky and A. Jung. Domain theory. In

S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, volume 3.
Oxford University Press, 1994.

[2] T. Apostol. Mathematical Analysis. Addison-Wesley, 2
edition, 1974.

[3] S. Berberian. Fundamentals of Real Analysis.
Springer-Verlag, 1999.

[4] J. Bialas. σ-additive measure theory. Journal of
Formalized Mathematics, 2, 1990.

[5] J. Bialas. Properties of caratheodor’s measure.
Journal of Formalized Mathematics, 14, 1992.

[6] N. Bourbaki. General Topology. Addison-Wesley, 1966.

[7] N. Cutland. Computability. Cambridge University
Press, 1980.

[8] B. Davey and H. Priestley. Introduction to Lattices
and Order. Cambridge University Press, 1990.

[9] J. de Bakker. Mathematical Theory of Program
Correctness. Prentice-Hall, 1980.

[10] J. Dettman. Mathematical Methods in Physics and
Engineering. McGraw-Hill, 1962.

[11] M. Gordon. The Denotational Description of
Programming Languages. Springer-Verlag, 1979.

[12] G. Grimmett and D. Stirzaker. Probability and
Random Processes. Oxford University Press, 1982.

[13] P. Halmos. Measure Theory. van Nostrand, 1950.

[14] J. Hurd. Formal verification of Probabilistic
Algorithms. PhD thesis, University of Cambridge,
2002.

[15] D. Lester. Combinator Graph Reduction: A
Congruence and its Applications. PhD thesis, Oxford
University, 1988.

[16] A. Nedzusiak. σ-fields and probability. Journal of
Formalized Mathematics, 1, 1989.

[17] A. Nedzusiak. Probability. Journal of Formalized
Mathematics, 2, 1990.

[18] H. Nielson and F. Nielson. Semantics with
Applications. John Wiley and Sons, 1992.

[19] J. Shepherdson and H. Sturgis. Computability of
recursive functions. J. ACM, 10:217–255, 1963.

[20] H. Simmons. Derivation and Computation. Cambridge
University Press, 2000.

[21] J. Stoy. Denotational Semantics: The Scott-Strachey
Approach. MIT Press, 1977.

[22] W. Sutherland. Introduction to Metric and Topological
Spaces. Oxford University Press, 1975.

[23] A. Weir. Lebesgue Integration and Measure.
Cambridge University Press, 1973.

23 October 2007

17

APPENDIX

A. TOPOLOGICAL PROOF OF THE CONTINUITY OF COMPOSITION
composition_continuous:

{1} ∀ (f:
ˆ

T2 → T3

˜

, g:
ˆ

T1 → T2

˜

):
continuous?(g) ∧ continuous?(f) ⇒ continuous?((f ◦ g))

Skolemizing and flattening,

composition_continuous:

{-1} continuous?(g′)
{-2} continuous?(f ′)
{1} continuous?((f ′ ◦ g′))

Rewriting using continuous open sets, matching in * (3 times),

composition_continuous:

{-1} ∀ (Y: set
ˆ

T2

˜

): open?
ˆ

T2, T
˜

(Y) ⇒ open?
ˆ

T1, S
˜

(inverse image(g′, Y))
{-2} ∀ (Y: set

ˆ

T3

˜

): open?
ˆ

T3, U
˜

(Y) ⇒ open?
ˆ

T2, T
˜

(inverse image(f ′, Y))

{1} ∀ (Y : set
ˆ

T3

˜

):

open?
ˆ

T3, U
˜

(Y) ⇒ open?
ˆ

T1, S
˜

(inverse image((f ′ ◦ g′), Y))

Skolemizing and flattening,

composition_continuous:

{-1} ∀ (Y: set
ˆ

T2

˜

): open?
ˆ

T2, T
˜

(Y) ⇒ open?
ˆ

T1, S
˜

(inverse image(g′, Y))
{-2} ∀ (Y: set

ˆ

T3

˜

): open?
ˆ

T3, U
˜

(Y) ⇒ open?
ˆ

T2, T
˜

(inverse image(f ′, Y))
{-3} open?

ˆ

T3, U
˜

(Y ′)

{1} open?
ˆ

T1, S
˜

(inverse image((f ′ ◦ g′), Y ′))

Instantiating the top quantifier in -2 with the terms: Y ′, top quantifier in -1 with the terms: inverse image(f ′, Y ′), then
simplifying, rewriting, and recording with decision procedures,

composition_continuous:

{-1} open?
ˆ

T1, S
˜

(inverse image(g′, inverse image(f ′, Y ′)))
{-2} open?

ˆ

T2, T
˜

(inverse image(f ′, Y ′))
{-3} open?

ˆ

T3, U
˜

(Y ′)

{1} open?
ˆ

T1, S
˜

(inverse image((f ′ ◦ g′), Y ′))

Expanding the definitions of o, inverse image, and member,

composition_continuous:

{-1} open?
ˆ

T1, S
˜

({x: T1 | Y ′(f ′(g′(x)))})
{-2} open?

ˆ

T2, T
˜

({x: T2 | Y ′(f ′(x))})
{-3} open?

ˆ

T3, U
˜

(Y ′)

{1} open?
ˆ

T1, S
˜

({x: T1 | Y ′(f ′(g′(x)))})

which is trivially true. This completes the proof of composition_continuous.

23 October 2007

18

B. METRIC SPACE PROOF OF THE CONTINUITY OF COMPOSITION
composition_continuous:

{1} ∀ (f:
ˆ

T2 → T3

˜

, g:
ˆ

T1 → T2

˜

):
metric continuous?(g) ∧ metric continuous?(f) ⇒ metric continuous?((f ◦ g))

Expanding the definition of metric continuous?, metric continuous at?, and Skolemizing and flattening,

composition_continuous:

{-1} ∀ (x: T1): ∀ ε: ∃ δ: ∀ (x: T1): x ∈ ball(x, δ) ⇒ g′(x) ∈ ball(g′(x), ε)
{-2} ∀ (x: T2):∀ ε: ∃ δ: ∀ (x: T2): x ∈ ball(x, δ) ⇒ f ′(x) ∈ ball(f ′(x), ε)
{1} ∀ ε: ∃ δ: ∀ (x: T1): x ∈ ball(x′, δ) ⇒ (f ′ ◦ g′)(x) ∈ ball((f ′ ◦ g′)(x′), ε)

Expanding the definition of ball, and member, Skolemizing and flattening,

composition_continuous:

{-1} ∀ (x: T1): ∀ ε: ∃ δ: ∀ (x: T1): d1(x, x) < δ ⇒ d2(g
′(x), g′(x)) < ε

{-2} ∀ (x: T2): ∀ ε: ∃ δ: ∀ (x: T2): d2(x, x) < δ ⇒ d3(f
′(x), f ′(x)) < ε

{1} ∃ δ: ∀ (x: T1): d1(x
′, x) < δ ⇒ d3((f

′ ◦ g′)(x′), (f ′ ◦ g′)(x)) < ε′

Instantiating the top quantifier in - with the terms: x′, the top quantifier in -2 with the terms: g′(x′), and then the top
quantifier in -2 with the terms: ε′,

composition_continuous:

{-1} ∀ ε: ∃ δ: ∀ (x: T1): d1(x
′, x) < δ ⇒ d2(g

′(x′), g′(x)) < ε

{-2} ∃ δ: ∀ (x: T2): d2(g
′(x′), x) < δ ⇒ d3(f

′(g′(x′)), f ′(x)) < ε′

{1} ∃ δ: ∀ (x: T1): d1(x
′, x) < δ ⇒ d3((f

′ ◦ g′)(x′), (f ′ ◦ g′)(x)) < ε′

Skolemizing and flattening,

composition_continuous:

{-1} ∀ ε: ∃ δ: ∀ (x: T1): d1(x
′, x) < δ ⇒ d2(g

′(x′), g′(x)) < ε

{-2} ∀ (x: T2): d2(g
′(x′), x) < δ′ ⇒ d3(f

′(g′(x′)), f ′(x)) < ε′

{1} ∃ δ: ∀ (x: T1): d1(x
′, x) < δ ⇒ d3((f

′ ◦ g′)(x′), (f ′ ◦ g′)(x)) < ε′

Instantiating the top quantifier in - with the terms: δ′,

composition_continuous:

{-1} ∃ δ: ∀ (x: T1): d1(x
′, x) < δ ⇒ d2(g

′(x′), g′(x)) < δ′

{-2} ∀ (x: T2): d2(g
′(x′), x) < δ′ ⇒ d3(f

′(g′(x′)), f ′(x)) < ε′

{1} ∃ δ: ∀ (x: T1): d1(x
′, x) < δ ⇒ d3((f

′ ◦ g′)(x′), (f ′ ◦ g′)(x)) < ε′

Skolemizing and flattening,

23 October 2007

19

composition_continuous:

{-1} ∀ (x: T1): d1(x
′, x) < δ′′ ⇒ d2(g

′(x′), g′(x)) < δ′

{-2} ∀ (x: T2): d2(g
′(x′), x) < δ′ ⇒ d3(f

′(g′(x′)), f ′(x)) < ε′

{1} ∃ δ: ∀ (x: T1): d1(x
′, x) < δ ⇒ d3((f

′ ◦ g′)(x′), (f ′ ◦ g′)(x)) < ε′

Instantiating the top quantifier in + with the terms: δ′′,

composition_continuous:

{-1} ∀ (x: T1): d1(x
′, x) < δ′′ ⇒ d2(g

′(x′), g′(x)) < δ′

{-2} ∀ (x: T2): d2(g
′(x′), x) < δ′ ⇒ d3(f

′(g′(x′)), f ′(x)) < ε′

{1} ∀ (x: T1): d1(x
′, x) < δ′′ ⇒ d3((f

′ ◦ g′)(x′), (f ′ ◦ g′)(x)) < ε′

Skolemizing and flattening,

composition_continuous:

{-1} ∀ (x: T1): d1(x
′, x) < δ′′ ⇒ d2(g

′(x′), g′(x)) < δ′

{-2} ∀ (x: T2): d2(g
′(x′), x) < δ′ ⇒ d3(f

′(g′(x′)), f ′(x)) < ε′

{-3} d1(x
′, x′′) < δ′′

{1} d3((f
′ ◦ g′)(x′), (f ′ ◦ g′)(x′′)) < ε′

Instantiating the top quantifier in - with the terms: x′′, and then the top quantifier in - with the terms: g′(x′′),

composition_continuous:

{-1} d1(x
′, x′′) < δ′′ ⇒ d2(g

′(x′), g′(x′′)) < δ′

{-2} d2(g
′(x′), g′(x′′)) < δ′ ⇒ d3(f

′(g′(x′)), f ′(g′(x′′))) < ε′

{-3} d1(x
′, x′′) < δ′′

{1} d3((f
′ ◦ g′)(x′), (f ′ ◦ g′)(x′′)) < ε′

Expanding the definition of o,

composition_continuous:

{-1} d1(x
′, x′′) < δ′′ ⇒ d2(g

′(x′), g′(x′′)) < δ′

{-2} d2(g
′(x′), g′(x′′)) < δ′ ⇒ d3(f

′(g′(x′)), f ′(g′(x′′))) < ε′

{-3} d1(x
′, x′′) < δ′′

{1} d3(f
′(g′(x′)), f ′(g′(x′′))) < ε′

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of composition_continuous.

23 October 2007

20

Model Checking for the Practical Verificationist:

A User’s Perspective on SAL

Lee Pike
Galois, Inc.

leepike@galois.com

ABSTRACT
SRI’s Symbolic Analysis Laboratory (SAL) is a high-level
language-interface to a collection of state-of-the-art model
checking tools. SAL contains novel and powerful features,
many of which are not available in other model checkers.
In this experience report, I highlight some of the features I
have particularly found useful, drawing examples from pub-
lished verifications using SAL. In particular, I discuss the
use of higher-order functions in model checking, infinite-
state bounded model checking, compositional specification
and verification, and finally, mechanical theorem prover and
model checker interplay. The purpose of this report is to ex-
pose these features to working verificationists and to demon-
strate how to exploit them effectively.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: [formal meth-
ods, model checking]

1. INTRODUCTION
SRI’s Symbolic Analysis Laboratory (SAL)1 is bad news for
interactive mechanical theorem provers. SAL is so auto-
mated yet expressive that for many of the verification en-
deavors I might have previously used a mechanical theorem
prover, I would now use SAL. The purpose of this brief re-
port is to persuade you to do the same.

To convince the reader, I highlight SAL’s features that are
especially useful or novel from a practitioner’s perspective.
My goals in doing so are (1) to begin a dialogue with other
SAL users regarding how best to exploit the tool, (2) to
show off SAL’s features to verificationists not yet using SAL,
and (3) to provide user feedback to spur innovation in the
dimensions I have found most novel and beneficial, as a user.

1SAL is open source under a GPL license and the tool, doc-
umentation, a user-community wiki, etc. are all available
at http://sal.csl.sri.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM’07, November 6, Atlanta, GA, USA.
c©2007 ACM ISBN 978-1-59593-879-4/07/11...$5.00

With my coauthors, I have had the opportunity to use SAL
in a number of applied verifications [3, 4, 5, 20, 21, 22].2

These works draw from the domains of distributed systems,
fault-tolerant protocols, and asynchronous hardware proto-
cols (the most notable omission is the domain of software,
although the techniques reported are not domain-specific).

Let me also say what are not the intentions of this report.
This report is not a manual or user’s guide; such artifacts
are available from the SAL website (I do, however, strive to
make the report self-contained, even for the reader not ex-
perienced with SAL). Also, I do not compare and contrast
SAL to other model checkers. In particular, I am not claim-
ing that each feature highlighted is unique to SAL, but I do
claim that their combination in one tool is unique.

The outline for the remainder of this report is as follows. In
Section 2, I briefly overview SAL’s language and toolset. In
Section 3, I describe how higher-order functions, as imple-
mented in SAL, can be used in a model checking context to
simplify the specification of state machines. In Section 4,
I describe SAL’s infinite-state bounded model checker, a
particularly novel and powerful model checker, and I de-
scribe how it can be used to prove safety-properties of real-
time systems with an order of magnitude reduction in proof
steps as compared to mechanical theorem proving. Sec-
tion 5 describes how to judiciously use synchronous and
asynchronous composition to ease the proof effort required
in infinite-state bounded model checking and to decompose
environmental constraints from system specifications. De-
spite the power of SAL, a model checker sometimes is not
enough; in Section 6, I describe cases in which SAL can be ef-
fectively used in tandem with a mechanical theorem prover.
Conclusions are provided in Section 7.

2. SAL OVERVIEW
SAL has a high-level modeling language for specifying state
machines. A state machine is specified by a module. A
module consists of a set of state variables (declared to be
input, output, global, or local) and guarded transitions. A
guarded transitions is enabled if its guard—some expression
that evaluates to a boolean value—is true. Of the enabled
transitions in a state, one is nondeterministically executed.
When a transition is exercised, the next-state values are

2My coathors for these works include Geoffrey Brown, Steve
Johnson, Paul Miner, and Wilfredo Torres-Pomales. The
specifications associated with these works are all available
from http://www.cs.indiana.edu/~lepike.

23 October 2007

21

assigned to variables; for example, consider the following
guarded transition:

H --> a’ = a - 1;

b’ = a;

c’ = b’ + 1;

If the guard H holds and the transition is exercised, then in
the next state, the variable a is decremented by one, the
variable b is updated to the previous value of a, and the
variable c is updated to the new value of b, plus one. In
the language of SAL, “;” denotes statement separation, not
sequential composition (thus, variable assignments can be
written in any order). If no variables are updated in a tran-
sition (i.e., H -->), the state idles.

Modules can be composed both synchronously (||) and asyn-
chronously ([]), and composed modules communicate via
shared variables. In a synchronous composition, a transition
from each module is simultaneously applied; a synchronous
composition is deadlocked if either module has no enabled
transition. Furthermore, a syntactic constraint on modules
requires that no two modules update the same variable in
a synchronous composition. In an asynchronous composi-
tion, an enabled transition from exactly one of the modules
is nondeterministically applied.

The language is typed, and predicate sub-types can be de-
clared. Types can be both interpreted and uninterpreted,
and base types include the reals, naturals, and booleans.
Array types, inductive data-types, and tuple types can be
defined. Both interpreted and uninterpreted constants and
functions can be specified.

One of the greatest practical benefits of SAL is that a variety
of useful tools are associated with the same input language.
SAL 3.0 includes a BDD-based model checker, a SAT based
model checker (capable of performing k-induction proofs),
and infinite-state bounded model checker that is integrated
with the Yices satisfiability modulo theories (SMT) solver, a
BDD-based simulator, a BDD-based deadlock checker, and
an automated test-case generator. Other tools can be built
on SAL’s API.

3. HIGHER-ORDER FUNCTIONS
The first feature of SAL I cover is higher-order functions.
What use are higher-order functions in a model checker?
Model checkers are about building state machines, and higher-
order functions are typically associated with “stateless” pro-
gramming. The practicality of higher-order functions is well-
known in the programming and mechanical theorem prov-
ing communities [12], and these advantages apply just as
well to specifying the functional aspects of a model. Fur-
thermore, higher-order functions are just as indispensable
for specifying a model’s stateful aspects; I give two support-
ing examples below. First, I show how sets can be specified
with higher-order functions, allowing the easy specification
of nondeterministic systems. Second, I show how to replace
guarded transitions with higher-order functions; the benefit
of doing so is that it allows one to decompose the envi-
ronment and system specifications or to make assumptions
explicit in proofs.

3.1 Sets and Nondeterminism
The first example is drawn from work done with Geoffrey
Brown to verify real-time physical-layer protocols [3, 5]. Sup-
pose I want to nondeterministically update some value to be
within a parameterized closed interval of real-time (mod-
eled by the real number line). We can define a higher-
order function that takes a minimum and a maximum value
and returns the set of real values in the closed interval be-
tween them. The function has the return type of REAL ->

BOOLEAN, which is the type of a set of real numbers.

timeout(min : REAL

, max : REAL) : [REAL -> BOOLEAN] =

{x : REAL | min <= x

AND x <= max};

I use the identifier ’timeout’ to pay homage to timeout au-
tomata, a theory and corresponding implementation in SAL
developed by Bruno Dutertre and Maria Sorea for specify-
ing and verifying real-time systems using infinite-state k-
induction (see Section 4) [10].

Then, in specifying the guarded transitions in a state ma-
chine, we can simply call the function with specific values
(let H and I be some predicates on the real-time argument).
The IN operator specifies that its first argument, a variable
of some arbitrary type T, nondeterministically takes a value
in its second argument, a set of type T -> BOOLEAN.

H(t) --> t’ IN timeout(1, 2);

[] I(t) --> t’ IN timeout(3, 5);

With higher-order functions, nondeterministic transitions
can be specified succinctly, as above, rather than specify-
ing an interval in each transition.3

3.2 Specifying Transitions
Another benefit of higher-order functions is that they can
be used to “pull” constraints out of the state machine spec-
ification. The motivations for doing this include (1) to sim-
plify specifications, (2) to make assumptions and constraints
more explicit in proofs, and (3) to decompose environmental
constraints from state machine behavior.

To illustrate this idea, we will model check a simple dis-
tributed system built from a set of nodes (of the uninter-
preted type NODE) and a set of one-way channels between
nodes. Furthermore, suppose that the creation of channels
is dynamic, and we wish to make this explicit in our state-
machine model of the system. We might prove properties
like, “If there is a channel pointing from node n to node m,
then there is no channel pointing from m to n,” (i.e., channels
are unidirectional) or “No channel points from a node in one
subset of nodes to a node in another subset of nodes.”

3In this and subsequent specifications, we sometimes state
just the guarded transitions where the remainder of the
guard specification is irrelevant or can be inferred from con-
text.

23 October 2007

22

To build the model, we will record the existence of channels
using a NODE by NODE matrix of booleans. For convenience,
we define CHANS to be the type of these matrices:

CHANS : TYPE = ARRAY NODE OF ARRAY NODE OF BOOLEAN;

For some matrix chans of type CHANS, we choose, by con-
vention, to let chans[a][b] mean that there is a channel
pointing from node a to node b.

We define a function newChan that takes two nodes and adds
a channel between them. Indeed, having higher-order func-
tions at our disposal, we define the function in curried form.

newChan(a : NODE, b : NODE) : [CHANS -> CHANS] =

LAMBDA (chans : CHANS) :

chans WITH [a][b] := TRUE;

The function newChan returns a function, and that function
takes a set of channels and updates it with a channel from
a to b.

Now we will build a state machine containing three asyn-
chronous transitions. Two of the transitions introduce new
channels into the system depending on the current system
state, and the final one simply stutters (i.e., maintains the
system state). Let H and I be predicates over sets of chan-
nels (i.e., functions of type CHANS -> BOOLEAN), and let m, n,
o, p, . . . be constant node-identifiers (i.e., constants of type
NODE).

H(chans) --> chans’ = newChan(n, m)

(newChan(p, q)

(chans));

[] I(chans) --> chans’ = newChan(q, n)(chans);

[] ELSE -->

Alternatively, we can write an equivalent specification us-
ing a predicate rather than defining three transitions in
the state machine. First, we define a function that takes
a current channel configuration and returns a set of channel
configurations—i.e., chanSet returns a predicate parameter-
ized by its argument.

chanSet(chans : CHANS) : [CHANS -> BOOLEAN] =

{x : CHANS |

(H(chans) => x = newChan(n, m)

(newChan(p, q)

(chans)))

AND (I(chans) => x = newChan(q, n)(chans))

AND ((NOT I(chans) AND NOT H(chans))

=> FORALL (a, b : NODE) :

x[a][b] = chans[a][b]))};

Now, we can specify the state-machine with the following
single transition:

TRUE --> chans’ IN chanSet(chans);

In all states, chans is updated to be some configuration
of channels from the possible configurations returned by
chanSet(chans). Why might one wish to “pull” transitions
out of a state-machine specification and into a predicate?
One reason would be to decompose the transitions enabled
by the state machine itself from the environmental con-
straints over the machine. For example, suppose that in our
example distributed system, the nodes themselves are not re-
sponsible for creating new channels—some third party does
so. In this case, specifying channel creation in the transi-
tions of the state-machine module itself belies the distinction
between the distributed system and its environment. (See
Section 5.2 for an industrial application of this idea.)

We can even go one step further and remove the constraints
entirely from the model. First, we modify the previous tran-
sition so that it is completely unconstrained: under any con-
dition (i.e., a guard of TRUE), it returns any configuration of
channels. (We also add an auxiliary history variable, the
sole purpose of which is to record the set of channels in the
previous state; we use the variable shortly.

TRUE --> chans’ IN {x : CHANS | TRUE};

chansHist’ = chans

Now suppose we were to prove some property about the
machine; for instance, suppose we wish to prove that all
channels between two nodes are unidirectional. We might
state the theorem as follows.4

Thm : THEOREM system |-

G(FORALL (a,b : NODE) :

chans[a][b] => NOT chans[b][a]);

With a completely under-specified state machine, the the-
orem fails. We are forced to add as an explicit hypothesis
that the state variable chans belongs to the set of channels
chanSet(chansHist) generated in the previous state.5

Thm : THEOREM system |-

LET inv : BOOLEAN = chanSet(chansHist)(chans)

IN W((inv => FORALL (a, b : NODE) :

chans[a][b] => NOT chans[b][a])

, NOT inv);
4This and subsequent SAL theorems, lemmas, etc. are
stated in the language of Linear Temporal Logic (LTL), a
common model-checking logic. In the following theorem, the
G operator states that its argument holds in all states on an
arbitrary path, and LTL formulas are implicitly quantified
over all paths in the system. See the SAL documentation
for more information.
5Due to the semantics of LTL, we cannot simply add
chanSet(chansHist)(chans) (call it inv) as a hypothesis.
This is because false positives propagate over transitions:
there is a path on which inv fails for one or more steps (so
the implication holds), and because the state machine was
under-specified, we can then reach a state in which inv holds
but the unidirectional property fails. To solve this problem,
we use the weak until LTL operator W. Intuitively, W states
that on any arbitrary path, its first argument either holds
forever, or it holds in all states until its second argument
holds, at which point neither need to hold.

23 October 2007

23

Being forced to add the hypothesis can be a virtue: the en-
vironmental assumptions now appear in the theorem rather
than being implicit in the state machine. The difference be-
tween assumptions being implicit in the model or explicit
in the theorem is analogous to postulating assumptions as
axioms in a theory or as hypotheses in a proof—a classic
tradeoff made in mechanical theorem proving. SAL allows a
verificationist to have the same freedoms in a model checking
environment.

4. PRACTICAL INVARIANTS
Bounded model checkers have historically been used to find
counterexamples, but they can also be used to prove in-
variants by induction over the state space [7]. SAL sup-
ports k-induction, a generalization of the induction princi-
ple, which can prove some invariants that may not be strictly
inductive. The technique can be applied to both finite-state
and infinite-state systems. In both cases, a bounded model
checker is used. For infinite-state systems, the bounded
model checker is combined with a satisfiability modulo theo-
ries (SMT) solver [8, 26]. For shorthand, I refer to infinite-
state bounded model checking via k-induction as inf-bmc in
the remainder of this paper.

The default SMT solver used by SAL is SRI’s own Yices
solver, which is a SMT solver for the satisfiability of (possi-
bly quantified) formulas containing uninterpreted functions,
real and integer linear arithmetic, arrays, fixed-size bit vec-
tors, recursive datatypes, tuples, records, and lambda ex-
pressions [9]. Yices has regularly been one of the fastest and
most powerful solvers at the annual SMT competitions [2].

4.1 Generalized Induction
To define k-induction, let (S, I, →) be a transition system
where S is a set of states, I ⊆ S is a set of initial states, and
→ is a binary transition relation. If k is a natural number,
then a k-trajectory is a sequence of states s0 → s1 → . . . →

sk (a 0-trajectory is a single state). Let k be a natural
number, and let P be property. The k-induction principle
is then defined as follows:

• Base Case: Show that for each k-trajectory s0 → s1 →

. . . → sk such that s0 ∈ I, P (sj) holds, for 0 ≤ j < k.

• Induction Step: Show that for all k-trajectories s0 →

s1 → . . . → sk, if P (sj) holds for 0 ≤ j < k, then
P (sk) holds.

The principle is equivalent to the usual transition-system
induction principle when k = 1. In SAL, the user specifies
the depth at which to attempt an induction proof, but the
attempt itself is automated.

For example, consider the following state machine defined
in SAL:

counter1 : MODULE =

BEGIN

OUTPUT cnt : INTEGER

OUTPUT b : BOOLEAN

INITIALIZATION

cnt = 0;

b = TRUE;

TRANSITION

[b --> cnt’ = cnt + 2;

b’ = NOT b

[] ELSE --> cnt’ = cnt - 1;

b’ = NOT b

]

END;

The module produces an infinite sequence of integers and
boolean values. It’s behavior is as follows:

cnt : 0 2 1 3 2 4 . . .

b : T F T F T F . . .

Now suppose we wish to prove the following invariant holds:

Cnt1Clm : CLAIM counter1 |- G(cnt >= 0);

While Cnt1Clm is an invariant, it is not inductive (i.e., k =
1). To see why, consider the induction step, and consider (an
unreachable) state in which b is false and cnt is zero. This
state satisfies Cnt1Clm, but in one step, cnt equals −1, and
the invariant fails. However, in any two steps (i.e., k = 2),
the claim holds.

4.2 Disjunctive Invariants
Unfortunately, k-induction is exponential in the size of k, so
at some point, an invariant will likely need to be manually
strengthened. I find the method of building up invariants
using disjunctive invariants [24] to be particularly suited to
SAL. A disjunctive invariant is built up by adding disjuncts,
each of which is an invariant for some system configuration.
In SAL, disjunctive invariants can quickly be built up by
examining the counterexamples returned by SAL in failed
proof attempts. Disjunctive invariants contrast with the tra-
ditional approach of strengthening an invariant by adding
conjuncts. Each conjunct in a traditional invariant needs to
hold in every system configuration, unlike in a disjunctive
invariant.

Consider the following simple example:

counter2 : MODULE =

BEGIN

OUTPUT cnt : INTEGER

OUTPUT b : BOOLEAN

INITIALIZATION

cnt = 0;

b = TRUE;

TRANSITION

[b --> cnt’ = (-1 * cnt) - 1;

b’ = NOT b

[] ELSE --> cnt’ = (-1 * cnt) + 1;

b’ = NOT b

]

END;

23 October 2007

24

The module produces an infinite sequence of integers and
boolean values. It’s behavior is as follows:

cnt : 0 −1 2 −3 4 −5 . . .

b : T F T F T F . . .

Suppose we wished to prove an invariant that captures the
behavior of the state machine. Rather than consider every
configuration of the machine, we might begin with an initial
approximation that only characterizes states in which b is
true:

Cnt2Clm : CLAIM counter2 |- G(b AND cnt >= 0);

The conjecture fails. SAL automatically returns a coun-
terexample in which both b is false and cnt is less than
zero. Guided by the counterexample, we can now augment
the original conjecture with a disjunct to characterize the
configuration in which b is false.

Cnt2Clm : CLAIM counter2 |-

G((b AND cnt >= 0)

OR (NOT b AND cnt < 0));

The stated conjecture is proved by SAL. Of course, the ex-
ample presented is quite simple, but the technique allows
one to build up invariants of complex specifications in piece-
meal fashion by considering only one configuration at a time
and allowing SAL’s counterexamples to show remaining con-
figurations.

Using k-induction and disjunctive invariants, Geoffrey Brown
and I were able to dramatically reduce the verification ef-
fort of physical-layer protocols, such as the Biphase Mark
protocol (used in CD-player decoders, Ethernet, and To-
kenring) and the 8N1 protocol (used in UARTs) [5]. The
verification of BMP presented herein results in an orders-
of-magnitude reduction in effort as compared to the proto-
col’s previous formal verifications using mechanical theorem
proving. Our verification required 3 invariants, whereas a
published proof using the mechanical theorem prover PVS
required 37 [28]. Using infinite-bmc induction, proofs of the
3 invariants were completely automated, whereas the PVS
proof initially required some 4000 user-supplied proof direc-
tives, in total. Another proof using PVS is so large that the
tool required 5 hours just to check the manually-generated
proof whereas the SAL proof is generated automatically in
seconds [13]. BMP has also been verified by J. Moore using
Nqthm, a precursor to ACL2, requiring a substantial proof
effort (Moore cites the work as being one of the “best ideas”
of his career) [18].6 Geoffrey and I spent only a couple of
days to obtain our initial results; much more time was spent
generalizing the model and writing up the results.

In Section 5.1, we describe techniques to exploit k-induction
effectively.

6http://www.cs.utexas.edu/users/moore/best-ideas/.

5. COMPOSITION
Similar to SMV [16] and other model checkers, SAL al-
lows state machines to be composed both synchronously and
asynchronously, and a composed state machine may con-
tain both synchronously and asynchronously composed sub-
compositions. For example, supposing that A, B, C, and D

were modules, the following is a valid composition (assum-
ing the modules satisfy the variable-update constraints for
synchronous composition mentioned in Section 2):

E : MODULE = (A [] B) [] (C || D);

The judicious use of synchronous composition can simplify
specifications and ease the verification effort, taking further
advantage of SAL’s tools.

In the following, I first provide an example emphasizing how
to use synchronous composition to reduce the proof effort for
k-induction. The second emphasizes how to judiciously use
composition to decompose environmental constraints from
the state machine itself, allowing for simple specification re-
finements.

5.1 Cheap Induction Proofs
In proofs by k-induction (described in Section 4), k specifies
the length of trajectories considered in the base case and
induction step. With longer trajectories, weaker invariants
can be proved. Unfortunately, the cost of k induction is
exponential in the value of k, since a SAT-solver is used
to unroll the transition relation. Thus, models that reduce
unessential interleavings make k-induction proofs faster.

