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Abstract

The hardware and software in modern aircraft con-
trol systems are good candidates for wverification us-
ing formal methods: they are complex, safety-critical,
and challenge the capabilities of test-based verification
strategies. We have previously reported on our use of
model checking to verify the time partitioning property
of the Deos™reql-time operating system for embed-
ded avionics. The size and complexity of this system
has limited us to analyzing only one configuration at a
time. To overcome this limit and generalize our anal-
ysis to arbitrary configurations we have turned to the-
orem proving.

This paper describes our use of the PVS theorem
prover to analyze the Deos scheduler. In addition to
our inductive proof of the time partitioning invariant,
we present a feature-based technique for modeling state-
transition systems and formulating inductive invari-
ants. This technique facilitates an incremental ap-
proach to theorem proving that scales well to models
of increasing complexity, and has the potential to be
applicable to a wide range of problems.

1 Introduction

Integrated modular avionics (IMA) architectures
found in modern aircraft contain applications of differ-
ent criticalities executing on the same CPU. The exe-
cution of these applications must be scheduled so that
they do not inadvertently consume CPU time that has
been budgeted for other applications. This schedul-
ing function may be performed by a real-time oper-
ating system (RTOS) that enforces time partitioning
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between scheduled tasks. The complexity of this em-
bedded software and its criticality for safe operation
present many challenges to the test-based verification
technology currently in use.

Scheduling has been perhaps the most widely re-
searched topic within real-time systems, and should
provide a sound foundation to the development and
validation of real-time systems. Even though many
types of scheduling disciplines and different task sets
have been investigated theoretically, real-life schedulers
are often richer and more complex than considered in
the literature, and thus there is usually a gap between
the abstract models used to derive scheduling results
and the real scheduling algorithms used in an RTOS.
The challenge now is to obtain high assurance that
such general methods have been properly applied to
the given system.

Over the past several years, Honeywell has been
developing and applying formal techniques to verify
safety-critical properties in IMA software components.
The focus of much of our work has been the scheduler
of the Deos real-time operating system, both as a test
case for a variety of tools and techniques, and as an im-
portant and “industrial strength” verification problem
in its own right.

This work and the approach taken began with an
earlier project undertaken with the Automated Soft-
ware Engineering group at NASA Ames [13]. The
model checker Spin [9] was used to model and verify
a portion of an early version of the Deos scheduler.
The verification model was derived directly from the
actual flight code so that the analysis results could be
traced back to the real system.

More recently, we have focused on the modeling and
analysis of advanced features of the latest version of
Deos, such as slack scheduling, aperiodic interrupt ser-
vicing, and mutex handling [4]. These new features
add considerably to the complexity of the software.
We have also analyzed the correctness of the overhead



time calculations performed in the scheduler [5]. For-
mal analysis of the system has allowed us to examine
its behavior over a wider range of scenarios than is pos-
sible by testing alone and increased our confidence in
the correct operation of the system.

As we have continued to add features to our model
and correspondingly expanded the size of its state
space, we have reached the memory limits (and practi-
cally speaking, the time limits) of our model checking
tools. Thus, for the larger systems we have considered,
model checking serves as an effective debugging aid but
is not able to provide an exhaustive verification. In ad-
dition, model checking requires that a specific system
configuration be modeled and analyzed. In our case
this means fixing the number of threads, the number
of periods, and the thread budgets.

The goal of our current work is to perform a compre-
hensive analysis of time partitioning in Deos for arbi-
trary configurations. We have used the PVS theorem
prover to model the operations of the scheduler and
reason about its temporal properties. This naturally
means modeling at a higher level of abstraction than
in the previous model checking approach, but our re-
sults extend to any legitimate initial specification of
threads, periods, and budgets.

2 Overview of Deos

Deos is a portable microkernel-based real-time oper-
ating system used in Honeywell’s Primus Epic avionics
product line. Deos supports flexible, integrated modu-
lar avionics applications by providing both space par-
titioning at the process level, and time partitioning
at the thread level. Space partitioning ensures that
no process can modify the memory of another process
without authorization, while time partitioning ensures
that a thread’s access to its CPU time budget cannot
be impaired by the actions of any other thread.

The combination of space and time partitioning
makes it possible for applications of different critical-
ities to run on the same platform at the same time,
while ensuring that low-criticality applications do not
interfere with the operation of high-criticality applica-
tions. This noninterference guarantee reduces system
verification and maintenance costs by enabling a sin-
gle application to be changed and re-verified without
re-verifying all of the other applications in the system.
Deos is certified to DO-178B [15] Level A, the highest
possible level of safety-critical certification.

The main components of a Deos-based system are il-
lustrated in Figure 1. A given software application con-
sists of one or more processes. Each process is executed
as one or more threads. All threads in a process share

Process 1 Process 2 Process 3
Application Thread Thread Thread Thread Thread Thread
1T T 1T
< g <
ﬁ API
~ Platfi
Deos (white) ﬁ Kernel ﬁ;}:gigw
<
HAL PAL
1 o
15 L
Hardware CPU Platform Hardware

Figure 1. Deos components and terminology

the same virtual address space in memory. Each hard-
ware platform in the system has a separate instance
of the Deos kernel running on it. The kernel com-
municates with its underlying hardware via its hard-
ware abstraction layer (HAL) and platform abstrac-
tion layer (PAL) interfaces. The HAL provides access
to the CPU and its registers and is considered part of
Deos itself. The PAL provides access to other platform
hardware, such as I/O devices and interrupt signals.
The application threads interact with the kernel and
obtain the services it provides by means of a set of
functions called the application programming interface
(API). The Deos scheduler supports a number of fea-
tures such as aperiodic interrupt threads, synchroniza-
tion mechanisms such as mutexes and semaphores, and
communication primitives such as periodic IPC and
mailboxes. Our current model consists only of those
features that have the most impact on time partition-
ing, such as RMS scheduling, thread creation/deletion
and slack recovery.

2.1 Scheduler Operation

In Deos, each thread is given a periodic time budget
and has a fixed priority. To maximize utilization, Deos
requires the thread periods to be harmonic. If two
threads have distinct periods P; and P», then one of
the periods must be a multiple of the other.

The Deos scheduler is based on a rate monotonic
scheduling (RMS) policy. RMS assigns thread priori-
ties so that threads of short periods (high rates) are
assigned higher priorities than threads of long periods
(low rates). Using this policy, threads run periodically
at specified rates and they are given per-period CPU
time budgets, which are constrained at thread creation
so that the system cannot be overutilized.

Deos fully supports dynamic thread creation and
deletion. At any given time, the running thread can
create a new thread that becomes eligible to run at the
next period boundary for its period. Also, the running



thread may delete itself, after which the scheduler will
activate another thread. Intuitively, at thread deletion,
the scheduler should “reclaim” the deleted thread’s pe-
riodic budget and make it available for future thread
creation. At thread creation, the scheduler should en-
sure that the budget of the new thread, in addition to
all the existing threads, does not violate time parti-
tioning. Because threads belong to harmonic periods
of different lengths, these computations are non-trivial,
and realized in Deos by means of a data structure called
budget updated vector, or buvec.

It is often suboptimal to restrict the applications
to the use of a fixed CPU time budget in each period.
Many applications such as network service applications
have highly variable demands on the CPU and have a
desired level of performance considerably greater than
the minimum required. Giving these applications only
the minimum budget necessary will result in low per-
formance; giving them a high enough budget to en-
sure the performance desired will result in severe un-
derutilization of the CPU most of the time and may
crowd out other applications that users want to have
in the system. For this reason, the Deos kernel provides
a mechanism for slack scheduling that assigns system
slack time to threads on a first-come first-served basis.
The classical view of slack scheduling is given in [10].
The version implemented in Deos incorporates several
major modifications of this view necessitated by the
special features of Deos (e.g. the capability to dynami-
cally activate and deactivate threads, and the existence
of aperiodic interrupt threads) [2].

2.2 Example Execution Timeline

Deos’s scheduling algorithm is best understood
through an example of the system execution timeline.
We will use this example as a running example through-
out the paper. Presently, our model does not include
scheduler overhead. This means that operations such
as thread creation or context switch happen instanta-
neously. A transition in this model may represent a
simple change such as the current thread spends one
time unit, or may capture complex changes such as
new thread creation and/or context switch. At period
boundaries, or SOP (start of period) in Deos’s termi-
nology, transitions are responsible for refreshing the
queue of waiting threads, as well as other bookkeep-
ing tasks such as those related to available budget and
slack. Figure 2(a) shows the various states individual
threads may exhibit.