Let me give a simple example explaining this technique first
and then describe how I used it in an industrial verifica-
tion. Recall the module counter1 from Section 4.1. We will
modify its transitions slightly so that it deadlocks when the
counter is greater than 2 (the sole purpose of which is to
avoid dealing with fairness conditions in the foregoing state-
machine composition):

b AND cnt <= 2 --> cnt’ = cnt + 2;

b’ = NOT b

[] (NOT b) AND cnt <= 2 --> cnt’ = cnt - 1;

b’ = NOT b

The behavior of the generated state machine is as follows:

cnt : 0 2 1 3 (deadlock)
b : T F T F (deadlock)

Now suppose we wish to prove that the cnt variable is always
nonnegative.

cntThm : THEOREM nodes |- G(cnt >= 0);

This property is k-inductive for k = 2 (for the reasons men-
tioned in Section 4.1). Now we are going to compose some
instances of the node module together. SAL provides some

23 October 2007

25

convenient syntax for doing this, but first, we must param-
eterize the above module. We being by defining an index
type [1..I] denoting the sequence 1, 2, . . . , I .

I : NATURAL = 5;

INDICES : TYPE = [1..I];

Now we modify the declaration of the node module from

node : MODULE =

BEGIN

...

as above to a module parameterized by indices:

node[i: INDICES]: MODULE =

BEGIN

...

where the remainder of the module declaration is exactly
as presented above. Now we can automatically compose
instances of the module together with the following SAL
declaration (an explanation of the syntax follows):

nodes : MODULE =

WITH OUTPUT cnts : ARRAY INDICES OF INTEGER

(|| (i : INDICES) : RENAME cnt TO cnts[i]

IN node[i]);

The module nodes is the synchronous composition of in-
stances of the node module, one for each index in INDICES.
The nodes module has only one state variable, cnts. This
variable is an array, and its values are taken from the cnt

variables in each module. Thus, cnts[j] is value of cnt

from the jth node module.

We can modify slightly the theorem proved about a single
module to cover all of the modules in the composition:

cntsThm : CLAIM nodes |-

G(FORALL (i : INDICES) : cnts[i] >= 0);

The theorem is proved using k-induction at k = 2. Indeed,
in the synchronous composition, it is proved for k = 2 for
any number of nodes (i.e., values of I). I proved cntsThm

for two through thirty nodes on a PowerBook G4 Mac with
one gigabyte of memory, and the proofs all took about 1-2
seconds.

On the other hand, if we change the synchronous composi-
tion in the nodes module above to an asynchronous compo-
sition,7 the cost increases exponentially. Intuitively, we have

7The theorem cntsThm would have had to include fairness
constraints if the asynchronously-composed modules did not
deadlock after some number of steps.

to increase the value of k to account for the possible inter-
leavings in which each module’s cnt and b variables are up-
dated. For two nodes (I = 2), proving the theorem cntsThm

requires at minimum k = 6. On the same PowerBook, the
proof takes about one second. For I = 3, the proof requires
k = 10, and the proof takes about three and one-half sec-
onds. For I = 4, we require k = 14 and the proof takes just
over 10 minutes; for I = 5, we require k = 18, and I stopped
running the experiment after five hours of computation!

This technique has a practical aspect. To verify a reinte-
gration protocol in SAL using inf-bmc, I used these tech-
niques [21]. A reintegration protocol is a protocol designed
for fault-tolerant distributed systems—in particular, I ver-
ified a reintegration protocol for SPIDER, a time-triggered
fly-by-wire communications bus being designed at NASA
Langley [27]. The protocol increases system survivability by
allowing a node that has suffered a transient fault (i.e., it is
not permanently damaged) to regain state consistent with
the non-faulty nodes and reintegrate with them to deliver
system services.

In the model of the system, I initially began with a highly-
asynchronous model. I realized, however, that much of the
asynchronous behavior could be synchronous without affect-
ing the fidelity of the model. One example is the specifica-
tion of non-faulty nodes (or operational nodes) being ob-
served by the reintegrating node. In this model, their ex-
ecutions are independent of each other, and their order of
execution is not relevant to the verification (we do not care
which operational node executes first, second, etc., but only
that each operational node executes within some window).
Thus, we can update the state variables of each operational
node synchronously. Each maintains a variable ranging over
the reals (its timeout variable—see Section 3.1) denoting at
what real-time it is modeled to execute, but their transitions
occur synchronously.

An anonymous reviewer of this report noted that the tech-
nique appears to be akin to a partial-order reduction [6]
applied to inf-bmc, and asked if such a reduction could be
realized automatically. For the simple example presented, I
believe it would be possible to do so, but as far as I know,
generalizations would be an open research question.

To summarize, while synchronous and asynchronous compo-
sition are not unique to SAL, their impact on k-induction
proofs is a more recent issue. Since k-induction is especially
sensitive to the lengths of trajectories to prove an invariant,
synchronous composition should be employed when possible.

5.2 Environmental Decomposition
Another use of synchronous composition is to decompose the
environment model from the system model. The purpose of
an environmental model is to constrain the behavior of a sys-
tem situated in that environment. In the synchronous com-
position of modules A and B, if either module deadlocks, the
composition A || B deadlocks. Thus, environmental con-
straints can be modeled by having the environment deadlock
the entire system on execution paths outside of the environ-
mental constraints.

23 October 2007

26

For example, Geoffrey Brown and I used this approach in the
verification and refinement of physical-layer protocols [3].
Physical-layer protocols are cooperative protocols between
a transmitter and a receiver. The transmitter and receiver
are each hardware devices driven by separate clocks. The
goal of the protocols is to pass a stream of bits from the
transmitter to the receiver. The signal must encode not
only the bits to be passed but the transmitter’s clock signal
so that the receiver can synchronize with the transmitter to
the extent necessary to capture the bits without error.

In the model, we specify three modules: a transmitter (rx),
a receiver (tx), and a constraint module (constraint) simu-
lating the environment. The entire system is defined as the
composition of three modules, where the transmitter and
receiver are asynchronously composed, and the constraint
module is synchronously composed with the entire system:

system : MODULE = (tx [] rx);

systemEnv : MODULE = system || constraint;

In this model, the constraint module separates out from the
system the effects of metastability, a phenomenon in which a
flip flop (i.e., latch) does not settle to a stable value (i.e., “1”
or “0”) within a clock cycle. Metastability can arise when a
signal is asynchronous (in the hardware-domain sense of the
word); that is, it passes between clock regions. One goal of
physical-layer protocols is to ensure that the probability of
metastable behavior is sufficiently low.

In the module rx, the receiver’s behavior is under-specified.
In particular, we do not constrain the conditions under which
metastability may occur. The receiver captures the signal
sent with the boolean variable rbit. The receiver is speci-
fied with a guarded transition like the following (the guard
has been elided) allowing rbit to nondeterministically take
a value of FALSE or TRUE, regardless of the signal sent to it
by the transmitter:

... --> rbit’ IN {FALSE, TRUE};

The under-specified receiver is constrained by its environ-
ment. The constraint module definition is presented below,
with extraneous details (for the purposes of this discussion)
elided.

constraint : MODULE =

...

DEFINITION

stable = NOT changing OR tclk - rclk < TSTABLE;

...

TRANSITION

rclk’ /= rclk AND (stable => rbit’ = tdata) -->

[] ...

In the module, we define the value of the state variable
stable to be a fixed function of other state variables (model-
ing the relationship between the transmitter’s and receiver’s

respective clocks). The variable stable captures the suffi-
cient constraints to prevent metastability. We give a rep-
resentative transition in the constraint module. The transi-
tion’s guard is a conjunction. The first condition holds if the
receiver is making a transition (the guard states that the re-
ciever’s clock is being updated—this is a timeout automata
model, as mentioned in Section 3.1). The second conjunct
enforces a relation between the signal the transmitter sends
(tdata) and the value captured by the receiver (rbit): if
stable holds, then the receiver captures the signal. In other
words, the constraint module prunes the execution paths al-
lowed by the system module alone in which the value of
rbit is completely nondeterministic. Finally, note that be-
cause no state variables follow --> in the transition, no state
variables are updated by the environment.

So what are the benefits of the decomposition? One exam-
ple is refinement. Brown and I wished to refine the physical-
layer protocols we specified. These protocols are real-time
protocols. Unfortunately, we could not easily compose the
real-time specifications with synchronous (i.e., finite-state)
hardware specifications of the transmitter and the receiver.
Doing so would require augmenting the invariant about real-
time behavior with invariants about the synchronous hard-
ware. Ideally, we could decompose the correctness proof of
the protocol with the correctness proofs of the hardware in
the transmitter and receiver, respectively.

Therefore, we developed a more abstract finite-state, discrete-
time model of the protocols. The finite-state model could be
easily composed with the other finite-state specifications of
the synchronous hardware within a single clock domain; i.e.,
the transmitter’s encoder could be composed with a specifi-
cation of the remainder of the transmitter’s hardware, and
the receiver’s decoder could be composed with a specification
of the remainder of the receiver’s hardware. The entire spec-
ification could then be verified using a conventional model
checker, like SAL’s BDD-based model checker.

The goal was to carry out a temporal refinement to prove
that the real-time implementation refined the discrete-time
specification. Using inf-bmc, we verified the necessary re-
finement conditions. These conditions demonstrate that the
implementation is more constrained (i.e., has fewer behav-
iors) than its specification along the lines of Abadi and Lam-
port’s classic refinement approach [1].

In SAL, most of the refinement was “for free.” For example,
recall that a synchronous composition A || B constrains the
possible behaviors of module A and B. Thus, by definition,
A || B is a refinement of A.

Thus, to prove that the real-time model

system : MODULE = (tx [] rx);

systemEnv : MODULE = (tx [] rx) || constraint;

refines the discrete-time model

system_dt : MODULE = tx_dt [] rx_dt;

23 October 2007

27

(where dt stands for“discrete time”), we simply had to prove
that tx refines tx_dt and that rx refines rx_dt. We did
not have to refine the constraint module, as one would
intuitively expect, since it is orthogonal to the system itself.

6. THE MARRIAGE OF MODEL CHECK-

ING AND THEOREM PROVING
Sometimes, even the powerful tools provided by SAL are
not enough. In this section, I describe three ways in which I
have used SAL in tandem with a mechanical theorem prover
to take advantage of the best of both worlds. The two ex-
amples include using SAL to discover counterexamples to
failed proof conjectures and verifying a theory of real-time
systems in a mechanical theorem prover, and then using SAL
to prove that an implementation satisfies constraints from
the theory.

6.1 Counterexample Discovery
Sometimes verifications require the full interactive reasoning-
power of mechanical theorem proving. This is the case
when, for example, the specification or proof involves in-
tricate mathematics (that does not fall within a decidable
theory), or the specification is heavily parameterized (e.g.,
proving a distributed protocol correct for an arbitrary num-
ber of nodes).

Although rarely discussed in the literature, most attempts
to prove conjectures using interactive mechanical theorem
proving fail. Only after several iterations of the following
steps

1. attempting to prove a theorem,
2. then discovering the theorem is false or the proof is too

difficult,
3. revising the specification or theorem accordingly,
4. and repeating from Step 1

is a theorem finally proved.

Provided the theorem prover is sound and the conjecture is
not both true and unprovable—a possibility in mathematics—
there are two possible reasons for a failed proof attempt.
First, the conjecture may be true, but the user lacks the
resources or insight to prove it. Second, the conjecture may
be false. It can be difficult to determine which of these is
the case.

Proofs of correctness of algorithms and protocols often in-
volve nested case-analysis. A proof obligation that cannot
be completed is often deep within the proof, where intu-
ition about the system behavior—and what constitutes a
counterexample—wanes. The difficulty is also due to the
nature of mechanical theorem proving. The proof steps is-
sued in such a system are fine-grained. Formal specifications
make explicit much of the detail that is suppressed in infor-
mal models. The detail and formality of the specification
and proof makes the discovery of a counterexample more
difficult.

Paul Miner, Wilfredo Torres-Pomales, and I ran against this
very problem when trying to verify the correctness of a fault-
tolerant protocol for a distributed real-time fault-tolerant

[-1] good?(r_status!1(r!1))
[-2] asymmetric?(b_status!1(G!1))
[-3] IC_DMFA(b_status!1, r_status!1, F!1)
[-4] all_correct_accs?(b_status!1, r_status!1, F!1)
|-------

[1] trusted?(F!1‘BR(r!1)(G!1))
[2] declared?(F!1‘BB(b2!1)(G!1))
{3} (FORALL (p_1: below(R)):

(trusted?(F!1‘RB(b1!1)(p_1)) =>
NOT asymmetric?(r_status!1(p_1))))

&
(FORALL (p_1: below(R)):

(trusted?(F!1‘RB(b2!1)(p_1)) =>
NOT asymmetric?(r_status!1(p_1))))

[4] declared?(F!1‘BB(b1!1)(G!1))
[5] robus_ic(b_status!1, r_status!1,

F!1‘BB(b1!1)(G!1), F!1‘RB(b1!1))
(G!1, msg!1, b1!1)

=
robus_ic(b_status!1, r_status!1,

F!1‘BB(b2!1)(G!1), F!1‘RB(b2!1))
(G!1, msg!1, b2!1)

Figure 1: Unproved PVS Sequent

bus [22]. The protocol we were verifying was an interactive
consistency protocol designed for NASA’s SPIDER architec-
ture [27]. We were verifying the protocol in PVS.

The protocol suffered a bug in its design: the bug occurrs if
two Byzantine faults [15] (allowing unconstrained faulty be-
havior) occur simultaneously. Such an occurrence is a rare
pathological case that escaped our pencil-and-paper analy-
sis.

During the course of formally verifying the protocol, Torres-
Pomales independently discovered the bug through “engi-
neering insight.” Nevertheless, as a case-study in distilling
counterexamples from a failed proof, we decided to press on
in the proof until a single leaf in the proof tree remained. To
give the reader an idea about what the unproven leaf looked
like, we present the PVS sequent if Figure 1 (it is described
in detail elsewhere [22]).

The unproven leaf, however, does not give a good idea as to
whether a counterexample actually exists and if one does,
what that counterexample is. Therefore, building on the
specification and verification of a similar protocol done by
John Rushby in SAL [25], we formulated the unproven leaf
as an LTL conjecture in SAL (Figure 2) stating that in all
states, the unproven leaf from the PVS specification indeed
holds.

Note the similarity between the PVS sequent and the SAL
conjecture afforded by the expressiveness of SAL’s language.
The main difference between the sequent and conjecture are
the use of arrays in SAL rather than curried functions in
PVS and that the number of nodes are fixed in the finite-
state SAL specification.

For a fixed number of nodes, SAL easily returns a concrete
counterexample showing how a state can be reached in which
the theorem is false.

23 October 2007

28

counterex : CLAIM system |-
G((pc = 4 AND

r_status[1] = good AND
G_status = asymmetric AND
IC_DMFA(r_status, F_RB, F_BR, G_status) AND
all_correct_accs(r_status, F_RB,

G_status, F_BR, F_BB))
=>

(F_BR[1] = trusted OR
F_BB[2] = declared OR
((FORALL (r: RMUs): F_RB[1][r] = trusted =>

r_status[r] /= asymmetric)
AND
(FORALL (r: RMUs): F_RB[2][r] = trusted =>

r_status[r] /= asymmetric)) OR
F_BB[1] = declared OR
robus_ic[1] = robus_ic[2]));

Figure 2: SAL Formulation in LTL of the Unproved
Sequent

While our case-study highlights the benefit of interactivity
between model checking and theorem proving, further work
is required. The case-study suffers at least the following
shortcomings:

• The approach is too interactive and onerous. It re-
quires manually specifying the protocol and failed con-
jecture in a model checker and manually correcting the
specification in the theorem prover.

• The approach depends on the counterexample being
attainable with instantiated parameters that are small
enough to be model checked. As pointed out by an
anonymous reviewer of this report, that the counterex-
ample was uncovered with small finite values accords
with Daniel Jackson’s “small scope hypothesis” [14].
For the case presented, we could have uncovered the
error through model checking alone, but our goal was
to prove the protocols correct for any instantiation of
the parameters, as we were in fact able to do, once the
protocol was mended [17].

• We would like a more automated approach to verify
the parameterized protocol specification in the first
place than is possible using mechanical theorem prov-
ing alone.

A more automated connection between PVS and SAL would
be a good start to satisfying many of these desiderata.

6.2 Real-Time Schedule Verification
In this final example, I used PVS to specify and verify a
general mathematical theory, and then I used SAL to au-
tomatically prove that various hardware realizations satis-
fied the theory’s constraints. Specifically, I used PVS to ex-
tend a general theory about time-triggered systems. Time-
triggered systems are distributed systems in which the nodes
are independently-clocked but maintain synchrony with one
another. Time-triggered protocols depend on the synchrony

assumption the underlying system provides, and the proto-
cols are often formally verified in an untimed or synchronous
model based on this assumption. An untimed model is sim-
pler than a real-time model, but it abstracts away timing
assumptions that must hold for the model to be valid.

John Rushby developed a theory of time-triggered system in
PVS [23]. The central theorem of that work showed that un-
der certain constraints, a time-triggered system simulates a
synchronous system. Some of the constraints (or axioms, as
they were formulated in PVS) were inconsistent. I mended
these inconsistencies and extended the theory to include a
larger class of time-triggered protocols [20].

A theorem prover was the right tool for this effort, as the the-
ory is axiomatic and its proofs rely on a variety of arithmetic
facts (e.g., properties of floor and ceiling functions, prop-
erties of absolute values, etc.). Furthermore, using PVS,
I could formally prove the theory consistent by showing a
model exists for it using theory interpretations, as imple-
mented in PVS [19].

Once the theory was developed, I wished to prove that spe-
cific hardware schedules satisfied the real-time constraints
of the theory. To do so, I essentially lifted the schedule con-
straints (i.e., the axioms) from the PVS specification into
SAL, given the similarity of the languages. Then I built
a simple state machine that emulated the evolution of the
hardware schedules through the execution of the protocol. I
finally proved theorems stating that in the execution of the
state machine, the constraints are never violated. This ver-
ification also used inf-bmc (Section 4), since the constraints
were real-time constraints.

Synchronous Model

Correctness

Requirements

Protocol A Protocol B

Implements

(proved in PVS)

Satisfies

(proved in PVS)

Time-Triggered Model

Time-Triggered

Timing Requirements

Protocol A Protocol B

Schedule

satisfies

(proved in SAL)

Figure 3: Time-Triggered Protocol Verification
Strategy

The upshot of the approach is a formally-verified connection
between the untimed specification and the hardware realiza-
tion of a time-triggered protocol with respect to its timing
parameters, as shown in Figure 3.

Stepping back, the above approach is an example of the
judicious combination of mechanical theorem proving and
model checking. While theorem proving requires more hu-
man guidance, it was appropriate for formulating and verify-
ing the theory of time-triggered systems because the theory
required substantial mathematical reasoning, and we only
have to develop the theory once. To prove the timing char-
acteristics of the implementations are correct, model check-
ing was appropriate because the proofs can be automated,
and the task must be repeated for each implementation or

23 October 2007

29

optimization for a single implementation.

7. CONCLUSION
My goal in this paper was to advocate for and demonstrate
the utility of the advanced features of SAL. I hope this report
serves as a “cookbook” of sorts for the uses of SAL I have
described.

In addition to the features and techniques I have demon-
strated herein, other applications have been developed. As
one example, Grégoire Hamon, Leonardo de Moura, and
John Rushby prototyped a novel automated test-case gener-
ator in SAL [11]. The prototype is a few-dozen line Scheme
program that calls the SAL API for its model checkers.
Still other uses can be found on the SAL wiki at http://

sal-wiki.csl.sri.com/index.php/Main_Page, which should
continue to provide the community with additional SAL suc-
cesses.

Acknowledgments
Many of the best ideas described herein are from my coau-
thors. I particularly thank Geoffrey Brown for his fruitful
collaboration using SAL. I was first inspired to use SAL
from attending Bruno Dutertre’s seminar at the National
Institute of Aerospace. John Rushby’s SAL tutorial [25]
helped me enormously to learn to exploit the language. I
received detailed comments from the workshop’s anonymous
reviewers and from Levent Erkök at Galois, Inc. Much of
the research cited herein was completed while I was a mem-
ber of the NASA Langley Research Center Formal Methods
Group.

8. REFERENCES
[1] M. Abadi and L. Lamport. The existence of refinement

mappings. Theor. Comput. Sci., 82(2):253–284, 1991.

[2] C. Barrett, L. de Moura, and A. Stump. Design and
results of the 2nd satisfiability modulo theories
competition (SMT-COMP 2006). Formal Methods in
System Design, 2007. Accepted June, 2007. To appear.
A preprint is available at http://www.smtcomp.org/.

[3] G. Brown and L. Pike. Temporal refinement using smt
and model checking with an application to
physical-layer protocols. In Proceedings of Formal
Methods and Models for Codesign
(MEMOCODE’2007), pages 171–180. OmniPress,
2007. Available at http://www.cs.indiana.edu/

~lepike/pub_pages/refinement.html.

[4] G. M. Brown and L. Pike. Easy parameterized
verification of biphase mark and 8N1 protocols. In The
Proceedings of the 12th International Conference on
Tools and the Construction of Algorithms
(TACAS’06), pages 58–72, 2006. Available at http://

www.cs.indiana.edu/~lepike/pub_pages/bmp.html.

[5] G. M. Brown and L. Pike. ”easy” parameterized
verificaton of cross domain clock protocols. In Seventh
International Workshop on Designing Correct Circuits
DCC: Participants’ Proceedings, 2006. Satellite Event
of ETAPS. Available at http://www.cs.indiana.edu/

~lepike/pub_pages/dcc.html.

[6] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[7] L. de Moura, S. Owre, H. Rueß, J. Rushby,
N. Shankar, M. Sorea, and A. Tiwari. SAL 2. In
R. Alur and D. Peled, editors, Computer-Aided
Verification, CAV 2004, volume 3114 of Lecture Notes
in Computer Science, pages 496–500, Boston, MA,
July 2004. Springer-Verlag.

[8] L. de Moura, H. Rueß, and M. Sorea. Bounded model
checking and induction: From refutation to
verification. In Computer-Aided Verification, CAV’03,
volume 2725 of LNCS, 2003.

[9] B. Dutertre and L. de Moura. Yices: an SMT solver.
Available at http://yices.csl.sri.com/, August
2006.

[10] B. Dutertre and M. Sorea. Modeling and verification
of a fault-tolerant real-time startup protocol using
calendar automata. In Formal Techniques in
Real-Time and Fault-Tolerant Systems, volume 3253 of
Lecture Notes in Computer Science, pages 199–214,
Grenoble, France, Sept. 2004. Springer-Verlag.
Available at
http://fm.csl.sri.com/doc/abstracts/ftrtft04.

[11] G. Hamon, L. deMoura, and J. Rushby. Generating
efficient test sets with a model checker. In 2nd
International Conference on Software Engineering and
Formal Methods, pages 261–270, Beijing, China, Sept.
2004. IEEE Computer Society.

[12] J. Hughes. Why Functional Programming Matters.
Computer Journal, 32(2):98–107, 1989.

[13] D. V. Hung. Modelling and verification of biphase
mark protocols using PVS. In Proceedings of the
International Conference on Applications of
Concurrency to System Design (CSD’98),
Aizu-wakamatsu, Fukushima, Japan, March 1998,
pages 88–98. IEEE Computer Society Press, 1998.

[14] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. The MIT Press, 2006.

[15] Lamport, Shostak, and Pease. The Byzantine generals
problem. ACM Transactions on Programming
Languages and Systems, 4:382–401, July 1982.
Available at http:

//citeseer.nj.nec.com/lamport82byzantine.html.

[16] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[17] P. Miner, A. Geser, L. Pike, and J. Maddalon. A
unified fault-tolerance protocol. In Y. Lakhnech and
S. Yovine, editors, Formal Techniques, Modeling and
Analysis of Timed and Fault-Tolerant Systems
(FORMATS-FTRTFT), volume 3253 of LNCS, pages
167–182. Springer, 2004. Available at http://www.cs.

indiana.edu/~lepike/pub_pages/unified.html.

[18] J. S. Moore. A formal model of asynchronous
communication and its use in mechanically verifying a
biphase mark protocol. Formal Aspects of Computing,
6(1):60–91, 1994.

[19] S. Owre and N. Shankar. Theory interpretations in
PVS. Technical Report SRI-CSL-01-01, SRI,
International, April 2001. Available at
http://pvs.csl.sri.com/documentation.shtml.

[20] L. Pike. Modeling time-triggered protocols and
verifying their real-time schedules. In Proceedings of
Formal Methods in Computer Aided Design
(FMCAD’07). IEEE, 2007. Available at http://www.

23 October 2007

30

cs.indiana.edu/~lepike/pub_pages/fmcad.html. To
appear.

[21] L. Pike and S. D. Johnson. The formal verification of
a reintegration protocol. In EMSOFT ’05: Proceedings
of the 5th ACM international conference on Embedded
software, pages 286–289, New York, NY, USA, 2005.
ACM Press. Available at http://www.cs.indiana.

edu/~lepike/pub_pages/emsoft.html.

[22] L. Pike, P. Miner, and W. Torres. Model checking
failed conjectures in theorem proving: a case study.
Technical Report NASA/TM–2004–213278, NASA
Langley Research Center, November 2004. Available
at http://www.cs.indiana.edu/~lepike/pub_pages/
unproven.html.

[23] J. Rushby. Systematic formal verification for
fault-tolerant time-triggered algorithms. IEEE
Transactions on Software Engineering, 25(5):651–660,
September 1999.

[24] J. Rushby. Verification diagrams revisited: Disjunctive
invariants for easy verification. In E. A. Emerson and
A. P. Sistla, editors, Computer-Aided Verification,
CAV ’2000, volume 1855 of Lecture Notes in
Computer Science, pages 508–520, Chicago, IL, July
2000. Springer-Verlag. Available at http:

//www.csl.sri.com/users/rushby/abstracts/cav00.

[25] J. Rushby. SAL tutorial: Analyzing the fault-tolerant
algorithm OM(1). Technical Report CSL Technical
Note, SRI International, 2004. Available at http:

//www.csl.sri.com/users/rushby/abstracts/om1.

[26] J. Rushby. Harnessing disruptive innovation in formal
verification. In 4th IEEE International Conference on
Software Engineering and Formal Methods (SEFM).
IEEE Computer Society, 2006. Available at http://

www.csl.sri.com/users/rushby/abstracts/sefm06.

[27] W. Torres-Pomales, M. R. Malekpour, and P. Miner.
ROBUS-2: A fault-tolerant broadcast communication
system. Technical Report NASA/TM-2005-213540,
NASA Langley Research Center, 2005.

[28] F. W. Vaandrager and A. L. de Groot. Analysis of a
Biphase Mark Protocol with Uppaal and PVS.
Technical Report NIII-R0455, Nijmegen Institute for
Computing and Information Science, 2004.

23 October 2007

31

Modelling and test generation using SAL for
interoperability testing in Consumer Electronics

Srikanth Mujjiga
Philips Research Asia - Bangalore
srikanth.mujjiga@philips.com

Srihari Sukumaran
Philips Research Asia - Bangalore

srihari.sukumaran@philips.com

ABSTRACT
Testing of consumer electronics (CE) devices for interoper-
ability with respect to standards is an important validation
activity. We have developed a model-based approach for
producing interoperability tests based on a standards speci-
fication. This involves manually constructing individual de-
vice models in SAL, based on the standards, and using the
sal-atg tool to generate tests from the composed system
model. We describe this approach using an example stan-
dard. We also point out a problem with this approach, that
has to do with variability in the devices due to optional and
vendor-specific features. We propose an extension to the
SAL language that addresses this problem. The extension is
designed to enable the continued use of SAL tools for anal-
ysis purposes.

1. INTRODUCTION
Interoperability (refer [12],[19] etc.) is the ability of enti-

ties to communicate and use each others published capabili-
ties to offer the required functionalities to the end users. In
the context of consumer electronic (CE) devices, interoper-
ability is typically in the context of some standard. We will
consider a set of CE devices to be interoperable with respect
to some standard if they can interact to provide a user the
set of functionalities defined by the standard. Interoperabil-
ity testing is a key validation activity for entities that are to
function as part of a large system. Interoperability testing
tests the end-to-end functionality in a complete system of
multiple devices to validate that they are interoperable.

In prior work [17, 13] we have described the model-based
approach we have taken to generate interoperability tests.
We used the SAL language and sal-atg tool to realise our
approach. An important reason for choosing SAL was the
availability of a powerful, flexible and configurable model-
based test generation tool like sal-atg[7, 8] that allows gen-
eration of traces to cover a user given set of goals. This is
very useful in realising our approach [13]. SAL language is
also quite appropriate for modelling state-machine based de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM ’07, November 6, Atlanta, GA, USA.
Copyright 2007 ACM ISBN 978-1-59593-879-4/07/11 ...$5.00.

vice behaviours as specified by the CE standards. The pres-
ence of a large number of data types (arrays, records, etc.)
and the ability to specify state machines in a compositional
manner and using a guard-action style are quite appropriate
for our needs. In this paper we will first present our past
and ongoing work on modelling and generating tests based
on the CE standards using SAL. We will use an example (the
CEC standard) to illustrate what we had to do in terms of
modelling in SAL. We will then describe some limitations
and potential problems that arise in the context of inter-
operability testing due to the presence of great variability
due to optionality in standards and vendor-specific exten-
sions. We propose a slight extension to the SAL language
that addresses our problems and give an outline of how we
can use this extended SAL language to generate tests (using
standard sal-atg itself).

The paper is organized as follows: In section 2 we give
some background on interoperability and the CEC specifica-
tion. In section 3 we describe the modelling of CEC devices
and automated interoperability test case generation and the
problem we faced in the modelling step. Section 4 gives the
extensions we propose in the SAL modelling language. In
section 5 we discuss how to fit modelling in the extended
SAL language into the test generation process using sal-

atg. Conclusion and future work is presented in section 6.

2. BACKGROUND

2.1 Interoperability test generation for CE
In interoperability testing, tests are run to check whether a

system of two or more devices interoperate with each other.
The test cases for interoperability testing depends on the
system set-up which is normally given by the test engineer.
Often there are many set-ups that are to be tested and man-
ual test construction for each setup is tedious and error
prone and also there is no complete test coverage guaran-
tees. To address this problem we have developed an auto-
matic interoperability test generation framework based on
model based testing [13]. We construct models for each de-
vice type from the standards specification. This process is
manual and requires some skill, since the standards spec-
ifications are not completely formal; they are typically in
structured English text. We also chose to write the models
directly in the SAL language, since as described earlier the
language mostly provides all that we need. The SAL device
models are composed based on the test set-up given by the
test engineer and finally sal-atg is used on the composed
model for automatic test generation.

23 October 2007

32

In section 3 we will describe the modelling aspects of the
above approach, for the CEC standard, in some more detail.

2.2 Consumer Electronics Control (CEC)
The High-Definition Multimedia Interface (HDMI) [1] is

used to transmit digital audio-visual signals from source de-
vices like DVD players, set-top boxes, etc., to sink devices
like television sets, projectors and other displays. HDMI is
capable of carrying high quality multi-channel audio data
and all standard and high-definition consumer electronics
video formats. HDMI includes three separate communi-
cation channels, TMDS channel for carrying all audio and
video data as well as auxiliary data, the DDC channel, which
is used by an HDMI source to determine the capabilities and
characteristics of the sink and the CEC channel which is used
for high-level user functions such as automatic setup tasks
or tasks typically associated with infrared remote control
usage.

CEC is a protocol that provides features to enhance the
functionality and interoperability of devices within an HDMI
system. CEC is a protocol based on a bus system. All de-
vices which conform to the CEC standard (called CEC de-
vices henceforth) have both a physical and a logical address.
The logical address defines a device type as well as being a
unique identifier. There are 16 possible logical addresses in
a CEC network. CEC specification defines five device types
and they are TV, playback device, recording device, tuner
device and audio system. A CEC device is called a source
device if it is currently providing an audio-video stream via
HDMI (example: DVD Player) or a sink device if it has
an HDMI input and the ability to display the input HDMI
signal (example: TV).

CEC (version 1.3a) provides nine end-user features and
each feature is provided by a set of messages and associ-
ated behaviours. Some CEC messages require parameters
and the CEC message along with its parameters is embed-
ded in a CEC frame. There are 62 CEC messages and CEC
specification specifies how a device should respond to the
message if it wants to support it. CEC devices send mes-
sages as response to some message it has received or a re-
mote control operation by the user. There are two types of
CEC messages – broadcast messages to which all the CEC
devices must respond appropriately and directed messages
which are specifically directed toward a single CEC device.
There can be at most one CEC frame (and hence one CEC
message) at any time on the CEC channel (bus) and this is
ensured by CEC arbitration. A CEC device in case of an
unsupported message directed to it will respond by send-
ing a special message Feature Abort on the CEC channel.
Some of the CEC messages require pre-defined parameter
values and CEC device’s response to some of these param-
eter values are optional. For example, the CEC message
play requires one parameter and the CEC specification de-
fine 15 possible values that this parameter can take. But
only the response for parameter Play Forward is mandatory
to implement message play and all other 14 parameters are
optional. CEC devices will respond with Feature Abort if
they do not support them. So it is again up to the vendor
to decide whether to implement it or not.