The example scenario consists of two periods P, and
P, of length 10ms and 20ms respectively !. Note that

1From now on, all times are implicitly stated in ms.

the length of the longer period is an integral multiple
of (harmonic to) the shorter period. At startup, there
are two threads — the main thread (M) with a bud-
get of 5 running in period P;, and a user thread U
with a budget of 6 running in period P,. U;’s budget
can be normalized to the length of the fastest period
(P1) as 6/(20/10) = 3. The total normalized budget
is thus 5 + 3 = 8. The remaining normalized time of
2 in the fastest period is not scheduled for any thread,
and is known as time-line slack or associated budget.
In addition, a special system thread, the idle thread,
is automatically created at system start-up. The idle
thread (I) runs at the slowest period, has the lowest
priority of all threads, is available to run at all times,
and is scheduled to run when no other thread is eligi-
ble to run. It is special in the sense that it can never
complete early, delete itself or spawn other threads.

Figure 2(b) shows how the timeline unfolds over four
Pi’s (40ms). Since M has the shortest period, it has
the highest priority and is scheduled to run first. It
spends its budget (5), and then is interrupted by the
timer. Uy is scheduled to run next, and after running
for 3, Uy deletes itself. Since no threads are eligible to
run, the idle thread I is activated and runs until the
end of Py (time = 10). At this point, the start-of-period
(SOP) updates take place. These include refreshing the
budgets of all the threads belonging to all the periods
that end at this time, re-setting all slack reclaimed at
all periods ending at this time, and other housekeeping
tasks.

Since M now has its budget replenished, it is se-
lected to run. At time 12, M creates user thread Us,
which runs in P, with a budget of 8. This results in
the timeline slack becoming 10 — 5 — 8/2 = 1. Unlike
M and Uy, thread Us is slack-enabled, meaning that
it may request to run on slack time. Uy has to wait
until the start of its next period (20) before it becomes
eligible to run. M continues until it runs out of time
(15), at which point it is replaced by I.

At time 20, both M (with replenished budget) and
U, become eligible to run. M runs first, since it has
the shorter period. It completes early at time 23 and
gives up 5 — 3 = 2 to slack. Us; is now scheduled to run
until 30.

At time 30, M is again eligible to run. Since M has
higher priority, it preempts Us. M runs until time 32,
at which point it completes early and givesup 5—2 =3
to slack. Us then gets reactivated and continues to run
until it spends all of its budget at time 33 (32 + (8 —
(30 —23))). Since U, is slack-enabled, it requests slack
time, and receives 4. This slack consists of 3 given up
by M at time 32 and 1 of timeline slack. The 2ms given
up by M in the previous period (at time 23) are lost



start of period/
raise TBE exception

[slack enabled &
slack available]
thread budget exceeded

Running on base budget - Running on slack

T =Timer Intr, D = Deleted, P = Preempted, C = Completed for period

started

completed for waiting for Idle _P P P
iod
pere [slack enabled & slack P T T
slack not available] u2 —_——
thread budget exceeded U1 D 33 37
preempted 8
slack available Main T T __C _c _
5 15 23 32
t t t t
Wait for next period 10 20 30 40

[~slack enabled] thread budget exceeded

(a) Diagram of threads states (b) An example of the Deos scheduler execution timeline

Transition
'
'
Pecceccccccccccccccccccccccccccccccs oo leececccccccccccccccccccccnne .
' '
' '
normalTrans sopTrans
'
P R R T T T T TP A .
' '
' '
spent 1MayCreate I I
MaySwitch spent] MayCreate sop
ToSlack spent 1MayCreate normalNeedTo
. Activate 1
. Ppecccccccccccns geccccee deccces -
P ceeeann . . .
' ' '
'
'
. sopKeep sopNeedTo sopNeedTo
. Running Activate Preempt
activate
spent 1MayCreate
' '
. [ : perseeedneoaey
[ P . . .
. itch H sopReset
* switc . .
spent]MayCreate ToSlack E activateNew reactivate sopReset activateNew
spentl . Preempted AfterPreempt
e R -
' ' '
completed deleted
Interrupted
spentl created
stopRunning sopReset activateNew

(c) Transition Hierarchy. A transition is either a normal transition or an sop transition. This “OR” relation is depicted using
a dotted line. An sop transition is defined as a sequence of two sub-transitions: spentiMayCreate and sop. This “AND”
decomposition is depicted using a solid line.

Figure 2. Example execution timeline, thread states, and PVS transition hierarchy of the Deos sched-
uler.



since it was not used in that period. At time 37, Us is
interrupted by the timer, at which point I takes over.

To prove time partitioning using PVS, we started
by a simple scheduling model, and incrementally added
features to it. In our basic model a fixed set of threads
execute at periodic rates and may either run until their
budget is exhausted or they complete early. It is almost
obvious that the time partitioning property will hold in
such a simple system, but its inductive proof presented
some challenges. To this basic model we subsequently
added new features: 1) dynamic threads, which can be
created or deleted at any time step, and 2) slack time
reclamation, in which threads can run beyond their
budgeted time if there is slack in the schedule. The
inductive proof was constructed in parallel, following
an incremental approach.

3 Time Partitioning in the Basic Model

We model the execution timeline of Deos using a
discrete time state-transition system. There are two
central notions in this model: state and transition. At
any given time t (t is a natural number), Deos is in
a state s(t). The state s(0) is the initial state of
Deos at cold start. Deos progresses from state s(t)
to state s(t+1) by means of transitions. Transitions
have preconditions that render them applicable only in
certain states. Thus we can think of the Deos execution
timeline as if generated by a nondeterministic automa-
ton. Our first model describes the basic priority-based
scheduling, without dynamic threads or slack recovery.

3.1 System State

The type state is defined as a record type in
which a set of attributes describes relevant features
of the system. These attributes are: time, which
is the current time counted from the last cold start;
itsRunningThreadId is the id of the running thread;
sopReset is a boolean attribute that is true only
at period boundaries, after all SOP-related updates
have been completed; threads is the set of threads;
itsAssociatedBudget is the associated budget or time-
line slack.

State: TYPE = [#
time: Time,
itsRunningThreadId: Threadld,
sopReset: bool,
threads: Threads,
itsAssociatedBudget: NormalizedBudgetOrZero #]

The definition of states as record type does not
have any constraints. Proper states must satisfy a

number of constraints such as: The thread with id
itsRunningThreadId is the only thread that is run-
ning. These constraints are built into the predicate
properState:

properState(s): bool =
properThreads(s) AND
properItsAssociatedBudget(s) AND
properSopReset (s)

ProperState: TYPE = {s: State | properState(s)}

The initial state, which is the state at cold start, is
defined using the following predicate:

init(s): bool =

1. s‘time=0 AND

2. threadsInitialized(s‘threads) AND

3. s‘itsRunningThreadId=mainThreadId AND

4. s‘itsAssociatedBudget=
LO-totalNormalizedBudget (s) AND

5. s‘sopReset

A state is an initial state if time is zero (condition 1),
threads are initialized (conditions 2), the main thread
is running (condition 3), itsAssociatedBudget is equal
to the available timeline slack (condition 4, here L0 is
the length of the fastest period), and sopReset is true
(condition 5).

Reachable states are either initial states, or states
that can be reached by transitions from other reachable
states. Thus we are adopting an approach widely used
in modeling state-transition systems.

reachable(s:State): INDUCTIVE bool =
init(s) OR
((EXISTS (ps:ProperState) :
transition(ps,s) AND
reachable(ps)))
ReachableState: TYPE={s|reachable(s)}

3.2 Transitions

We define transitions by means of binary relations:
a transition from a proper state ps to a state s is
captured by the binary predicate transition(ps, s).
Transitions have many types, organized in the transi-
tion hierarchy (Figure 2(c)). We put a constraint on
all types of transition, requiring that they advance the
system’s clock by one time unit. This time constraint is
necessary in order to prove inductive properties about
reachable states. Note also that a transition is defined
on an ordered pair of proper state (ps) and state (s).
Thus we will need to make sure that all transitions are
closed on the set of proper states:

transition_proper: LEMMA
transition(ps, s) IMPLIES properState(s)



A transition is either a normal transition or an sop
transition, depending on whether the destination state
of the transition (s) is at a start of some period. In
the example, transition from time 4 to 5 is a normal
transition, while transition from time 9 to 10 is an sop
transition.

Normal Transitions

normalTrans (ps,s): bool=
notSop(s) AND
(spent1(ps,s) OR
EXISTS (psi:ProperState):
spent1(ps,psl) AND
normalNeedToActivate(psi,s))

There are two types of normal transitions, one
that does not involve a context switch (spent1), and
one that does involve a context switch (i.e. a new
thread needs to be activated: spenti(ps, psl) AND
normalNeedToActivate(psl, s)). Transition spentl (e.g
from time 1 to time 2) captures the situations where
the current running thread spends one time unit. The
sub-transition normalNeedToActivate captures the situ-
ations where the current running thread completes for
period, then a context switch happens: either a new
thread is activated (time 5), or a previously preempted
thread gets reactivated (time 32). Note that this sub-
transition has zero duration.