3. MODELING AND TEST GENERATION
FOR CEC DEVICES

3.1 Construction of models for CEC device types
CEC specification defines five device types based on func-

tionality and we model each of these device types as SAL
base modules. All the nine end-user features involving the
62 CEC messages are modelled. So these device type base
modules include all the mandatory and optional features
given in the CEC specifications. To illustrate, a part of
the SAL module of the playback device, including only the
One Touch Play and Device SOD Name Transfer features,
is shown in figure 1. The One Touch Play feature allows
a device to be played and become the active source with
a single button press. Active source, Image View On and
Text View On are the CEC messages that are used in this
feature. CEC devices use Device OSD Name Transfer fea-
ture, which involves two CEC messages Give OSD Name and
Set OSD Name, to request or send the preferred name to be
used in any on-screen display (e.g., menus). See [1] for more
details.

The CEC frame is modeled as a SAL record as shown in
the lines 5 to 8 in figure 1. The parameters to the CEC
messages are abstracted to integers in the range 0 to 15 as
shown in line 7. The source field in the CEC frame is the
logical address of the device which is initiating the CEC
message and destination field is the logical address of the
device to which the message is directed. A special address 15
in the destination field indicates that it a broadcast message.
Every CEC device will have a unique logical address based
on its functionality (device type). So all the device type
based modules are parameterized by their logical address as
shown in line 11.

CEC devices respond to CEC message on the CEC chan-
nel and the possible responses are given in the CEC specifi-
cations. The response to a CEC message may require a CEC
device to initiate other CEC messages on the CEC channel.
Devices may also initiate CEC messages as a result of some
remote control operations from the user. The SAL base
module for each CEC device type gets the CEC frame on
the CEC channel via its INPUT variable I_msg_blk and ini-
tiates a CEC messages via its OUTPUT variable O_msg_blk.
A special value Null in the msg field of O_msg_blk indicates
that the device is not initiating any CEC message. Simi-
larly, the value Null in the msg field of I_msg_blk implies
that there is no CEC frame currently on the CEC channel,
i.e., the CEC channel is currently idle.

A CEC device is either in On or Standby state (which is
defined as a SAL TYPE in line 9). A playback device can also
be in either Deck Active or Deck Inactive state (defined
at line 10). CEC specifications gives the possible states of
all the device types. Initially all the devices are assumed
to be in On state and playback devices are assumed to be
in Deck Inactive state (as shown in line 17 of figure 1.
We have used only SAL SimpleDefinitions[11] for variable
initializations. There is a NamedCommand[11] transition
per valid value of each CEC messages. For example, lines
21 to 24 in figure 1 shows the response of the playback device
for the incoming CEC message Active Source. If the device
response to a CEC messages does not result in it initiating
any CEC message, then the msg field in its OUTPUT variable
is assigned a special value Null as shown in line 24. CEC
Devices can also initiate a CEC messages in response to some
remote control operation given by the user. For example, a
remote control play on a CEC playback device like a DVD
player may result in the DVD player becoming the active

23 October 2007

33

source (if it is in the position to become active source). In
such situation DVD player will respond by sending either
Image_View_On or Text_View_On message directed to the TV
(the logical address of TV is 0). We have modelled the
initiation of messages on the CEC channel caused by the
external environment (like remote control, user pressing a
button on the device, etc.) as non-deterministic transitions
as shown in line 26 to 46 in figure 1. Lines 21 to 46 in figure 1
are the transitions for messages required for One Touch Play

feature and the lines 48 to 63 are for the Device OSD Name

Transfer feature.

3.2 Construction of Bus model
CEC is based on a bus system and all the transactions

on the CEC bus consist of an initiator and one or more
followers. The initiator sends the CEC frame (CEC message
and data) and the followers respond to the CEC message.
There can be only one CEC frame at any time on the CEC
channel. The CEC bus arbitration ensures collisions are
spotted and reliable messaging can be achieved. It does this
in a completely static priority-based manner based on the
device’s logical address. The bus system of CEC is modeled
as a SAL base module. Currently we have modeled a simple
bus. The SAL code for a bus module which connects one
sink and two sources is shown in figure 2. This can easily
be generalised to the maximum number of sources.

The bus module has one OUTPUT variable out_block and
an array of INPUT variables in_block as shown in lines 3
and 4 of figure 2. It accepts the OUTPUT variable of all CEC
devices (O_msg_blk) via its INPUT variables. Depending on
device priorities, the bus module copies the value of one of
its INPUT variable into its OUTPUT variable out_block. As
per the standard, the bus module gives highest priority to
the device with lowest value as its logical address. The OUT-

PUT variable out_block of the bus module is made as INPUT
to all the CEC device modules (this is done by renaming
OUTPUT variable of bus module to I_msg_blk). As shown in
the guards of the transitions in the bus module in figure 2,
the value of the in_block corresponding to higher prior-
ity device is copied into out_block only if the CEC device
initiated a valid messages, i.e., only if msg field is not Null.
Similarly for the lower priority devices the value of in_block
is copied into out_block only if the above condition is true
and none of the higher priority devices have any messages,
i.e., their in_blocks are Null.

3.3 Construction of SUT model
The test set-up for interoperability testing will be a set

of CEC devices under test connected together by the CEC
bus. So the module for the system under test (SUT) is
constructed by instantiating the device type base modules
corresponding to the actual device under test (given by the
test set-up information) and composing them synchronously
with the bus module. The pictorial view of the composition
of a sample test set-up with 1 TV and 2 play back devices
(DVD players) is shown in figure 3 and the corresponding
SAL module is shown in figure 4. Renaming is done to
make the OUTPUT of the bus module as INPUT to the device
modules as shown in line 14 of figure 4 and OUTPUT of the
device modules as INPUT to the bus module as shown in lines
3, 6, 9 and 13.

3.4 Test generation

1 CEC : CONTEXT = BEGIN
2 CEC_Msg : TYPE = { Null, Active_Source,Image_View_On,
3 Text_View_On,Set_OSD_Name,Give_OSD_Name,feature_abort};
4 Dev_Addr : TYPE = [0 .. 15];
5 Msg_Blk : TYPE = [#
6 msg : CEC_Msg, %%% Actual message
7 param1 : [0..15], %%% Abstracted parameter
8 source : Dev_Addr, destination : Dev_Addr #];
9 State1 : TYPE = { On, Standby };

10 PBD_State2 : TYPE = { Deck_Active, Deck_Inactive };
11 PBD[my_la : types!Dev_Addr] : MODULE = BEGIN
12 INPUT I_msg_blk : types!Msg_Blk;
13 OUTPUT O_msg_blk : types!Msg_Blk
14 LOCAL cs1 : State1, cs2 : PBD_State2, as : BOOLEAN,
15 curr_active_source : Dev_Addr,
16 INITIALIZATION
17 cs1 = On; cs2 = Deck_Inactive; O_msg_blk.msg = Null;
18 as = FALSE; curr_active_source = 0;
19 TRANSITION
20 [%%% Feature 1 : One Touch Play
21 ACTIVE_SOURCE_I: I_msg_blk.msg = Active_Source
22 AND cs1 = On -->
23 curr_active_source’ = I_msg_blk.param1;
24 O_msg_blk’.msg = Null;
25 []
26 IMAGE_VIEW_ON_O: I_msg_blk.msg = Null AND
27 cs1 = On-->
28 O_msg_blk’.msg = Image_View_On;
29 O_msg_blk’.source = my_la;
30 O_msg_blk’.destination = 0;
31 as’ = TRUE;
32 []
33 TEXT_VIEW_ON_O: I_msg_blk.msg = Null AND
34 cs1 = On -->
35 O_msg_blk’.msg = Text_View_On;
36 O_msg_blk’.source = my_la;
37 O_msg_blk’.destination = 0;
38 as’ = TRUE;
39 []
40 ACTIVE_SOURCE_O: I_msg_blk.msg = Null AND
41 cs1 = On AND as = TRUE -->
42 O_msg_blk’.msg = Active_Source;
43 O_msg_blk’.source = my_la;
44 O_msg_blk’.param1 = my_la;
45 O_msg_blk’.destination = 15;
46 as’ = FALSE;
47 []
48 %%% Fature 2 : Device OSD Name Transfer
49 GIVE_OSD_NAME_I: I_msg_blk.msg = Give_OSD_Name
50 AND cs1 = On -->
51 O_msg_blk’.msg = Set_OSD_Name;
52 O_msg_blk’.source = my_la;
53 O_msg_blk’.destination = I_msg_blk.source;
54 O_msg_blk’.param1 = my_la;
55 []
56 SET_OSD_NAME_I: I_msg_blk.msg = Set_OSD_Name
57 AND cs1 = On -->
58 O_msg_blk’.msg = Null;
59 []
60 GIVE_OSD_NAME_O: I_msg_blk.msg = Null
61 AND cs1 = On -->
62 O_msg_blk’.msg = Give_OSD_Name;
63 O_msg_blk’.source = my_la;
64 []
65 ELSE --> O_msg_blk’.msg = Null;
66]END;

Figure 1: SAL code for CEC playback device

Boolean trap variables are inserted in appropriate loca-
tions in the base modules corresponding to CEC devices in

23 October 2007

34

1 BUS : MODULE =
2 BEGIN
3 INPUT in_block : ARRAY [0..2] OF Msg_Blk
4 OUTPUT out_block : Msg_blk
5 INITIALIZATION
6 out_block.msg = Null;
7 TRANSITION
8 [
9 in_block[0].msg /= Null -->

10 out_block’ = in_block[0];
11 []
12 in_block[0].msg = Null AND in_block[1].msg /= Null -->
13 out_block’ = in_block[1];
14 []
15 in_block[0].msg = Null AND in_block[1].msg = Null
16 AND in_block[0].msg /= Null -->
17 out_block’ = in_block[2];
18 []
19 ELSE -->
20]
21 END;

Figure 2: SAL code for bus module

(Playback Device)

I_cec_msg

TV

O_cec_msg

I_cec_msg

I_block[2]
I_block[1]

I_block[0]

DVD1

O_cec_msg

I_cec_msg I_cec_msg

DVD2

O_cec_msg

Bus
(Playback Device)

Figure 3: Model composition for a sample test set-

up

1 CEC_SUT : MODULE =
2 (WITH OUTPUT I_block : ARRAY [0..2] OF Msg_Blk
3 RENAME O_msg_blk to I_block[0]
4 IN TV[0] %%% TV with logical address 0
5 ||
6 RENAME O_msg_blk to I_block[1]
7 IN PBD[4] %%% DVD1 with logical address 4
8 ||
9 RENAME O_msg_blk to I_block[2]

10 IN PBD[5]) %%% DVD1 with logical address 8
11 ||
12 (WITH OUTPUT I_msg_blk : Msg_Blk;
13 RENAME out_block to I_msg_blk,
14 in_block to O_msg_blk IN BUS);
15 END

Figure 4: SAL code for a sample test set-up

the test set-up for test generation based on the test cover-
age criteria. One trap variable for each transition is enough
for whole model transition coverage. Test cases can then
be generated automatically by using sal-atg on the SUT
module. The presence of a flexible, “off-the-shelf” test gen-
erator like sal-atg was one of the great advantages of using
the SAL language and tools. For our models we have no
problems with getting full coverage though sometimes some
tuning of the parameters -id, -ed and -md (especially the
last two) is required to get good tests that give full coverage

Device Severe bugs Moderate bugs

DVD player 1 3 3
DVD player 2 0 2
TV 1 0 3

Table 1: Summary of bugs found

with as little redundancy as possible. When ICS was the
solver, in the case of the models for some standards (which
are larger and more complicated than CEC) there was some
issues with ICS running out of memory. After upgrading to
the yices solver this has not been an issue at all and the
generation times are also quite insignificant.

4. DISCUSSION ON CEC TEST GENERA-
TION

In this section we will first summarise the results of ap-
plying the approach described in the previous section to a
few devices. We will then discuss in detail some of the prac-
tical issues in directly applying the approach in engineering
practice. This will set the stage for the rest of this paper.

4.1 Results
We ran the tests generated as described above on a num-

ber of devices. So far for CEC we have only tested one device
at a time. The other device (sink in case the device under
test – DUT – is a source and vice-versa) is simulated via
an internally developed CEC device simulation tool. The
DUT and the simulator communicate on a CEC bus. The
simulator can also simulate UI commands (remote control)
to the DUT. Currently the tests are manually translated to
commands for the simulator (to simulate sink/source and UI
commands); but we can automate this since the simulator
supports a C like scripting language.

We have tested DUTs (specifically we test the CEC im-
plementations of these devices) that are sources (DVD play-
ers) and sinks (TV); the devices were of different makes,
some already on the market. In all cases we have detected
behaviours that are deviations from the CEC specification.
Some of these are severe – in terms of potential impact of the
deviation, as per the standards classification used in Philips
CE (note that, since we are dealing with CE products, the
impact is typically in terms of the cost to fix or market
impact, rather any safety or life criticality). Table 1 sum-
marises the bugs that were found. It is worth mentioning
again that all the devices we tested had gone successfully
through the complete product testing cycle, and hence what
we have caught are residual bugs.

4.2 Issues and possible solutions
The above approach becomes rather unwieldy in practise

since the device that are under test typically do not imple-
ment all the feature or support all the messages given in
the standards. Optional features are very common in CE
standards and the optional features supported by the ac-
tual devices under test vary depending on the vendors and
the model. Similarly many standards (though not CEC it-
self) allow vendor specific extensions. It is very important
to generate tests based on models that accurately capture
the device functionality.

The problem here is that the supported optional features
and vendor extensions are specific to each actual device and

23 October 2007

35

so it is not possible to have one generic model for each de-
vice type which can just be instantiated for all the corre-
sponding actual devices. Let us examine this using an ex-
ample: the sample test set-up shown in figure 3. Consider
the two play back devices, DVD1 and DVD2 in the test set-
up. DVD1 supports both One Touch Play and Device OSD

Name Transfer features but it implements only Image View

On, i.e., DVD1 can only send Image View On when it wants
to become a source. It does not violate CEC specification
because it is in accordance to specification – “it is manda-
tory for a source to implement at least one of Image View On

or Text View On”. DVD2 implements only the One Touch

Play feature (implements all the 3 messages) and does not
support Device OSD Name Transfer. In such a situation we
cannot use the base module of the play back device we con-
structed from the standards since it includes all the features.
It requires modelling of each device under test as a separate
base module; however this is inefficient since all the devices
have lots of features in common. Also in such case, changes
in CEC specifications will require changes in all the device
modules.

One possible solution is to parametrize the device type
base modules with boolean parameters; one for each op-
tional feature (and message). If the value of the parame-
ter is TRUE then it implies that the device implements the
corresponding optional message, else it feature aborts. Ev-
ery guard will then have to check the value of the boolean
parameter corresponding to some optional feature and/or
message. The guard which checks for the value TRUE will
have the transition with assignments which will implements
the optional message and the the guard which checks for
the value FALSE will have assignments which correspond to
the device feature aborting the CEC message. So there
will be two transitions for each optional message, one which
implements it and other which feature aborts. The SUT
module is then constructed by instantiating the based mod-
ules by passing appropriate parameter values based on the
optional features supported by the actual devices under test
and synchronously composing these instantiated based mod-
ules with the bus module. But CE standards with many
optional features will require a huge parameter list and the
device module instances will not be very intuitive. A more
severe problem is to do with vendor specific extension fea-
tures and in such situations this solution will not work as it
is not possible to include new vendor specific feature in the
modules by instantiating parameter values since the device
type base module does not know about these vendor specific
features. It will require new transitions and may also require
new state variables and so we will have to write base mod-
ules for each device under test that includes vendor specific
extension features.

Basically there are four types of features in any device
model:

1. those retained from the device type model (i.e., from
the standard),

2. those (optional) device type features that are not im-
plemented,

3. vendor specific extensions of device type features, and

4. vendor specific new features.

Using module paramters one can handle 1. and 2., but 3.
and 4. cannot be handled this way.

A better and an efficient solution is to“derive”from the de-
vice type models (constructed from standards) the models of
the actual devices under test by “augmenting”with optional
and vendor specific features they support. One way to im-
plement this is to have constructs in the modelling language
that will allow deriving new models from existing models by
declaring new variable and new transitions. We plan to im-
plement such a solution by extending the SAL language with
new constructs (called extended SAL henceforth) that will
allow new modules to be derived from existing modules, and
having a translator from this extended SAL to “basic” SAL.
The proposed extensions and the translation procedure is
explain in the next section.

The new constructs introduced are to ease the task of
model construction, specifically for devices based on stan-
dards in CE domain. At this point of time we cannot com-
ment any thing about the advantages of these SAL exten-
sions for other modelling related tasks. For standards in CE
domain, these extensions will facilitate easy model construc-
tion and maintenance of models. If there are any changes in
standards, then only the base modules need to be changed.

5. EXTENDED SAL
We extend the SAL language by allowing modules to be

defined as extensions of already existing base modules us-
ing the keyword EXTENDS. Such an extended module will be
called extended base module. Note that we do not increase
the expressability of the SAL language. This means that
every extended base module can be translated to an equiv-
alent base module and hence the standard SAL tools are all
applicable. Table 2 gives those part of the grammar for ex-
tended SAL that is different from that of SAL (as given in
[11]).

Basically we are introducing a new type of module: the
ExtendedBaseModule. It is defined as extending (keyword
EXTENDS) a base module and defining additional variables,
initialisations, and transitions. The initialisations introduced
in the extended base module can only be SimpleDefinitions
and similarly the transitions can only be NamedCommands.
It should be noted that these restrictions are imposed be-
cause of the modelling style we use for modelling in the CE
space. It is possible that our concept of extended base mod-
ules will work in the general setting also, but it provides no
value for us for constructing and managing models in the
CE world.

Every extended base module is equivalent to a base mod-
ule. We describe this equivalence by explaining how to trans-
late a extended base module to its equivalent base module.
Let a module M1 extend a base module M2. Then the ex-
tended base module M1 can be translated to a base module
M1’ in the following manner:

• The module parameters of M1’ is the union of the mod-
ule parameters of M2 and the parameters given in the
declaration of M1. In case M1 declares a module pa-
rameter that is already present in M2 then an error is
flagged.

• Variables are handled exactly as above, i.e., the vari-
ables of M1’ is the union of the variables of M2 and the
variables given in the declaration of M1. In case M1 de-
clares a variable that is already present in M2 then an
error is flagged.

23 October 2007

36

Module := BaseModule
| ModuleInstance
| SynchronousComposition
| AsynchronousComposition
| MultiSynchronous
| MultiAsynchronous
| Hiding
| NewOutput
| Renaming
| WithModule
| ObserveModule
| (Module)
| ExtendedBaseModule

ExtendedBaseModule := EXTENDS Identifier BEGIN ExtendedBaseDeclarations END

ExtendedBaseDeclarations := { ExtendedBaseDeclaration }*
ExtendedBaseDeclaration := InputDecl

| OutputDecl
| GlobalDecl
| LocalDecl
| ExtendedInitDecl
| ExtendedTransDecl

ExtendedInitDecl := INITIALIZATION { SimpleDefinition }+; [;]
ExtendedTransDecl := TRANSITION { [ExtendedSomeCommands] }+; [;]

ExtendedSomeCommands := { NamedCommand }+ [] [[]ElseCommand]

Table 2: Grammar

• The initialisations of M1’ consists of the initialisations
of M1 and those initialisations of M2 that are not over-
ridden in M1.

• The transitions of M1’ consists of the transitions of M1
and those transitions g -> a of M2 such that M1 does
not have a transition g’ -> a’ where g is equivalent
to g’.

An example in figure 5 shows a base module (calc, for a
simple calculator) and an extended base module that ex-
tends from it (calc_Vendor_A). Figure 6 shows the base
module (calc_Vendor_A_trans) that is equivalent to the
extended base module in 5. This was obtained by hand-
translating the module calc_Vendor_A as per the strategy
given above. We are in the process of formalising the strat-
egy and implementing it in an automatic translator.

In the example the base module calc has three features:
ADD, DIVD, and MOD (optional). The extended base mod-
ule calc_Vendor_A introduces a new (vendor-specific) fea-
ture SUB and extends the definition of feature DIVD. It also
does not implement the optional feature MOD. The module
calc_Vendor_A_trans shows how these have been translated
to a SAL base module. This indicates how all the four types
of features in a device model (as enumerated in the preceding
section) can be specified using the extended SAL language.
Basically the ability to define new transitions and extend
existing ones by redefining the action enables us to model
the devices in a clean manner.

Note that in the example we only define initialisations and
transitions in the extended module calc_Vendor_A. This is
infact representative of the way we would actually use the
extended SAL language, since the most common use does
not include introducing new variables.

1 calc : MODULE = BEGIN
2 INPUT A : INTEGER, B : INTEGER
3 INPUT Ope : operations
4 OUTPUT Out : INTEGER
5 INITIALIZATION
6 Out = -1;
7 TRANSITION
8 [
9 Ope = ADD --> Out’ = A + B;

10 []
11 Ope = DIVD --> Out’ = A div B;
12 []
13 Ope = MOD --> Out’ = A mod B; % optional
14]END;
15

16 calc_Vendor_A : MODULE = EXTENDS calc BEGIN
17 INITIALIZATION
18 Out = 0;
19 TRANSITION
20 [
21 Ope = SUB --> Out’ = A - B; % vendor new feature
22 []
23 Ope = DIVD --> Out’ = % vendor extension
24 IF B = 0 THEN -1 ELSE A div B ENDIF;
25 []
26 Ope = MOD --> ; % unsupported optional
27]END;

Figure 5: A sample base module and extended base

module in extended SAL

6. USING EXTENDED SAL FOR MODELLING
AND GENERATING TESTS

We now discuss how we propose to use the extended SAL
language in the interoperability test generation process. Fig-
ure 7 gives the entire process. As shown in the figure, first,
base modules for each device type are constructed from the
standards. These device type base modules cover all the

23 October 2007

37

1 calc_Vendor_A_trans : MODULE = BEGIN
2 INPUT A : INTEGER, B : INTEGER
3 INPUT Ope : operations
4 OUTPUT Out : INTEGER
5 INITIALIZATION
6 Out = 0;
7 TRANSITION
8 [
9 Ope = ADD --> Out’ = A + B; % retained from base

10 []
11 Ope = SUB --> Out’ = A - B; % new
12 []
13 Ope = DIVD --> Out’ = % extension
14 IF B = 0 THEN -1 ELSE A div B ENDIF;
15 []
16 Ope = MOD --> ; % not supported
17]END;

Figure 6: The translated SAL base module

standard-specified features, both mandatory and optional.
This is manual (indicated by the blue colour in the figure)
as it depends on the standards under interest. The second
step is to insert boolean trap variables in appropriate loca-
tions in the device type base modules depending on the test
coverage criteria. This step can be fully automated. The
dashed arrow indicates an transformation or a generation
step, thus the device type modules with goals can be gener-
ated from the device type models and the test criteria. The
above parts of the process is exactly as earlier (section 3).

The next step is to construct an extended base mod-
ule model for each device under test by extending the cor-
responding device type base module (with trap variables)
based on the supported features (implemented/unimplemented
optional features, vendor specific features if allowed by stan-
dard, etc.). This will generally have to be a manual process –
it can be automated if the device models only implement or
not-implement the optional features and do not add any new
vendor specific features. The blue colour again indicates it
is a manual process; also the solid arrow indicate a usage of
one artifact (the base of the arrow) in the other (the head of
the arrow). The module for SUT is obtained by composing
the device models (extended based modules) based on the
test set-up information. This step can either be automated
or is sometimes only a one-time activity (for some standards,
e.g., UPnP [13]). Then the test generator is invoked on the
SUT model to produce the test cases. This involves two
steps. First (see the dashed box on the right), the transla-
tor from extended SAL is invoked as a pre-processing step.
This will generate SAL base modules for all the extended
base modules. Corresponding to this a new SUT module
(using the generated base module names in lieu of the orig-
inal extended base module names) is also produced. After
this sal-atg is invoked, on the new SUT module produced
by the translator, to generate the test cases.

Applying this approach to CEC, all the five CEC device
types can be modelled as base modules based on the CEC
specifications covering all the mandatory and optional fea-
tures and the rest of the process as described above can be
applied. The extended base modules for DVD1 and DVD2
of the example of figure 3 are shown in figure 8.

7. RELATED WORK
Test generation from behavioural models such FSMs (see

.

Device type model with goals
(Base Module)

Device model
(Extended Base Module)

(Module)
SUT Model

Test Coverage Criteria

2. sal−atg

1. translate

Device type model
(Base Module)

Test Cases

(Base Module)
Pre−processed Device model

Pre−processed SUT Model
(Module)

Figure 7: Approach for interoperability test case

generation

1 DVD1 : MODULE = EXTENDS PBD
2 BEGIN
3 INITIALIZATION
4 TRANSITION
5 [
6 TEXT_VIEW_ON_O: I_msg_blk.msg = Null AND
7 cs1 = On --> ;
8]END;
9

10 DVD2 : MODULE = EXTENDS PBD
11 BEGIN
12 INITIALIZATION
13 TRANSITION
14 [
15 GIVE_OSD_NAME_I: I_msg_blk.msg = Give_OSD_Name
16 AND cs1 = On -->
17 O_msg_blk’.msg = feature_abort;
18 O_msg_blk’.source = my_la;
19 O_msg_blk’.destination = 15;
20 []
21 SET_OSD_NAME_I: I_msg_blk.msg = Set_OSD_Name
22 AND cs1 = On -->
23 O_msg_blk’.msg = feature_abort;
24 O_msg_blk’.source = my_la;
25 O_msg_blk’.destination = 15;
26 []
27 GIVE_OSD_NAME_O: I_msg_blk.msg = Null
28 AND cs1 = On --> ;
29]
30 END;

Figure 8: Extended base module for DVD1 and

DVD2

[10]) and LTSs (see [3]) has been a very active area of re-
search. There has been lot of work on theory, algorithms and
tools. A significant fraction of this work is on testing proto-

23 October 2007

38

col implementations based on FSM specifications (see [9]).
There has also been lot of work (e.g., [6, 16, 18, 4]) on gen-
erating interoperability tests for network protocols. Most
of these propose algorithms for test generation from state
machine models based on computing reachability graphs.

Our work is similar in spirit to many of these prior work.
Our focus has been to build a practical model-based test
generation solution for the CE domain. We leverage SAL
tools for this purpose. This enabled us to quickly come up
with solutions; something that would not have been possible
if we had implemented our own test generator. The ability
to specify test goals provides the desired flexibility in im-
plementing different test criteria. It is also likely that any
comparable implementation that we would make will not
be as efficient as sal-atg. Also, another important point is
that in most of the above papers the models are typically just
input-output state machines. In general our models are more
complex than these, involving variables, and guards and ac-
tions on these variables – conceptually these are equivalent
to flat state machines, but they pose significant difficulties
to analyse efficiently in a symbolic manner. SAL permits
us to model these naturally, and has tools to explore these
models efficiently in a symbolic manner. To summarise SAL
provides us both a modelling notation, and an efficient out-
of-box test generator that works on user-given test goals.

There has been other work on modelling notations – specif-
ically, Bogor [14] and Zing [2] – that offer features like the
one we propose here. In fact, Bogor and Zing are meant
to be translation target for model-checkers for OO software;
hence they have support for inheritance and dynamic dis-
patch of calls. Our proposed modelling extension is more
modest, but it meets our need. Moreover, Bogor and Zing
do not have the test generation support offered by sal-atg.
It is also easier to extend SAL than implement sal-atg-like
test generation support for Bogor or Zing.

8. CONCLUSIONS AND FUTURE WORK
We have presented how we have applied model-based test

generation for CE standards based interoperability testing
using the SAL language and the sal-atg tool. We found
the SAL language to be quite adequate in terms of data-
structures and level of abstraction for expressing the models
that we encounter. More importantly sal-atg is well suited
for purpose. It provides automation and at the same time
flexibility in the form of allowing the use of a user chosen set
of test directives (from a complete set of test directives). We
have had encouraging results from applying this method-
ology (see also [13]). We are continuing this activity and
applying it to different standards in the CE space.

We also presented a particular problem with applying our
approach, specifically that of modelling different device vari-
ants corresponding to a single standard device type. We
propose an extension to SAL (without changing the express-
ability of the language) to enable easy modelling of such de-
vices. We also described how to translate from this extended
SAL to SAL. Currently we are evaluating our approach by
hand translating extended SAL models to SAL models. We
demonstrated our approach using one of the device types
and a sub-set of the features of the CEC standard. The
approach looks promising in easing the model construction
and model maintenance. We plan to automate translation
to enable the introduction of it into practise.

The extension we proposed is only for a subset of SAL –

the subset that is of interest to us. We could consider ex-
tending it to the full SAL language. Similarly, declarations
and module parameters of extended based modules cannot
currently include redeclarations. This restriction can be re-
moved, in which case the redeclared type will have to be a
super-set of the base type.

9. REFERENCES
[1] High-Definition Multimedia Interface Version 1.3,

2006.

[2] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and
Y. Xie. Zing: A model checker for concurrent software.
In 16th International Conference on Computer Aided
Verification (CAV 2004), pages 484–487, 2004. See
https://research.microsoft.com/projects/zing/.

[3] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner, editors. Model-Based Testing of
Reactive Systems, Advanced Lectures, LNCS 3472.
Springer, 2005.

[4] A. Desmoulin and C. Viho. Formalizing
interoperability testing: Quiescence management and
test generation. In F. Wang, editor, FORTE, volume
3731 of Lecture Notes in Computer Science. Springer,
2005.

[5] S. Dibuz and P. Kremer. Framework and Model for
Automated Interoperability Test and its Application
to ROHC. In TestCom-03, pages 243–257, 2003.

[6] K. El-Fakih, V. Trenkaev, N. Spitsyna, and
N. Yevtushenko. FSM Based Interoperability Testing
Methods for Multiple Stimuli Model. In TestCom
2004, Lecture Notes in Computer Science, 2978, pages
60–75, 2004.

[7] G. Hamon, L. deMoura, and J. Rushby. Generating
efficient test sets with a model checker. In 2nd
International Conference on Software Engineering and
Formal Methods, pages 261–270. IEEE Computer
Society, Sept. 2004.

[8] G. Hamon, L. deMoura, and J. Rushby. Automated
test generation with SAL. Technical report, Computer
Science Laboratory, SRI, 2005. http://www.csl.sri.
com/users/rushby/abstracts/sal-atg.

[9] D. Lee, K. K. Sabnani, D. M. Kristol, S. Paul, and
M. Ü. Uyar. Conformance testing of protocols
specified as communicating fsms. In INFOCOM, 1993.

[10] D. Lee and M. Yannakakis. Principles and Methods of
Testing Finite State Machines - a Survey. The
Proceedings of IEEE, 84(8):1089–1123, 1996.

[11] Leonardo de Moura, Sam Owre and N. Shankar. The
SAL language manual. Technical report, SRI
International, 2003.

[12] P. Miller. Interoperability. what is it and why should i
want it? Ariadne Issue 24, June 2000.
http://www.ariadne.ac.uk/issue24/

interoperability/intro.html.

[13] S. Mujjiga and S. Sukumaran. Generating tests for
validating interoperability of networked media devices
– a formal approach, realisation, and initial results.
Philips Research Technical Note 2007-00240, 2007.

[14] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an
extensible and highly-modular software model
checking framework. In ESEC / SIGSOFT FSE, pages

23 October 2007

39

267–276, 2003. See
http://bogor.projects.cis.ksu.edu/.

[15] S. Seol, M. Kim, and S. T. Chanson. Interoperability
test generation for communication protocols based on
multiple stimuli principle. In TestCom, pages 151–168,
2002.

[16] S. Seol, M. Kim, S. Kang, and J. Ryu. Fully
automated interoperability test suite derivation for
communication protocols. Computer Networks,
43:735–759, 2003.