At the leaf-level of the transition hierarchy, we need
to define (sub-)transitions in terms of the effects they
exercise on the system state. For example, transition
spent1 is defined as:

spent1(ps,s): bool=
1. (notSop(ps) OR ps‘sopReset) AND
2. (idleIsNotRunning(ps) IMPLIES
currentRunningThread (ps) ‘ timeSpent+1<=
totalBudget (currentRunningThread(ps))) AND
3. timeIncremented(ps, s) AND
. s‘itsRunningThreadId=ps‘itsRunningThreadId AND
5. threadWithId(s, ps‘itsRunningThreadId)=
currentRunningThread(ps) WITH
[(timeSpent) :=
currentRunningThread(ps) ‘timeSpent+1]) AND
6. (FORALL (threadId: ThreadId):
threadId/=ps‘itsRunningThreadId IMPLIES
threadWithId(s,threadId)=
threadWithId(ps,threadId)) AND
7. s‘sopReset=false AND
8. s‘itsAssociatedBudget=ps‘itsAssociatedBudget

IS

Transition spent1 is defined by means of 8 conditions
that enforce parts of the Deos scheduler’s policy. For
example, condition 2 makes sure that, except for the
idle thread which does not have a budget, the current
running thread has not spent its entire budget. If it
has, spent1 should not be applicable (a context switch
must happen). After spent1, the system state stays the

same, except for the current running thread, which has
its timeSpent property incremented (conditions 5 & 6).
In order to make sure that this transition is closed on
the set of proper states, we need to prove the following
lemma:

spentl_proper: LEMMA
spent1(ps, s) IMPLIES properState(s)

We now briefly summarize the rest of the leaf-level
sub-transitions. completed (e.g at time 23) describes
what happens when a thread completes: its unused
time, if any, is lost to the idle thread. activateNew (e.g.
at time 5) and reactivatePreempted (e.g. at time 32)
capture the activation of the next running thread. Sub-
transitions such as completed are not closed on the set
of proper states: after the current thread stops running,
there is no running thread in the system. The system’s
state will become proper again only after the context
switch (activate) is completed.

SOP Transitions

SOP transitions are those that happen at period
boundaries. An sop transition is defined as a sequence
of spent1 and sop. The sub-transition sop captures the
changes that take place at period boundaries, and is of
any of the following three types:

sop(ps, s): bool =
sopKeepRunning(ps, s) OR
sopNeedToActivate(ps, s) OR
sopNeedToPreempt (ps, s)

Here sopKeepRunning is where the current thread
keeps running after the period boundary (not present
in the running example); sopNeedToActivate is where a
non-preemptive context switch happens (not present in
the running example); and sopNeedToPreempt is where
the current thread is preempted by a higher priority
thread that has just become runable (e.g. transitions
from time 9 to 10 and 19 to 20 where idle is preempted,
and transition 29 to 30, where Us is preempted). A
common step of these three types of subtransitions is
transition sopReset, which specifies what happens at
period boundaries. This is the most complex subtran-
sition in the model.

3.3 Proving Time Partitioning

In state-transition systems, properties such as time
partitioning (TP) are formulated as predicates on the
set of states, and proved to hold for all reachable states.
The corresponding PVS proof is inductive. It consists
of the base step and the inductive step:



init_invariant: LEMMA

init(s) IMPLIES TP(s)
transition_invariant: LEMMA

TP(ps) AND transition(ps, s) IMPLIES TP(s)

The base step is straightforward; the challenge is to
formulate TP so that we can carry out the inductive
step. In our case, TP states that at any period bound-
ary for any period P;, all threads that run in periods
not slower than P; must be satisfied for their current
periods. A thread is said to be satisfied for its current
period if either 1) it has run for its budget during its
current period or 2) has completed early for its current
period. We will refer to this formulation as TP1. In the
running example, at time 30, which is an SOP for P,
but not P, M is the only thread that runs in P;, and
since it completed early at time 23, TP1 holds.

Formulating TP Invariant: The First Attempts

TP1 is a more precise version of the description of-
ten used informally: “all threads should have access
to their periodic budget”. It is wverifiable in model
checking approaches. In fact, it is used in our ongo-
ing research that uses the SPIN model checker to ver-
ify Deos’s time partitioning. But this formulation is
clearly unsuitable for the inductive theorem proving
approach we are pursuing. We need a formulation that
can be checked for every state, not just SOP states.
Toward this end, we first attempted to formulate time
partitioning based on the concept of commitment. In-
tuitively, at any given state s and any given period
P;, we can define the commitment that the system has
made for threads that run in periods not slower than
P;. Time partitioning holds if this commitment does
not exceed the time remaining until the next SOP of
P;. Equivalently, we say that the system is not over-
committed or has good commitment.

goodCommitment (s,period): bool=

commitment (s,period)<=remainTime(s,period)
TP2(s,period) :bool =

goodCommitment (s,period)
TP2(s) :bool =

FORALL (period): TP2(s,period)

In the running example, at time 3, the remaining
times for P, and P, are 7 and 17, respectively. For P,
commitment (s, 1) = 2 < 7, since M still has 2ms more
torun. For Py, in addition to the commitment of 2 until
time 10, the system needs to accommodate M’s budget
of 5 from time 10 to time 20, as well as U;’s budget of
6, for a total of commitment(s, 2) = 2+5+6 = 13 < 17.

Clearly, TP2 = TP1. The reason is that at SOP of
P;, the remaining time is zero, and so the commitment
must also be zero, and so all threads of periods not

slower than P; must be satisfied for their current peri-
ods. Conversely, if the system is overcommitted at any
time with respect to some P;, then time partitioning
may be violated if all threads run to their full bud-
gets until the next SOP of P;. Thus, TP1 = TP2, and
we have successfully formulated time partitioning as a
predicate that can be checked at any time.

Unfortunately, using TP2 it is not possible to induc-
tively prove that the system is never overcommitted,
even when we are confident (using other methods) that
TP holds. In an inductive proof, we need to rely ex-
clusively on the inductive hypothesis (TP(ps) in this
case) to deduce the inductive conclusion (TP(s)). This
deduction breaks down, for example, in the transition
from time 8 to time 9. Because idle is running during
this time, the commitment stays the same, while the
remaining time is (as always) decremented.

Disjunctive TP Invariant

The key to resolving the above problem in our inductive
proof lies in the observation that whenever the commit-
ment for period P; stays the same after a transition, the
current running thread must be of a period slower than
P;. This, together with the fact that the scheduler is
RMS-based, imply that all threads of period not slower
than P; must be satisfied for their current period. This
leads us to adopting a disjunctive invariant form:

TP3(s,period): bool =
goodCommitment (s,period) OR
FORALL (threadId):
threadWithId(s,threadId) ‘period<=period
IMPLIES satisfied(s,threadId)

It is an easy but interesting exercise to check that
TP3 =- TP1, and since TP1 < TP2, we have TP3 = TP2.
But since TP3 is a version of TP2 weakened by a disjunc-
tive term, TP3 < TP2. In short, all three formulations
are equivalent, but only TP3 is amenable to an inductive
proof!

After settling with the invariant TP3, the inductive
proof is straightforward conceptually (albeit still rather
laborious, especially for sop transitions). The entire
collection of theories has a total 1648 lines of PVS code
and 212 lemmas.

Our proof techniques build upon a systematic
method proposed by Rushby [16] for constructing dis-
junctive invariants when verifying state-transition sys-
tems. This approach is related to the proof diagrams
proposed by Manna and Pnueli [12]. It has been suc-
cessfully applied to a variety of systems including fault-
tolerant group membership algorithm [14] and security
protocols [7].



4 Feature-Based Incremental Proof

Next, we expand the basic scheduler model to in-
clude dynamic thread creation and deletion. We first
describe the changes to the model, and discuss the ef-
forts involved in proving time partitioning in this en-
hanced model. We then further expand the model and
proof to include slack scheduling.

4.1 Adding Dynamic Threads

Changes to the model

In this model, the current running thread can either
create a new thread, or delete itself (except for the idle
thread). The state record type now has a new field:
buvec. This is an array of normalized budgets, indexed
by the system’s periods. It is initialized to an array of
zeros. Except for sopReset, the existing transitions in
the basic model do not have any effect on buvec, and as
such every lemma about them in the basic model can be
carried over to the new model with little effort?. More
work is required for sopReset as it updates buvec.