[17] S. Sukumaran, A. Sreenivas, and R. Venkatesh. A
rigorous approach to requirements validation. In IEEE
International Conference on Software Engineering and
Formal Methods (SEFM), 2006.

[18] V. Trenkaev, M. Kim, and S. Seol. Interoperability
Testing Based on a Fault Model for a System of
Communicating FSMs. In TestCom 2003, LNCS,
2644, 2003.

[19] T. Walter and B. Plattner. Conformance and
interoperability - a critical assessment. Technical
Report 9, Computer Engineering and Networks
Laboratory, Swiss Federal Institute of Technology,
Zurich, 1994.

23 October 2007

40

Extended Interface Grammars for Automated Stub
Generation∗

Graham Hughes and Tevfik Bultan
Computer Science Department

University of California
Santa Barbara, CA 93106, USA

{graham,bultan}@cs.ucsb.edu

ABSTRACT
An important challenge in software verification is the ability
to verify different software components in isolation. Achiev-
ing modularity in software verification requires development
of innovative interface specification languages. In this pa-
per we focus on the idea of using grammars for specification
of component interfaces. In our earlier work, we investi-
gated characterizing method call sequences using context
free grammars. Here, we extend this approach by adding
support for specification of complex data structures. An
interface grammar for a component specifies the sequences
of method invocations that are allowed by that component.
Our current extension provides support for specification of
valid input arguments and return values in such sequences.
Given an interface grammar for a component, our interface
compiler automatically generates a stub for that component
that 1) checks the ordering of the method calls to that com-
ponent, 2) checks that the input arguments are valid, and
3) generates appropriate return values based on the inter-
face grammar specification. These automatically generated
stubs can be used for modular verification and/or testing.
We demonstrate the feasibility of this approach by experi-
menting with the Java Path Finder (JPF) using the stubs
generated by our interface compiler.

1. INTRODUCTION
Modularity is key for scalability of almost all verification
and testing techniques. In order to achieve modularity, one
has to isolate different components of a program during ver-
ification or testing. This requires replacement of different
components in a program with stubs that represent their
behavior. Our work on interface grammars originates from
the following observation: If we can develop sufficiently rich
interface specification languages, it should be possible to
automatically generate stubs from these rich interfaces, en-
abling modular verification and testing.

∗This work is supported by NSF grant CCF-0614002.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM’07, November 6, Atlanta, GA, USA.
c©2007 ACM ISBN 978-1-59593-879-4/07/11...$5.00

In a recent paper [11] we proposed interface grammars as an
interface specification language. An interface grammar for
a component specifies the sequences of method invocations
that are allowed by that component. Using interface gram-
mars one can specify nested call sequences that cannot be
specified using interface specification formalisms that rely on
finite state machines. We built an interface compiler that
takes the interface grammar for a component as input and
generates a stub for that component. The resulting stub
is a table-driven parser generated from the input interface
grammar. Invocation of a method within the component
becomes the lookahead symbol for the stub/parser. The
stub/parser uses a parser stack, the lookahead, and a parse
table to guide the parsing. The interface grammar language
proposed in [11] also supports specification of semantic pred-
icates and actions, which are Java code segments that can
be used to express additional interface constraints. The se-
mantic predicates and semantic actions that appear in the
right hand sides of the production rules are executed when
they appear at the top of the stack.

Although the interface grammar language proposed in [11]
provides support for specification of allowable call sequences
for a component, it does not directly support constraints on
the input and output objects that are passed to the compo-
nent methods as arguments or returned by the component
methods as return values. In this paper we investigate the
idea of using grammar production rules for expressing con-
straints on object validation and creation. Our approach
builds on shape types [10], a formalism based on graph
grammars, which can be used for specification of complex
data structures. We show that grammar productions used
in shape types can be easily integrated with grammar pro-
ductions in interface grammars. In order to achieve this
integration we allow nonterminals in interface grammars to
have arguments that correspond to objects. The resulting
interface specification language is capable of expressing con-
straints on call sequences, as well as constraints on input
and output data that is received and generated by the com-
ponent.

Our work is significantly different from earlier work on in-
terface specification. Most of the earlier work on interfaces
focuses on interface specification formalisms based on finite
state machines [5, 4, 20, 2, 3]. More expressive interface
specification approaches such as the ones based on design
by contract [12, 8] are less amenable to automation. More-
over, it is not easy to express control flow related constraints,

23 October 2007

41

Program

Component

In
te

rf
ac

e
G

ra
m

m
ar

Interface
Compiler

Component
Stub

Program

Model
Checker

In
te

rf
ac

e
G

ra
m

m
ar

Figure 1: Modular verification with interface gram-
mars.

such as the ones relating to call sequencing, as pre and post-
conditions. We believe that the extended interface gram-
mar specification language presented in this paper provides
a unique balance between automation and expressiveness,
and also enables specification of control flow and data struc-
ture constraints in a uniform manner.

There has been earlier work in grammar based testing such
as [6, 13, 14, 15]. The common goal in these papers is to au-
tomatically generate test inputs using a grammar that char-
acterizes the set of possible inputs. In contrast, in our work
we use grammars as interface specifications where terminals
correspond to method calls.

The rest of the paper is organized as follows. Section 2 gives
an overview of interface grammars and shape types using a
tree component as a running example. Section 3 includes
a more detailed discussion on shape types. Section 4 dis-
cusses integration of concepts from shape types to interface
grammars and how they can be used in object generation.
Section 5 discusses and contrasts object validation versus
object generation. Section 6 presents experiments demon-
strating the use of interface grammars for modular verifica-
tion of EJB clients using the Java PathFinder (JPF) [16]
model checker. Section 7 concludes the paper.

2. EXTENDING INTERFACE GRAMMARS
The modular verification approach based on interface gram-
mars is shown in Figure 1. Interface grammars provide a
language for specification of component interfaces. The core
of an interface grammar is a set of production rules that de-
fine a Context Free Grammar (CFG). This CFG specifies all
acceptable method call sequences for the given component.
Given an interface specification for a component, our inter-
face compiler generates a stub for that component. This
stub is a table-driven top-down parser [1] that parses the
sequence of incoming method calls (i.e., the method invoca-
tions) based on the CFG defined by the interface specifica-
tion.

As an example, consider a general tree with first-child and
right-sibling pointers; for example, an XML Domain Ob-
ject Model tree. If we add redundant left-sibling and parent
pointers to the tree, we can then write a tree cursor that
can traverse the tree, with the methods moveup, movedown,
moveleft and moveright. We may wish to examine traver-

sal algorithms independent of any particular tree represen-
tation, and thus want a component for this cursor. We can
represent the cursor navigation operations using the follow-
ing simplified interface grammar:

TreeCall → movedown TreeCall
| movedown TreeCall moveup TreeCall
| moveright TreeCall
| moveright TreeCall moveleft TreeCall
| ǫ

This is a context free grammar with the nonterminal sym-
bol TreeCall (which is also the start symbol) and termi-
nal symbols moveup, movedown, moveright, and moveleft.
Each terminal symbol corresponds to a method call, and the
above grammar describes the allowable call sequences that
are supported by the component. We have restricted the
permissible call sequences as follows: it is always an error to
have more moveup symbols than movedown (corresponding
to trying to take the parent of the root which may result
in dereferencing a null pointer) and it is always an error to
have more moveleft symbols than moveright at any given
height (corresponding to trying to take the left sibling of
the first child which may again result in dereferencing a null
pointer). In our framework, this language corresponds to
the set of acceptable incoming call sequences for a compo-
nent, i.e., the interface of the component. Note that the set
of acceptable incoming call sequences for the above exam-
ple cannot be recognized by a finite state machine since the
matching of movedown and moveup symbols, and moveleft

and moveright symbols cannot be done using a finite state
machine. The expressive power of a context free grammar
is necessary to specify such interfaces. One could also inves-
tigate using extended finite state machines to specify such
interfaces. However, we believe that grammars provide a
suitable and intuitive mechanism for writing interface spec-
ifications.

Given the above grammar we can construct a parser which
can serve as a stub for the Tree component. This stub/parser
will simply use each incoming method call as a lookahead
symbol and implement a table driven parsing algorithm. If
at some point during the program execution the stub/parser
cannot continue parsing, then we know that we have caught
an interface violation. In [11] we described such an interface
grammar compiler that, given an interface grammar for a
component, automatically constructs a stub/parser for that
component.

Now, assume that, for the above tree example, we would also
like to specify a getTree method that returns the tree that is
being traversed. This is a query method and it can be called
at any point during execution, i.e., there is no restriction on
the execution of the getTree method as far as the control
flow is concerned. However, the return value of the getTree

method is a specific data structure. It would be helpful to
provide support for specification of such data structures at
the interface level. Our goal in this paper is to extend our
interface grammar specification language to provide support
for specification of such constraints. Such constraints can be
used to specify the structure of the objects that are passed
to a component or returned back from that component.

Consider the interface grammar below which is augmented

23 October 2007

42

by a set of recursive rules that specify the structure of the
tree that getTree method returns:

1 TreeCall → movedown TreeCall
2 | movedown TreeCall moveup TreeCall
3 | moveright TreeCall
4 | moveright TreeCall moveleft TreeCall
5 | getTree TreeGen x TreeCall
6 | ǫ
7 TreeGen x → N x null
8 N x y → leftc x z, parent x y, N z x, L x y
9 | leftc x null, parent x y, L x y
10 | leftc x null, parent x null
11 L x y → rights x z, N z y, L z y
12 | rights x null

The productions 1-4 and 6 are the same productions we
used in the earlier interface grammar. The production 5
represents the fact that the modified interface grammar also
accepts calls to the getTree method. The nonterminal Tree-
Gen is used to define the shape of the tree that is returned
by the getTree method. Productions 7-12 define a shape
type based on the approach proposed by Fradet and le Mé-
tayer [10]. Shape types are based on graph grammars and
are used for defining shapes of data structures using recur-
sive rules similar to CFGs.

Before we discuss the shape types in more detail in Sec-
tion 3, we would like to briefly explain the above example
and the data structure it defines. The nonterminals Tree-
Gen, N and L used in the production rules 7-12 have argu-
ments that are denoted as x, y, z. Arguments x, y, z repre-
sent the node objects in the data structure. In this exam-
ple, the data structure is a left-child, right-sibling (LCRS)
tree. In this data structure, each node has a link to its
leftmost child, its immediate right sibling, and its parent if
they exist, otherwise these fields are set to null. The ter-
minal symbols leftc, rights and parent denote the fields
that correspond to the left-child, right-sibling, and parent of
a node object, respectively. Each production rule expresses
some constraints among its arguments in its right hand side,
and recursively applies other production rules to express fur-
ther constraints. For example parent x y means that the
parent field of node x should point to node y. Similarly,
rights x null means that the rights field of node x should
be null.

In Figure 2 we show an example LCRS tree. Let us investi-
gate how this tree can be created based on the production
rules 7-12 shown above. Production 7 states that a LCRS
tree can be created using one of the production rules for the
nonterminal N and by substituting the node corresponding
to the root of the tree (i.e., node 1 in Figure 2) for the first
argument and null for the second argument. Let us pick
production 8 for nonterminal N and substitute node 1 for
x, null for y and node 2 for z. Based on this assignment,
the constraints listed in the right hand side of production
8 state that: leftc field of node 1 should point to node 2;
parent field of node 1 should be null; nodes 2 and 1 should
satisfy the constraints generated by a production rule for
nonterminal N where the first argument is set to node 2 and
the second argument is set to node 1; and, node 1 and null
should satisfy the constraints generated by a production rule
for nonterminal L where the first argument is set to node 1

and the second argument is set to null. Note that, the first
two constraints are satisfied by the tree shown in Figure 2.
The last constraint is satisfied by picking the production rule
12, which states that the rights field of node 1 should be
null, which is again satisfied by the tree shown in Figure 2.
Finally, the third constraint recursively triggers another ap-
plication of the production 8 where we substitute node 2 for
x, node 1 for y, and null for z. By recursively applying the
productions rules 7-12 this way, one can show that the tree
shown in Figure 2 is a valid LCRS tree based on the above
shape type specification.

The above example demonstrates that we can use shape
types for object validation. Object validation using shape
types corresponds to parsing the input object graphs based
on the grammar rules in the shape type specification. Note
that we can use shape types for object generation in addi-
tion to object validation. In order to create object graphs
that correspond to a particular shape type we can randomly
pick productions and apply them until we eliminate all non-
terminals. Resulting object graph will be a valid instance
of the corresponding shape type. In fact, in the above ex-
ample, our motivation was to use the shape type formalism
to specify the valid LCRS trees that are returned by the
getTree method.

We would like to emphasize that, although we will use data-
structures such as LCRS tree as running examples in this
paper, our goal is not verification of data structure imple-
mentations, or clients of data structure libraries. Rather,
our goal is to develop a framework that will allow verifi-
cation of arbitrary software components in isolation. This
requires an interface specification mechanism that is capable
of specifying the shapes of the objects that are exchanged
between components as method arguments or return values.
Our claim is that extended interface grammars and our inter-
face compiler provide a mechanism for isolating components
which enables modular verification.

In the following sections we will discuss shape types in more
detail and discuss how to integrate them to our interface
grammar specification language. We will also demonstrate
examples of both object validation and generation with our
extended interface grammar specification language based on
shape types.

We note one weakness of the above interface specification
example. According to the above interface grammar spec-
ification, the tree that is returned by the getTree method
may not be consistent with the previous calls to the moveup,
movedown, moveleft and moveright methods that have been
observed. For example, if a client calls the movedown method
twice followed by two calls to the moveup method, then if the
next call is getTree, the getTree method should return a
tree of height greater than or equal to two to be consistent
with the observed call history. However, the above speci-
fication does not enforce such a constraint. The getTree

method can return any arbitrary LCRS tree at any time.
Our interface specification language is capable of specifying
this type of constraints (i.e., making sure that the the tree
returned by the getTree method is consistent with the past
call history to the tree component) using semantic predicates
and actions.

23 October 2007

43

1

leftc

2 43

rights

parent

leftcleftc

rights rights

parentparent

rights

parent

5 6

parent

leftc

rights
parent

leftc

leftc
rights

Figure 2: An example left-child, right-sibling
(LCRS) tree.

3. SHAPE TYPES
A weakness of the interface specification language defined in
our previous work [11] is that it does not provide direct sup-
port for describing the data associated with the method calls
and returns of a component, i.e., the arguments and return
values for the component methods. However, the interface
specification language presented in [11] allows specification
of semantic predicates and actions. This enables the users to
insert arbitrary Java code to interface specifications. These
semantic predicates and actions can be treated as nonter-
minals with epsilon-productions and the Java code in them
are executed when the corresponding nonterminal appears
at the top of the parser stack. The user can do object val-
idation and generation using such semantic predicates and
semantic actions. However, this approach is unsatisfactory
for the same reason that hand writing a component stub
in Java directly is unsatisfactory; it is frequently brittle and
difficult to understand. Accordingly, we would like to extend
our interface grammars to support generating and validating
data, and to do so in a way that preserves the advantages
of grammars.

The shape types of Fradet and le Métayer [10] define an at-
tractive formalism based on graph grammars that can be
used to express recursive data structures. We have been
inspired by their formalism, but to accommodate the differ-
ences between their goal and ours our implementation be-
comes substantially different. Nonetheless, it is worthwhile
explaining Fradet and le Métayer’s shape types and then
explaining how our approach differs syntactically before ex-
plaining our implementation.

Shape types are an extension to a traditional type system.
Their goal is to extend an underlying type system so that
it can specify the shape of a data structure; for example, a
doubly linked list. This extension is done through extending
a normal context free grammar, which we will proceed to
explain.

Consider the language of strings (name x y)∗, where name
is some string and x and y are integers. If we regard x and
y as vertices, then we can obtain a labeled directed graph
from any such string by regarding the string name x y as

Doubly → p x, prev x null, L x
L x → next x y,prev y x, L y
L x | next x null

(a)

1 2

next

prev

p

3

next

prev
4

next

prev

nextprev

(b)

Figure 3: (a) Shape type for a doubly linked list,
and (b) an example linked list of that type

defining an edge from the vertex labeled x to the vertex
labeled y, itself labeled name. If we further regard the
vertices in this graph as representing objects and the edges
as representing fields, we can obtain an object graph. Note
that this mapping is not 1-1: if the strings are reordered the
same graph is obtained.

We can represent external pointers into this object graph by
adding strings of the form p x; here, the pointer named p
points to the object x.

We now want a grammar that can output these graph encod-
ings. While we can regard name as a terminal, the vertices
are not so simple. We extend the context-free grammar to
permit parameters; so the production N x y → next x y de-
scribes the string next x y, whatever its parameters x and
y are. If a variable is referred to in the right hand side of a
production but not listed in the parameters, then it repre-
sents a new object that has not yet been observed. Fradet
and le Métayer use next xx to represent terminal links; we
prefer to use next x null for the same purpose.

Shape types provide a powerful formalism for specification
of object graphs. In Figure 3(a) we show the shape type for
a doubly linked list and in Figure 3(b) we show an example
doubly linked list of that type. In Figure 4(a) we show the
shape type for a binary tree and in Figure 4(b) an example
binary tree of that type.

4. OBJECT GENERATION WITH INTER-
FACE GRAMMARS

In this section we will discuss how we integrate shape types
to our interface grammar specification language. First, we
start with a brief discussion on alternative ways of gener-
ating arbitrary object graphs in a running Java program.
Next, we give an overview of our extended interface gram-
mar language and discuss how this extended language sup-
ports shape types. We conclude this section by presenting
an example interface grammar for the left-child, right-sibling
(LCRS) tree example discussed in Section 2.

4.1 Creating Object Graphs
There are three major techniques for object graph creation:
with JVM support, serialization, and method construction.
The first technique uses support from the JVM to create

23 October 2007

44

Bintree → p x, B x
B x → left x y, right x z, B y, B z
B x | left x null, right x null

(a)

1
rightleft

p

2 3

5

rightleftleft

right

right

left
4

rightleft

(b)

Figure 4: (a) Shape type for a binary tree, and (b)
an example binary tree of that type

objects arbitrarily and in any form desired. Visser et al. [18]
use this technique, extending the Java PathFinder model
checker appropriately. While this is very powerful, it is nec-
essarily coupled to a specific JVM and can be easy to inad-
vertently create object structures that cannot be recreated
by a normal Java program. We reject this approach because
we do not want to be overly coupled to a specific JVM.

The second technique uses the Java serialization technolo-
gies used by Remote Method Invocation (RMI) [19]. This is
almost as powerful as the first technique and has the advan-
tage of being more portable. Since the serialization format
is standardized, it is relatively easy to create normal seri-
alization streams by fiat. There are two major issues with
this approach. First, it requires that all the objects that one
might want to generate be serializable, which requires chang-
ing the source code in many cases. Second, it is possible for
an object to arbitrarily redefine its serialization format or
to add arbitrarily large amounts of extra data to the ob-
ject stream. This is common in the Java system libraries.
Accordingly we have rejected this approach as well.

The third approach, and the one we settled upon, is to gener-
ate object graphs through the object’s normal methods. The
main advantages this has is that it works with any object, it
is as portable as the original program, and it is impossible to
get an object graph that the program could not itself gener-
ate. The main disadvantage is that this approach cannot be
fully automated without a specification of the object graph
shapes that are valid. Since we do semiautomated analysis,
we combine approach with the shape types of the previous
section and ask the user to tell us what sort of shapes they
desire.

4.2 Extended Interface Grammar Language
In addition to providing support for context free grammar
rules, our interface specification language also supports spec-

(1) main → class ∗

(2) class → class classid { item ∗ }

(3) item → semact ;
(4) | rule

(5) rule → rule ruleid (declaration ∗)
block

(6) block → { statement ∗ }

(7) statement → block
(8) | apply ruleid (id

∗) ;
(9) | semact ;
(10) | declaration = semexpr ;
(11) | choose { cbody ∗ }
(12) | ? minvocation ;
(13) | return mreturn semexpr ? ;
(14) | ! mcall ;

(15) cbody → case select ? :
{ statement ∗ }

(16) select → ? minvocation sempred ?
(17) | sempred

(18) sempred → 〈〈 expr 〉〉

(19) semexpr → 〈〈 expr 〉〉

(20) semact → 〈〈 statement 〉〉

(21) declaration → type id

Figure 5: Abstract syntax for the extended interface
grammar language

ification semantic predicates and semantic actions that can
be used to write complex interface constraints. A seman-
tic predicate is a piece of code that can influence the parse,
whereas a semantic action is a piece of code that is executed
during the parse. Semantic predicates and actions provide
a way to escape out of the CFG framework and write Java
code that becomes part of the component stub. The se-
mantic predicates and actions are inserted to the right hand
sides of the production rules, and they are executed at the
appropriate time during the program execution (i.e., when
the parser finds them at the top of the parse stack).

In Figure 5 we show a (simplified) grammar defining the
abstract syntax of our interface grammar language. We de-
note nonterminal and terminal symbols and Java code and
identifiers with different fonts. The symbols 〈〈 and 〉〉 are
used to enclose Java statements and expressions. Incoming
method calls to the component (i.e., method invocations)
are shown with adding the symbol ? to the method name
as a prefix. Outgoing method calls (i.e., method calls by
the component) are shown with adding the symbol ! to the
method name as a prefix. In the grammar shown in Figure 5,
we use “∗” to denote zero or more repetitions of the preced-
ing symbol, and “?” to denote that the preceding symbol
can appear zero or one times.

An interface grammar consists of a set of class interfaces (not
to be confused with Java interfaces) (represented in rule (1)
in Figure 5). The interface compiler generates one stub class

23 October 2007

45

for each class interface. Each class interface consists of a set
of semantic actions and a set of production rules that define
the CFG for that class (rules (2), (3) and (4)). A semantic
action is simply a piece of Java code that is inserted to the
stub class that is generated for the component (rule (20)). A
rule corresponds to a production rule in the interface gram-
mar. Each rule has a name, a list of declarations, and a
block (rule (5)). The use of declarations will be explained
in Section 4. A rule block consists of a sequence of state-
ments (rule (6)). Each statement can be a rule application, a
semantic action, a declaration, a choose block, a method in-
vocation, a method return or a method call (rules (7)-(14)).
A semantic action corresponds to a piece of Java code that
is executed when the parser sees the nonterminal that cor-
responds to that semantic action at the top of the parse
stack. A rule application corresponds to the case where a
nonterminal appears on the right hand side of a production
rule. A declaration corresponds to a Java code block where
a variable is declared and is assigned a value (rule (21)). A
choose block is simply a switch statement (rules (11) and
(15)). A selector for a switch case can either be a method
invocation (i.e., an incoming method call), a semantic pred-
icate or the combination of both (rules (16) and (17)). A
switch case is selected if the semantic predicate is true and
if the lookahead token matches to the method invocation
for that switch case. A method return simply corresponds
to a return statement in Java. When the component stub
receives a method invocation from the program, it first calls
the interface parser with the incoming method invocation,
which is the lookahaed token for the interface parser. When
the parser returns, the component stub calls the interface
parser again, this time with the token which corresponds to
the method return. Finally, a method call is simply a call to
another method by the stub.

4.3 Support for Shape Types
We can obtain all the power required to embed the shape
types of Section 3 into our interface grammars with the fol-
lowing addition: we permit rules to have parameters. Be-
cause we need to be able to pass objects to the rules as well
as retrieve them, we have chosen to use call-by-value-return
semantics for our parameters rather like the “in out” param-
eters of the Ada language. These parameters are reflected in
the declaration list of line 5 of Figure 5, and in the identifier
list of line 8 of that same figure. Because we have chosen
uniform call-by-value-return semantics, only variable names
may be supplied to apply.

Because our previous work required lexical scoping, the run-
time needed only to be changed as follows: when encoding
an apply, store the current contents of all its variables in a
special location—we currently assign parameter n to vari-
able −(n + 1), as all our variables have a nonnegative asso-
ciated integer used in scoping—push the nonterminal onto
the stack as normal, and afterward overwrite each variable
with the result, again stored in the special location. That is,
if 〈〈x〉〉 is the closure performing x and a0, . . . an is the list of
arguments, then the series of grammar tokens corresponding
to apply rule (a0, . . . an) is

for i = 0 to n do
〈〈symbols.put ($(−(i + 1)),
symbols.get ($(ai.id)));〉〉

od
rule

for i = 0 to n do
〈〈symbols.put ($(ai.id),
symbols.get ($(−(i + 1))));〉〉

od

Similarly, for every production for a rule, the compiler must,
at the start of the production, bind all its parameters from
the special location; and at the end it must store the current
values of each of its parameters to the appropriate place
in the special location. For example, given a production
A a0 . . . an → x0 . . . xm, the amended production would be
as follows:

A → (〈〈symbols.push ();〉〉,
for i = 0 to n do

〈〈symbols.bind ($(ai.id));〉〉,
〈〈symbols.put ($(ai.id),
symbols.get ($(−(i + 1))));〉〉

od,
x0, . . . xm,
for i = 0 to n do

〈〈symbols.put ($(−(i + 1)),
symbols.get ($(ai.id)));〉〉

od,
〈〈symbols.pop ();〉〉)

5. OBJECT GENERATION VS. OBJECT
VALIDATION

Using the extended interface grammar specification language
presented in Section 4 it is possible to specify both gener-
ation and validation of data structures, and to do so in a
manner that is reminiscent of the shape types of Section 3.
Object validation is used to check that the arguments passed
to a component by its clients satisfy the constraints speci-
fied by the component interface. Object generation, on the
other hand, is used to create the objects that are returned by
the component methods based on the constraints specified
in the component interface.

Figure 6, shows object generation and validation for doubly
linked list and binary tree examples. Figure 6 contains three
specifications for each of the two examples. At the top of
the figure we repeat the shape type specifications for dou-
bly linked list and binary tree examples from Section 3 for
convenience. The middle of the figure contains the interface
grammar rules for generation of these data structures. Note
the close similarity between the shape type productions and
the productions in the interface grammar specification. The
bottom of the figure shows the interface grammar rules for
validation of these data structures.

Object generation and validation tasks are broadly symmet-
ric, and their specification as interface grammar rules reflects
this symmetry as seen in Figure 6. While in object gener-
ation semantic actions are used to set the fields of objects
to appropriate values dictated by the shape type specifica-
tion, in object validation, these constraints are checked using
semantic predicates specified as guards. Note that the set
of nonterminals and productions used for object generation
and validation are the same.

23 October 2007

46

Account
Entry

amount
Transaction

∑(entry.amount) = 0

1 * 2 .. * 1
0 .. *

sub-account

0 .. 1

Figure 7: UML diagram of the Account pattern

The most significant difference between the object genera-
tion and validation tasks is the treatment of aliasing among
different nodes in an object graph. The semantics of the
shape type formalism makes some implicit assumptions about
aliasing between the nodes. Intuitively, shape type formal-
ism assumes that there is no aliasing among the nodes of
the object graph unless it is explicitly stated. During object
generation it is easy to maintain this assumption. During
generation, every new statement creates a new object what is
not shared with any other object in the system. If the spec-
ified data structure requires aliasing, this can be achieved
by passing nodes as arguments as is done in shape type for-
malism.

Detecting aliasing among objects is necessary during object
validation. Note that, since shape type formalism assumes
that no aliasing should occur unless it is explicitly speci-
fied, during object validation we need to make sure that
there is no unspecified aliasing. Instead of trying to enforce
a fixed policy on aliasing, we leave the specification of the
aliasing policy during object validation to the user. The typ-
ical way to check aliasing would be by using a hash-set as
demonstrated by the two object validation examples shown
in Figure 6. Note that, the interface grammar rules for ob-
ject validation propagate the set of nodes that have been
observed and make sure that there is no unspecified aliasing
among them.

6. VERIFICATION WITH INTERFACE
GRAMMARS

In this Section, we report some experiments on modular ver-
ification of Java programs using stubs automatically gener-
ated by our interface compiler. We use the model checker
Java PathFinder (JPF) [17] as our verification tool. JPF is
an explicit and finite state model checker that works directly
on Java bytecode. It enables the verification of arbitrary
pure Java implementations without any restrictions on data
types. JPF supports property specifications via assertions
that are embedded into the source code. It exhaustively tra-
verses all possible execution paths for assertion violations. If
JPF finds an assertion violation during verification, it pro-
duces a counter-example which is a program trace leading
to that violation.

To analyze the performance of stubs automatically gener-
ated by our interface compiler, we have written several small
clients for an Enterprise Java Beans [7] (EJB) persistence
layer. We used a similar technique in our prior work [11];
here we handle some types of queries and perform relational
integrity checks upon the resulting database.

We have chosen to base our clients around the Account pat-
tern from Fowler [9]. Strictly speaking this is a pattern for an
object schema; accordingly we have implemented it for these
tests with the SQL mapping in the EJB framework. The Ac-
count pattern is useful for us because it represents structured
data and also has a hierarchical element (accounts can have
sub-accounts).

A brief description of the Account pattern and how we in-
terpreted it is in order. A UML diagram illustrating all this
can be seen in Figure 7. An account contains entries and can
be a parent to other accounts; the account instances make
up a forest. An entry is associated with exactly one account
and exactly one monetary transaction, and has a field rep-
resenting an amount of money. A monetary transaction is
associated with at least two entries, and the sum of all en-
tries in every monetary transaction must be zero at the end
of a database transaction—this is often stated as “money
is neither created nor destroyed.” Since unfortunately the
term ‘transaction’ here refers to two distinct concepts both
of which are important to us, we must be explicit: in the ab-
sence qualification, ‘transaction’ always refers to a monetary
transaction.

This structure possesses a number of natural invariants. We
have already mentioned the key transaction invariant. Ac-
counts and their children must possess the tree property;
that is an account can not have two parents. The sum of all
entries in all accounts in the system should also be zero; if it
is not, we may have forgotten to store an account, an entry,
or a transaction. Because we permit more than only two
entries per transaction, our transactions are called multi-
legged; it is usually considered undesirable or an outright
error for one transaction to have more than one “leg” in any
one account.

All these data invariants are in addition to the order in which
the methods should be called. No query parameters should
be adjusted following execution of the query. The queries
themselves ought to be executed during a database trans-
action in order to obtain a consistent view of the database
between each query. The getResultList or getSingleResult

methods should be the last operation performed on the query
object—these methods request either all results from a sin-
gle database query or only one result.

We have used our interface grammar compiler to create a
stub for the EJB Persistence API that encodes all these in-
variants. Because the database can change in unpredictable
and arbitrary ways between database transactions, our stub
entirely regenerates the database every time a transaction
is begun. If a transaction is rolled back, it could well be in
an incomplete state and so applying database invariants is
folly; yet if a transaction is committed it must be verified.

Our stub contains two tunable parameters, corresponding to
an upper bound on the number of accounts in the system
and an upper bound on the number of entries in the system.
The number of transactions in the system is always nonde-
terministically chosen to be between 1 and ⌊ | entries | /2 ⌋,
inclusive.