Thread creation and deletion are also modeled as
sub-transitions with zero duration. The most im-
portant constraint at thread creation is enoughBudget,
which ensures that, starting from the the next period
boundary of period, the newly created thread will be
guaranteed of newThreadBudget for every period. In the
running example, M was able to create Uz (which has
normalized budget of 4), because the total normalized
budgets of M and Us is 9, which is less than Lo=10. In
general, checking enoughBudget can be more involved
than this. Specifically, if a thread of period deletes it-
self, its budget should be reclaimed for future thread
creation. But in the same period when the deletion oc-
curs, this reclaimed budget should not be used for cre-
ating threads that run in periods faster than period.
The array buvec was introduced precisely to address
this issue. When a thread of period deletes itself, its
normalized budget is added to buvec[period]. Then
enoughBudget is defined as:

enoughBudget (newBudget,s,period) :bool=
newThreadBudget<=s‘itsAssociatedBudget+
sigma(0,period,LAMBDA(j:Period): buvec(j))

Changes to the Proof

With the addition of dynamic threads, the inductive
step in proving TP3 must be expanded with invariant
proofs for the new sub-transitions. The inductive step

2In our experience, most effort in reproving a lemma involves
minor editing of the PVS proof that can be completed in minutes.

for the sopReset also needs to be updated. Other parts
of our theory largely stay the same.

After a thread deletion, the system’s commitment
decreases by an amount equal to the deleted thread’s
remaining budget. Since the remaining time stays the
same, the system can not become overcommitted after
thread deletion. The more tricky case is at thread cre-
ation, where the system’s commitment is increased by
the commitment to the new thread, while the remain-
ing time stays the same. Our solution is to modify the
definition of goodCommitment as follow:

goodCommitment (s,period) :bool=
commitment (s,period)+
buvecCommitment (s,period)<=remainTime(s,period)

Notice the new term buvecCommitment. It is defined
to have the following properties. First, it should be
non-negative at all times, and zero at initial states.
Second, at thread deletion, it should increase by an
amount at most equal to the deleted thread’s budget.
Finally, at thread creation, it should decrease by an
amount at least equal to the new thread’s commitment.
The inductive argument then clearly applies to the new
sub-transitions. We only note here that finding the
right buvecCommitment is non-trivial; it requires close
inspection of exactly how the “flow” of budget hap-
pens. Once this is done, the rest of the proof reduces
to a straightforward PVS exercise. The theory for this
model now contains 1979 lines of PVS code and 254
lemmas.

4.2 Adding Slacks

Changes to the Model

With the introduction of slack, we need to make a
number of changes to the model. First, we need to
differentiate between two types of threads depending
on whether they are slack-enabled or not. The state
record type now has a new field: netSR. It is an array
of time values, also indexed by the system’s periods.
While the purpose of buvec is to keep track of avail-
able periodic budget for thread creation, the purpose
of netSR is to keep track of time temporarily available
for slack-enabled threads. netSR is initialized with ze-
ros, except the element indexed by the fastest period
is set to the timeline slack.

The definition of transitions are updated as follows:
Whenever a thread completes or deletes itself, any un-
used time will be added to the element of netSR in-
dexed by that thread’s period. When a slack-enabled
thread of period has spent its entire budget, it may
request to continue to run on slack time. The request



is granted if slack is available (resulting in the sub-
transition switchToSlack), and denied otherwise (re-
sulting in the sub-transition timerInterrupted). The
amount of available slack is computed by summing the
elements of netSR with index at most period. Finally,
the sub-transition sopReset also needs to be updated
to reflect the updating of netSR.

Changes to the Proof

The changes to the proof are analogous to those carried
out when we add dynamic threads to the basic model.
We need to add a new term, slackCommitment to the
inequality defining goodCommitment:

goodCommitment (s, period) :bool=
commitment (s,period)+
buvecCommitment (s,period)+
slackCommitment (s,period)<=remainTime (s,period)

Whenever a thread completes or deletes itself, its un-
used time will be added to slackCommitment (as opposed
to simply “lost” in previous models). In a sense, it is
transferred from commitment to slackCommitment. The
reverse transfer occurs when a slack-enabled thread
gets to run on slack. While intuitively clear, finding
the right definition of slackCommitment also required
careful inspection of the scheduler’s algorithm.

Notice the incremental update to the definition of
the key predicate goodCommitment! Each new feature
added to the model has a corresponding term that ac-
commodates the changes required to inductively prove
TP. The additional amount of work required to prove
TP in this full model is comparable to that required
when we added dynamic threads to the basic model.
We are confident that this model is scalable with even
more features such as interrupt threads.

5 Related Work

There are several examples of formal verification ap-
plied to real-time schedulers or operating systems in
the literature, but as far as we are aware, no verifica-
tion has been attempted of a real-time system with as
much complexity and features as DEOS. Fowler and
Wellings [8] apply PVS to the formal development of
an Ada tasking kernel, which is a substantial example,
but makes simplifying assumptions. Unlike DEOS, the
kernel formalized in [8] does not support dynamic task
creation or deletion, or slack scheduling. On the other
hand, inter-task communication via Ada protected ob-
jects is modeled. A similar mechanism is present in
DEOS but its addition to our formal model remains
the subject of future work.

A PVS formalization of a real-time resource allo-
cation algorithm — the priority ceiling proocol — is
presented in [6]. The model used in this work is sim-
ilar in many ways to our DEOS model. The priority
ceiling protocol is specified as a state-transition system
with a discrete time model, and proofs rely on finding
inductive invariants. In earlier work, Wilding [18] used
the ACL2 theorem prover to verify one of Liu and Lay-
land’s theorems [11], a fundamental result of real-time
scheduling theory. Yuhua and Chaochen [19] too have
constructed proofs for these schedulability theorems.

As illustrated in this paper, the use of deductive
methods supported by an interactive theorem prover,
is a powerfull technique for obtaining high confidence
in the correctness of a real-time scheduler. More
automatic methods, based on model checking, have
also been investigated in this context. For example,
Vestal [17] models the MetaH executive using hybrid
linear automata and uses reachability analysis to ver-
ify timing properties (i.e., deadlines are met) and other
invariants (e.g., all variables are initialized before they
are used). The analysis discovered several defects in
the executive and in MetaH tools. The verification ex-
amines several scenarios, each consisting of one or two
tasks with different timing characteristics and synchro-
nization constraints. Each of these simple scenarios
is analyzed using state-exploration algorithms. Using
the same type of automata, Altisen et al. [1] propose a
general methodology for examining scheduling issues,
formulated a supervisory control problems. Campos at
al. [3] describe an extension of symbolic model-checking
for finite-state real-time systems. Model checking is
used to determine the minimum and maximum execu-
tion times for all processes, which are modeled as state-
graphs. This information is used to verify the schedu-
lability of an aircraft control system with respect to a
rate-monotonic scheduler.

6 Conclusions

Complex safety-critical avionics systems are an ideal
application for formal verification techniques. Our pre-
vious work has shown that model-checking is effective
at identifying bugs in such systems, but may be lim-
ited by memory requirements. When we started the
work reported in this paper, our goal was to employ
the power of theorem proving to enhance the validity
of the results obtained from model-checking of Deos.
Our first step was to build an abstract PVS model of
Deos with the same capabilities as our more concrete
Spin model. In addition, to ensure the correctness of
our model, we had to show that the PVS model pro-
vided the same time partitioning guarantees as the Spin



model. This is the first time that a scheduler design of
this complexity has been formally verified.

Having experienced the difficulty of modeling and
proving properties about large systems using theorem
proving, we realized at the outset that our approach
had to be scalable. Our solution was to use a state-
transition system, explicit clock and inductive proofs.
Our results with incrementally adding two new fea-
tures to a base model have shown that this approach
is indeed scalable. As each new feature was added,
more than 95% of the model remained essentially the
same, and 95% of the proofs were reused without
modifications (except for the name changes mentioned
above). Most of the work in adding features revolved
around adding new states corresponding to those fea-
tures, adding transitions from and to those states, and
proofs over those new transitions. The toughest issue
was the identification of new time partitioning invari-
ants, which continues to be a difficult art. However,
our feature-based approach to proof decomposition and
the use of disjunctive invariants makes it possible to de-
velop sufficiently strong inductive invariants in a sys-
tematic way. It might be interesting to formalize this
approach of feature-based decomposition in terms of
rely-guarantee rules.

Our next task is to use the PVS model to prove ab-
stractions in our Spin model. The properties that will
be investigated include extension of results obtained in
Spin for three threads to arbitrary number of threads
supported by PVS. Since we now have a concrete Spin
model and an abstract PVS model of the same system,
we have the platform to study the interplay between
these two techniques and to identify means for maxi-
mizing their respective strengths.
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