To exercise this stub, we have written four EJB Persistence

23 October 2007

47

Shape Type Specification

Doubly → p x,prev x null, L x
L x → next x y,prev y x, L y
L x | next x null

Bintree → p x, B x
B x → left x y, right x z, B y, B z
B x | left x null, right x null

Object Generation with Interface Grammars

rule genDoubly (Node x) {
〈〈 x = new Node (); 〉〉
〈〈 x.setPrev (null); 〉〉
apply genL (x);

}
rule genL (Node x) {

choose {
case:
Node y = 〈〈 new Node () 〉〉;
〈〈 x.setNext (y); 〉〉
〈〈 y.setPrev (x); 〉〉
apply genL (y);

case:
〈〈 x.setNext (null); 〉〉

}
}

rule genBintree (Node x) {
〈〈 x = new Node (); 〉〉
apply genB (x);

}
rule genB (Node x) {
choose {
case:
Node y = 〈〈 new Node (); 〉〉;
Node z = 〈〈 new Node (); 〉〉;
〈〈 x.setLeft (y); 〉〉
〈〈 x.setRight (z); 〉〉
apply genB (y);
apply genB (z);

case:
〈〈 x.setLeft (null); 〉〉
〈〈 x.setRight (null); 〉〉

}
}

Object Validation with Interface Grammars

rule matchDoubly (Node x) {
Set nodesSeen = 〈〈 new HashSet () 〉〉;
guard 〈〈 x instanceof Node
&& !nodesSeen.contains (x) 〉〉;

〈〈 nodesSeen.insert (x); 〉〉
guard 〈〈 x.getPrev () == null 〉〉;
apply matchL (x, nodesSeen);

}
rule matchL (Node x, Set nodesSeen) {

choose {
case 〈〈 x.getNext () == null 〉〉:
case 〈〈 x.getNext () != null 〉〉:
Node y = 〈〈 x.getNext () 〉〉;
guard 〈〈 y instanceof Node
&& !nodesSeen.contains (y) 〉〉;

〈〈 nodesSeen.insert (y); 〉〉
guard 〈〈 x.getNext () == y 〉〉;
guard 〈〈 y.getPrev () == x 〉〉;
apply matchL (y, nodesSeen);

}
}

rule matchBintree (Node x) {
Set nodesSeen = 〈〈 new HashSet () 〉〉;
guard 〈〈 x instanceof Node
&& !nodesSeen.contains (x) 〉〉;

〈〈 nodesSeen.insert (x); 〉〉
apply matchB (x, nodesSeen);

}
rule matchB (Node x, Set nodesSeen) {
choose {
case 〈〈 x.getLeft () == null 〉〉:
guard 〈〈 x.getRight () == null 〉〉;

case 〈〈 x.getLeft () != null 〉〉:
Node y = 〈〈 x.getLeft () 〉〉;
guard 〈〈 y instanceof Node
&& !nodesSeen.contains (y) 〉〉;

〈〈 nodesSeen.insert (y); 〉〉
Node z = 〈〈 x.getRight () 〉〉;
guard 〈〈 z instanceof Node
&& !nodesSeen.contains (z) 〉〉;

〈〈 nodesSeen.insert (z); 〉〉
guard 〈〈 x.getLeft () == y 〉〉;
guard 〈〈 x.getRight () == z 〉〉;
apply matchB (y, nodesSeen);
apply matchB (z, nodesSeen);

}
}

Figure 6: Interface grammars for doubly linked list and binary tree generation and matching

23 October 2007

48

Correct clients Incorrect clients
deparent voider reparent increaser Accounts Entries

0:11 26 MB 0:17 27 MB 0:10 27 MB 0:14 27 MB 1 2
0:14 26 MB 0:23 37 MB 0:16 36 MB 0:13 27 MB 1 4
0:21 34 MB 0:38 39 MB 0:20 36 MB 0:14 27 MB 1 6
0:49 36 MB 2:55 41 MB 0:17 36 MB 0:14 27 MB 1 8
3:38 36 MB 15:37 50 MB 0:18 36 MB 0:14 27 MB 1 10

Table 1: Run time and memory usage vs. number of entries

Correct clients Incorrect clients
deparent voider reparent increaser Accounts Entries

0:14 26 MB 0:23 37 MB 0:16 36 MB 0:13 27 MB 1 4
1:09 35 MB 2:35 41 MB 0:56 38 MB 0:13 27 MB 2 4

19:09 37 MB 34:18 43 MB 14:03 39 MB 0:19 27 MB 3 4

Table 2: Run time and memory usage vs. number of accounts

API clients, and have run the clients with varying param-
eters in the JPF model checker. Two clients are correct in
their use of the database and we expect that JPF will report
this. Two are incorrect; one triggers a fault almost imme-
diately, and the other is only invalid some of the time. Our
clients are as follows:

1. deparent takes an account and removes it from its par-
ent.

2. voider selects a transaction and ‘voids’ it, by creating
a new transaction negating the original transaction.
This introduces new objects into the system.

3. reparent takes two entries in the system and trades
their transactions.

4. increaser increases the monetary value of entries in the
system.

Our results are presented in Tables 1 and 2. When there
is an interface violation, JPF halts at the first assertion vi-
olation and reports an error. In the experiments reported
in Table 1 we restricted the state space to a single account
and we observed the change in the verification results with
respect to increasing number of entries. In the experiments
reported in Table 2 we restricted the number of entries and
increased the number of accounts.

The deparent client removes parent of an account. Changing
the parent of an account can cause cycles if done näıvely, but
removing the parent is always safe. Since the deparent client
does not violate any interface properties, JPF does not re-
port any assertion violations for deparent. As the number of
accounts and entries increases verifying this operation takes
an exponentially increasing amount of time to complete due
to exponential increase in the state space.

The voider client does not violate any interface properties
and, hence, JPF does not report any assertions violations for
voider. Since voider introduces new objects to the system it
creates a larger state space and its verification takes a longer
time than deparent.

The reparent swaps the transactions of two entries. If the
entries encode the same monetary value this can be safe, but
in the general case this operation will break the transaction
invariant. An additional complication is that if there are less
than four entries in the system, reparent cannot fail; there is
only one transaction available. The time it takes for model
checker to reach an assertion violation for reparent depends
on the order the model checker explores the states.

However the proportion of the state space where reparent is
valid decreases precipitously as the number of entries in the
system increases. Accordingly we expect that the running
time will eventually come to some equilibrium if we increase
the number of entries, but will consume an exponentially
increasing amount of time if we hold the number of entries
constant and increase the number of accounts (as observed
in Table 2.

Since the increaser client always increases the monetary val-
ues of the entries, it always violates the transaction invari-
ant, with even two entries in the system. So it takes model
checker approximately the same amount of time to report
an assertion violation for the increaser client regardless of
the size of the state space.

7. CONCLUSION
We presented an extension to interface grammars that sup-
ports object validation and object creation. The presented
extension enables specification of complex data structures
such as trees and linked lists using recursive grammar rules.
The extended interface grammar specification language pro-
vides a uniform approach for specification of allowable call
sequences and allowable input and output data for a com-
ponent. Given the interface grammar for a component, our
interface compiler automatically creates a stub for that com-
ponent which can be used for modular verification or testing.
We demonstrated the use of interface grammars for modu-
lar verification by conducting experiments with JPF using
stubs automatically generated by our interface compiler.

8. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley,
1988.

23 October 2007

49

[2] R. Alur, P. Cerny, P. Madhusudan, and W. Nam.
Synthesis of interface specifications for java classes. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symp. on Principles of Prog. Languages, (POPL
2005), 2005.

[3] A. Betin-Can and T. Bultan. Verifiable concurrent
programming using concurrency controllers. In
Proceedings of the 19th IEEE International
Conference on Automated Software Engineering (ASE
2004), pages 248–257, 2004.

[4] A. Chakrabarti, L. de Alfaro, T. Henzinger,
M. Jurdziński, and F. Mang. Interface compatibility
checking for software modules. In Proceedings of the
14th International Conference on Computer Aided
Verification (CAV 2002), pages 428–441, 2002.

[5] L. de Alfaro and T. A. Henzinger. Interface automata.
In Proceedings 9th Annual Symposium on Foundations
of Software Engineering, pages 109–120, 2001.

[6] A. G. Duncan and J. S. Hutchison. Using attributed
grammars to test designs and implementations. In
Proceedings of the International Conference on
Software Engineering (ICSE), pages 170–178, 1981.

[7] Enterprise java beans 3.0 specification. Technical
report, Sun Java Community Process, May 2006.
JSR-000220.

[8] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for java. In Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2002), pages
234–245, 2002.

[9] M. Fowler. Analysis Patterns. Addison-Wesley,
Reading, Massachusetts, 1997.

[10] P. Fradet and D. le Métayer. Shape types. In POPL
’97: Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 27–39, New York, NY, USA, 1997. ACM Press.

[11] G. Hughes and T. Bultan. Interface grammars for
modular software model checking. In Proceedings of
the International Symposium on Software Testing and
Analysis (ISSTA ’07), 2007. To appear.

[12] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface specification
language for Java. ACM SIGSOFT Software
Engineering Notes, 31(3):1–38, March 2006.

[13] P. M. Maurer. Generating test data with enhanced
context-free grammars. IEEE Software, 7(4):50–55,
1990.

[14] P. M. Maurer. The design and implementation of a
grammar-based data generator. Softw., Pract. Exper.,
22(3):223–244, 1992.

[15] E. G. Sirer and B. N. Bershad. Using production
grammars in software testing. In Proceedings of the
2nd Conference on Domain-Specific Languages (DSL
99), pages 1–13, 1999.

[16] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Proceedings of the The Fifteenth
IEEE International Conference on Automated
Software Engineering (ASE’00), page 3. IEEE
Computer Society, 2000.

[17] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. Automated Software Engineering

Journal, 10(2):203–232, 2003.

[18] W. Visser, C. S. Pasareanu, and S. Khurshid. Test
input generation with java pathfinder. In Proceedings
of International Symp. on Software Testing, 2004.

[19] J. Waldo. Remote procedure calls and Java Remote
Method Invocation. IEEE Concurrency, 6(3):5–7,
July–September 1998.

[20] J. Whaley, M. Martin, and M. Lam. Automatic
extraction of object-oriented component interfaces. In
Proceedings of the 2002 ACM/SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA
2002), 2002.

23 October 2007

50

Cooperative Reasoning for Automatic Software Verification

Andrew Ireland

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh

a.ireland@hw.ac.uk

Position Paper

ABSTRACT

Separation logic was designed to simplify pointer program
proofs. In terms of verification tools, the majority of effort
has gone into developing light-weight analysis techniques for
separation logic, such as shape analysis. Shape analysis ig-
nores the content of data, focusing instead on how data
is structured. While such light-weight properties can be
extremely valuable, ultimately a more comprehensive level
of specification is called for, i.e. correctness specifications.
However, to verify such comprehensive specifications requires
more heavy-weight analysis, i.e. theorem proving. We pro-
pose an integrated approach for the automatic verification
of correctness specifications within separation logic. An ap-
proach which combines both light-weight and heavy-weight
techniques is proposed. We are aiming for a cooperative
style of integration, in which individual techniques combine
their strengths, but crucially compensate for each other’s
weaknesses through the communication of partial results
and failures.

1. INTRODUCTION

The proliferation of software across all aspects of modern life
means that software failures can have significant economic,
as well as social impact. The goal of being able to develop
software that can be formally verified as correct with re-
spect to its intended behaviour is therefore highly desirable.
The foundations of such formal verification have a long and
distinguished history, dating back over fifty years [12, 13,
15]. What has remained more elusive are scalable verifica-
tion tools that can deal with the complexities of software
systems.

However, times are changing, as reflected by a current re-
naissance within the formal software verification community.
An IFIP working group has been set up with the aim of de-
veloping a Grand Challenge for Verified Software [23, 28].
There have also been some notable industrial success sto-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM’07, November 6, Atlanta, GA, USA.
c©2007 ACM ISBN 978-1-59593-879-4/07/11...$5.00

ries. For instance, Microsoft’s Static Device Verifier (SDV)
[29] and the SPARK Approach to developing high integrity
software [1]. Both of these successes address the scalability
issue by focusing on generic properties and tool integrations
that support a high degree of automation. In the case of
SDV, the focus is on deadlock freedom at the level of re-
source ownership for device driver software. Abstraction
and model checking are used to identify potential defects,
which are then refined via theorem proving to eliminate false
alarms. The SPARK Approach has been used extensively
in the development of safety [24] and security [14] critical
applications. It provides a loose coupling of analysis tech-
niques from data and information flow analysis through to
formal verification via theorem proving. One of its key sell-
ing points is its support for automating so called exception
freedom proofs, i.e. proving that a system is free from com-
mon run-time errors such as buffer overflows.

The targeting of generic properties, such as deadlock and
exception freedom, has proved both highly effective and
extremely valuable to industry. However, to increase the
value of software correctness guarantees will ultimately call
for a more comprehensive level of specification, i.e. cor-
rectness specifications. In the case of bespoke applications,
this might take the form of correctness specifications devel-
oped in conjunction with the customer requirements. Al-
ternatively, the verification of software libraries and com-
ponents against agreed correctness standards could prove
highly valuable across a wide range of sectors. Verifying
code against more comprehensive specifications will call for
significant advances in terms of scalable tools. We believe
that these advances will require frameworks which provide,
i) general support for modular reasoning as well as, ii) a
flexible basis in which novel tool integrations can be investi-
gated. Here we outline a proposal which builds upon separa-
tion logic, where modular reasoning is a key feature. At the
level of tool integration, we propose the use of proof plan-
ning, an automated theorem proving technique which has a
track-record in successfully combining reasoning tools.

2. SEPARATION LOGIC

Separation logic was developed as an extension to Hoare
logic [15], with the aim of simplifying pointer program veri-
fication proofs [32, 35]. Pointers are a powerful and widely
used programming mechanism, but developing and main-
taining correct pointer programs is notoriously hard. A key
feature of separation logic is that it focuses the reasoning

23 October 2007

51

effort on only those parts of the heap that are relevant to a
program, so called local reasoning. Because it deals smoothly
with pointers, including “dirty” features such as memory
disposal and address arithmetic, separation logic holds the
promise of allowing verification technology to be applied to
a much wider range of real-world software than has been
possible up to now.

In terms of tool development, the main focus has been on
shape analysis. Such analysis can be used to verify proper-
ties about the structure (shape) of data structures within the
heap. For example, given a sorting program that operates on
singly linked list, then shape analysis techniques can be used
to verify that for an arbitrary singly linked list the program
will always output a singly linked list. Note that shape anal-
ysis ignores the content of data structures. Smallfoot [3] is an
experimental tool that supports the automatic verification
of shape properties specified in separation logic. Smallfoot
uses a form of symbolic execution [4], where loop invariants
are required. Related tools are SLAyer [2], Space Invader
[10] and Smallfoot-RG [9], all of which build directly upon
the foundations of Smallfoot. Within SLAyer, higher-order
generic predicates are used to express families of complex
composite data structures. A restricted form of predicate
synthesis is used to instantiate the generic predicates during
shape analysis. Space Invader, unlike Smallfoot supports
loop invariant discovery via fixed point analysis. Abstrac-
tion is used to overcome divergence in the search for a fixed
point. Smallfoot-RG also includes Space Invader’s invariant
discovery strategy. Closely related to Space Invader is an
algorithm developed at CMU for inferring loop invariants
within the context of separation logic [25]; again fixed point
analysis is the underlying mechanism. Another interesting
tool is reported in [30], which combines shape and size analy-
sis. Inductive predicates play a significant role in specifying
pointer programs within separation logic. A limitation of
the program analysis tools mentioned above is that they are
hard-wired with pre-defined inductive predicates, e.g. singly
linked lists, binary trees etc. To make these tools extensible
would require the ability to add new user-defined inductive
predicates on-the-fly. To achieve this would require the abil-
ity to automate proof by mathematical induction. We will
return to this point later.

Less work has been undertaken in the area of theorem prov-
ing for separation logic. In [34] a partial formalization within
PVS [33] is presented which supports the verification of re-
cursive procedures. A complementary formalization, which
includes simple while loops, but not recursive procedures,
is presented in [39]. In [38] a shallow embedding of sepa-
ration logic within Isabelle/HOL [31] is presented, building
upon Schirmer’s verification environment for sequential im-
perative programs [36]. This integration was used to reason
about pointer programs written in C. Finally, in [26] the
Coq proof environment has been extended with separation
logic in order to verify the C source code of the Topsy heap
manager. All these applications of theorem proving to sep-
aration logic have involved significant user interaction, e.g.
user specified induction rules and loop invariants. In con-
trast, our proposal focuses on verification automation in
which user interaction is eliminated as far as possible.

3. PROOF PLANNING

Proof planning is a technique for automating the search for
proofs through the use of high-level proof outlines, known as
proof plans [5]. The current state-of-the-art proof planner is
called IsaPlanner [11], which is Isabelle based. Proof plan-
ning has been used extensively for proof by mathematical in-
duction [8]. Mathematical induction is essential for the syn-
thesis and verification of the inductively defined predicates
that arise within separation logic specifications. Proof plan-
ning therefore offers significant benefits for reasoning about
separation logic specifications. In addition, the kinds of data
structures that arise naturally when reasoning about pointer
programs, i.e. a queue implemented as a “circular” linked
list, will provide challenging examples which will advance
the existing proof plans. A distinctive feature of proof plan-
ning is middle-out reasoning [7], a technique where meta-
variables, typically higher-order, are used to delay choice
during the search for a proof. Middle-out reasoning has been
used to greatest effect within the context of proof critics [16],
a technique that supports the automatic analysis and patch-
ing of failed proof attempts. Such proof patching has been
applied successfully to the problems of inductive conjecture
generalization and lemma discovery [19, 20], as well as loop
invariant discovery [22]. This work is currently being inte-
grated and extended within IsaPlanner. The tool integra-
tion capabilities of proof planning have been demonstrated
through the Clam-HOL [37] and NuSPADE projects1 [21].
The NuSPADE project targeted the SPARK Approach [1],
and integrated proof planning with light-weight program
analysis in order to increase proof automation for loop-based
code. The resulting integration was applied to industrial
strength problems and successfully increased the level of
proof automation for exception freedom proofs [21].

4. PROPOSED COOPERATION

In terms of tool integration, we are interested in tight in-
tegrations where their is real cooperation between comple-
mentary techniques. That is, where individual techniques
combine their strengths, but crucially compensate for each
other’s weaknesses through the communication of partial re-
sults and failures. More general evidence as to the merits
of such cooperation can be found in [6]. For us the pay-off
of achieving this level of cooperation will be measured in
terms of automation, i.e. we believe that this form of co-
operation will deliver verification automation where skilled
human interaction is currently essential.

Our starting point is the proof planning paradigm, and the
Smallfoot family of program analyzers. We see two areas
where a cooperative style of reasoning could make an impact,
i.e. when reasoning about recursive and iterative code. In
the case of recursive code, the central rule of separation logic
comes into play, i.e. the frame rule:

{P} C {Q}
{R ∗ P} C {R ∗ Q}

no variable occurring free
in R is modified by C.

Note that ∗ denotes separating conjunction, where R ∗ Q

holds for a heap if the heap can be divided into two disjoint
heaps H1 and H2 where R holds for H1 and Q holds for
H2. The frame rule under-pins the notion of local reasoning
mentioned in §2, and plays a pivotal role in reasoning about

1NuSPADE project: http://www.macs.hw.ac.uk/nuspade

23 October 2007

52

recursive procedure calls. Note that the invariant R corre-
sponds to what McCarthy and Hayes refer to as the “frame
axiom” [27].

Switching from recursion to iteration, the need for frame
axioms is replaced by the need for loop invariants. Consider
for example the Hoare style proof rule for a while-loop:

{P → R} {R ∧ S} C {R} {¬S ∧ R → Q}

{P} while S do {R} C od {Q}

Here R denotes the loop invariant. Note that in both the
frame and while-loop rules, R will typically not form part
of a program’s overall correctness specification. That is, R

represents an auxiliary specification, a eureka step, typically
supplied via user interaction. Automating the discovery of
R represents a significant challenge to achieving verification
automation. Our proposal directly addresses this challenge.
We are focusing on correctness specifications, so R describes
both the shape and content of heap data structures. Note
that Smallfoot, and its related program analysis tools, sup-
port the automatic discovery of shape properties, but they
do not address the issue of content. We believe that proof
planning, via middle-out reasoning and proof patching, will
enable shape properties to be automatically extended to in-
clude properties about the content of data structures within
the heap. The Smallfoot tools provide strength in terms
of automating the discovery of shape properties while the
strength of IsaPlanner lies in its ability to automate the dis-
covery of properties about the content of data structures. In
addition, the inductive theorem proving capabilities of Isa-
Planner will enable us to compensate for the limitations of
current program analysis tools, i.e. as mentioned above, ex-
tensibility requires the ability to automatically reason about
inductively defined predicates. More details on how we be-
lieve real cooperation can be achieved are provided in [17,
18]. In terms of systems building, we are currently look-
ing into using Schirmer’s generic verification environment
mentioned in §2. This will enable us to build upon Tuch’s
shallow embedding of separation logic [38], as well as Isa-
Planner.

5. CONCLUSION

Separation logic is still a relatively new avenue of research,
but holds the promise of delivering significant benefits in
terms of scalable software verification techniques. To date
the majority of research has concentrated on the develop-
ment of relatively light-weight verification techniques, such
as shape analysis. For this reason we believe that our pro-
posal is very timely, as it focuses on combining the results
from shape analysis with inductive theorem proving via proof
planning. We believe that adopting a cooperative style of
integration will enable more comprehensive properties, such
as functional correctness, to be addressed.

Acknowledgements: The ideas outlined in this position
paper were developed with support from EPSRC Platform
grant EP/E005713. Thanks go to Alan Bundy, Ianthe Hind,
Paul Jackson, Ewen Maclean, Peter O’Hearn and Alan Smaill
for their feedback and encouragement.

6. REFERENCES
[1] J. Barnes. High Integrity Software: The SPARK

Approach to Safety and Security. Addison-Wesley,

2003.

[2] J. Berdine, C. Calcagno, B. Cook, D. Distefano,
P. O’Hearn, T. Wies, and H. Yang. Shape analysis for
composite data structures. 2007. To appear at
CAV’07.

[3] J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot:
Modular automatic assertion checking with separation
logic. In FMCO, volume 4111 of Lecture Notes in
Computer Science, pages 115–137. Springer, 2005.

[4] J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic
execution with separation logic. In APLAS, pages
52–68, 2005.

[5] A. Bundy. The use of explicit plans to guide inductive
proofs. In R. Lusk and R. Overbeek, editors, 9th
International Conference on Automated Deduction,
pages 111–120. Springer-Verlag, 1988. Longer version
available from Edinburgh as DAI Research Paper No.
349.

[6] A. Bundy. Cooperating reasoning processes: more
than just the sum of their parts. In M. Veloso, editor,
Proceedings of IJCAI 2007, pages 2–11. IJCAI Inc,
2007. Acceptance speech for Research Excellence
Award.

[7] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka
steps into calculations in automatic program
synthesis. In S. L. H. Clarke, editor, Proceedings of
UK IT 90, pages 221–6. IEE, 1990. Also available
from Edinburgh as DAI Research Paper 448.

[8] A. Bundy, F. van Harmelen, J. Hesketh, and
A. Smaill. Experiments with proof plans for induction.
Journal of Automated Reasoning, 7:303–324, 1991.
Earlier version available from Edinburgh as DAI
Research Paper No 413.

[9] C. Calcagno, M. Parkinson, and V. Vafeiadis. Modular
safety checking for fine-grained concurrency. In To
appear in the Proceedings of SAS 2007, 2007.

[10] D. Distefano, P.W. O’Hearn, and H. Yang. A local
shape analysis based on separation logic. In Tools and
Algorithms for the Construction and Analysis of
Systems, 12th International Conference, TACAS 2006
Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS, volume
3920 of Lecture Notes in Computer Science, pages
287–302. Springer, 2006.

[11] L. Dixon and J. D. Fleuriot. IsaPlanner: A prototype
proof planner in Isabelle. In Proceedings of CADE’03,
volume 2741 of LNCS, pages 279–283, 2003.

[12] R. W. Floyd. Assigning meanings to programs. In
J. T. Schwartz, editor, Mathematical Aspects of
Computer Science, Proceedings of Symposia in Applied
Mathematics 19, pages 19–32. American Mathematical
Society, 1967.

[13] H.H. Goldstine and J. von Neumann. Planning and
coding of problems for an electronic computing
instrument. In A.H. Taub, editor, J. von Neumann:
Collected Works, pages 80–151. Pergamon Press, 1963.
Originally, part II, vol. 1 of a report of the U.S.
Ordinance Department 1947.

[14] A. Hall and R. Chapman. Correctness by
construction: Developing a commercial secure system.
IEEE Software, 19(2), 2002.

[15] C.A.R. Hoare. An axiomatic basis for computer

23 October 2007

53

programming. Communications of the ACM,
12:576–583, 1969.

[16] A. Ireland. The use of planning critics in mechanizing
inductive proofs. In A. Voronkov, editor, International
Conference on Logic Programming and Automated
Reasoning (LPAR’92), St. Petersburg, Lecture Notes
in Artificial Intelligence No. 624, pages 178–189.
Springer-Verlag, 1992. Also available from Edinburgh
as DAI Research Paper 592.

[17] A. Ireland. Towards automatic assertion refinement
for separation logic. In Proceedings of the 21st IEEE
International Conference on Automated Software
Engineering. IEEE Computer Society, 2006. A longer
version is available from the School of Mathematical
and Computer Sciences, Heriot-Watt University, as
Technical Report HW-MACS-TR-0039:
http://www.macs.hw.ac.uk:8080/techreps/.

[18] A. Ireland. A cooperative approach to loop invariant
discovery for pointer programs. In Proceedings of 1st
International Workshop on Invariant Generation
(WING), a satellite workshop of Calculemus 2007,
held at RISC, Hagenberg, Austria, 2007. Appears
within the RISC Report Series, University of Linz,
Austria,
http://www.risc.uni-linz.ac.at/publications/.

[19] A. Ireland and A. Bundy. Productive use of failure in
inductive proof. Journal of Automated Reasoning,
16(1–2):79–111, 1996. Also available as DAI Research
Paper No 716, Dept. of Artificial Intelligence,
Edinburgh.

[20] A. Ireland and A. Bundy. Automatic verification of
functions with accumulating parameters. Journal of
Functional Programming: Special Issue on Theorem
Proving & Functional Programming, 9(2):225–245,
March 1999. A longer version is available from Dept.
of Computing and Electrical Engineering, Heriot-Watt
University, Research Memo RM/97/11.

[21] A. Ireland, B. J. Ellis, A. Cook, R. Chapman, and
J. Barnes. An integrated approach to high integrity
software verification. Journal of Automated Reasoning:
Special Issue on Empirically Successful Automated
Reasoning, 36(4):379–410, 2006.

[22] A. Ireland and J. Stark. Proof planning for strategy
development. Annals of Mathematics and Artificial
Intelligence, 29(1-4):65–97, February 2001. An earlier
version is available as Research Memo RM/00/3,
Dept. of Computing and Electrical Engineering,
Heriot-Watt University.

[23] C.B. Jones, P. O’Hearn, and J. Woodcock. Verified
software: A grand challenge. In IEEE Computer, 2006.

[24] S. King, J. Hammond, R. Chapman, and A. Pryor. Is
proof more cost effective than testing? IEEE Trans.
on SE, 26(8), 2000.

[25] S. Magill, A. Nanevski, E. Clarke, and P. Lee.
Inferring invariants in separation logic for imperative
list-processing programs. In Proceedings of the Third
Workshop on Semantics, Program Analysis and
Computing Environments for Memory Management
(SPACE’06), pages 47–60, Charleston, SC, 2006.

[26] N. Marti, R. Affeldt, and A. Yonezawa. Formal
verification of the heap manager of an operating
system using separation logic. In Formal Methods and

Software Engineering, 8th International Conference on
Formal Engineering Methods, ICFEM, volume 4260 of
Lecture Notes in Computer Science, pages 400–419.
Springer, 2006.

[27] J. McCarthy and P. Hayes. Some philsophical
problems from the standpoint of artificial intelligence.
In B. Meltzer and D. Michie, editors, Machine
Intelligence 4. Edinburgh University Press, 1969.

[28] B. Meyer and J. Woodcock, editors. Verified Software:
Tools, Theories, Experiments (proceedings of VSTTE
conference, 2005), volume 4171 of LNCS.
Springer-Verlag, 2007. To appear 2007.

[29] Microsoft. Static Driver Verifier (SDV). http://www.
microsoft.com/whdc/devtools/tools/sdv.mspx.

[30] H.H. Nguyen, C. David, S. Qin, and W.N. Chin.
Automated verification of shape and size properties
via separation logic. 2007. To appear at VMCAI’07.

[31] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of Lecture Notes in Computer
Science. Springer Verlag, 2002.

[32] P. O’Hearn, J. Reynolds, and Y. Hongseok. Local
reasoning about programs that alter data structures.
In Proceedings of CSL’01, volume 2142 of Lecture
Notes in Computer Science, Paris, 2001.

[33] S. Owre, N. Shankar, and J. Rushby. PVS: A
prototype verification system. In D. Kapur, editor,
Proceedings of CADE-11. Springer Verlag, 1992. LNAI
vol. 607.

[34] V. Preoteasa. Mechanical verification of recursive
procedures manipulating pointers using separation
logic. TUCS Technical Report 753, Turku Centre for
Computer Science, 2006.

[35] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Logic in Computer
Science, pages 55–74. IEEE Computer Society, 2002.

[36] N. Schirmer. A Verification Environment for
Sequential Imperative Programs in Isabelle/HOL. In
G. Klein, editor, Proc. NICTA Workshop on OS
Verification 2004, 2004.

[37] K. Slind, M. Gordon, R. Boulton, and A. Bundy.
System description: An interface between CLAM and
HOL. In C. Kirchner and H. Kirchner, editors, 15th
International Conference on Automated Deduction,
volume 1421 of Lecture Notes in Artificial Intelligence,
pages 134–138, Lindau, Germany, July 1998. Springer.
Earlier version available from Edinburgh as DAI
Research Paper 885.

[38] H. Tuch, G. Klein, and M. Norrish. Types, bytes, and
separation logic. In M. Hofmann and M. Felleisen,
editors, Proc. 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’07), Nice, France, 2007.

[39] T. Weber. Towards mechanized program verification
with separation logic. In J. Marcinkowski and
A. Tarlecki, editors, Computer Science Logic – 18th
International Workshop, CSL 2004, 13th Annual
Conference of the EACSL, Karpacz, Poland,
September 2004, Proceedings, volume 3210 of Lecture
Notes in Computer Science, pages 250–264. Springer,
September 2004.

23 October 2007

54

Lightweight Integration of the Ergo Theorem Prover inside
a Proof Assistant ∗

Sylvain Conchon Evelyne Contejean
LRI, Univ Paris-Sud, CNRS

Orsay F-91405
INRIA Futurs, ProVal

Orsay, F-91893
{conchon,contejea}@lri.fr

Johannes Kanig Stéphane Lescuyer
INRIA Futurs, ProVal

Orsay, F-91893
LRI, Univ Paris-Sud, CNRS

Orsay F-91405
{kanig,lescuyer}@lri.fr

ABSTRACT
Ergo is a little engine of proof dedicated to program verification. It
fully supports quantifiers and directly handles polymorphic sorts.
Its core component isCC(X), a new combination scheme for the
theory of uninterpreted symbols parameterized by a built-in the-
ory X. In order to make a sound integration in a proof assistant
possible, Ergo is capable of generating proof traces forCC(X). Al-
ternatively, Ergo can also be called interactively as a simple oracle
without further verification. It is currently used to prove correctness
of C and Java programs as part of the Why platform.

1. INTRODUCTION
Critical software applications in a broad range of domains includ-
ing transportation, telecommunication or electronic transactions are
put on the market at an increasing rate. In order to guaranteethe
behavior of such programs, it is mandatory for a large part ofthe
validation to be done in a mechanical way. In the ProVal project, we
develop a platform [14] combining several tools of our own whose
overall architecture is described in Figure 1. This toolkitenables
the deductive verification of Java and C source code by generating
verification conditionsout of annotationsin the source code. The
annotations describe the logical specification of a programand the
verification conditions are formulas whose validity ensures that the
program meets its specification.

Much of the work of generating verification conditions for both
Java and C programs is performed by Why, the tool which plays
a central role in our toolkit and implements an approach designed
by Filliâtre [13]. A main advantage of this architecture is that Why
can output verification conditions to a large range of interactive
higher-order provers (Coq, PVS, HOL, ...) and first-order auto-
mated provers such as CVC3 [3], Simplify[11], Yices [10], Z3[9]
or Ergo [4].

When using first-order automatic provers, a great number of for-

∗ Work partially supported by A3PAT project of the French ANR
(ANR-05-BLAN-0146-01).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM’07, November 6, Atlanta, GA, USA.
c©2007 ACM ISBN 978-1-59593-879-4/07/11...$5.00

Figure 1: The Proval tool chain

mulas can be discharged in very little time in comparison to the
tedious process of interactively proving these formulas inCoq or
Isabelle.
The immediate downside of this method is that the soundness then
depends on the soundness of the automated provers, which weak-
ens the chain of trust. Depending on whether the automated provers
shall be trusted or not, there are different ways of integrating them
in the system : some may want to use automated provers as “black
boxes” and invoke them from within the prover (like PVS does),
while others will rather have the prover produce sometracesof
its proofs and typecheck these traces. The problem with the lat-
ter is that the production of a complete proof term (as done bythe
Omega or Zenon tactics in Coq) can be a slow and difficult pro-
cess. Thus, the production of small, efficient traces is the corner-
stone of the sound integration of an automated prover in an inter-
active prover. Another, more practical, issue raised by using auto-
mated theorem provers is that verification conditions generated by
Why are expressed in a polymorphic first-order logic, while exist-
ing provers only handle untyped logic (such as Simplify and HaR-
Vey) or monomorphic many-sorted logic (such as Yices, CVC3).
It has been shown in [8] that finding encodings between these log-
ics which are correct and do not deteriorate the performanceof the
provers is not a trivial issue.

Therefore, we have developed the Ergo theorem prover with these
different limitations in mind; the main novelties in our system are
the native support of polymorphism, a new modular congruence

23 October 2007

55

closure algorithmCC(X) for combining the theory of equality over
uninterpreted symbols with a theoryX, and a mechanism producing
lightweight proof traces.

The remainder of this paper focuses on the design of Ergo and
attempts of integration in Coq. Section 2 describes the different
characteristics and central components in Ergo, whereas Section 3
details both a loose integration of Ergo in Coq, and a tighterintegra-
tion based on the production of efficient traces for thecongruence
closuremodule of Ergo.

2. THE ERGO THEOREM PROVER
Ergo is an automatic theorem prover fully integrated in the pro-
gram verification tool chain developed in our team. It solvesgoals
that are directly written in the Why’s annotation language1. This
means that Ergo fully supports quantifiers and deals directly with
polymorphism.

2.1 General Architecture
The architecture of Ergo is highly modular: each part (except the
parsers) of the code is described by a small set of inference rules
and is implemented as a (possibly parameterized) module. Figure 2
describes the dependencies between the modules. Each inputsyn-
tax is handled by the corresponding parser. Both of them produce
an abstract syntax tree in the same datatype. Hence, there isa sin-
gle typing module for both input syntaxes. The main loop consists
of three modules:

• A home-made efficient SAT-solver with backjumping that
also keeps track of the lemmas of the input problem and those
that are generated during the execution.

• A module that handles the ground and monomorphic literals
assumed by the SAT-solver. It is based on a new combination
scheme,CC(X), for the theory of uninterpreted symbols and
built-in theories such as linear arithmetic, the theory of lists
etc.

• A matching module that builds monomorphic instances of
the (possibly polymorphic) lemmas contained in the SAT-
solver modulo the equivalence classes generated from the
decision procedures.

Figure 2: The modular architecture of Ergo.

The rest of this section explains the core decision procedures and
how quantifiers are supported by Ergo2 and their subtle interaction
1Ergo also parses the standard [17] defined by the SMT-lib initia-
tive.
2Ergo handles quantifiers in a very similar way to Simplify and
Yices.

Figure 3: CC(X) architecture

Dispatcher

Decision
procedure for X

x=yx=y

CC

Figure 4: Nelson-Oppen archi-
tecture

with polymorphism.

2.2 Built-In Decision Procedures
The decision procedure module implementsCC(X) [5], a new com-
bination schemeà la Shostak[19, 18] between the theory of un-
interpreted symbols and a theoryX. CC(X) means “congruence
closure parameterized byX”. The moduleX should provide a deci-
sion procedureDP for its relational symbols except for the equality
which is handled by a generic union-find algorithm,UF(X), param-
eterized byX. As shown in Figure 3, the combination relies on the
following exchanges:

• CC(X) sends relations betweenrepresentativesin UF(X) to
DP. Using representatives automatically propagates the equal-
ities implied byUF(X). In return,DP sends its discovered
equalities.

• CC(X) asksUF(X) for relevant equalitiesto propagate for
congruence. Due to the union-find mechanism, asking for
relevant equalities is much more efficient than lettingUF(X)
try to discoverall new equalities.

This is different from the Nelson-Oppen combination [15] where,
as shown in Figure 4, the combined modules have to discover and
propagate all their new equalites.

Currently,CC(X) has been instantiated by linear arithmetic3, the
theory of lists, the general theory of constructors and a restricted
theory of accessibility in graphs [7].

2.3 Quantifiers
The SAT-solver module takes as input CNF formulas, seen as sets
of disjunctions where leaves are either ground literals or quantified
formulas in prenex normal form.

A (standard) propositional SAT engine decides the satisfiability of a
propositional formula by assuming (positively or negatively) each
leaf of the associated CNF, and then by simplifying the formula
accordingly to these choices. It stops whenever the CNF becomes
equal to the empty set, proving that the input formula is satisfiable
by providing a model. In Ergo, the general mechanism of the SAT-
solver is quite similar, but there are two main differences.

The way the leaves are handled depends on their nature: assuming a
ground literal amounts to sending it to the decision procedure mod-
ule, while assuming positively a quantified formula simply means
to store it in the current state of the SAT engine.

When the CNF is empty, the Ergo SAT-solver still has to handle
the previously stored quantified formulas. In general, it isobvi-
ously not possible to decide whether these formulas are consistent

3Ergo is complete over rationals but uses heuristics for integers.

23 October 2007

56

with the partial model already built. However, one may try toprove
inconsistency by using ground instances of these formulas.The in-
stantiation mechanism is provided by the matching module which
builds a new CNF by instantiating the quantified formulas with
some ground termsoccurring in the ground literals already han-
dled. A pattern mechanism (similar to Simplify’s triggers) is used
to guide quantifier instantiation. Patterns can either be defined by
the user or automatically generated.

2.4 Polymorphism à la ML
In Ergo, the matching module also handles the polymorphism by
instantiating type variables. Consider for instance the following
example written in the Why syntax which defines the sort of poly-
morphic lists (α list) and its constructors (nil andcons) as well
as a functionlength with its properties (a1 anda2).

type α list
logic nil: α list
logic cons: α, α list → α list
logic length: α list → int

axiom a1: length(nil) = 0
axiom a2: ∀ x:α. ∀ l:α list.

length(cons(x,l)) = 1 + length(l)

First, the typing module checks that this input is well-typed, and
when encountering a goal such as

goal g: ∀ x:α. length(cons(x,nil))=1

it turns the term variablex into a constanta (usual transformation)
as well as the implicitly universally quantified type variable α into a
type constantτ. This implies in particular that the context contains
the type constantτ and the term constanta of type τ and that the
goal g’:length(cons(a,nil))=1 is monomorphic.

Now, in order to prove the goalg’, the matching module generates
the instance ofa2 by the substitution

{α → τ, x → a, l → nil}

We are left to prove that1+length(nil)=1 wherenil has the type
τ list. The only way to show this is by usinga1.

At first glance,a1 seems to be a monomorphic ground literal that
could be sent to the decision procedure module and not a lemma,
since no explicit quantified variable occurs in it. However if it is
considered as such, the type ofnil is fixed to an arbitrary constant
which is distinct from τ. This prevents usinga1 to conclude that
1+length(nil)=1 holds whennil has typeτ list. The actual
lemma should be:

axiom a1’ : ∀α. length(nil:α list) = 0

but in the Why syntax, the type variables such asα are only im-
plicitly universally quantified. Some of these type variables occur
explicitly in the types of the quantified term variables (such asx:α
in a2), but others are hidden in polymorphic constants. This is the

case for the type variableα of the constantnil in the axioma1,
which has to be internally translated by Ergo intoa1’.

To sum up, there is an invariant in the main loop:

1. a goal is always monomorphic;

2. only monomorphic ground literals are sent by the SAT-solver
to the decision procedures’ module;

3. the matching module instantiates polymorphic lemmas using
the monomorphic ground types and terms already handled,
thus the generated instances are monomorphic.

2.5 General Benchmarks
Ergo is written in Ocaml and is very light (∼ 3000 lines of code).
It is freely distributed under the Cecill-C licence athttp://ergo.
lri.fr.

Ergo’s efficiency mostly relies on the technique of hash-consing.
Beyond the obvious advantage of saving memory blocks by sharing
values that are structurally equal, hash-consing may also be used
to speed up fundamental operations and data structures by several
orders of magnitude when sharing is maximal. The hash-consing
technique is also used to elegantly avoid the blow-up in sizedue to
the CNF conversion in the SAT-solver [6].

Since the built-in decision procedures are tightly coupledto the top-
level SAT-solver, the backtracking mechanism performed bythe
SAT module forces the decision procedure module to come backto
its previous state. This is efficiently achieved by using functional
data structures of Ocaml.

We benchmarked Ergo on a set of 1450 verification conditions that
were automatically generated by the VCG Caduceus/Why from 69
C programs [16]. These goals make heavy use of quantifiers, poly-
morphic symbols and linear arithmetic. All these conditions are
proved at least by one prover. Figure 5 shows the results of the
comparison between Ergo and four other provers: Z3, Yices, Sim-
plify and CVC3. As mentioned above, none of these provers can
directly handle polymorhism; therefore we simply erased types for
Simplify and we used an encoding for Yices, Z3 and CVC3. The
five provers were run with a fixed timeout of 20s on a machine with
Xeon processors (2.13 GHz) and 2 Gb of memory.

valid timeout unknown avg. time
Simplify v1.5.4 98% 1% 1% 60ms
Yicesv1.0 95% 2% 3% 210ms
Ergov0.7 94% 5% 1% 150ms
Z3 v0.1 87% 10% 3% 690ms
CVC3 v20070307 71% 1% 28% 80ms

Figure 5: Comparison between Ergo, Simplify, Yices and CVC-
Lite on 1450 verification conditions.

The columnvalid shows the percentage of the conditions proved
valid by the provers. The columntimeout gives the percentage
of timeouts whereasunknown shows the amount of problems un-
solved due to incompleteness. Finally, the columnavg. timegives
the average time for giving a valid answer.

As shown by the results in Figure 5, the current experimentations

23 October 2007

57

are very promising with respect to speed and to the number of goals
automatically solved.

3. INTEGRATION OF ERGO IN COQ
Today, Coq still lacks good support of proof automation. There are
two main reasons for that. On the one hand, Coq’s rich higher-
order logics is not well-adapted to decision procedures that were
designed for first order logics. On the other hand, Coq is built fol-
lowing the de Bruijn principle: any proof is checked by a small and
trusted part of the system. Making a complex decision procedure
part of the trusted system would go against this principle.

Still, one would like to use automated provers such as Ergo inCoq.
We briefly present two possible approaches to this problem, one by
giving up the de Bruijn principle, the other one by maintaining it.

3.1 A loose integration
To be able to use Ergo in Coq, one has to translate goals in Coq
higher order logic into first order logic, understood by Ergo. Ay-
ache and Filliâtre have realized such a translation [2]. In their ap-
proach, the Coq goal is translated, sent to Ergo, and the answer of
the automated prover is simply trusted. Here, by using the auto-
mated prover as anoracle, the de Bruijn principle is given up, but
the resulting Coq tactics are quite fast.

This translation aims the polymorphic first order logic of the Why
tool, which is the same logic as the one of Ergo. It not only trans-
lates terms and predicates of the Coq logic CIC, the Calculusof
Inductive Constructions, but also includes several techniques to go
beyond: abstractions of higher-order subterms, case analysis, mu-
tually recursive functions and inductive types.

Using the Why syntax as target language has the advantage of being
able to interface any automated prover supported by Why withthe
above translation. Simplify, Yices, CVC Lite and other provers
may be called from Coq. The first order prover Zenon even returns
a proof trace in form of a Coq term. The soundness of its answers
can thus be checked by Coq.

3.2 A tight integration via traces
The oracle approach above has the disadvantage that it is very easy
to introduce bugs in the translation or in the prover, which may
compromise a whole proof development in Coq. Constructing a
Coq proof term directly is sound, but may generate huge proof
traces and is difficult if the problems contain interpreted function
symbols of some theory, for example the theory of linear arithmetic
(the tool Zenon mentioned above does not handle arithmetic). An-
other approach consists in modelling part of the prover in Coq and
only communicating applications of inference rules or other facts
that are relevant for soundness. In particular, any part of the execu-
tion that is concerned with proof search can be omitted. The size
of the proof is expected to be considerably shorter, and thusthe
time to check this proof. Proofs that are guided by the execution
of the decision procedure are calledtraces. This section describes
the ongoing work of constructing proof traces for the core decision
procedureCC(X).

As described in section 2.2, the core decision procedureCC(X)
of Ergo uses a moduleUF(X) to handle the equality axioms, ie.
reflexivity, symmetry and transitivity, as well as equalitymodulo
the theoryX. If the soundness of such a union-find module is es-
tablished, and we are given a setE of initial equations, a sound

concrete union-find structure can be constructed as follows: start-
ing with the empty union-find structure (that only realizes equality
modulo X), we only have the right to process (merge) equations
that are either inE or are of the formf (a1, · · · ,an) = f (b1, · · · ,bn),
where the representatives ofai andbi are the same, for alli. This
translates directly into an inductive type definition in Coq:

Inductive Conf (e:list equation) : uf → Set :=
| init : Conf e Uf.empty
| in_p : ∀(u:uf) (t1 t2:term),

Conf e u → In (t1,t2) e →
Conf e (Uf.union u t1 t2)

| congr : ∀(u:uf) (l1 l2: list term) (f: symbol),
Conf e u → list_eq (Uf.equal u) l1 l2 →
Conf e (Uf.union u (Term f l1) (Term f l2)).

The functionlist_eq takes a relation as first argument and returns
the relation lifted to lists; otherwise this definition should be self
explanatory.

Now, for any object of typeConf e u, it is not difficult to prove in
Coq that the union-find structureu is indeed sound, by proving the
following lemma:

Theorem correct_cc :
∀(u:uf) (e :list equation),
Conf e u →
(∀(t1 t2:term), Uf.equal u t1 t2 →
Th.thEX e t1 t2).

whereX.thEX is the target relation=E,X , which means equality
modulo the theoryX and the setE of assumed ground equations.
The Coq proof of theoremcorrect_cc follows the paper proof of
soundness ofCC(X) given in the appendix of [5] and consists of
150 lines of specification and 300 lines of proof script.

This enables us to construct a proof from a run of Ergo: by record-
ing the processing of equations in theCC(X) module, establish a
Coq object of typeConf e u, deliver a proof that this union-find
module renderst1 equal tot2, and by the application of the theo-
remcorrect_cc we obtain a proof fort1 =E,X t2. If the union-find
module is actually implemented in Coq, we can even obtain the
proof of t1 andt2 having the same representative automatically, by
a technique calledreflectionthat employs the calculating capabili-
ties of the proof assistant.

Thus, all that is left is an implementation of a union-find modulo a
theoryX in Coq (UFCoq in the following), which in turn requires
the implementation of the theoryXCoq. To be independent of any
particular theory, we use the same trick asCC(X) uses: we develop
a parameterized module (afunctor), that may be instantiated by
any theory that provides the necessary constructs. With the strong
type system of Coq, we can even express and require soundness
properties of the theory that are necessary to prove the soundness
of UFCoq(XCoq).

A subtlety in the implementation of proof traces is the handling of
function symbols and constants. On the one hand, one would like
to be as flexible as possible and not fix the set of used function
symbols in advance (in general, every problem will use its own set
of symbols). On the other hand, it is necessary to reason about

23 October 2007

58

some (fixed) function symbols, like+ in the case of arithmetic.
Our solution to this dilemma is (again) the use of a functor: the
theoryXCoq is parameterized by a signatureSwhich provides un-
interpreted function symbols. Internally, the theory completes this
signature with its own function symbols and may then reason about
the resulting signature. To obtain the union-find structurein Coq,
we can now instantiateUFCoq by XCoq(S). In practice, the sig-
natureS is generated automatically by the proof traces generation
mechanism. To summarize, we obtain the following instantiation
chain:

S→ XCoq(S) → UFCoq(XCoq(S)) → CCCoq

To avoid reconstructingCCCoq for identical signatures and theories,
the instantiation may be part of a prelude file, as is already the case
for type definitions, axioms, etc. in the VCGs generated by the
Why tool.

4. CONCLUSION
We have presented Ergo, a new theorem prover for first-order poly-
morphic logic with built-in theories. The development started in
January 2006 and the current experimentations are very promis-
ing with respect to speed and to the number of goals automatically
solved.

We also described two attempts at integrating Ergo in Coq: first as
an oracle, which raises concerns about the soundness of the certifi-
cation chain, and then we showed how to generate proof tracesfor
the congruence closure algorithm of Ergo so as to let Coq verify the
proof itself. Such traces are a very interesting way of mechanizing
interactive proving without breaking the chain of trust [1]. Our first
experiments with the traces generation are promising: the generic
nature ofCC(X) is truly captured and traces are concise. There is
room for improvement in terms of efficiency and traces shouldide-
ally also cover the SAT-solver and matching components. Forthe
moment, only traces for linear arithmetic are implemented.In total,
the Coq development of the theory of linear arithmetic takesabout
400 lines of specification and 900 lines of proof script.

Another direction, that we think is worth investigating, isto “prove
the prover” in a proof assistant. Indeed, Ergo uses only purely func-
tional data-structures (with the exception of the hash-consing mod-
ules), is highly modular and very concise (∼ 3000 lines of code).
All these features should make a formal certification feasible.

Also, since this prover is partly dedicated to the resolution of ver-
ification conditions generated by the Krakatoa/Caduceus/Why[14]
toolkit, its future evolution is partly guided by the needs of these
tools : designing efficient proof strategies to manage huge contexts
and useless hypotheses and adding more built-in theories such as
pointer arithmetic. We also plan to design parsers in order to run
Ergo on other benchmarks such as ESC/Java, Boogie and NASA
benchmarks.

Finally, we are currently working on a functorCombine(X1,X2)
to effectively combine different built-in theoriesX1 andX2 under
certain restrictions, and by taking advantage of the fact that our
theories are typed.

5. REFERENCES
[1] The A3PAT Project.

http://www3.iie.cnam.fr/~urbain/a3pat/.
[2] N. Ayache and J.-C. Filliâtre. Combining the Coq Proof

Assistant with First-Order Decision Procedures.
Unpublished, March 2006.

[3] C. Barrett and C. Tinelli. Cvc3. In W. Damm and
H. Hermanns, editors,Proceedings of the 19th International
Conference on Computer Aided Verification (CAV’07),
Berlin, Germany, Lecture Notes in Computer Science.
Springer, 2007.

[4] S. Conchon and E. Contejean. The Ergo automatic theorem
prover.http://ergo.lri.fr/.

[5] S. Conchon, E. Contejean, and J. Kanig. CC(X): Efficiently
Combining Equality and Solvable Theories without
Canonizers. In S. Krstic and A. Oliveras, editors,SMT 2007:
5th International Workshop on Satisfiability Modulo, 2007.

[6] S. Conchon and J.-C. Filliâtre. Type-Safe Modular
Hash-Consing. InACM SIGPLAN Workshop on ML,
Portland, Oregon, Sept. 2006.

[7] S. Conchon and J.-C. Filliâtre. Semi-Persistent Data
Structures. Research Report 1474, LRI, Université Paris Sud,
September 2007.

[8] J.-F. Couchot and S. Lescuyer. Handling polymorphism in
automated deduction. In21th International Conference on
Automated Deduction (CADE-21), volume 4603 ofLNCS
(LNAI), pages 263–278, Bremen, Germany, July 2007.

[9] L. de Moura and N. Bjørner. Z3, An Efficient SMT Solver.
http://research.microsoft.com/projects/z3/.

[10] L. de Moura and B. Dutertre. Yices: An SMT Solver.
http://yices.csl.sri.com/.

[11] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem
prover for program checking.J. ACM, 52(3):365–473, 2005.

[12] J.-C. Filliâtre.Preuve de programmes impératifs en théorie
des types. PhD thesis, Université Paris-Sud, July 1999.

[13] J.-C. Filliâtre. Verification of non-functional programs using
interpretations in type theory. 13(4):709–745, July 2003.
[English translation of [12]].

[14] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus
platform for deductive program verification.

[15] G. Nelson and D. C. Oppen. Simplification by cooperating
decision procedures.ACM Trans. on Programming,
Languages and Systems, 1(2):245–257, Oct. 1979.

[16] ProVal Project. Why Benchmarks.
http://proval.lri.fr/why-benchmarks/.

[17] S. Ranise and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). http://www.SMT-LIB.org, 2006.

[18] H. Rueß and N. Shankar. Deconstructing Shostak. InLICS
’01: Proceedings of the 16th Annual IEEE Symposium on
Logic in Computer Science, page 19, Washington, DC, USA,
2001. IEEE Computer Society.

[19] R. E. Shostak. Deciding combinations of theories.J. ACM,
31:1–12, 1984.

23 October 2007

59

Using SMT solvers to verify high-integrity programs
∗

Paul B. Jackson
School of Informatics

University of Edinburgh
King’s Bldgs

Edinburgh, EH9 3JZ
United Kingdom

Paul.Jackson@ed.ac.uk

Bill J. Ellis
School of Mathematical and

Computer Sciences
Heriot-Watt University

Riccarton
Edinburgh, EH14 4AS

United Kingdom

bill@macs.hw.ac.uk

Kathleen Sharp
IBM United Kingdom Ltd

Hursley House, Hursley Park
Winchester, SO21 2JN

United Kingdom

Kathleen.sharp@uk.ibm.com

ABSTRACT

In this paper we report on our experiments in using the cur-
rently popular Smt (Sat Modulo Theories) solvers Yices [10]
and Cvc3 [1] and the Simplify theorem prover [9] to dis-
charge verification conditions (VCs) from programs written
in the Spark language [5]. Spark is a subset of Ada used
primarily in high-integrity systems in the aerospace, defence,
rail and security industries. Formal verification of Spark

programs is supported by tools produced by the UK com-
pany Praxis High Integrity Systems. These tools include a
VC generator and an automatic prover for VCs.

We find that Praxis’s prover can prove more VCs than
Yices, Cvc3 or Simplify because it can handle some rela-
tively simple non-linear problems, though, by adding some
axioms about division and modulo operators to Yices, Cvc3
and Simplify, we can narrow the gap. One advantage of
Yices, Cvc3 and Simplify is their ability to produce counter-
example witnesses to VCs that are not valid.

This work is the first step in a project to increase the
fraction of VCs from current Spark programs that can be
proved automatically and to broaden the range of properties
that can be automatically checked. For example, we are in-
terested in improving support for non-linear arithmetic and
automatic loop invariant generation.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—assertion checkers, formal methods; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—mechanical verification, as-
sertions, invariants, pre- and post-conditions

General Terms

Experimentation, Performance, Verification

∗This work was funded in part by UK EPSRC Grant
GR/S01771/01.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM ’07, November 6, Atlanta, GA, USA.
Copyright 2007 ACM ISBN 978-1-59593-879-4/07/11 ...$5.00.

Keywords

SMT solver, SAT modulo theories solver, Ada, SPARK

1. INTRODUCTION
Smt (Sat Modulo Theories) solvers combine recent ad-

vances in techniques for solving propositional satisfiability
(Sat) problems [33] with the ability to handle first-order
theories using approaches derived from Nelson and Oppen’s
work on cooperating decision procedures [24]. The core
solvers work on quantifier free problems, but many also
can instantiate quantifiers using heuristics developed for the
non-Sat-based prover Simplify [9]. Common theories that
Smt solvers handle include linear arithmetic over the in-
tegers and rationals, equality, uninterpreted functions, and
datatypes such as arrays, bitvectors and records. Such the-
ories are common in VCs and so Smt solvers are well suited
to automatically proving VCs.

Smt solvers are currently used to prove Java VCs in the
Esc/Java2 [2] tool and C# VCs in the Spec# static program
verifier [6]. The Simplify prover was used to prove VCs in
the Esc/Modula-3 and original Esc/Java tools.

We evaluate here the current releases of two popular Smt

solvers: Cvc3 [1] and Yices [10]. Both these systems fea-
tured in the 2006 and 2007 SMT-COMP competitions com-
paring Smt solvers1 in the category which included handling
quantifier instantiation. We also evaluate Simplify because
it is highly regarded and, despite its age (the latest public
release is over 5 years old), it is still competitive with current
Smt solvers.

One advantage that Smt solvers and Simplify have over
Praxis’s Simplifier is their ability to produce counter-example
witnesses to VCs that are not valid. These counter-examples
can be of great help to Spark program developers and ver-
ifiers: they can point out scenarios highlighting program
bugs or indicate what extra assertions such as loop invari-
ants need to be provided. They also can reduce wasted time
spent in attempting to interactively prove false VCs.

The work reported here is the first step in a project to
improve the level of automation of Spark VC verification
and extend the range of properties that can be automati-
cally verified. Typical properties that Spark users currently
verify are those which check for the absence of run-time ex-
ceptions caused by arithmetic overflow, divide by zero, or
array bounds violations. Particular new kinds of properties
we are interested in include those which involve non-linear

1http://www.smtcomp.org/

23 October 2007

60

arithmetic and which involve significant quantifier reason-
ing. A key obstacle to improving automation is the need
to provide suitable loop invariants. We are therefore inter-
ested in also exploring appropriate techniques for automatic
invariant generation.

Tackling Spark programs rather than say Java or C pro-
grams is appealing for a couple of reasons. Firstly, there is
a community of Spark users who have a need for strong as-
surances of program correctness and who are already writing
formal specifications and using formal analysis tools. This
community is a receptive audience for our work and we have
already received strong encouragement from Praxis. Sec-
ondly, Spark is semantically relatively simple and well de-
fined.

Notable earlier work on improving the verification of Spark

programs is by Ellis and Ireland [18]. They used a proof-
planning and recursion analysis approach to analyse failed
proofs of VCs involving loops to identify how to strengthen
loop invariants.

Some success has been had at NASA in using first-order
automatic theorem provers for discharging VCs [8]. A ma-
jor problem with such an approach is the poor support for
arithmetic in such provers. This work succeeds by axiomat-
ically characterising a fragment of linear arithmetic that is
just sufficient for the kinds of VCs encountered.

Section 2 gives more background on Spark. Section 3 de-
scribes the current implementation of our interface to Yices
and Cvc3. Case study programs are summarised in Sec-
tion 4 and Sections 5 and 6 present the results of experi-
ments on the VCs from these programs. Future work, both
near term and longer term is discussed in Section 7 and con-
clusions are in Section 8.

2. THE SPARK LANGUAGE AND TOOLKIT
The Spark [5] subset of Ada was first defined in 1988 by

Carré and Jennings at Southampton University and is cur-
rently supported by Praxis. The Ada subset was chosen to
simplify verification: it excludes features such as dynamic
heap-based data-structures that are hard to reason about
automatically. Spark adds in a language of program anno-
tations for specifying intended properties such as pre and
post conditions and assertions. These annotations take the
form of Ada comments so Spark programs are compilable
by standard Ada compilers.

A feature of Spark inherited from Ada particularly rel-
evant for verification purposes is the ability to specify sub-
types, types which are subranges of integer, floating-point
and enumeration types. For example, one can write:

subtype Index is Integer range 1 .. 10;

Such types allow programmers to easily include in their pro-
grams extra specification constraints without having to sup-
ply explicit annotations. It is then possible, either dynami-
cally or statically, to check that these constraints are satis-
fied.

The Examiner tool from Praxis generates verification con-
ditions from programs. Annotations are often very tedious
for programmers to write, so the Examiner can generate au-
tomatically some kinds of annotations. For example, it can
generate annotations for checking the absence of run-time
errors such as array index out of bounds, arithmetic over-
flow, violation of subtype constraints and division by zero.

As with Ada, a Spark program is divided into program
units, each usually corresponding to a single function or pro-
cedure. The Examiner reads in files for the annotated source
code of a set of related units and writes the VCs for each
unit into 3 files:

• A declarations file declaring functions and constants
and defining array, record and enumeration types,

• a rules file assigning values to constants and defining
properties of datatypes,

• a verification condition goal file containing a list of
verification goals. A goal consists of a list of hypothe-
ses and one or more conclusions. Conclusions are im-
plicitly conjuncted rather than disjuncted as in some
sequent calculi.

The language used in these files is known as Fdl.
The Simplifier tool from Praxis can automatically prove

many verification goals. It is called the Simplifier because it
returns simplified goals in cases when it cannot fully prove
the goals generated by the Examiner. Users can then resort
to an interactive proof tool to try to prove these remaining
simplified goals. In practice, this proof tool requires rather
specialised skills and is used much less frequently than the
Simplifier. To avoid the need to use the tool or to manually
review verification goals, users are often inclined to limit the
kinds of program properties they try to verify to ones that
can be verified by the Simplifier. They also learn program-
ming idioms that lead to automatically provable goals.

3. SMT SOLVER INTERFACE
Our interface program reads in the VC file triples output

by the Examiner tool and generates a series of goal slices. A
goal slice is a single conclusion packaged with its associated
hypotheses, rules and declarations. After suitable process-
ing, each goal slice is passed in turn to a selected prover,
at present one of Yices, Cvc3 or Simplify. The processing
includes:

• Handling enumerated types.

The Examiner generates rules that define each enu-
merated type as isomorphic to a subrange of the inte-
gers. Explicit functions defining the isomorphism are
declared and the rules for example relate order rela-
tions and successor functions on the enumeration types
to the corresponding relations and functions on the in-
tegers.

We experiment with 3 options:

1. Mapping each Fdl enumerated type to the enu-
merated type of the Smt solver. We keep the
rules since neither solver publically supports or-
dering of the elements of enumerated types.

2. Mapping each Fdl enumerated type to an ab-
stract type in the Smt solver, so the solver has to
rely fully on the supplied enumeration type rules
to reason about the enumeration constants.

3. Defining each enumeration type as an integer sub-
range, defining each type element as equal to an
appropriate integer, and eliminating all rules.

23 October 2007

61

The last option generally gives the best performance,
but the first two are better from a counter-example
point of view: counter-examples involving the enu-
meration types are more readable since they use the
enumeration constants rather than the corresponding
integers.

• Resolving overloaded functions and relations.

For example, Fdl uses the same symbols for the order
relations and successor functions on all types. Reso-
lution involves inferring types of sub-expressions and
type checking the Fdl.

• Inferring types of free variables in rules and adding
quantifiers to close the rules.

Fdl is rather lax in declaring types of these variables
and so types must be inferred from context.

• Resolving the distinction between booleans as individ-
uals and booleans as propositions. The Fdl language
uses the same type for both, as does Yices. However,
Cvc3 and Simplify take a stricter first-order point of
view and require the distinction.

• Adding missing declarations of constants. Fdl has
some built-in assumptions about the definition of con-
stants for the lowest and highest values in integer and
real subrange types and we needed to make these ex-
plicit.

• Reordering type declarations so types are defined be-
fore they are used. Such an ordering is not required in
Fdl, but is needed by Yices and Cvc3.

We carry out all the above processing in a prover indepen-
dent setting as much as possible in order to keep the driver
code for individual provers compact and ease the develop-
ment of further drivers.

The match between the Fdl language of the Spark VCs
and the input languages of both Yices and Cvc3 is good.
The Fdl language includes quantified first-order formulae
and datatypes including the booleans, integers, reals, enu-
merations, records and arrays, all of which are supported by
both solvers.

At present we are interfacing to Yices and Cvc3 using
their C and C++ APIs respectively. An alternative is to
write goal slices to files in the specific input languages of
the respective solvers and call the solvers in sub-processes.
We take this latter approach with Simplify since it does not
have a readily-available C or C++ API.

Simplify’s input language is rather different from Fdl.
All individual expressions in Simplify are untyped except
for those which are arguments to arithmetic relations or are
the arguments or results of arithmetic operations - these
expressions are of integer type. We handle both arrays and
records using Simplify’s built-in axiomatic theory of maps.
For example, one axiom is stated as:

(FORALL (m i x)

(PATS (select (store m i x) i))

(EQ (select (store m i x) i) x)

)

Here the PATS expression is a hint used to suggest to Simplify
a sub-expression to use as a trigger pattern when search-
ing for matches that could provide instantiations. Handling

enumeration types is straightforward: the Fdl generated
by Praxis’s Examiner provides enough inequality predicates
bounding enumeration type values to allow the interpreta-
tion of enumeration types themselves as integers. A prob-
lem with Simplify is that all arithmetic is fixed precision.
We follow the approach taken when Simplify is used with
Esc/Java where all constants with magnitude greater than
some threshold are represented symbolically and axioms are
asserted concerning how these constants are ordered [21].

To aid in analysis of results, we provide various options for
writing information to a log file, as well as writing comma-
separated-value run summaries. These allow easy compar-
ison between results from runs with different options and
solvers.

4. CASE STUDY SPARK PROGRAMS
For our experiments we work with two readily available

examples.

• Autopilot: the largest case study distributed with the
Spark book [5]. It is for an autopilot control system
for controlling the altitude and heading of an aircraft.

• Simulator: a missile guidance system simulator writ-
ten by Adrian Hilton as part of his PhD project. It is
freely available on the web2 under the GNU General
Public Licence.

Some brief statistics on each of these examples and the cor-
responding verification conditions are given in Table 1. The

Autopilot Simulator
Lines of code 1075 19259
No. units 17 330
No. annotations 17 37
No. VC goals 133 1799
No. VC goal slices 576 6595

Table 1: Statistics on Case Studies

lines-of-code estimates are rather generous, being simply the
sum of the number of lines in the Ada specification and body
files for each example. The annotations count is the number
of Spark precondition and assertion annotations in all the
Ada specification and body files. No postconditions were
specified in either example.

In both cases the VCs are primarily from exception free-
dom checks, e.g. checking that arithmetic values and array
indices are always appropriately bounded.

The VCs from both examples involve enumerated types,
linear and non-linear integer arithmetic, integer division and
uninterpreted functions. In addition, the Simulator example
includes VCs with records, arrays and the modulo operator.

5. EXPERIMENTAL RESULTS
Results are presented for the tools

• Yices 1.0.9,

• Cvc3 development version 20071001,

• Simplify 1.5.4,

2http://www.suslik.org/Simulator/index.html

23 October 2007

62

Yices CVC3 Simplify Simplifier
proven 510 88.5% 518 89.9% 516 89.6% 572 99.3%
unproven 66 11.5% 58 10.1% 60 10.4% 4 0.7%
timeout 0 0 % 0 0 % 0 0 % 0 0 %
error 0 0 % 0 0 % 0 0 % 0 0 %
total 576 576 576 576

Table 2: Coverage of Autopilot goal slices

Yices CVC3 Simplify Simplifier
proven 6004 91.0% 6074 92.1% 5940 90.1% 6410 97.2%
unproven 591 9.0% 337 5.1% 646 9.8% 185 2.8%
timeout 0 0 % 184 2.8% 0 0 % 0 0 %
error 0 0 % 0 0 % 9 0.1% 0 0 %
total 6595 6595 6595 6595

Table 3: Coverage of Simulator goal slices

• Simplifier 2.32, part of the 7.5 release of Praxis’s tools.

We needed a development version of Cvc3 as the latest avail-
able release (1.2.1) had problems with a significant fraction
of our VCs.

Unless otherwise stated, the experiments were run on a
3GHz Pentium 4D CPU with 1GB of physical memory run-
ning Linux Fedora Core 6. We used the translation option
to eliminate the enumeration type occurrences, as this yields
the best performance. With Simplify, the threshold for mak-
ing constants symbolic was set at 100,000.

The coverage obtained with each tool is summarised in
Tables 2 and 3. The tables show the results of running
Yices, Cvc3, Simplify and Praxis’s Simplifier on each goal
slice from the VCs in each of the case studies. The proven
counts are for when the prover returned claiming that a goal
is true. The unproven counts are for when the prover re-
turned without having proven the goal. The timeout counts
are for when the prover reached a time or resource limit.
The only limit reached in the tests was a resource limit for
Cvc3: Cvc3 usually reached the set limit of 100,000 in 8-10
sec. This limit was only specified for the Cvc3 runs on the
Simulator VCs. The error counts are for when the prover
had a segmentation fault, encountered an assertion failure or
diverged, never reaching a resource limit after a few minutes.

To indicate the performance of each prover, we have gath-
ered and sorted run times of each prover on each goal slice.
Table 4 shows the run times at a few percentiles. ‘TO’

Autopilot Simulator
Yices Cvc3 Smpfy Yices Cvc3 Smpfy

50% .01 .02 .01 .01 .05 .04
90% .02 .04 .02 .03 .11 .07
99% .02 4.75 .03 .04 TO .08
99.9% .16 .08
max. .03 17.20 .03 .56 >10 .09

Table 4: Run time distributions (times in sec.)

indicates that the timeout resource limit was reached. With
the Cvc3 Simulator runs, this was reached at the 97% level.

Numbers are not given for the Simplifier in this table as it
does not provide a breakdown of its run time on individual
goal slices.

Table 5 provides a comparison of the total run times of

Autopilot Simulator
Yices 5.63 109.6
Cvc3 83.11 2928.0
Simplify 8.09 293.1
Simplifier 6.51 226.9

Table 5: Total run times (sec)

each prover on all goal slices. These times also include the
overhead time for reading in the various VC files and suitably
translating them. For Yices and Cvc3, this overhead is at
most a few percent.

The number for Praxis’s Simplifier running on the Sim-
ulator goal slices is an estimate based on running a Solaris
version of the Simplifier on a slower SPARC machine and ob-
taining a scaling factor by running both Solaris and Linux
versions on the Autopilot goal slices. Praxis only release a
Linux version of the Simplifier for demonstration purposes,
and this version cannot handle the size of the Simulator ex-
ample.

Both the total and individual goal slice times for Simplify
appear to be significant over-estimates of the time spent ex-
ecuting Simplify’s code. For example, a preliminary inves-
tigation shows that for only 15-30% of the total run times
for the Simplify tests is the CPU in user mode executing
the child processes running Simplify. Much of the rest of
the time seems to be spent in file input/output (communi-
cation with Simplify is via temporary files) and sub-process
creation and clean-up.

6. DISCUSSION OF RESULTS

Coverage.
All the goal slices unproven by Yices, Cvc3 or Simplify,

but certified true by Praxis’s Simplifier, involve non-linear
arithmetic with some combination of non-linear multiplica-
tion, integer division and modulo operators. These slices
nearly all involve checking properties to do with bounds on
the values of expressions. It is fairly simple to see these prop-
erties are true from considering elementary bounding prop-
erties of arithmetic functions, for example, that the product
of two non-negative values is non-negative. See the section
below on incompleteness for a discussion of an experiment

23 October 2007

63

involving adding axioms concerning bounding properties.
The 4 Autopilot goal slices unproven by Simplifier are all

true. They all have similar form: for example, one goal slice
in essence in Fdl syntax is:

H1: f > 0 .

H2: f <= 100 .

H3: v >= 0 .

H4: v <= 100 .

->

C1: (100 * f) div (f + v) <= 100 .

The 2.8% Simulator goal slices unproven by Simplifier ap-
pear to be nearly all false. They are derived from 47 of the
330 Simplifier sub-programs. The author of the Simulator
case study code had neither the time nor the need to ensure
that all goal slices for all sub-programs were true.

The slightly better coverage obtained with Cvc3 over Yices
on the Autopilot example is partly because Yices prunes
any hypothesis or conclusion with a non-linear expression,
whereas Cvc3 accepts non-linear multiplication and knows
some properties of it. For example, it proved the goal slices:

H1: s >= 0 .

H2: s <= 971 .

->

C1: 43 + s * (37 + s * (19 + s)) >= 0 .

C2: 43 + s * (37 + s * (19 + s)) <= 214783647 .

Run times.
As can be seen from the distributions, Yices, Cvc3 and

Simplify all have run times within a factor of 5 of each other
on many problems. Cvc3’s total run times at 15-20× those
of Yices seems to be due to it trying for longer on problems
where it returns unproven or timeout results: all but 16 of
the problems it proves are proven in under 0.11s.

The performance of Simplify is impressive, especially given
its age (the version used dates from 2002) and that it does
not employ the core Sat algorithms used in the Smt solvers.
Part of this performance edge must be due to the use of
fixed-precision integer arithmetic rather than some multi-
precision package such as gmp which is used by Yices and
Cvc3. Also, the goal slices typically have a simple proposi-
tional structure and it seems that relatively few goals involve
instantiating quantifiers which brings in more propositional
structure.

Soundness.
The use of fixed-precision 32-bit arithmetic by Simplify

with little or no overflow checking is rather alarming from a
soundness point of view. For example, Simplify will happily
prove:

(IMPLIES

(EQ x 2000000000)

(EQ (+ x x) (- 294967296))

)

As mentioned earlier, an attempt to soften the impact of
this soundness when Simplify was used with Esc/Java in-
volved replacing all integer constants with magnitude above
a threshold by symbolic constants. When we tried this ap-
proach with a threshold of 100,000, several examples of false
goal slices were certified ‘true’ by Simplify. These particu-
lar goals became unproven with a slightly lower threshold of
50,000.

One indicator of when overflow is happening is when Sim-
plify aborts because of an assertion failure. All the reported
errors in the Simplify runs are due to failure of an asser-
tion checking that an integer input to a function is positive.
We guess this is due to silent arithmetic overflow like in the
above example. We investigated how low a threshold was
needed for eliminating the errors with the Simulator VCs
and found all errors did not go away until we reduced the
threshold to 500.

To get a handle on the impact of using a threshold on
provability, we reran the Yices test on the Simulator exam-
ple using various thresholds. With 100,000 the fraction of
goals proven by Yices dropped to 90.8%, with 500 to 90.4%
and with 20 to 89.6%. Since Yices rejects any additional
hypotheses or conclusions which are made non-linear by the
introduction of symbolic versions of integer constants, these
results indicate that under 2% of the Simulator goal slices
involve linear arithmetic problems with multiplication by
constants greater than 20.

Timeouts.
To enable working through large sets of problems in rea-

sonable times, it is very useful to be able to interrupt runs
after a controllable interval. We found the resource limit of
Cvc3 allowed fairly reliable stopping of code.

The Yices developers recommended an approach involving
using timer interrupts and setting a certain variable in the
interrupt handler. However, this feature depended on using
an alternate API to the one we used, and this alternate
API did not support the creation of quantified formulae.
Fortunately, we have not yet needed a timeout feature with
our runs of Yices.

We did implement a timer-driven interrupt feature for
stopping subprocesses which might be useful for stopping
Simplify at some in the future.

Robustness.
When working with an earlier version of Cvc3, we had

significant problems with it generating segmentation faults
and diverging. Because of our interface to Cvc3 through its
API, every fault would bring down our iteration through the
goal slices of one of the examples. We resorted to a tedious
process of recording goal slices to be excluded from runs in
a special file, with a new entry manually added to this file
after each observed crash or divergence. Fortunately the
Cvc3 developers are responsive to bug reports.

We have found Yices pleasingly stable: to date we have
observed only one case in which it has generated a segmen-
tation fault. (This occurred in an experiment not reported
in the figures here.)

One incentive for running provers in a subprocess is that
the calling program is insulated from crashes of the subpro-
cess.

Incompleteness.
As a first step towards improving the coverage possible

with Yices, Cvc3 and Simplify, we added axiomatic rules
describing the bounding properties of the integer division

23 October 2007

64

Yices CVC3 Simplify
proven 554 96.2% 554 96.2% 560 97.2%
unproven 22 3.8% 0 0 % 16 2.8%
timeout 0 0 % 12 2.1% 0 0 %
error 0 0 % 10 1.7% 0 0 %
total 576 576 576

Table 6: Autopilot coverage with div & mod rules

Yices CVC3 Simplify
proven 6216 94.3% 6256 94.9% 6045 91.7%
unproven 379 5.7% 108 1.6% 388 5.9%
timeout 0 0 % 231 3.5% 0 0 %
error 0 0 % 0 0 % 162 2.5%
total 6595 6595 6595

Table 7: Simulator coverage with div & mod rules

and modulo operators:

∀x, y : Z. 0 < y ⇒ 0 ≤ x mod y

∀x, y : Z. 0 < y ⇒ x mod y < y

∀x, y : Z. 0 ≤ x ∧ 0 < y ⇒ y × (x ÷ y) ≤ x

∀x, y : Z. 0 ≤ x ∧ 0 < y ⇒ x − y < y × (x ÷ y)

∀x, y : Z. x ≤ 0 ∧ 0 < y ⇒ x ≤ y × (x ÷ y)

∀x, y : Z. x ≤ 0 ∧ 0 < y ⇒ y × (x ÷ y) < x + y

Rules characterising ÷ and mod when their second argu-
ment is negative can also be formulated, but these were not
needed for our examples.

The coverage obtained with these additional rules is shown
in Tables 6 and 7.

The observed total run times of the provers were 15-30%
slower than without the additional rules.

The extra goal slices proven nearly all involve integer divi-
sion with a constant divisor. Such instances of division yield
instances of the axioms with linear multiplications which the
provers can then work with. Most remaining unproven goal
slices that were proved true by the Simplifier involved non-
constant divisors or non-linear multiplications. We have ex-
perimented a little with adding in axioms involving inequal-
ities and non-linear multiplication, but so far have not had
much success. A problem is phrasing the axioms so that the
instantiation heuristics, perhaps guided by explicit identi-
fication of sub-expressions to use for matching, can work
productively.

7. FUTURE WORK

7.1 Near term work with SMT solver inter-
face

One objective in the next month or two is to get the in-
terface code into a state in which we can publically release
it.

We expect that the main initial use will be in exploiting
the counter-example capability to debug code and specifica-
tions. Spark users would be reluctant to trust direct judge-
ment provided by Smt solvers on goal slice truth. However
Praxis’s interactive prover has been through some certifi-
cation process and a worthwhile sub-project would be to
translate proof objects output by e.g. Cvc3 into commands

for the interactive prover. Ellis and Ireland in their work
also generated proof scripts for the interactive prover from
their proof plans that successfully proved VCs.

Another objective is to establish an automatic means for
translating Spark VCs into the SMT-LIB format. This
ought to be straightforward given Cvc3’s capabilities for
dumping problems in this format. This would provide a
useful way of augmenting the SMT-LIB with the VCs from
Spark code examples such as the Simulator and Autopilot
used in our evaluation.

We also eventually would like to try further examples. A
problem is the dearth of medium or large Spark examples
in the public domain. Praxis have access in house to some
suitable interesting examples, and we hope through collab-
oration and site visits to also experiment with these.

7.2 The larger picture
Three areas we are considering exploring are non-linear

arithmetic, improved quantifier support and automatic in-
variant generation. Improvements in these areas would be
of significant help in increasing the level of automation of
VC proof, especially for VCs coming from typical Spark

applications.
Currently we have identified some major lines of relevant

work in each area, but have not yet narrowed down on which
approaches would be most productive to pursue.

Below we survey some of the literature we have come
across on reasoning in these areas and speculate on archi-
tectures we might adopt for a full verification system.

7.2.1 Non-linear arithmetic

We are interested in being able to prove problems involv-
ing non-linear arithmetic over both the integers and reals.
Arithmetic on the reals is of interest for several reasons. Real
problems are easier to decide than integer problems and the
kinds of integer arithmetic problems that frequently come
up in VCs are often also true over reals. Often algorithms
for solving integer problems extend algorithms for real prob-
lems. For example, this is the case with integer linear pro-
gramming and mixed integer real non-linear programming.
Real arithmetic is also of interest because it is often used to
approximate floating-point arithmetic.

The theory of real closed fields (first order formulae over
equalities and inequalities involving polynomials over reals)
is decidable and decision procedures involving cylindrical al-
gebraic decomposition are under active development [16].
These procedures have high time complexities and are usu-
ally only practical on small problems. As we have not yet
identified programs yielding interesting VCs in this class, it
is difficult to say whether such procedures could be useful
to us.

There is much promising work on incomplete proof tech-
niques for quantifier free problems involving polynomials
over real numbers. These techniques are observed to be
sufficient for problems that come up in practice that are
significantly larger than can be handled by complete tech-
niques. For example, Tiwari has investigated using Gröbner
bases [30], Parrilo uses sum of squares decompositions and
semi-definite programming (a non-linear extension of linear
programming) [26] and the Acl2 theorem prover has exten-
sions to support some non-linear resoning [17].

Akbarpour and Paulson are currently exploring heuristi-
cally reducing problems involving functions such as sine, ex-

23 October 2007

65

ponentials and logarithms to real closed field problems [3].
We have not come across specific work addressing reason-

ing with integer division and modulo operators. Since these
operators can be fully characterised in terms of integer ad-
dition and multiplication with a few first order axioms, we
hope that it might be possible to make significant headway
with some appropriate combination of first-order reasoning
and reasoning about integer polynomial arithmetic. Any
such techniques will almost certainly be heuristic in nature,
since the problem of solving equations involving polynomials
with integer coefficients (Diophantine equations) is undecid-
able.

7.2.2 Quantifiers

The support for first-order reasoning in the Simplify prover
and Smt solvers such as Yices and Cvc3 is certainly very
useful, but it falls far short of what automated first-order
provers are capable of.

Integrating refutation complete first-order provers with
reasoning in specific theories such as integer linear arith-
metic is known to be a very hard problem.

A promising new direction in first order theorem prov-
ing research is that of applying instantiation-based meth-
ods [13]. Here the aim is to produce refutation complete
procedures for first order logic which work by running a
Sat solver on successively larger ground instantiations of
first-order problem. Given that Smt solvers also use Sat

solver algorithms at heart, a natural question that several
have asked is whether instance-based and Smt algorithms
could be fruitfully combined. Such a combination may well
be substantially incomplete, but could still be very useful in
practice.

7.2.3 Invariant generation

The need and opportunities for automatic support in the
inference of loop invariants have long been recognised [32].
In the last decade there has been a revival in interest in the
problem [7, 31].

Flanagan and Leino [11] demonstrate a lightweight gen-
erate and test approach for the Esc/Java system: a large
number of candidate annotations are generated, inspired by
the program structure, and the VC prover then prunes these
down.

The technique of predicate abstraction [14], a form of ab-
stract interpretation, has been very useful in software model
checkers such as Microsoft’s Slam [4] and Berkeley’s Blast [15].
Flanagan and Qadeer [12] explain how to use predicate ab-
straction to generate loop invariants. An interesting feature
of their work is the ability to infer loop invariants with quan-
tifiers, something often necessary when verifying programs
involving arrays.

Leino and Logozzo [20] use failure of the VC prover to
guide the refinement of conjectured loop invariants just for
those program executions associated with the failure. Whereas
this work employs abstract interpretation, McMillan [22]
achieves a somewhat similar end through the use of Craig
interpolants.

Nearly all the above cited work focusses on invariants in-
volving only linear arithmetic expressions. Recently Gröb-
ner basis techniques have been used for handling polynomial
arithmetic expressions over the reals [28, 19].

As mentioned in the introduction, Ellis and Ireland [18]
have used proof-planning to identify how to strengthen loop

invariants.

7.2.4 Verification system architectures

How can different approaches to proving VCs be success-
fully integrated? One approach is to use a theorem proving
environment for programming strategies for refining proof
goals and for interfacing to individual provers such as Smt

provers, non-linear arithmetic provers and first-order provers.
Theorem proving environments allow for rapid experimenta-
tion with proof strategies and already have many individual
provers of interest either linked in or built in. This approach
of using a programmable theorem proving environment as a
hub prover was advocated in the Prosper project [23] and
is employed in the Forte system at Intel [29]. Theorem prov-
ing environments that look appealing for such a role include
Isabelle [25], Hol, Hol Light and Pvs.

A finer grain approach might be to investigate adding new
procedures as extra theory solvers within an Smt solver. For
example, maybe a non-linear arithmetic procedure could be
integrated into an Smt solver.

Exploring techniques for invariant generation will require
program analysis capabilities and collaboration between a
variety of different reasoning tools. Sri have proposed an
evidential tool bus as an architecture for linking together
verification components [27]. They have expressed a spe-
cific interest in it being used for generating invariants and
supporting software verification. It would be very interest-
ing if we could make use of this and possibly assist in its
development.

8. CONCLUSIONS
We have presented some preliminary encouraging results

in using the state-of-the-art Smt solvers Yices and Cvc3
and the Simplifier prover to discharge verification conditions
arising from Spark programs.

Around 90% of the problems we examined involved no
non-linear arithmetic reasoning and were usually solved in
under 0.1s by all tools. Another 3-7% were solvable when
simple axioms were added concerning bounding properties
of the modulo and integer division operators. Many of the
remaining true problems are of a slightly more essential non-
linear character and are beyond what is provable by the tools
even with these axioms. However these problems are mostly
still easy to see true, and Praxis’s Simplifier prover appears
able to handle them in most cases.

We expect shortly to publically release the code we have
developed so Spark users can experiment with it. Our
code will also soon provide an easy way of producing Smt

challenge problems in the standard SMT-LIB format from
Spark program VCs.

Longer term, we see this work as a first step in a research
programme to improve the level of automation in the formal
verification of programs written in Spark and Spark like
subsets of other programming languages.

9. REFERENCES
[1] CVC3: an automatic theorem prover for Satisfiability

Modulo Theories (SMT). Homepage at
http://www.cs.nyu.edu/acsys/cvc3/.

[2] ESC/Java2: Extended Static Checker for Java version
2. Development coordinated by KindSoftware at
University College Dublin. Homepage at http:

//secure.ucd.ie/products/opensource/ESCJava2/.

23 October 2007

66

[3] B. Akbarpour and L. C. Paulson. Towards automatic
proofs of inequalities involving elementary functions.
In PDPAR: Workshop on Pragmatics of Decision
Procedures in Automated Reasoning, 2006.

[4] T. Ball, B. Cook, V. Levin, and S. K. Rajamani.
SLAM and Static Driver Verifier: technology transfer
of formal methods inside Microsoft. Technical Report
MSR-TR-2004-08, Microsoft Research, 2004. The SDV
homepage is http://www.microsoft.com/whdc/

devtools/tools/sdv.mspx.

[5] J. Barnes. High Integrity Software: The SPARK
approach to safety and security. Addison Wesley, 2003.

[6] M. Barnett, K. R. M. Leino, and W. Schulte. The
Spec# programming system: An overview. In Post
workshop proceedings of CASSIS: Construction and
Analysis of Safe, Secure and Interoperable Smart
devices, volume 3362 of Lecture Notes in Computer
Science. Springer, 2004.

[7] S. Bensalem and Y. Lakhnech. Automatic generation
of invariants. Formal Methods in System Design,
15:75–92, 1999.

[8] E. Denney, B. Fischer, and J. Schumann. An empirical
evaluation of automated theorem provers in software
certification. International Journal of AI tools,
15(1):81–107, 2006.

[9] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a
theorem prover for proof checking. Journal of the
ACM, 52(3):365–473, 2005.

[10] B. Dutertre and L. de Moura. The Yices SMT solver.
Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, August
2006.

[11] C. Flanagan and K. R. M. Leino. Houdini, an
annotation assistant for ESC/Java. In FME:
International Symposium of Formal Methods Europe,
volume 2021 of Lecture Notes in Computer Science,
pages 500–517. Springer, 2001.

[12] C. Flanagan and S. Qadeer. Predicate abstraction for
software verification. In POPL: Principles of
Programming Languages, pages 191–202. ACM, 2002.

[13] H. Ganzinger and K. Korovin. New directions in
instantiation-based theorem proving. In LICS: Logic
in Computer Science, pages 55–64. IEEE, 2003.

[14] S. Graf and H. Säıdi. Construction of abstract state
graphs with PVS. In CAV: Computer Aided
Verification, volume 1254 of Lecture Notes in
Computer Science, pages 72–83. Springer, 1997.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Software verification with BLAST. In SPIN:
workshop on model checking software, volume 2648 of
Lecture Notes in Computer Science, pages 235–239.
Springer, 2003.

[16] H. Hong and C. Brown. QEPCAD: Quantifier
elimination by partial cylindrical algebraic
decomposition, 2004. See
http://www.cs.usna.edu/~qepcad/B/QEPCAD.html

for current implementation.

[17] W. A. Hunt, Jr., R. B. Krug, and J. Moore. Linear
and nonlinear arithmetic in ACL2. In CHARME:
Correct Hardware Design and Verification Methods,
volume 2860 of Lecture Notes in Computer Science,
pages 319–333. Springer, 2003.

[18] A. Ireland, B. Ellis, A. Cook, R. Chapman, and
J. Barnes. An integrated approach to high integrity
software verification. Journal of Automated Reasoning,
36(4):379–410, 2006.

[19] L. I. Kovács and T. Jebelean. An algorithm for
automated generation of invariants for loops with
conditionals. In SYNASC: Symbolic and Numeric
Algorithms for Scientific Computing. IEEE, 2005.

[20] K. R. M. Leino and F. Logozzo. Loop invariants on
demand. In APLAS: Programming Languages and
Systems, Third Asian Symposium, volume 3780 of
Lecture Notes in Computer Science, pages 119–134.
Springer, 2005.

[21] K. R. M. Leino, J. Saxe, C. Flanagan, J. Kiniry, et al.
The logics and calculi of ESC/Java2, revision 1.10.
Technical report, University College Dublin,
November 2004. Available from the documentation
section of the ESC/Java2 web pages.

[22] K. L. McMillan. Lazy abstraction with interpolants. In
CAV: Computer Aided Verification, volume 4144 of
Lecture Notes in Computer Science, pages 123–136.
Springer, 2006.

[23] T. F. Melham. PROSPER: an investigation into
software architecture for embedded proof engines. In
FRoCoS: Frontiers of Combining Systems, volume
2309 of Lecture Notes in Artificial Intelligence, pages
193–206. Springer, 2002.

[24] G. Nelson and D. C. Oppen. Simplification by
cooperating decision procedures. ACM Trans. on
programming Languages and Systems, 1(2):245–257,
1979.

[25] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002. See
http://www.cl.cam.ac.uk/research/hvg/Isabelle/

for current information.

[26] P. A. Parrilo. Semidefinite programming relaxations
for semialgebraic problems. Mathematical
Programming, 96(2):293–320, 2003.

[27] J. Rushby. Harnessing disruptive innovation in formal
verification. In SEFM: Software Engineering and
Formal Methods. IEEE, 2006.

[28] S. Sankaranarayanan, H. B. Sipma, and Z. Manna.
Non-linear loop invariant generation using Gröbner
bases. In POPL: Principles of Programming
Languages, pages 318–329. ACM, 2004.

[29] C.-J. Seger, R. B. Jones, J. W. O’Leary, T. Melham,
M. D. Aagaard, C. Barrett, and D. Syme. An
industrially effective environment for formal hardware
verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
24(9):1381–1405, 2005.

[30] A. Tiwari. An algebraic approach for the
unsatisfiability of nonlinear constraints. In CSL:
Computer Science Logic, volume 3634 of Lecture Notes
in Computer Science, pages 248–262. Springer, 2005.

[31] A. Tiwari, H. Rueß, H. Säıdi, and N. Shankar. A
technique for invariant generation. In TACAS: tools
and algorithms for the construction and analysis of
systems, volume 2031 of Lecture Notes in Computer
Science, pages 113–127. Springer, 2001.

23 October 2007

67

[32] B. Wegbreit. The synthesis of loop predicates.
Communications of the ACM, 17(2), 1974.

[33] L. Zhang and S. Malik. The quest for efficient boolean
satisfiability solvers. In CAV: Computer Aided
Verification, volume 2404 of Lecture Notes in
Computer Science, pages 17–36. Springer, 2002.

23 October 2007

68

SMT-Based Synthesis of Distributed Systems∗

Bernd Finkbeiner
Universität des Saarlandes
finkbeiner@uni-sb.de

Sven Schewe
Universität des Saarlandes

schewe@uni-sb.de

ABSTRACT
We apply SMT solving to synthesize distributed systems
from specifications in linear-time temporal logic (LTL). The
LTL formula is translated into an equivalent universal co-
Büchi tree automaton. The existence of a finite transition
system in the language of the automaton is then specified as
a quantified formula in the theory (N, <) of the ordered nat-
ural numbers with uninterpreted function symbols. While
our experimental results indicate that the resulting satisfi-
ability problem is generally out of reach for the currently
available SMT solvers, the problem immediately becomes
tractable if we fix an upper bound on the number of states
in the distributed system. After replacing each universal
quantifier by an explicit conjunction, the SMT solver Yices
solves simple single-process synthesis problems within a few
seconds, and distributed synthesis problems, such as a two-
process distributed arbiter, within one minute.

1. INTRODUCTION
Synthesis automatically derives correct implementations
from specifications. Compared to verification, which only
proves that a given implementation is correct, this has the
advantage that there is no need to manually write and debug
the code.

For temporal logics, the synthesis problem has been stud-
ied in several variations, including the synthesis of closed
and single-process systems [2, 12, 6, 7], pipeline and ring
architectures [9, 8, 11], as well as general distributed ar-
chitectures [4]. Algorithms for synthesizing distributed sys-
tems typically reduce the synthesis problem in a series of
automata transformations to the non-emptiness problem of
a tree automaton. Unfortunately, the transformations are
expensive: for example, in a pipeline architecture, each pro-

∗This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collabora-
tive Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM’07, November 6, Atlanta, GA, USA.
c©2007 ACM ISBN 978-1-59593-879-4/07/11...$5.00

cess requires a powerset construction and therefore causes
an exponential blow-up in the number of states.

Inspired by the success of bounded model checking [3, 1],
we recently proposed an alternative approach based on a
reduction of the synthesis problem to a satisfiability prob-
lem [10]. Our starting point is the representation of the LTL
specification as a universal co-Büchi tree automaton. The
acceptance of a finite-state transition system by a universal
co-Büchi automaton can be characterized by the existence
of an annotation that maps each pair of a state of the au-
tomaton and a state of the transition system to a natural
number. We define a constraint system that specifies the ex-
istence of a valid annotation and, additionally, ensures that
the resulting implementation is consistent with the limited
information available to the distributed processes. For this
purpose, we introduce a mapping that decomposes the states
of the global transition system into the states of the individ-
ual processes: because the reaction of a process only depends
on its local state, the process is forced to give the same re-
action whenever it cannot distinguish between two paths in
the global transition system.

In this paper, we report on preliminary experience apply-
ing the new approach with the SMT solver Yices. The re-
sult of the reduction is a quantified formula in the theory
(N, <) of the ordered natural numbers with uninterpreted
function symbols. The formula contains only a single quan-
tifier (over the states of the implementation, represented as
natural numbers).

While our experimental results indicate that proving the sat-
isfiability of the quantified formulas is currently not possi-
ble (Yices reports “unknown”), the problem immediately be-
comes tractable if we fix an upper bound on the number of
states. After replacing each universal quantifier by an ex-
plicit conjunction, Yices solves simple single-process synthe-
sis problems within a few seconds, and distributed synthesis
problems, such as a two-process distributed arbiter, within
one minute.

2. PRELIMINARIES
We consider the synthesis of distributed reactive systems
that are specified in linear-time temporal logic (LTL). Given
an architecture A and an LTL formula ϕ, we determine
whether there is an implementation for each system pro-
cess in A, such that the composition of the implementations
satisfies ϕ.

23 October 2007

69

env

p1 p2

r1 r2

g1

g2

(b)

env p1
r1, r2 g1, g2

(a)

Figure 1: Example architectures: (a) single-process
arbiter (b) two-process arbiter

2.1 Architectures
An architecture A is a tuple (P, env , V, I, O), where P is a set
of processes consisting of a designated environment process
env ∈ P and a set of system processes P− = P r {env}.
V is a set of boolean system variables (which also serve as
atomic propositions), I = {Ip ⊆ V | p ∈ P−} assigns a
set Ip of input variables to each system process p ∈ P−,
and O = {Op ⊆ V | p ∈ P} assigns a set Op of output
variables to each process p ∈ P such that

S

p∈P Op = V .
While the same variable v ∈ V may occur in multiple sets
in I to indicate broadcasting, the sets in O are assumed to
be pairwise disjoint.

Figure 1 shows two example architectures, a single-process
arbiter and a two-process arbiter. In the architecture in
Figure 1a, the arbiter is a single process (p1), which receives
requests (r1, r2) from the environment (env) and reacts by
sending grants (g1, g2). In the architecture in Figure 1b, the
arbiter is split into two processes (p1, p2), which each receive
one type of request (p1 receives r1; p2 receives r2) and react
by sending the respective grant (p1 sends g1; p2 sends g2).

2.2 Implementations
We represent implementations as labeled transition sys-
tems. For a given finite set Υ of directions and a finite
set Σ of labels, a Σ-labeled Υ-transition system is a tuple
T = (T, t0, τ, o), consisting of a set of states T , an initial
state t0 ∈ T , a transition function τ : T × Υ → T , and a
labeling function o : T → Σ. T is a finite-state transition
system iff T is finite.

Each system process p ∈ P− is implemented as a 2Op -labeled
2Ip -transition system Tp = (Tp, tp, τp, op). The specification
ϕ refers to the composition of the system processes, which
is the 2V -labeled 2Oenv -transition system TA = (T, t0, τ, o),
defined as follows: the set T =

N

p∈P− Tp×2Oenv of states is
formed by the product of the states of the process transition
systems and the possible values of the output variables of
the environment. The initial state t0 is formed by the initial
states tp of the process transition systems and a designated
root direction ⊆ Oenv . The transition function updates, for
each system process p, the Tp part of the state in accordance
with the transition function τp, using (the projection of) o
as input, and updates the 2Oenv part of the state with the

output of the environment process. The labeling function o
labels each state with the union of its 2Oenv part with the
labels of its Tp parts.

With respect to the system processes, the combined transi-
tion system thus simulates the behavior of all process tran-
sition systems; with respect to the environment process, it
is input-preserving, i.e., in every state, the label accurately
reflects the input received from the environment.

2.3 Synthesis
A specification ϕ is (finite-state) realizable in an architecture
A = (P, V, I,O) iff there exists a family of (finite-state) im-
plementations {Tp | p ∈ P−} of the system processes, such
that their composition TA satisfies ϕ.

2.4 Bounded Synthesis
We introduce bounds on the size of the process implementa-
tions and on the size of the composition. Given an architec-
ture A = (P, V, I, O), a specification ϕ is bounded realizable
with respect to a family of bounds {bp ∈ N | p ∈ P−} on the
size of the system processes and a bound bA ∈ N on the size
of the composition TA, if there exists a family of implemen-
tations {Tp | p ∈ P−}, where, for each process p ∈ P , Tp has
at most bp states, such that the composition TA satisfies ϕ
and has at most bA states.

2.5 Tree Automata
An alternating parity tree automaton is a tuple A =
(Σ, Υ,Q, q0, δ, α), where Σ denotes a finite set of labels, Υ
denotes a finite set of directions, Q denotes a finite set of
states, q0 ∈ Q denotes a designated initial state, δ denotes a
transition function, and α : Q → C ⊂ N is a coloring func-
tion. The transition function δ : Q×Σ → B

+(Q×Υ) maps a
state and an input letter to a positive boolean combination
of states and directions. In our setting, the automaton runs
on Σ-labeled Υ-transition systems. The acceptance mecha-
nism is defined in terms of run graphs.

A run graph of an automaton A = (Σ, Υ, Q, q0, δ, α) on a
Σ-labeled Υ-transition system T = (T, t0, τ, o) is a minimal
directed graph G = (G, E) that satisfies the following con-
straints:

• The vertices G ⊆ Q × T form a subset of the product
of Q and T .

• The pair of initial states (q0, t0) ∈ G is a vertex of G.

• For each vertex (q, t) ∈ G, the set {(q′, υ) ∈ Q × Υ |
((q, t), (q′, τ (t, υ))) ∈ E} satisfies δ(q, o(t)).

A run graph is accepting if every infinite path g0g1g2 . . . ∈
Gω in the run graph satisfies the parity condition, which
requires that the highest number occurring infinitely often
in the sequence α0α1α2 ∈ N with αi = α(qi) and gi = (qi, ti)
is even. A transition system is accepted if it has an accepting
run graph.

The set of transition systems accepted by an automaton A
is called its language L(A). An automaton is empty iff its

23 October 2007

70

language is empty. An alternating automaton is called uni-
versal if, for all states q and input letters σ, δ(q, σ) is a
conjunction.

A parity automaton is called a Büchi automaton if the image
of α is contained in {1, 2} and a co-Büchi automaton iff
the image of α is contained in {0, 1}. Büchi and co-Büchi
automata are denoted by (Σ, Υ, Q, q0, δ, F), where F ⊆ Q
denotes the states with the higher color. A run graph of a
Büchi automaton is thus accepting if, on every infinite path,
there are infinitely many visits to F ; a run graph of a co-
Büchi automaton is accepting if, on every path, there are
only finitely many visits to F .

3. ANNOTATED TRANSITION SYSTEMS
In this section, we discuss an annotation function for transi-
tion systems. The annotation function has the useful prop-
erty that a finite-state transition system satisfies the speci-
fication if and only if it has a valid annotation.

Our starting point is a representation of the specification as
a universal co-Büchi automaton.

Theorem 1. [5] Given an LTL formula ϕ, we can con-

struct a universal co-Büchi automaton Uϕ with 2O(|ϕ|) states
that accepts a transition system T iff T satisfies ϕ.

An annotation of a transition system T = (T, t0, τ, o) on a
universal co-Büchi automaton U = (Σ, Υ, Q, δ, F) is a func-
tion λ : Q × T → { } ∪ N. We call an annotation c-bounded
if its mapping is contained in { } ∪ {0, . . . , c}, and bounded
if it is c-bounded for some c ∈ N. An annotation is valid if
it satisfies the following conditions:

1. the pair (q0, t0) of initial states is annotated with a
natural number (λ(q0, t0) 6=), and

2. if a pair (q, t) is annotated with a natural number
(λ(q, t) = n 6=) and (q′, υ) ∈ δ(q, o(t)) is an atom
of the conjunction δ(q, o(t)), then (q′, τ (t, υ)) is anno-
tated with a greater number, which needs to be strictly
greater if q′ ∈ F is rejecting. That is, λ(q′, τ (t, υ))⊲q′ n
where ⊲q′ is > for q′ ∈ F and ≥ otherwise.

Theorem 2. [10] A finite-state Σ-labeled Υ-transition
system T = (T, t0, τ, o) is accepted by a universal co-Büchi
automaton U = (Σ, Υ, Q, δ, F) iff it has a valid (|T | · |F |)-
bounded annotation.

4. SINGLE-PROCESS SYNTHESIS
Using the annotation function, we reduce the non-emptiness
problem of the universal co-Büchi tree automaton to an
SMT problem. This solves the synthesis problem for single-
process systems.

We represent the (unknown) transition system and its an-
notation by uninterpreted functions. The existence of a
valid annotation is thus reduced to the satisfiability of a
constraint system in first-order logic modulo finite integer
arithmetic. The advantage of this representation is that the

1

2 3⊥

∗

g1 g2

r1 r2g1g2

Figure 2: Specification of a simple arbiter, rep-
resented as a universal co-Büchi automaton. The
states depicted as double circles (2 and 3) are the
rejecting states in F .

size of the constraint system is small (bilinear in the size of U
and the number of directions). Furthermore, the additional
constraints needed for distributed synthesis, which will be
defined in Section 5, have a likewise compact representation.

The constraint system specifies the existence of a finite
input-preserving 2V -labeled 2Oenv -transition system T =
(T, t0, τ, o) that is accepted by the universal co-Büchi au-
tomaton Uϕ = (Σ, Υ, Q, q0, δ, F) and has a valid annota-
tion λ.

To encode the transition function τ , we introduce a unary
function symbol τυ for every output υ ⊆ Oenv of the en-
vironment. Intuitively, τυ maps a state t of the transition
system T to its υ-successor τυ(t) = τ (t, υ).

To encode the labeling function o, we introduce a unary
predicate symbol a for every variable a ∈ V . Intuitively, a
maps a state t of the transition system T to true iff it is part
of the label o(t) ∋ a of T in t.

To encode the annotation, we introduce, for each state q
of the universal co-Büchi automaton U , a unary predicate
symbol λB

q and a unary function symbol λ#
q . Intuitively, λB

q

maps a state t of the transition system T to true iff λ(q, t)
is a natural number, and λ#

q maps a state t of the transition
system T to λ(q, t) if λ(q, t) is a natural number and is
unconstrained if λ(q, t) = .

We can now formalize that the annotation of the transition
system is valid by the following first order progress con-
straints (modulo finite integer arithmetic):
∀t. λB

q(t) ∧ (q′, υ) ∈ δ(q,−→a (t)) → λB

q′(τυ(t)) ∧

λ#
q′

(τυ(t)) ⊲q λ#
q (t), where −→a (t) represents the label

o(t), (q′, υ) ∈ δ(q,−→a (t)) represents the corresponding
propositional formula, and ⊲q stands for ⊲q ≡> if q ∈ F
and ⊲q ≡≥ otherwise. Additionally, we require the initiality
constraint λB

q0(0), i.e., we require the pair of initial states
to be labeled by a natural number (w.l.o.g. t0 = 0).

To guarantee that the resulting transition system is input-
preserving, we add, for each a ∈ Oenv and each υ ⊆ Oenv ,
a global consistency constraint ∀t. a(τυ(t)) if a ∈ υ and
∀t.¬a(τυ(t)) if a /∈ υ. Additionally, we require the root
constraint that the initial state is labeled with the root di-
rection.

23 October 2007

71

Example. Consider the specification of a simple arbiter,
depicted as a universal co-Büchi automaton in Figure 2. The
specification requires that globally (1) at most one process
has a grant and (2) each request is eventually followed by a
grant.

Figure 3 shows the constraint system, resulting from the
specification of an arbiter by the universal co-Büchi automa-
ton depicted in Figure 2, implemented as a single process as
required by the architecture of Figure 1a.

The first constraint represents the requirement that the re-
sulting transition system must be input-preserving, the sec-
ond requirement represents the initialization (where ¬r1(0)∧
¬r2(0) represents an arbitrarily chosen root direction), and
the requirements 3 through 8 each encode one transition of
the universal automaton of Figure 2. Following the notation
of Figure 2, r1 and r2 represent the requests and g1 and g2

represent the grants.

5. DISTRIBUTED SYNTHESIS
To solve the distributed synthesis problem for a given archi-
tecture A = (P, V, I, O), we need to find a family of (finite-
state) transition systems {Tp = (Tp, tp

0, τp, op) | p ∈ P−}
such that their composition to TA satisfies the specification.
The constraint system developed in the previous section can
be adapted to distributed synthesis by explicitly decompos-
ing the global state space of the combined transition system
TA: we introduce a unary function symbol dp for each pro-
cess p ∈ P−, which, intuitively, maps a state t ∈ TA of the
product state space to its p-component tp ∈ Tp.

The value of an output variable a ∈ Op may only depend on
the state of the process transition system Tp. We therefore
replace every occurrence of a(t) in the constraint system of
the previous section by a(dp(t)). Additionally, we require
that every process p acts consistently on any two histories
that it cannot distinguish. The update of the state of Tp may
thus only depend on the state of Tp and the input visible to p.

The input visible to p consists of the fragment Ienv

p = Oenv ∩
Ip of environment variables visible to p, and the set Isys

p =
Ip r Oenv of system variables visible to p. To encode the
transition function τp, we introduce a |Isys

p |+1-ary function
symbol τυ

p for every υ ⊆ Ienv

p . Intuitively, τυ
p maps the

visible input υ′ ⊆ Isys

p of the system and a local position l
of the transition system Tp to the υ ∪ υ′-successor τp(l, υ ∪
υ′) = τυ

p (υ′, l) of l. This is formalized by the following local
consistency constraints:

∀t. τυ
p (a1(dq1(t)), . . . , an(dqn

(t));dp(t)) = dp(τυ′(t))
for all decisions υ′ ⊆ Oenv of the environment and
their fragment υ = υ′ ∩ Ip visible to p, where the
variables a1, . . . , an form the elements of Isys

p .

Since the combined transition system TA is finite-state, the
satisfiability of this constraint system modulo finite integer
arithmetic is equivalent to the distributed synthesis problem.

Example. As an example for the reduction of the dis-
tributed synthesis problem to SMT, we consider the problem

1. ∀t. r1(τr1r2
(t)) ∧ r2(τr1r2

(t)) ∧ r1(τr1r2
(t))

∧ ¬r2(τr1r2
(t)) ∧ ¬r1(τr1r2

(t))
∧ r2(τr1r2

(t)) ∧ ¬r1(τr1r2
(t)) ∧ ¬r2(τr1r2

(t))

2. λB

1(0) ∧ ¬r1(0) ∧ ¬r2(0)

3. ∀t. λB

1(t) → λB

1(τr1r2
(t)) ∧ λ#

1 (τr1r2
(t)) ≥ λ#

1 (t)

∧ λB

1(τr1r2
(t)) ∧ λ#

1 (τr1r2
(t)) ≥ λ#

1 (t)

∧ λB

1(τr1r2
(t)) ∧ λ#

1 (τr1r2
(t)) ≥ λ#

1 (t)

∧ λB

1(τr1r2
(t)) ∧ λ#

1 (τr1r2
(t)) ≥ λ#

1 (t)

4. ∀t. λB

1(t) → ¬g1(t) ∨ ¬g2(t)

5. ∀t. λB

1(t) ∧ r1(t) →

λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

1 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

1 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

1 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

1 (t)

6. ∀t. λB

1(t) ∧ r2(t) →

λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

1 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

1 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

1 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

1 (t)

7. ∀t. λB

2(t) ∧ ¬g1(t) →

λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

8. ∀t. λB

3(t) ∧ ¬g2(t) →

λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

Figure 3: Example of a constraint system for the
synthesis of a single-process system. The figure
shows the constraint system for the arbiter exam-
ple (Figure 2). The arbiter is to be implemented as
a single process as shown in Figure 1a.

of finding a distributed implementation to the arbiter speci-
fied by the universal automaton of Figure 2 in the architec-
ture of Figure 1b. The functions d1 and d2 are the mappings
to the processes p1 and p2, which receive requests r1 and r2

and provide grants g1 and g2, respectively. Figure 4 shows
the resulting constraint system. Constraints 1–3, 5, and 6
are the same as in the fully informed case (Figure 3). The
consistency constraints 9–10 guarantee that processes p1 and
p2 show the same behavior on all input histories they cannot
distinguish.

6. EDGE-BASED ACCEPTANCE
A variation of our construction is to start with a tree au-
tomaton that has an edge-based acceptance condition in-
stead of the standard state-based acceptance condition of
the automata of Theorem 1. Since the progress constraints
refer to edges rather than states, this often leads to a signif-
icant reduction in the size of the constraint system.

23 October 2007

72

4. ∀t. λB

1(t) → ¬g1(d1(t)) ∨ ¬g2(d2(t))

7. ∀t. λB

2(t) ∧ ¬g1(d1(t)) →

λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

∧ λB

2(τr1r2
(t)) ∧ λ#

2 (τr1r2
(t)) > λ#

2 (t)

8. ∀t. λB

3(t) ∧ ¬g2(d2(t)) →

λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

∧ λB

3(τr1r2
(t)) ∧ λ#

3 (τr1r2
(t)) > λ#

3 (t)

9. ∀t. τ r1

1

`

g2(d2(t)), d1(t)
´

= d1(τr1r2
(t)) = d1(τr1r2

(t))

∧ τ r1

1

`

g2(d2(t)), d1(t)
´

= d1(τr1r2
(t)) = d1(τr1r2

(t))

10. ∀t. τ r2

2

`

g1(d1(t)), d2(t)
´

= d2(τr1r2
(t)) = d2(τr1r2

(t))

∧ τ r2

2

`

g1(d1(t)), d2(t)
´

= d2(τr1r2
(t)) = d2(τr1r2

(t))

Figure 4: Example of a constraint system for dis-
tributed synthesis. The figure shows modifications
and extensions to the constraint system from Fig-
ure 3 for the arbiter example (Figure 2) in order to
implement the arbiter in the distributed architec-
ture shown in Figure 1b.

For universal automata, the transition function δ can be
described as a set of edges Eδ ⊆ Q × Σ × Q × Υ with

e = (q, σ, q′, υ) ∈ Eδ ⇔ (q′, υ) is a conjunct of δ(q, σ).

For an edge-based universal co-Büchi automaton E =
(Σ, Υ, Q,E, F), the acceptance is defined by a finite set
F ⊆ E of rejecting edges, and E accepts an input tree if
all paths in the run graph contain only finitely many re-
jecting edges. A state-based acceptance condition can be
viewed as a special case of an edge-based acceptance condi-
tion, where an edge is rejecting iff it originates from a reject-
ing state, and edge-based acceptance can be translated into
state-based acceptance by splitting the states with outgoing
accepting and rejecting edges. For an edge-based universal
co-Büchi automaton E , we only need to adjust the definition
of valid annotations slightly to

2. if a pair (q, t) is annotated with a natural number
(λ(q, t) = n 6=) and (q, o(t), q′, υ) = e ∈ E is an
edge of E , then (q′, τ (t, υ)) is annotated with a greater
number, which needs to be strictly greater if e ∈ F is
rejecting. That is, λ(q′, τ (t, υ)) ⊲e n where ⊲e is > for
e ∈ F and ≥ otherwise.

Example. Figure 5 shows an example of a universal co-
Büchi word automaton with edge-based acceptance condi-
tion. The automaton extends the specification of the simple
arbiter such that the arbiter may not withdraw a grant while
the environment upholds the request. Nonstarvation is re-
quired whenever the grant is not kept forever by the other
process. Describing the same property with a state-based
acceptance conditions requires 40% more states.

1

2 3

4 5

⊥

∗

g1 g2

g1(r2 ∨ g2) g2(r1 ∨ g1)

r1 r2

r1 r2

g1 g2

g1g2

g1r1 g2r2

Figure 5: Extended specification of an arbiter, rep-
resented as a universal co-Büchi automaton with
edge-based acceptance. The edges depicted as
double-line arrows are the rejecting edges in F .

7. EXPERIMENTAL RESULTS
Using the reduction described in the previous sections, we
considered five benchmarks; we synthesized implementa-
tions for simple arbiter specification from Figure 2 and the
two architectures from Figure 1, and for a full arbiter spec-
ification and the two architectures from Figure 1, and we
synthesized a strategy for dining philosophers to satisfy the
specification from Figure 6. The arbiter examples are pa-
rameterized in the size of the transition system(s), the dining
philosophers benchmark is additionally parameterized in the
number of philosopher. As the SMT solver, we used Yices
version 1.0.9 on a 2.6 Ghz Opteron system.

In all benchmarks, Yices is unable to directly determine the
satisfiability of the quantified formulas. (For example the
formulas from Figure 3 and Figure 4, respectively, for the
monolithic and distributed synthesis in the simple arbiter
example.) However, after replacing the universal quantifiers
with explicit conjunctions (for a given upper bound on the
number of states in the implementation), Yices solved all
satisfiability problems quickly.

A single-process implementation of the arbiter needs 8
states. Table 1 shows the time and memory consumption
of Yices when solving the SMT problem from Figure 3 with
the quantifiers unravelled for different upper bounds on the
number of states. The correct implementation with 8 states
is found in 8 seconds.

7.1 Arbiter
Table 2 shows the time and memory consumption for the dis-
tributed synthesis problem. The quantifiers in the formula
from Figure 4 were unravelled for different bounds on the
size of the global transition system and for different bounds
(shown in parentheses) on the size of the processes. A cor-
rect solution with 8 global states is found by Yices in 71
seconds if the number of process states is left unconstrained.
Restricting the process states explicitly to 2 leads to an ac-
celeration by a factor of two (36 seconds).

Table 3 and Table 4 show the time and memory consumption
of Yices when solving the SMT problem resulting from the
arbiter specification of Figure 5. The correct monolithic im-

23 October 2007

73

bound | 4 | 5 | 6 | 7 | 8 | 9
result | unsatisfiable | unsatisfiable | unsatisfiable | unsatisfiable | satisfiable | satisfiable

decisions | 3957 | 13329 | 23881 | 68628 | 72655 | 72655
conflicts | 209 | 724 | 1998 | 15859 | 4478 | 4478

boolean variables | 1011 | 2486 | 4169 | 9904 | 5214 | 5214
memory (MB) | 16.9102 | 18.1133 | 20.168 | 27.4141 | 26.4375 | 26.4414
time (seconds) | 0.05 | 0.28 | 1.53 | 35.99 | 7.53 | 7.31

Table 1: Experimental results from the synthesis of a single-process arbiter using the specification from
Figure 2 and the architecture from Figure 1a. The table shows the time and memory consumption of Yices
1.0.9 when solving the SMT problem from Figure 3, with all quantifiers replaced by explicit conjunctions for
different bounds on the number of states in the transition system.

bound | 4 | 5 | 6 | 7 | 8 | 9 | 8 (1) | 8 (2)
result | unsatisfiable | unsatisfiable | unsatisfiable | unsatisfiable | satisfiable | satisfiable | unsatisfiable | satisfiable

decisions | 6041 | 15008 | 35977 | 89766 | 197150 | 154315 | 178350 | 71074
conflicts | 236 | 929 | 2954 | 30454 | 33496 | 24607 | 96961 | 18263

boolean variables | 1269 | 2944 | 5793 | 9194 | 7766 | 8533 | 12403 | 6382
memory (MB) | 17.0469 | 18.4766 | 22.1992 | 33.1211 | 37.4297 | 36.2734 | 39.4922 | 29.1992
time (seconds) | 0.06 | 0.35 | 3.3 | 120.56 | 70.97 | 58.43 | 200.07 | 36.38

Table 2: Experimental results from the synthesis of a two-process arbiter using the specification from Figure 2
and the architecture from Figure 1b. The table shows the time and memory consumption of Yices 1.0.9 when
solving the SMT problem from Figure 4, with all quantifiers replaced by explicit conjunctions for different
bounds on the number of states in the global transition system and on the number of states in the individual
processes (shown in parentheses).

bound | 4 | 5 | 6 | 7 | 8
result | unsatisfiable | satisfiable | satisfiable | satisfiable | satisfiable

decisions | 17566 | 30011 | 52140 | 123932 | 161570
conflicts | 458 | 800 | 1375 | 2614 | 3987

boolean variables | 1850 | 2854 | 3734 | 5406 | 6319
memory (MB) | 18.3008 | 20.0586 | 22.5781 | 27.5000 | 35.7148
time (seconds) | 0.21 | 0.63 | 1.72 | 5.15 | 12.38

Table 3: Experimental results from the synthesis of a single-process arbiter using the specification from
Figure 5 and the architecture from Figure 1a. The table shows the time and memory consumption of Yices
1.0.9 when solving the resulting SMT problem, with all quantifiers replaced by explicit conjunctions for
different bounds on the number of states in the transition system.

bound | 4 | 5 | 6 | 7 | 8 | 9 | 8 (1) | 8 (2) | 8 (3) | 8 (4)
result | unsat | unsat | unsat | unsat | sat | sat | unsat | unsat | sat | sat

decisions | 16725 | 47600 | 91480 | 216129 | 204062 | 344244 | 309700 | 1122755 | 167397 | 208255
conflicts | 326 | 1422 | 8310 | 61010 | 11478 | 16347 | 92712 | 775573 | 13086 | 13153

boolean variables | 1890 | 7788 | 5793 | 13028 | 8330 | 10665 | 15395 | 25340 | 8240 | 7806
memory (MB) | 18.0273 | 22.2109 | 28.5312 | 43.8594 | 42.2344 | 61.9727 | 54.1641 | 120.0160 | 42.1484 | 42.7188
time (seconds) | 0.16 | 1.72 | 14.84 | 208.78 | 32.47 | 72.97 | 263.44 | 5537.68 | 31.12 | 30.36

Table 4: Experimental results from the synthesis of a two-process arbiter using the specification from Figure 5
and the architecture from Figure 1b. The table shows the time and memory consumption of Yices 1.0.9 when
solving the resulting SMT problem, with all quantifiers replaced by explicit conjunctions for different bounds
on the number of states in the global transition system and on the number of states in the individual processes
(shown in parentheses).

23 October 2007

74

0

1 2 3 · · · n

⊥

∗

s1 s2 s3 sn

h h h
h

W

i=1,...,n

sisi⊕1

Figure 6: Specification of a dining philosopher problem with n philosophers. The environment can cause the
philosophers to become hungry (by setting h to true). The states depicted as double circles (1 through n) are
the rejecting states in F ; state i refers to the situation where philosopher i is hungry and starving (si). The
fail state is reached when two adjacent philosophers try to reach for their common chopstick; the fail state
refers to the resulting eternal philosophical quarrel that keeps the affected philosophers from eating.

3 states 4 states 6 states
philosophers | time (s) | memory (MB) | result | time (s) | memory (MB) | result | time (s) | memory (MB) | result

125 | 1.52 | 23.2695 | unsat | 23.84 | 36.2305 | unsat | 236.5 | 87.7852 | sat
250 | 5.41 | 29.2695 | unsat | 130.07 | 52.0859 | sat | 141.36 | 91.1328 | sat
375 | 22.81 | 38.9727 | unsat | 128.83 | 58.1992 | unsat | 890.58 | 154.355 | sat
500 | 17.98 | 39.9297 | unsat | 15.84 | 52.9336 | sat | 237.04 | 119.309 | sat
625 | 35.57 | 49.5586 | unsat | 417.05 | 94.7188 | unsat | 486.5 | 130.977 | sat
750 | 22.25 | 52.3359 | unsat | 20.85 | 69.1562 | sat | 82.63 | 99.707 | sat
875 | 51.98 | 56.0859 | unsat | 628.84 | 119.363 | unsat | 2546.88 | 255.965 | sat

1000 | 168.17 | 70.3906 | unsat | 734.74 | 117.703 | sat | 46.18 | 124.691 | sat
1125 | 67.14 | 70.1133 | unsat | 1555.18 | 165.922 | unsat | 1854.77 | 246.848 | sat
1250 | 165.59 | 76.2227 | unsat | 122.8 | 107.645 | sat | 596.8 | 203.012 | sat
1375 | 104.27 | 75.4531 | unsat | 3518.85 | 191.113 | unsat | 8486.18 | 490.566 | sat
1500 | 187.25 | 82.8867 | unsat | 85.52 | 129.215 | sat | 232.81 | 214.68 | sat
1625 | 85.83 | 88.8047 | unsat | 2651.82 | 246.734 | unsat | 1437.45 | 281.203 | sat
1750 | 169.93 | 97.543 | unsat | 107.14 | 126.477 | sat | 257.77 | 185.887 | sat
1875 | 174.03 | 105.25 | unsat | 3629.18 | 234.527 | unsat | 4641.03 | 405.781 | sat
2000 | 25.86 | 102.125 | unsat | 242.55 | 157.734 | sat | 811.78 | 269.375 | sat
2125 | 163.39 | 113.27 | unsat | 5932.24 | 315.711 | unsat | 6465.75 | 424.121 | sat
2250 | 412.37 | 115.438 | unsat | 523.87 | 162.391 | sat | 5034.83 | 456.316 | sat
2375 | 201.95 | 120.047 | unsat | 7311.03 | 313.168 | unsat | 4887.76 | 451.332 | sat
2500 | 375.29 | 135.535 | unsat | 235.17 | 202.59 | sat | 319.78 | 253.781 | sat
2625 | 544.03 | 135.379 | unsat | 6560.53 | 312.355 | unsat | 23990.5 | 808.633 | sat
2750 | 559.35 | 139.137 | unsat | 817.41 | 226.082 | sat | 632.28 | 349.992 | sat
2875 | 308.36 | 151.727 | unsat | 7273.89 | 299.016 | unsat | 8638.96 | 551.5 | sat
3000 | 666.18 | 155.57 | unsat | 533.23 | 228.961 | sat | 3158.26 | 493.617 | sat
3125 | 235.52 | 141.93 | unsat | 12596.6 | 377.328 | unsat | 10819.7 | 693.133 | sat
3250 | 869.53 | 153.633 | unsat | 2089.72 | 308.719 | sat | 21298.8 | 889.285 | sat
3375 | 260.88 | 145.918 | unsat | 11581.7 | 379.949 | unsat | 21560 | 741.09 | sat
3500 | 308.23 | 169.348 | unsat | 897.6 | 270.676 | sat | 829.52 | 398.008 | sat
5000 | 982.68 | 240.273 | unsat | 3603.7 | 421.832 | sat | 1357.48 | 582.457 | sat
7000 | 2351.87 | 313.277 | unsat | 7069.55 | 535.98 | sat | 6438.73 | 1081.68 | sat

10000 | 4338.83 | 448.648 | unsat | 4224.28 | 761.008 | sat | 10504.6 | 1121.58 | sat

Table 5: Experimental results from the synthesis of a strategy for the dining philosophers using the specifi-
cation from Figure 6. The table shows the time and memory consumption of Yices 1.0.9 when solving the
resulting SMT problem, with all quantifiers replaced by explicit conjunctions for different bounds on the
number of states in the transition system.

23 October 2007

75

plementation with 5 states is found in less than one second,
and Yices needs only half a minute to construct a correct
distribute implementation. The table also shows that bor-
derline cases like the fruitless search for an implementation
with 8 states, but only 2 local states, can become very ex-
pensive; in the example, Yices needed more than 1 1

2
hours

to determine unsatisfiability. Compromising on optimality,
by slightly increasing the bounds, greatly improves the per-
formance. Searching for an implementation with 8 states
and 3 local states takes about 30 seconds.

7.2 Dining Philosophers
Table 5 shows the time and memory consumption for syn-
thesizing a strategy for the dining philosophers to satisfy the
specification shown in Figure 6. In the dining philosophers
benchmark, the size of the specification grows linearly with
the number of philosophers; for 10.000 philosophers this re-
sults in systems of hundreds of thousands constraints. In
spite of the large size of the resulting constraint system, the
synthesis problem remains tractable; Yices solves all result-
ing constraint systems within a few hours, and within a min-
utes for small constraint systems with up to 1000 philoso-
phers.

8. CONCLUSIONS
Our experimental results suggest that the synthesis problem
can be solved efficiently using satisfiability checking as long
as a reasonable bound on the size of the implementation can
be set in advance. In general, distributed synthesis is unde-
cidable. By iteratively increasing the bound, our approach
can be used as a semi-decision procedure.

Bounded synthesis thus appears to be a promising new ap-
plication domain for SMT solvers. Clearly, there is a lot of
potential for improving the performance. For example, Yices
is not able to determine the satisfiability of the quantified
formula directly. After applying a preprocessing step that
replaces universal quantification by explicit conjunctions,
Yices solves the resulting satisfiability problem within sec-
onds. Developing specialized quantifier elimination heuris-
tics could be an important step in bringing synthesis to prac-
tice.

9. REFERENCES
[1] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and

Y. Zhu. Bounded model checking. Advances in
Computers, 58:118–149, 2003.

[2] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching time
temporal logic. In Proc. IBM Workshop on Logics of
Programs, pages 52–71. Springer-Verlag, 1981.

[3] F. Copty, L. Fix, E. Giunchiglia, G. Kamhi,
A. Tacchella, and M. Vardi. Benefits of bounded
model checking at an industrial setting. In Proc. of
CAV, LNCS. Springer Verlag, 2001.

[4] B. Finkbeiner and S. Schewe. Uniform distributed
synthesis. In Proc. LICS, pages 321–330. IEEE
Computer Society Press, June 2005.

[5] O. Kupferman and M. Vardi. Safraless decision
procedures. In Proc. 46th IEEE Symp. on Foundations
of Computer Science, pages 531–540, Pittsburgh,
October 2005.

[6] O. Kupferman and M. Y. Vardi. Synthesis with
incomplete informatio. In Proc. ICTL, pages 91–106,
Manchester, July 1997.

[7] O. Kupferman and M. Y. Vardi. µ-calculus synthesis.
In Proc. MFCS, pages 497–507. Springer-Verlag, 2000.

[8] O. Kupferman and M. Y. Vardi. Synthesizing
distributed systems. In Proc. LICS, pages 389–398.
IEEE Computer Society Press, July 2001.

[9] R. Rosner. Modular Synthesis of Reactive Systems.
PhD thesis, Weizmann Institute of Science, Rehovot,
Israel, 1992.

[10] S. Schewe and B. Finkbeiner. Bounded synthesis. In
5th International Symposium on Automated
Technology for Verification and Analysis (ATVA
2007). Springer Verlag, 2007.

[11] I. Walukiewicz and S. Mohalik. Distributed games. In
Proc. FSTTCS’03, pages 338–351. Springer-Verlag,
2003.

[12] P. Wolper. Synthesis of Communicating Processes
from Temporal-Logic Specifications. PhD thesis,
Stanford University, 1982.

23 October 2007

76

	Introduction
	Expressivity and correctness of mapping in ER modeling
	Specifying data models in PVS

	Example ER model
	Constraints

	Abstract data model
	A theory for keys
	Referential integrity constraints
	Cardinality constraints
	Weak entities and foreign keys

	Record-based ER model
	Instantiating abstract to ER

	Schema-level implementation
	Constraints

	Theory interpretations and the correctness of mapping
	Theory instantiation and abstract to ER
	Theory interpretation and ER to schema
	Entity construction
	Verifying type correctness conditions

	Results
	Related research
	Future work
	Conclusions
	References

